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Abstract

Metastability thresholds lie at the heart of bootstrap percolation theory. Yet
proving precise lower bounds is notoriously hard. We show that for two of the most
classical models, two-neighbour and Froböse, upper bounds are sharp to essentially
arbitrary precision, by linking them to their local counterparts.

In Froböse bootstrap percolation, iteratively, any vertex of the square lattice that
is the only healthy vertex of a 1 ˆ 1 square becomes infected and infections never
heal. We prove that if vertices are initially infected independently with probability
p Ñ 0, then with high probability the origin becomes infected after

exp

˜

π2

6p
´

π
a

2 `
?
2

?
p

`
Oplog2p1{pqq

3
?
p

¸

time steps. We achieve this by proposing a new paradigmatic view on bootstrap
percolation based on locality. Namely, we show that studying the Froböse model is
equivalent in an extremely strong sense to studying its local version. As a result, we
completely bypass Holroyd’s classical but technical hierarchy method, yielding the
first term above and systematically used throughout bootstrap percolation for the
last two decades. Instead, the proof features novel links to large deviation theory,
eigenvalue perturbations and others.

We also use the locality viewpoint to resolve the so-called bootstrap percolation
paradox. Indeed, we propose and implement an exact (deterministic) algorithm
which exponentially outperforms previous Monte Carlo approaches. This allows us
to clearly showcase and quantify the slow convergence we prove rigorously.

The same approach applies, with more extensive computations, to the two-
neighbour model, in which vertices are infected when they have at least two infected
neighbours and do not recover. We expect it to be applicable to a wider range of
models and correspondingly conclude with a number of open problems.
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1 Introduction

1.1 Background

Bootstrap percolation is a statistical mechanics model branded in 1979 by Chalupa, Leath
and Reich [33] (also see [67, 74]). It has since become classical and widespread not only
in mathematics and statistical physics, but also in computer and social sciences. The
model is so simple and natural to define that it has been reinvented and studied under
a number of names, including freezing majority rule [70], k-core model [51], jamming
percolation [81], diffusion percolation [3], dynamic monopoly [89], contagious sets [51],
target set selection [20] and many more. Bootstrap percolation admits fruitful links with
low-temperature stochastic Ising model [32], kinetically constrained models of the liquid-
glass transition [57], weak saturation in graph theory [17], stability of perturbations of
cellular automata [55] and others. We direct the interested reader to [2, 37,54,71,72] for
background and more references on the above.

The r-neighbour bootstrap percolation model on a graph G is defined as follows (see
Section 2.1 for a more formal definition). Initially some of the vertices of G are declared
infected. Then, at each discrete time step, one additionally infects each vertex having
at least r infected neighbours, while infections never heal. This cellular automaton has
been studied on a variety of graphs (e.g. high-dimensional hypercubes [13, 15, 16], trees
[18,22,25,27,43,52,77], random regular graphs [19,63], Erdős–Rényi graphs [10,64,66,82],
hyperbolic lattices [75], Hamming tori [47,79], as well as graphs with “real world” features
such as sparsity, small diameter, heavy-tailed degree distributions, community structure,
etc. [1,7–9,26,29,42,44,46,83,88]) and under a variety of initial conditions. Yet, the most
natural and classical setting from the statistical mechanics viewpoint is the following. We
take the graph G to be the lattice Zd with edges between points at Euclidean distance
1 and initial condition given by infecting each vertex at random independently with
probability p P p0, 1q. Thus, the model is completely defined by its dimension d, threshold
r and parameter p. One of the most natural observables is the infection time: the random
variable τ given by the (possibly infinite) first time when the origin becomes infected.1

Many variants of the r-neighbour model have been introduced, some of which are
very similarly behaved. Of particular relevance to us is Froböse bootstrap percolation
(on Z2) introduced by Froböse in 1989 [45]. In this model each vertex becomes infected
if it completes a 1 ˆ 1 square of four infections and infections never heal, see (11) for
a more formal definition. As we will see, this model is essentially the same as the two-
neighbour one on Z2, but technically a bit simpler. We denote the corresponding infection
time by τF. Yet another popular variant is modified two-neighbour bootstrap percolation,
where two opposite corners of a 1ˆ1 square are sufficient to infect the other two corners.

In the initial work [33], r-neighbour bootstrap percolation was studied on a regular
tree and observed to exhibit a non-trivial phase transition in the sense that τ ă 8 almost
surely if and only if p is larger than some critical value bounded away from 0 and 1 (see
[3] and the references therein, also [45] for Froböse bootstrap percolation). Based on

1It is also common to consider the finite-volume critical probability. That is, the smallest value
of p such that the probability that all vertices the d-dimensional torus G “ pZ{nZqd become infected
eventually. All results we discuss admit essentially equivalent formulations in terms of this critical
probability along the lines of Lemma 3.5.
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simulations, it was initially believed that for certain values of d and r this would also
be the case for r-neighbour bootstrap percolation on Zd. However, this was disproved
by van Enter [86] for d “ 2 and Schonmann [76] for any d, showing that the critical
parameter is 0 for r ď d and 1 for r ą d. Consequently, the same holds for the Froböse
and modified models. This mismatch between what simulations indicated and the true
behaviour of the model is what became known as the bootstrap percolation paradox, which
has manifested in other erroneous predictions as explained below.

The trivial phase transition was first quantified in the seminal work of Aizenman and
Lebowitz [6], who established that for d “ r “ 2 there exists C ą 0 such that

lim
pÑ0

Pp

ˆ

exp

ˆ

1

Cp

˙

ă τ ă exp

ˆ

C

p

˙˙

“ 1, (1)

the same proof applying to τF and modified bootstrap percolation. Indeed, the cause
of the discrepancy between the numerical and rigorous results were strong finite-size
effects. They also pointed out the metastable nature of bootstrap percolation—infection
is triggered by the presence of extremely rare “critical droplets” which grow easily to
invade all space–a phenomenon known to govern the nucleation of a crystal within a
metastable liquid phase. Subsequently, suitable analogues of (1) were established for all
r ď d by Cerf, Cirillo and Manzo [30,31]. More recently, analogues of (1) were proved for
a vast class of cellular automata by Bollobás, Duminil-Copin, Morris and Smith [24] in
two dimensions and somewhat weaker versions thereof by Balister, Bollobás, Morris and
Smith [11,12] in any dimension.

A breakthrough was made by Holroyd [59], who improved (1) to a sharp threshold:

lim
pÑ0

Pp

ˆ

exp

ˆ

λ1 ´ ε

p

˙

ă τ ă exp

ˆ

λ1 ` ε

p

˙˙

“ 1 (2)

for λ1 “ π2{18 and any ε ą 0 in the case r “ d “ 2. For τF, (2) holds for λF
1 “ π2{6

(the proof of [59, Theorem 4] applies without change) and similarly for modified boot-
strap percolation with λF

1 .2 Beyond the importance of the result itself, [59] introduced,
among others, the fundamental technique of “hierarchies”. It immediately became the
method of choice in bootstrap percolation and has been used in virtually every paper
on bootstrap percolation (within the general “critical” class studied in [24]) with random
initial condition in the last two decades. Similarly to (1), generalisations of (2) were also
intensively sought after. Consequently, several other sharp thresholds have been proved
[23, 41, 59, 61], including a rather general class of models (albeit not as wide as the ones
treated in [24] at the level of precision of (1)) by Duminil-Copin and the first author [40],
as well as the r-neighbour model on Zd for all r ď d by Balogh, Bollobás, Duminil-Copin
and Morris [14].

Another reason for the importance of (2) is its relation with the aforementioned boot-
strap percolation paradox. As already indicated, it is very natural to run Monte Carlo
simulations to make quantitative predictions for the behaviour of the infection time τ .
This was done in order to determine whether the phase transition is trivial, what the
correct scaling in (1) is, what the correct value of λ1 in (2) is, what the correct scaling

2See [28, 61] for links between the constants appearing here and integer partitions in combinatorial
number theory.
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of the error term in (2) is, etc. The paradox lies in the fact that these predictions have
so far systematically been wrong, regardless how detailed rigorous results are taken into
account to refine them. An early account of the paradox can be found in [87], while
subsequent reassessments include [34,37,48].

The large discrepancy between the numerical estimates of λ1 [2,5,69,73] (also see [80]
for more contemporary simulations) and its actual value [59] motivated the quantification
of the error term in (2). The best upper bound was obtained by Gravner and Holroyd
[48] showing that for some C ą 0

lim
pÑ0

Pp

ˆ

τ ă exp

ˆ

λ1

p
´

1

C
?
p

˙˙

“ 1 (3)

and a similar argument applies to τF and λF
1 and to modified bootstrap percolation (see

[84] for an analogue of (3) for any r ď d).
Lower bounds were substantially harder to come by. First Gravner and Holroyd

[49] focused on a simplified version of the model called local two-neighbour bootstrap
percolation, which we discuss next, establishing that for some C ą 0

lim
pÑ0

Pp

ˆ

τloc ą exp

ˆ

λ1

p
´

logCp1{pq
?
p

˙˙

“ 1, (4)

where τloc is the infection time for the local model, and similarly for Froböse and modified
bootstrap percolation.

In local two-neighbour bootstrap percolation (see Section 2.1 for precise definitions
and [28,35,36,49] for works on it) one of the initially infected sites (which are still chosen
independently at random with probability p) is declared germed; germs are transmitted at
each step to all infected neighbours; healthy sites with at least two infected neighbours, at
least one of which is germed, become infected. In other words, infection spreads exactly as
in ordinary (r “ 2) bootstrap percolation, but only starting from one particular spot. It
is clear that (ordinary) bootstrap percolation infects the origin at least as fast as its local
counterpart and for this reason all upper bounds in bootstrap percolation (again, more
generally, within the critical universality class studied in [24]) actually (implicitly) work
with a local model instead. It turns out that having to control only one growing patch of
infection is significantly simpler than also accounting for the possibility that several such
patches of various sizes and relative positions conspire in order to grow. Thanks to this,
the exponent C in (4) was slightly improved by Bringmann and Mahlburg [28], where a
few closely related models, including local Froböse and modified bootstrap percolation,
were also treated.

Equation (4) was proved for τ instead of τloc by Gravner, Holroyd and Morris [50] by
combining [49] with a refinement of the hierarchy method of [59]. Significantly developing
this line of work, Morris and the first author [58] matched (3) by a lower bound to obtain
that for r “ d “ 2 there exists C ą 0 such that

lim
pÑ0

Pp

ˆ

exp

ˆ

λ1

p
´

C
?
p

˙

ă τ ă exp

ˆ

λ1

p
´

1

C
?
p

˙˙

“ 1. (5)

Like previous works, this discarded conjectures based on numerical simulations [80] (see
[50] for more). Analogues of the lower bound in (5) have not yet been obtained for
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any other model, perhaps owing to the level of technicality of the proof. Finally, the
first author [56] recently noted that for the modified model (5) actually fails, due to
the presence of an additional logarithmic factor in the second order term in the upper
bound. This marked the first divergence between the modified and original models (see
Section 8.2 for more on this matter), while the state of Froböse bootstrap percolation
remained unsettled.

1.2 Results

1.2.1 Locality

The most important novelty of our work is to propose a new viewpoint on bootstrap
percolation models based on locality. The idea is to establish that the infection time
in bootstrap percolation is not only upper bounded by its local counterpart, but that
studying the local model is actually equivalent to treating the non-local one. Namely, we
prove the following (see Corollary 3.6 for the technical version we actually use, while the
aesthetic one stated here follows directly from Proposition 3.4 and Lemma 3.5).

Theorem 1.1 (Locality). For some absolute constant C ą 0 we have

lim
pÑ0

Pp

´

1 ď
τloc
τ

ď exp
`

logCp1{pq
˘

¯

“ 1, (6)

where τ (resp. τloc) is the infection time in two-neighbour bootstrap percolation (resp.
local) on Z2 defined in (10) (resp. (13)). The same holds for τFloc{τ

F corresponding to
(local) Froböse bootstrap percolation.

It is important to note that, while it follows e.g. from Eqs. (4) and (5) that τ and τloc
are close (up to a factor of exppC{

?
pq), our approach is radically different. Namely, we

do not recover Theorem 1.1 as a corollary of precise asymptotics on the two quantities
involved, but rather prove it a priori, only relying on rather crude bounds corresponding
to (2), thus completely bypassing Eqs. (3) to (5). This results in the bound in Theorem 1.1
being much stronger than the precision of (5) and the more precise results we show below.
Thus, Theorem 1.1 allows one to completely restrict one’s attention to the local model
also in potential future works essentially all the way down to the critical window (see
[54, Proposition 1.4.3]).

Another important consequence of Theorem 1.1 is completely bypassing Holroyd’s
hierarchy method, on whose refinements previous works (e.g. [50, 58]) rely. Indeed, hi-
erarchies do not appear directly in the present paper in any form. Instead, the rather
short proof of Theorem 1.1 itself involves some novel ingredients such as tools from large
deviation theory (see Section 3.1).

1.2.2 Sharp asymptotics

Our remaining results show that the locality viewpoint tremendously simplifies the study
of the models of interest, enabling us to go well beyond previous results. The first such
application concerns the classical problem of determining the precise asymptotics of the
infection time. Namely, we significantly improve on Eqs. (3) and (4) for the Froböse
model, establishing in particular that (5) does hold for it.
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Theorem 1.2. The infection time τF of Froböse bootstrap percolation satisfies3

lim
pÑ0

Pp

ˆ

exp

ˆ

λF
1

p
´

λF
2

?
p

´
log2p1{pq

3
?
p

˙

ă τF ă exp

ˆ

λF
1

p
´

λF
2

?
p

`
log2p1{pq

3
?
p

˙˙

“ 1 (7)

with λF
1 “ π2{6 « 1.6449 and λF

2 “ π
a

2 `
?
2 « 5.8049.

We also establish an analogous result for two-neighbour bootstrap percolation. While
its proof is conceptually very similar, it requires significantly more extensive casework.
Most notably, Table 1 becomes a 221-row table, an excerpt of which is provided in Table 3,
each row corresponding to an event like the seven given in (122). For this reason, we
leave the additional technical details in the proof of Theorem 1.3 below to Appendix A
and warn the prudent reader that only the upper bound will be proved in detail.

Theorem 1.3. For two-neighbour bootstrap percolation on Z2, we have

lim
pÑ0

Pp

ˆ

exp

ˆ

λ1

p
´

λ2
?
p

´
log2p1{pq

3
?
p

˙

ă τ ă exp

ˆ

λ1

p
´

λ2
?
p

`
log2p1{pq

3
?
p

˙˙

“ 1 (8)

with λ1 “ π2{18 « 0.54831 and an explicit λ2 P p0,8q given by λ2 “
ş8

0
h2 « 7.0545 with

h2 defined in (119).

Theorem 1.3 strengthens [58, Conjecture 7.1], postulating the existence of a λ2, with-
out identifying its value, based on the fact that the size of the critical window is known
to be small [54, Proposition 1.4.3]. Moreover, thanks to [57, Section 2], our result implies
an analogous lower bound on the expected infection time of the Fredrickson–Andersen
2-spin facilitated and Froböse kinetically constrained models in two dimensions with the
constants λ1, λ2, λF

1 , λF
2 doubled.

Let us highlight a few steps in the proof of Theorem 1.2. Owing to Theorem 1.1, we
may focus on the local Froböse model, starting with the upper bound in (7). Namely, we
consider a growing rectangle (the infected patch discussed above) and want to estimate
the probability of each possible sequence of sizes recording its growth. Then we need
to sum over all such sequences. In order to ensure that the corresponding events are
disjoint, we need to keep track of a certain frame around the rectangle known to be free
of infections (see Section 4.1). The 6 possible states of this frame naturally give rise to a
6 ˆ 6 matrix whose entries are the probabilities of going from one state to another (see
Fig. 4). Subtracting from this matrix the terms yielding the main contribution λF

1 {p in
(7), we obtain a new matrix. The constant λF

2 appearing in Theorem 1.2 is the integral

of the function hpzq “

b

p2 `
?
2q{pez ´ 1q arising as the Perron–Frobenius eigenvalue

of this matrix. Another way to view h is as the entropy of the fluctuations of growth
sequences around the solution of the optimisation problem for a certain differential form,
which was identified by Holroyd [59] (see Section 2.7). Thus, a careful treatment of the
deviations of the differential form from its value along this optimal path are needed (see
Lemmas 5.4 and 6.2).

3We have not sought to optimise the power of the logarithm in (7), since we do not expect 3
?
p to be

the right order of the next term.

7



Thanks to Theorem 1.1 and in stark contrast to previous works, proving the lower
bound in Theorem 1.2 is essentially analogous to proving the upper one. The only note-
worthy additional argument we employ in the lower bound are quantitative results on
the sensitivity of the Perron–Frobenius eigenvalue of a positive matrix subjected to a
perturbation (see the proof of Proposition 6.1 in Section 6.2).

While the proofs of Theorems 1.1-1.3 are model-specific, many of the arguments used
are quite robust. In particular, we expect the approach of first assessing the precision of
the locality approximation and then studying the local model in detail to be of use for
more general models. A few such directions are discussed in Section 8, but remain to be
explored in the coming years.

1.2.3 Bootstrap percolation paradox

Finally, we explore the implications of the locality Theorem 1.1 for the bootstrap perco-
lation paradox. The present discussion applies equally well to both two-neighbour and
Froböse bootstrap percolation, so we abusively identify these models, as well as their
local versions, in view of Theorem 1.1, or even (local) modified two-neighbour bootstrap
percolation.

An early stage of the proof of Theorem 1.2 discussed above establishes that, up to
a very small and well-controlled error, determining the infection time τ is equivalent to
finding the probability that a certain Markov chain on rectangles with their frame state
reaches perimeter L “ 4 logp1{pq{p. The trajectory of this chain encodes the growth
sequence discussed above (see Section 4.2). There are only 7 possible frame states and
the perimeter of the rectangle grows by at most 4 at each step. Therefore, we are able
to apply a dynamic programming algorithm (see Section 7 for more details) to compute
the probability of reaching the desired perimeter. Note that this deterministic algorithm
has time complexity of order L2 and space complexity of order L, both of which are
polynomial in 1{p.

This approach compares very favourably to the straightforward Monte Carlo simu-
lation of the initial state and running the dynamics used e.g. in [2–5, 45, 62, 69, 73, 87].
Indeed, Monte Carlo simulations of this kind require sampling roughly expp1{pq Bernoulli
variables in order to obtain any non-trivial result. In addition, they are subject to sta-
tistical errors. Thus, our algorithm brings the complexity from exponential down to
quadratic, removes all statistical errors (the output of our algorithm is not random) and
even allows one to rigorously quantify errors, if desired.

We should note that de Gregorio, Lawlor, Bradley and Dawson [35, 36] performed
numerical computations analogous to ours, as opposed to Monte Carlo simulations, for
the local modified two-neighbour model.4 A somewhat similar but less complete strategy
was applied to the local two-neighbour model in [80]. However, the results of these
implementations still led to incorrect predictions: “The striking conclusion is that not
even the rigorous correction term can be captured reliably by the numerical exact solution
yet” [37].

The local approach allows us to reach significantly beyond the regimes previously
probed (see Fig. 1). Indeed, Monte Carlo simulations have failed to go beyond p « 0.075

4In [49, p. 387] such a strategy was also suggested for the local two-neighbour model, as carried out
by Holroyd et al. in 2002, but never published [60].
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log 1
p

1 2 3 4 5 6 7 8 9 10 11 12

p log Πppq

0
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0.5

0.75

1

1.25

1.5

π2{6

π2{6 ´ π
a

2 `
?
2p1{2 ˘ p2{3

Figure 1: Plot of the numerical estimate of Πppq defined in (109) for Froböse bootstrap
percolation. We also show the asymptotics proved in Eqs. (2) and (7) for comparison. The
error term in (7) is simplified to p´1{3, since the polylogarithmic factor is not optimised
in the proof. The range of parameters previously accessible via Monte Carlo simulations
(resp. exact numerics) is given by the thick (resp. dashed) box, clearly showing why
asymptotics could not have been deduced from such data.

for the local modified model [36] and p « 0.023 for the local two-neighbour one [4,
34], while previous implementations of exact numerical computations like ours have only
probed down to p « 0.0035 for the local modified model [35] and p « 0.016 for the local
two-neighbour one [80]. Using modest computational resources, we have been able to
reach values of p down to 2´17 « 0.0000076. Moreover, our algorithm is not informed of
any asymptotic results such as Eqs. (1), (2), (5) and (7) and does not apply any heuristic
simplifications to the problem. As it is clear from Fig. 1, the agreement with rigorous
results is remarkable. We could therefore use our numerical estimates in order to infer
the various constants and exponents appearing in these results. Indeed, we successfully
predict all these values within an error of about 0.6% and 2% for the first and second order
terms respectively (see Fig. 7) and even reliably estimate all four values simultaneously
(see (111)). In comparison, Monte Carlo estimates of λ1 are typically off by more than
50%. Similarly, using an exact numerical method analogous to ours, [36] estimated the
second term exponent for local modified two-neighbour model to be 2{3 instead of 1{2.
We show that our results do give reliable predictions also for this model (see Fig. 8b
and Section 8.2).

1.3 Organisation

The remainder of the paper is structured as follows. In Section 2 we gather some defini-
tions and preliminaries standard in the field, along with a few ingredients from [59]. The
locality Theorem 1.1 is proved in Section 3. Section 4 sets the stage for the following
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sections by introducing frames and growth sequences. In Section 5 we prove the upper
bound in (7), while Section 6 completes the proof of Theorem 1.2, by proving the lower
bound, along similar but a bit more technical lines. In Section 7 we discuss numerics
for the bootstrap percolation paradox in light of Theorems 1.1 and 1.2. We conclude by
suggesting a number of future directions of research opened up by the present work in
Section 8. Finally, Appendix A provides the additional technical details needed for the
proof of Theorem 1.3 with respect to Theorem 1.2.

2 Preliminaries
In this section we gather various standard preliminaries, which will be used throughout
the rest of the paper.

2.1 Models

2.1.1 Two-neighbour bootstrap percolation in two dimensions

Let us start by formally defining 2-neighbour bootstrap percolation on Z2, which we refer
to simply as bootstrap percolation. Given a set A Ă Z2 of initially infected sites, at each
time step we further infect sites with at least 2 infected neighbours. In other words, the
set of vertices infected at time t ě 1 is

At “ At´1 Y
␣

x P Z2 : |At´1 X Npxq| ě 2
(

(9)

with A0 “ A and Npxq denotes the set of neighbours of x in the usual, nearest neighbour
graph structure on Z2. Given A, we denote by rAs “

Ť

tě0At its closure. We say that
A is stable, if rAs “ A. The observable we are interested in is the infection time of the
origin

τ “ inf tt ě 0 : 0 P Atu (10)

with inf ∅ “ 8. Throughout the paper we consider A to be taken at random with
distribution Pp such that p1xPAqxPZ2 are independent Bernoulli random variables where
p P p0, 1q is the parameter of the model. Thus, τ becomes a random variable whose
distribution is the object of our study.

2.1.2 Froböse bootstrap percolation

Froböse bootstrap percolation is defined identically to two-neighnour bootstrap percolation
on Z2 but with (9) replaced by

At “ At´1 Y
␣

x P Z2 : Dta, b, cu Ă At´1, ta, bu “ Npxq X Npcq, a ‰ b ‰ c ‰ a
(

(11)

Its closure and infection time are defined analogously and denoted by r¨sF and τF respec-
tively.

10



2.1.3 Local two-neighbour bootstrap percolation

We next turn to local two-neighbour bootstrap percolation on Z2. As for its non-local
version, we need a set A Ă Z2 of initially infected sites. However, we further require a
germ x P A. All germs are considered infected. In the local bootstrap percolation process
any site with at least two infected neighbours, at least one of which is a germ, becomes
a germ. Moreover, any infected site with a germ neighbour becomes a germ. Formally,
this leads to the following definition for t ě 1

Ax
t “ Ax

t´1 Y
␣

y P Z2 :
ˇ

ˇAx
t´1 X Npyq

ˇ

ˇ ě 2, Xx
t´1 X Npyq ‰ ∅

(

, (12)
Xx

t “ Xx
t´1 Y

␣

y P Ax
t : Xx

t´1 X Npyq ‰ ∅
(

with Ax
0 “ A and Xx

0 “ txu. Thus, Ax
t and Xx

t are the sets of infected sites and germs
with initial germ x at time t respectively. The local closure is defined by rAsx “

Ť

tě0X
x
t

and the local infection time by

τloc “ inf
xPA

inf tt ě 0 : 0 P Ax
t u ě τ. (13)

Note the importance of the infimum over x P A to avoid introducing a big discrepancy
between the local and original models e.g. if x is an isolated infection.

2.1.4 Local Froböse bootstrap percolation

Local Froböse bootstrap percolation is defined by its set A Ă Z2 of initially infected sites
and germ x P A by setting Ax

0 “ A, Xx
0 “ txu and for t ě 1

Ax
t “ Ax

t´1 Y
␣

y P Z2 : Da P Xx
t´1, Dtb, cu Ă Ax

t´1, ta, bu “ Npyq X Npcq, a ‰ b ‰ c ‰ a
(

,

Xx
t “ Xx

t´1 Y
␣

y P Ax
t : Xx

t´1 X Npyq ‰ ∅
(

Its closure and infection time are denoted by rAsxF “
Ť

tě0X
x
t and

τFloc “ inf
xPA

inf tt ě 0 : 0 P Ax
t u ě τF. (14)

2.2 Correlation inequalities

We next recall two standard correlation inequalities for the product measure Pp. We say
that an event E (i.e. a family of subsets of Z2) is increasing if for any E P E and F Ă Z2

such that F Ą E it holds that F P E . The first inequality was proved by Harris [53], but
is often referred to as FKG inequality.
Lemma 2.1 (Harris inequality). For any increasing events E ,F we have

PppE X Fq ě PppEqPppFq.

For the second inequality we need the notion of disjoint occurrence. We say that the
increasing events E and F occur disjointly for a realisation A Ă Z2, if there exist disjoint
sets B,C Ă A such that tE Ă Z2 : B Ă Eu Ă E and tF Ă Z2 : C Ă F u Ă F . The disjoint
occurrence of E and F is denoted by E ˝ F . We can then state the van den Berg–Kesten
inequality [85].
Lemma 2.2 (BK inequality). For any increasing events E and F measurable with respect
to A X r´N,N s2 for some N ě 0, then

PppE ˝ Fq ď PppEqPppFq.

11



2.3 Rectangles

As it will become clear in Section 2.4, rectangles with axis-parallel sides arise naturally
in bootstrap percolation. We therefore call a rectangle a set of the form

Rpa, b; c, dq “ pra, cq ˆ rb, dqq X Z2

for any integers a ă c and b ă d. The side lengths of a rectangle R “ Rpa, b; c, dq are
shortpRq “ minpc ´ a, d ´ bq and longpRq “ maxpc ´ a, d ´ bq, while the semi-perimeter
of R is ϕpRq “ c ´ a ` b ´ d. We further set

Rpa, bq “ Rp0, 0; a, bq.

We next define a few important events for a rectangles, which are central to our work.
Recall from Section 2.1 that A denotes the random subset of Z2 of initial infections with
law Pp, r¨s denotes the closure and r¨sx the local closure. We say that a rectangle R
is internally filled (resp. Froböse internally filled, locally internally filled, Froböse locally
internally filled), if the event

IpRq “
␣

A Ă Z2 : rA X Rs “ R
(

, (15)
IF

pRq “
␣

A Ă Z2 : rA X Rs
F

“ R
(

, (16)
IlocpRq “

␣

A Ă Z2 : Dx P A, rA X Rs
x

“ R
(

Ă IpRq, (17)
IF
locpRq “

␣

A Ă Z2 : Dx P A, rA X Rs
x
F “ R

(

Ă IF
pRq (18)

occurs. For two nested rectangles S Ă R, we say that there is a crossing from S to R, if

CpS,Rq “
␣

A Ă Z2 : Ds P S, rS Y pA X Rqs
s

“ R
(

(19)
CF

pS,Rq “
␣

A Ă Z2 : Ds P S, rS Y pA X Rqs
s
F “ R

(

(20)

occurs. The use of crossings comes from the next observation, which follows directly from
Eqs. (15), (17) and (19).

Observation 2.3 (Stacking crossings). For any rectangles T Ă S Ă R we have

IpSq X CpS,Rq Ă IpRq,

IlocpSq X CpS,Rq Ă IlocpRq,

CpT, Sq X CpS,Rq Ă CpT,Rq.

The same holds for the Froböse model.

Finally, we say that a set (not necessarily a rectangle) X Ă Z2 is occupied, if the event

OpXq “
␣

A Ă Z2 : A X X ‰ ∅
(

(21)

occurs.
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2.4 Rectangles process

The first thing to notice about two-neighbour bootstrap percolation (resp. Froböse boot-
strap percolation) is that the closure of any finite set of infections is the smallest5 collec-
tion of rectangles at graph distance at least 3 (resp. 2) from each other containing all the
infections. Thus, the closure of any set can be determined via the following rectangles
process. We start off with a collection of rectangles consisting of each of the initial infec-
tions. At each step we merge two of them at graph distance 2 or less (resp. 1 or less),
replacing them by the smallest rectangle containing their union. Repeating this until the
process becomes stationary yields the collection of rectangles in the closure.

We next derive a few simple but fundamental consequences of the rectangles process.
The first one is the following extremal bound, which constitutes a folklore exercise.

Lemma 2.4 (Extremal bound). Let R “ Rpa, bq be a rectangle. If IpRq occurs, then
|R X A| ě rpa ` bq{2s. If IFpRq occurs, then |R X A| ě a ` b ´ 1.

Proof. Observe that infecting a site with at least 2 infected neighbours cannot increase
the edge-boundary of the infected zone. Initially the edge-boundary is at most 4|R X A|,
while in the end it is 2ϕpRq “ 2a ` 2b. For Froböse bootstrap percolation see [50, p. 20]
(use Lemma 2.5 and induction on ϕpRq).6

The second corollary of the rectangles process we require is the following lemma due
to Holroyd [59, Proposition 30] (see [58, Lemma 5.6] for a strengthening). It follows by
considering the last merging step of the rectangles process.

Lemma 2.5 (Disjoint occurrence decomposition). Let R be a rectangle with |R| ą 1.
If IpRq occurs, then there exist rectangles S, T Ĺ R such that IpSq ˝ IpT q occurs and
rS Y T s “ R. The same holds for Froböse bootstrap percolation.

Finally, iterating Lemma 2.5 and taking the larger of the two resulting rectangles
at each step yields the following fundamental lemma of Aizenman and Lebowitz [6,
Lemma 1].

Lemma 2.6 (AL lemma). Let R “ Rpa, bq and 1 ď l ď maxpa, bq. If IpRq occurs, then
there exists a rectangle S Ă R with longest side length s satisfying l ď s ď 2l such that
IpSq occurs. The same holds for Froböse bootstrap percolation.

Turning to local Froböse bootstrap percolation, a similar rectangles process is avail-
able. Namely, there is only one “seed” rectangle, which grows by merging with a single
infection adjacent to it at a time. This immediately entails a local version of the AL
lemma.

Lemma 2.7 (Local Froböse AL lemma). Let R “ Rpa, bq and 2 ď l ď a ` b. If IF
locpRq

occurs, then there exists a rectangle S Ă R with ϕpSq “ l such that IF
locpSq X CFpS,Rq

occurs.
5A collection C is smaller than a collection C1, if

Ť

RPC R Ă
Ť

RPC1 R.
6For Froböse bootstrap percolation another proof can be obtained by considering the bipartite graph

with vertices being the rows and columns of R and edges corresponding to A and observing that this
graph needs to be connected.
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2.5 Constants and asymptotic notation

Before we proceed with ways of bounding the probability of internal filling, we should say
a few words about asymptotic notation. Given a real function f and a positive one g, we
say that fpxq “ Opgpxqq, if there exists C ą 0 such that |fpxq| ď Cgpxq for all x in the
domain of f . We write fpxq “ Opgpxqq as x Ñ a P R Y t˘8u, if there exists C ą 0 such
that lim infxÑa Cgpxq ´ |fpxq| ě 0. We write fpxq “ opgpxqq as x Ñ a P R Y t˘8u, if
limxÑa fpxq{gpxq “ 0. Unless otherwise specified, all asymptotic notation holds as p Ñ 0.

We also need several constants

1 ! C0 ! C1 ! C2 ! C3 ! C4.

That is, C0 is chosen large enough, C1 is chosen larger than a sufficiently large function of
C0, etc. All of these constants are allowed to depend on implicit constants in asymptotic
Op¨q notation, but not on p. Indeed, we require p ą 0 to be small enough depending on C4

unless otherwise stated (this will only be the case in Proposition 2.12 and its application
in Lemma 3.1).

2.6 Traversability

We next import some notions from Holroyd’s work [59], starting with some important
functions.

f : p0,8q Ñ p0,8q : z ÞÑ ´ logp1 ´ e´z
q, (22)

β : p0, 1q Ñ p0, 1q : u ÞÑ
u `

a

up4 ´ 3uq

2
, (23)

g : p0,8q Ñ p0,8q : z ÞÑ ´ log βp1 ´ e´z
q. (24)

It is not hard to check that f and g are decreasing convex analytic functions with the
following asymptotics7

fpzq “

#

´ log z ` z{2 ` Opz2q z Ñ 0,

e´z ` Ope´2zq z Ñ 8,
(25)

gpzq “

#

´1
2

plogpzq `
?
zq ` Opzq z Ñ 0,

e´2z ` O pe´3zq z Ñ 8.
(26)

In particular, f and g are integrable and one can show that [59, Proposition 5]

λF
1 “

ż 8

0

f “
π2

6
λ1 “

ż 8

0

g “
π2

18
(27)

(also see [28,61] for generalisations of the functions f, g and (27)).
The relevance of f comes from the following fact. Let

q “ ´ logp1 ´ pq “ p ` Opp2q, (28)
7Corresponding but less precise asymptotics for first and second derivatives of f and g will also be

used.
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so that q ě p. Then, recalling (21), for any finite set X Ă Z2, we have

Pp pOc
pXqq “ Pp pA X X ‰ ∅q “ 1 ´ e´|X|q

“ e´fp|X|qq.

Lemma 2.9 below gives a similar relation for g. We say that R “ Rpa, bq is East-
traversable, if

TÑpRq “ O pRpa ´ 1, 0; a, bqq X

a´1
č

i“1

O pRpi ´ 1, 0; i ` 1, bqq

occurs. In other words, we require that there is an infection on every two consecutive
columns of Rpa, bq and that the right-most column does contain an infection. We similarly
define traversability for other directions. We denote the corresponding events by TζpRq

with ζ P tÒ,Ð, Óu. For the Froböse model the corresponding notion is the following. We
say that R “ Rpa, bq has no horizontal gaps (resp. vertical gaps), if

G´pRq “

b´1
č

i“0

O pRp0, i; a, i ` 1qq , G|pRq “

a´1
č

i“0

O pRpi, 0; i ` 1, bqq

occurs. The importance of these events comes from the following observation.

Observation 2.8. Let R “ Rpa, bq be a rectangle and A Ă Z2. The following hold.

(i) IpRq Ă
Ş

ζPtÑ,Ò,Ð,Óu
TζpRq. Similarly, IFpRq Ă G´pRq X G|pRq.

(ii) If Rp´1, 0; 0, bq Ă rAs and A P TÑpRq, then R Ă rAs. Similarly, if Rp´1, 0; 0, bq Ă

rAsF and A P G|pRq, then R Ă rAsF.

(iii) If x P A, Rp´1, 0; 0, bq Ă rAsx and A P TÑpRq, then R Ă rAsx, where we recall that
r¨sx is the closure of local bootstrap percolation with germ x. Similarly, if x P A,
Rp´1, 0; 0, bq Ă rAsxF and A P G|pRq, then R Ă rAsxF.

Clearly,
Pp

`

G|pRpa, bqq
˘

“ expp´afpbqqq. (29)

A similar link between traversability and the function g is provided by [59, Lemma 8] as
follows.

Lemma 2.9 (Traversability probability). Let R “ Rpa, bq. Then

expp´agpbqqq ě Pp pTÑpRqq ě expp´pa ´ 1qgpbqq ´ fpbqqq ě p expp´pa ´ 1qgpbqqq.

2.7 Variational principles

We next recall some variational tools from [59, Section 6]. For any coordinate-wise non-
decreasing piecewise-differentiable path in r0,8q2 (simply path in the sequel) we set

W pγq “

ż

γ

gpxqdy ` gpyqdx, WF
pγq “

ż

γ

fpxqdy ` fpyqdx.
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Figure 2: The three cases for the shape of γS,T defined in (32).

In other words, if we view γ as a piecewise-differentiable function γ : r0, 1s Ñ r0,8q2 :
t ÞÑ pγ1ptq, γ2ptqq, we have

W pγq “

ż 1

0

pgpγ1ptqqγ1
2ptq ` gpγ2ptqqγ1

1ptqq dt

and similarly for WF. Recalling (28), we further set

Wppγq “

ż

γ

gpqxqdy ` gpqyqdx, WF
p pγq “

ż

γ

fpqxqdy ` fpqyqdx. (30)

Since paths we need are all piecewise linear, we write them out by specifying the points
to be joined by straight line segments, such as γ “ px1, x2, x3q, for xi P r0,8q2.

We next define certain specific paths which turn out to optimise W and WF. Given
0 ď a ď c, 0 ď b ď d and rectangles S, T which are translates of Rpa, bq and Rpc, dq

respectively, we define

γS “ pp0, 0q, pminpa, bq,minpa, bqq, pa, bqq, (31)

γS,T “

$

’

&

’

%

ppa, bq, pa, dq, pc, dqq d ă a,

ppa, bq, pc, bq, pc, dqq c ă b,

ppa, bq, pmaxpa, bq,maxpa, bqq, pminpc, dq,minpc, dqq, pc, dqq otherwise
(32)

(see Fig. 2), so that in fact γS “ γ∅,S. In words, these are the paths staying as close to
the diagonal as possible. The following is proved in [59, Proof of Proposition 14].

Lemma 2.10 (Optimal path). Let 0 ď a ď c, 0 ď b ď d and S, T be translates of Rpa, bq
and Rpc, dq respectively. Then,

inf
γ:pa,bqÑpc,dq

W pγq “ W pγS,T q, inf
γ:pa,bqÑpc,dq

WF
pγq “ WF

pγS,T q,

where the infimum is over all continuous paths γ starting at pa, bq and ending at pc, dq.

2.8 Holroyd bounds

The next lemma relates the functional W to the probability of internally filling a rectangle.
It is morally due to Gravner and Holroyd [48], up to minor adjustments as detailed below.

Proposition 2.11 (A priori lower bound). Let R be a rectangle. Recalling Eqs. (17),
(30) and (31), we have

Pp pIlocpRqq ě p3 exp p´WppγRqq , Pp

`

IF
locpRq

˘

ě p exp
`

´WF
p pγRq

˘

.
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Proof. Let R “ Rpa, bq with a ď b. By Observation 2.8 (iii) and the fact that g is
decreasing, we have

PppIlocpRqq ě PppIlocpRpa, aqqqPppTÒpRpa, b ´ aqqq. (33)

[48, Lemma 12] gives

PppIlocpRpa, aqqq ě PppIpRp2, 2qqq exp

˜

´2
a´2
ÿ

i“1

gpiqq

¸

ě p2 exp

ˆ

´
2

q

ż aq

0

g

˙

, (34)

if a ą 1, while clearly PppIlocpRpa, aqqq “ p if a “ 1, so (34) holds for any a ě 1.
Combining Eqs. (33) and (34) with Lemma 2.9 yields the desired result. The proof for
Froböse bootstrap percolation is analogous.

Converse bounds are significantly harder to prove. The following proposition is essen-
tially due to Holroyd [59], even though it only appears in a convenient form in [50, Propo-
sition 15] (see also [50, Theorem 20] for the Froböse model).

Proposition 2.12 (A priori upper bound on the critical scale). Let p ď 1{C4. Let
R “ Rpa, bq with

1

C3p
ď a ď b ď

C3 logp1{pq

p
.

Then, recalling (31), we have

PppIpRqq ď exp p1{pC3pq ´ WppγRqq , Pp

`

IF
pRq

˘

ď exp
`

1{pC3pq ´ WF
p pγRq

˘

.

Roughly speaking, Propositions 2.11 and 2.12 are exactly the full content of [59]. In
particular, together with the classical Lemma 3.5 below, they establish (2). Fortunately,
we do not need to look deeper into the proof of [59], but only use the above results as
black boxes.

3 Reduction to local bootstrap percolation
In the present section we prove the locality Theorem 1.1. We start by proving some rough
a priori bounds on the probability of a rectangle being internally filled in Section 3.1,
which is then used repeatedly in the main argument in Section 3.2.

3.1 A priori upper bounds on subcritical scales

While Proposition 2.12 is tight to leading order for rectangles on scale 1{p, we also need
(crude) bounds for smaller rectangles. Both Lemmas 3.1 and 3.3 below can be viewed
as improvements on [50, Lemma 2], which is insufficient for our purposes. Both lemmas
incorporate tilting ideas common in large deviations theory (see e.g. [38] for background).
In Lemma 3.1 we treat rectangles with bounded aspect ratio, by tilting the Pp measure
to a Pp0 for p0 ą p so that we can apply Proposition 2.12.
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Lemma 3.1 (Bounded aspect ratio). Let C4 ď s ď t ď C1s. If s ď 1{pC2pq and
R “ Rps, tq, then

PppIpRqq ď
`

spe´1{p3C1q
˘rps`tq{2s

, Pp

`

IF
pRq

˘

ď
`

spe´1{p3C1q
˘s`t´1

.

Proof. Let m “ rps ` tq{2s. By Lemma 2.4, IpRq implies |R X A| ě m. Set p0 “

2m{pC2|R|q ě p. Observe that for any A0 Ă R such that |A0| ě m we have

PppA X R “ A0q

Pp0pA X R “ A0q
“

p|A0|p1 ´ pq|R|´|A0|

p
|A0|

0 p1 ´ p0q|R|´|A0|
ď

pmp1 ´ pq|R|´m

pm0 p1 ´ p0q|R|´m

ď
pm

pm0 p1 ´ p0q|R|
ď

ˆ

e4{C2p

p0

˙m

,

since p0 ě p. Thus,

PppIpRqq ď

ˆ

e4{C2p

p0

˙m

Pp0pIpRqq. (35)

Yet, by Proposition 2.12 (note that it applies to p0 instead of p, because p0 ď 2{pC2C4q

is taken small enough depending on C3),

Pp0pIpRqq ď exp

ˆ

1

C3p0
´ Wp0pγRq

˙

“ exp

ˆ

1

C3p0
´

2

q0

ż sq0

0

g ´ pt ´ sqgpsq0q

˙

ď exp

ˆ

1

C3p0
` splogpsp0q ´ 1q ` O

´

sp0 `
a

s3p0

¯

˙

ˆ exp p´pt ´ sq logpsp0q{2 ` Optp0 ` t
?
sp0qq

ď exp

ˆ

´s
´

1 ´ O
´

C1{
a

C2

¯¯

`
s ` t

2
logpsp0q

˙

ď exp

ˆ

m

ˆ

logpsp0q ´
1

2C1

˙˙

,

using the fact that q0 “ p0 ` Opp20q and gpzq “ ´ logpzq{2 ` Op
?
zq as z Ñ 0 on the

second line, C4 ď s ď t ď C1s ď 2C1{pC2p0q in the third one and s ě t{C1 ě m{C1 ě

C4{C1 " C2 ě 1{psp0q in the last one. Injecting this into (35) and recalling that C2 " C1,
we obtain the desired bound.

The proof for Froböse bootstrap percolation is the same taking m “ s ` t ´ 1.

We next turn to rectangles with large aspect ratio, starting with Froböbse bootstrap
percolation. The idea is to replace the event that a rectangle is internally filled by it
having no horizontal gaps and a sufficient number of infections. The latter event is then
approximated by a large deviation event for a suitable random walk.

Lemma 3.2 (Froböse large aspect ratio). There exists a function ξF : r1, 2s Ñ r1, 2s such
that ξFpxq “ 1 ` Oppx ´ 1q logpx ´ 1qq as x Ñ 1 and the following holds. Let s ď t with
s ď 1{pC1pq and t ą 1. Set m “ s ` t ´ 1. If R “ Rps, tq, then

Pp

`

IF
pRq

˘

ď

ˆ

spξF
ˆ

m ´ 1

t ´ 1

˙˙m

.
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Proof. We have that IFpRq implies that R has no horizontal gaps by Observation 2.8 (i)
and contains at least m infections by Lemma 2.4. Let us denote

I 1
pRq “

␣

A Ă Z2 : |R X A| ě m
(

X G´pRq Ą IF
pRq.

Observe that from any configuration in I 1pRq one can extract a set of m infections wit-
nessing I 1pRq. We next seek to upper bound the number of such reduced configurations
in I 1pRq. Given a configuration with m infections in R we denote the infections by
pxi, yiq

m
i“1 with yi`1 ě yi for all i P t1, . . . ,m ´ 1u. Clearly, pxiq

m
i“1 P t0, . . . , s ´ 1um,

while G´pRq implies that pyi`1 ´ yiq
m´1
i“1 P t0, 1um´1, y1 “ 0 and ym “ t ´ 1. Thus,

t ´ 1 “ ym ´ y1 “
řm´1

i“1 pyi`1 ´ yiq. By the exponential Markov inequality (Cramér’s
theorem)

Pp

`

IF
pRq

˘

ď Pp pI 1
pRqq ď

p2spqm

2
exp

ˆ

´pm ´ 1q sup
uPR

ˆ

upt ´ 1q

m ´ 1
´ log

1 ` eu

2

˙˙

“ pspq
m

ˆ

ξF
ˆ

m ´ 1

t ´ 1

˙˙m´1

, (36)

ξFpxq “ xpx ´ 1q
p1´xq{x

P r1, 2s,

which has the right asymptotics.

For the two-neighbour model the statement and proof of Lemma 3.2 are analogous,
but a little more technical, as seen in what follows.

Lemma 3.3 (Large aspect ratio). There exists a function ξ : p1{2, 1s Ñ p1, 3s such that
ξpxq “ 1`Opp1{2´xq logpx´ 1{2qq as x Ñ 1{2` and the following holds. Let s ď t with
s ď 1{pC1pq and t ą 1. Set m “ rps ` tq{2s and

xps, tq “ max

ˆ

m ´ 1

t ´ 1
,
1

2
` p6spq

1{p2C0q

˙

. (37)

If R “ Rps, tq, then
PppIpRqq ď 3pspξpxps, tqqq

m.

Proof. We show the inequality with

ξpxq “
1 ` T ` T 2

T 1{x
P p1, 3s, T “

?
x2 ` 6x ´ 3 ` 1 ´ x

2p2x ´ 1q
P r1,8q

being the positive root of the equation

p2x ´ 1qT 2
´ T p1 ´ xq ´ 1 “ 0.

This will conclude the proof, since T “ 1{p4px ´ 1{2qq ` Op1q, so that ξpxq “ 1 ´ 4px ´

1{2q logpx ´ 1{2q ` Opx ´ 1{2q as x Ñ 1{2`.
We have that IpRq implies that R is North- and South-traversable by Observa-

tion 2.8 (i) and contains at least m infections by Lemma 2.4. Let us denote

I 1
pRq “

␣

A Ă Z2 : |R X A| ě m
(

X TÒpRq X TÓpRq Ą IpRq.
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Observe that from any configuration in I 1pRq one can extract a set of at least m and
at most t infections witnessing I 1pRq. We next seek to upper bound the number of
such reduced configurations in I 1pRq. Given a configuration with k infections in R we
denote the infections by pxi, yiq

k
i“1 with yi`1 ě yi for all i P t1, . . . , k ´ 1u. Clearly,

pxiq
k
i“1 P t0, . . . , s´ 1uk, while North and South-traversability imply that pyi`1 ´ yiq

k´1
i“1 P

t0, 1, 2uk´1, y1 “ 0 and yk “ t ´ 1. Thus, t ´ 1 “ yk ´ y1 “
řk´1

i“1 pyi`1 ´ yiq. By the
exponential Markov inequality (Cramér’s theorem)

PppIpRqq ď PppI 1
pRqq ď

t
ÿ

k“m

p3spqk

3
exp

ˆ

´pk ´ 1q sup
uPR

ˆ

upt ´ 1q

k ´ 1
´ log

1 ` eu ` e2u

3

˙˙

“

t
ÿ

k“m

pspq
k
pξpxpkqqq

k´1
ď

rk0s
ÿ

k“m

pspξpxpk0qqq
k

`

t
ÿ

k“rk0s`1

pspξpxpkqqq
k (38)

with xpkq “ pk ´ 1q{pt ´ 1q and

k0 “ max
`

m, 1 ` pt ´ 1q
`

1{2 ` p6spq
1{p2C0q

˘˘

, (39)

since ξ is increasing (it is the logarithm of the Legendre transform of a convex increasing
function).

The first sum in (38) is bounded by 2pspξpxpk0qqqm, since ξpxpk0qq ď 3 ď 1{p2spq. We
claim that the second one is bounded by pspξpxpk0qqqk0 . To see this, it suffices to show
that for any k P rk0, t ´ 1s it holds that

2sp ď
pξpxpkqqqk

pξpxpk ` 1qqqk`1
.

But for any k P rk0, t ´ 1s we have

pξpxpkqqqk

pξpxpk ` 1qqqk`1
ě

1

3

ˆ

1 ´
ξpxpk ` 1qq ´ ξpxpkqq

ξpxpk ` 1qq

˙t´1

ě
1

3

ˆ

1 ´
maxxPrxpk0q,1s ξ

1pxq

t ´ 1

˙t´1

ě
1

3
pxpk0q ´ 1{2q

2C0 ě 2sp,

since ξ1pxq ď ´C0 logpx ´ 1{2q for all x P p1{2, 1s and using (39).
Putting this together and recalling (37), we obtain the desired inequality:

PppIpRqq ď 3pspξpxpk0qqq
m

` pspξpxpk0qqq
k0 ď 3pspξpxpk0qqq

m
“ 3pspξpxps, tqqq

m.

3.2 Reduction

We fix the following length scale, sizes above which we view as “very supercritical”

Λ “
C1 logp1{pq

p
ď q´5{4. (40)

For a rectangle R “ Rpa, bq we denote by

R̄ “ Rp3a, 3bq ´ pa, bq,
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its three-fold expansion. We set

ĪlocpRq “
ď

RĂR1ĂR̄

IlocpR
1
q, ΦpRq “ Φpa, bq “

PppIpRqq

PppĪlocpRqq
,

ĪF
locpRq “

ď

RĂR1ĂR̄

IF
locpR

1
q, ΦF

pRq “ ΦF
pa, bq “

PppIFpRqq

PppĪF
locpRqq

.

We are now ready to state the main technical step in the reduction to local bootstrap
percolation, which is the heart of the present work.

Proposition 3.4 (Critical internal filling is local). For any rectangle R “ Rpa, bq with
a, b ď Λ we have

ΦpRq ď elog
19p1{pq, ΦF

pRq ď elog
19p1{pq.

Proof. We begin with the harder case of two-neighbour bootstrap percolation. We may
assume that minpa, bq ě 3, as otherwise IpRq “ IlocpRq Ă ĪlocpRq deterministically,
so there is nothing to prove. The proof proceeds recursively on the size of R. Let
N “ IpRqzĪlocpRq, so that our main goal is to upper bound PppN q.

For rectangles S, T Ĺ R with S Ć T and T Ć S, we call pS, T q a decomposition of R
if dpS, T q ď 2. Given a decomposition pS, T q we let c, d, s, t be such that S is a translate
of Rpc, dq and T is a translate of Rps, tq. We say that a decomposition pS, T q is local if
minpc, d, s, tq “ 1, maxpc, sq “ a or maxpd, tq “ b.

Let D be the set of non-local decompositions of R. Recalling (19), we next claim that

N Ă IpRqzIlocpRq Ă
ď

pS,T qPD

IpSq ˝ IpT q ˝ CprS Y T s, Rq. (41)

To prove (41), we apply Lemma 2.5 to R. Assume the resulting decomposition S, T
is local. If c “ a, then simply notice that IpT q implies TÒpRzSq X TÓpRzSq, so that
IpT q Ă CpS,Rq.8 The cases s “ a, and maxpd, tq “ b are treated analogously. If s “ 1
and c ă a, then we can also check that IpT q Ă CpS,Rq. The remaining cases are
treated analogously. Thus, in total, if the decomposition given by Lemma 2.5 is local,
we can find a rectangle S Ĺ R such that IpSq X CpS,Rq occurs. We may then repeat
the same reasoning for S instead of R until we reach a non-local decomposition or a
decomposition consisting of two rectangles consisting of a single site each. In the latter
case Observation 2.3 gives that there exists x P A X R such that Cptxu, Rq occurs, which
is exactly IlocpRq (recall Eqs. (17) and (19)). This completes the proof of (41).

By Lemma 2.2 and (41), we seek to upper bound

PppN q

PppĪlocpRqq
ď

ÿ

pS,T qPD

PppIpSqqPppIpT qqPppCprS Y T s, Rq

PppĪlocpRqq
. (42)

Let us fix pS, T q P D and without loss of generality assume that s ď minpc, d, tq. We next
consider several cases for the values of c, d, s, t, as illustrated in Fig. 3. It is convenient
to fix a translate T 1 of T such that S ` T 1 “ tx ` y : x P S, y P T 1u Ą rS Y T s.

8Here we observe that RzS is either one or two rectangles of width a and in the latter case mean that
each of them is North- and South-traversable.
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Figure 3: Illustration of the relative sizes and aspect ratios of the rectangles S and T in
the various cases of the proof of Proposition 3.4.

Case 1 (Critical S and T ). Assume that s ě 1{pC2pq (see Fig. 3a). Then Proposi-
tions 2.11 and 2.12 give

PppIpSqqPppIpT qq

PppIlocpS ` T 1qq
ď

1

p3
exp

ˆ

2

C3p
´ WppγSq ´ WppγT q ` WppγS`T 1q

˙

(43)

However, by Lemma 2.10

WppγS`T 1q ď WppγT q ` Wppps, tq ` γSq

Moreover, recalling (31), s ě 1{pC2pq ě 1{pC2qq and the fact that g is convex decreasing,
we have

WppγSq ´ Wppps, tq ` γSq

ě Wppp0, 0q, p1{pC2pq, 1{pC2pqqq ´ Wppps, tq, ps ` 1{pC2pq, t ` 1{pC2pqqq

ě

ż 1{C2

0

2gpzq ´ gpz ` sqq ´ gpz ` tqq

q
dz ě 2

gp1{C2q ´ gpsq ` 1{C2q

C2q

ě 2
gp1{C2q ´ gp2{C2q

C2q
ě

1

2C2p
,

using (26) in the last inequality. Putting this together and recalling that C3 " C2, we
get that

PppIpSqqPppIpT qqPppCprS Y T s, Rqq

PppĪlocpRqq
ď expp´1{p3C2pqq, (44)

by observing that rS Y T s Ă S ` T 1 Ă R̄ and using the Harris inequality Lemma 2.1 to
deduce that

PppIlocpS ` T 1
qqPppCprS Y T s, Rqq ď PppIlocprpS ` T 1

q Y Rsqq ď PppĪlocpRqq. (45)

Case 2 (Subcritical non-microscopic T ). Assume that s ď 1{pC2pq and t ě C2 logp1{pq.
By Lemma 2.9

PppCpS, S ` T 1
qq ě PppTÑpRps, dqqqPppTÒpRpc ` s, tqqq

ě p2 expp´gpdqqps ´ 1q ´ gppc ` sqqqpt ´ 1qq ě p2pspq
s{2

p2spq
t{2, (46)
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since gpzq ă ´1
2
log z for any z ą 0 small enough and minpd, cq ě s.

Case 2.1 (Small aspect ratio). Assume that t ď C1s (see Fig. 3a). Then we can apply
Lemma 3.1 and (46) to get

PppIpT qq ď pspq
rps`tq{2s

ď PppCpS, S ` T 1
qqe´t{C1 .

Note that for any S Ă R we have

ĪlocpSq X CpS, S ` T 1
q X CprS Y T s, Rq Ă ĪlocpRq. (47)

Then the Harris inequality Lemma 2.1 gives

PppIpSqqPppIpT qqPppCprS Y T s, Rqq

PppĪlocpRqq
ď e´t{C1ΦpSq. (48)

Case 2.2 (Large aspect ratio). Assume that t ě C1s (see Fig. 3b). Then we can apply
Lemma 3.3 to get

PppIpT qq ď 3pspξpxps, tqqq
rps`tq{2s

ď PppCpS, S ` T 1
qqe´t{C1 ,

since limxÑ1{2 ξpxq “ 1 ă 2. As in Case 2.1. this yields (48).
Case 3 (Microscopic S and T ). Assume that maxpc, d, tq ď log9p1{pq (see Fig. 3a). Then

PppIpSqqPppIpT qqPppCprS Y T s, Rqq

PppĪlocpRqq
ď

PppCprS Y T s, Rqq

PppIlocpS ` T 1qqPppCprS Y T s, Rqq

ď p´|S`T 1|
ď elog

19p1{pq{3, (49)

using (45) as above.
Case 4 (Microscopic T , non-microscopic S). Assume that

t ď C2 logp1{pq, maxpc, dq ě log9p1{pq.

Case 4.1 (Tall S). Assume that c ď log4p1{pq, so that d ě log9p1{pq, since maxpt, c, dq ě

log9p1{pq (see Fig. 3c). In this case we proceed as in Case 1, but using Lemma 3.3 instead
of Proposition 2.12. Namely, by Lemma 3.3 we have

PppIpT qqPppIpSqq ď 3p3spq
rps`tq{2s

¨ 3pcpξpxpc, dqqq
rpc`dq{2s

ď 9 p3C2p logp1{pqq
rps`tq{2s

´

cp
´

1 ` log´9{2
p1{pq

¯¯rpc`dq{2s

(50)

On the other hand, recalling that fpzq “ ´ log z ` Opzq and q “ p ` Opp2q, we get

PppIlocpS ` T 1
qq ě pc`s expp´rpd ` t ´ c ´ sq{2sfppc ` sqqqq

ě pc`s
ppc ` sqpq

rpd`t´c´sq{2se´Opcdpq

ě prps`tq{2s`rpc`dq{2s
´

e´Opp log4p1{pqq
pc ` 1q

¯d{2´log4p1{pq

, (51)

asking for the entire diagonal of the top-most translate of Rpc ` s, c ` sq contained in
S ` T 1 to be infected and for an infection on every second row in the rest of S ` T 1.

23



Dividing (50) and (51), we see that the terms prps`tq{2s and prpc`dq{2s cancel out, giving

PppIpSqqPppIpT qq

PppIlocpS ` T 1qq

ď 9 p3C2 logp1{pqq
2C2 logp1{pq pce2 log

´9{2p1{pqqrpc`dq{2s

pc ` 1qd{2´log4p1{pq

ď elog
2p1{pq

p2cq2 log
4p1{pq exp

ˆ

`

d{2 ´ log4p1{pq
˘

ˆ

´
1

2
log´4

p1{pq ` 2 log´9{2
p1{pq

˙˙

ď exp
´

log9{2
p1{pq ´ d{

`

5 log4p1{pq
˘

¯

ď exp
`

´ log5p1{pq{6
˘

.

By (45), this yields

PppIpSqqPppIpT qqPppCprS Y T s, Rqq

PppĪlocpRqq
ď exp

`

´ log5p1{pq{6
˘

. (52)

Case 4.2 (Wide S). Assume that d ď log4p1{pq, so that c ě log9p1{pq, since maxpt, c, dq ě

log9p1{pq (see Fig. 3d). The treatment is essentially identical to Case 4.1., so we omit
most of the computations. Lemma 3.3 gives

PppIpSqqPppIpT qq

PppIlocpS ` T 1qq
ď

3p3spqrps`tq{2s ¨ 3pdpξpd, cqqrpc`dq{2s

pd`t expp´rpc ` s ´ d ´ tq{2sfppd ` tqqqq
ď exp

`

´ log5p1{pq{6
˘

,

as in the previous case. By (45) this still yields (52).
Case 4.3 (Squarish S). Assume that minpc, dq ě log4p1{pq (see Fig. 3e). We apply
Lemma 3.3 to get

PppIpT qq ď 3p3spq
rps`tq{2s. (53)

In order to efficiently compare this quantity to PppCpS, S ` T 1qq, we need to consider the
parity of s and t, since we cannot afford even a single additional infection for rectangles
as small as T .
Case 4.3.1 (T with an even side). Assume that st is even, so that rps ` tq{2s “ rs{2s `

rt{2s. Then

PppCpS, S ` T 1
qq ě expp´fpdqqrs{2s ´ fpcqqrt{2sq

ě
cdp2

C2
2 log

2
p1{pq

ˆ

p log3p1{pq

C2

˙rs{2s`rt{2s´2

,

where we used that for any x ď Λ it holds that e´fpxqq ě xp{pC2 logp1{pqq. Combining
this with (53), we get

PppIpT qq

PppCpS, S ` T 1qq
ď

3 log8p1{pq

cd

ˆ

3C2
2

log2p1{pq

˙rps`tq{2s

.

Using (47) like in Case 2, this gives

PppIpSqqPppIpT qqPppCprS Y T s, Rqq

PppĪlocpRqq
ď

3 log8p1{pq

cd

ˆ

3C2
2

log2p1{pq

˙rps`tq{2s

ΦpSq. (54)
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Case 4.3.2 (T with odd sides). Assume that s and t are odd and recall that minps, tq ě 2,
since pS, T q P D. Then

PppCpS, S ` T 1
qq ě p expp´fpdqqps ´ 1q{2 ´ fpcqqpt ´ 1q{2q

ě
cdp3

C2
2 log

2
p1{pq

ˆ

p log3p1{pq

C2

˙s{2`t{2´3

,

as in Case 4.3.1. By (53) this entails

PppIpT qq

PppCpS, S ` T 1qq
ď

34C5
2 log

5
p1{pq

cd

ˆ

3C2 logp1{pqp

p log3p1{pq{C2

˙ps`tq{2´3

“
3 log11p1{pq

C2cd

ˆ

3C2
2

log2p1{pq

˙ps`tq{2

.

As in the previous case this gives

PppIpSqqPppIpT qqPppCprS Y T s, Rqq

PppĪlocpRqq
ď

3 log11p1{pq

C2cd

ˆ

3C2
2

log2p1{pq

˙ps`tq{2

ΦpSq, (55)

concluding the final case.
We are now ready to conclude the proof of Proposition 3.4. Plugging Eqs. (44), (48),

(49), (52), (54) and (55) into (42), we get

PppN q

PppĪlocpRqq
ď

ÿ

pS,T qPD

˜

e´1{p3C2pq
` elog

19p1{pq{3
` e´ log5p1{pq{6

` ΦpSq

˜

1těC2 logp1{pq

et{C1
`

log11p1{pq

cd

ˆ

3C2
2

log2p1{pq

˙rps`tq{2s
¸¸

ď elog
19p1{pq{2

`

a´1
ÿ

c“2

b´1
ÿ

d“2

Φpc, dq
log8p1{pq

cd
,

where in the second inequality we used that there are clearly at most p´5 decompositions,
given that maxpa, bq ď Λ (recall (40)), as well as minps, tq ě 2, since pS, T q P D. Hence,

Φpa, bq ď 1 ` elog
19p1{pq{2

`

a´1
ÿ

c“2

b´1
ÿ

d“2

log8p1{pq

cd
Φpc, dq

ď

´

1 ` elog
19p1{pq{2

¯

Λ
ÿ

k“0

ÿ

pciqki“1,pdiq
k
i“1

k
ź

i“1

log8p1{pq

cidi

ď

´

1 ` elog
19p1{pq{2

¯

˜

Λ
ź

c“2

ˆ

1 `
log4p1{pq

c

˙

¸2

ď elog
19p1{pq

where the sum runs over increasing positive integer sequences pciq
k
i“1, pdiq

k
i“1 such that

maxpck, dkq ď Λ. This concludes the proof of Proposition 3.4 for the two-neighbour
model.
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The proof of Proposition 3.4 for Froböse bootstrap percolation is almost identical, so
we only indicate the changes required. Firstly, (42) remains valid and so do the proofs in
Cases 1. and 3., up to requiring dpS, T q ď 1 for decompositions and replacing g by f , W
by WF, etc.). In Case 2., rps ` tq{2s becomes s ` t ´ 1 in view of Lemmas 3.1 and 3.2,
while (46) transforms into

Pp

`

CF
pS, S ` T 1

q
˘

ě Pp

`

G|pRps, dqq
˘

Pp pG´pRpc ` s, tqqq “ expp´fpdqqs ´ fppc ` sqqqtq

ě pspq
s
p2spq

te´Opsptq
ě ppspq

s`t´12tp1´1{C1q,

taking (25) and s ď 1{pC2pq into account. Finally, Case 4. needs a little more care, so we
write it out for the reader’s convenience.

Let pS, T q be a non-local (Froböse) decomposition of R with S a translate of Rpc, dq

and T a translate of Rps, tq. Note that for Froböse bootstrap percolation dpS, T q ď 1, so
we can find a rectangle T 1 which is a translate of Rps1, t1q such that rSYT sF Ă S`T 1 and
ps1, t1q P tps, t ´ 1q, ps ´ 1, tqu. We further assume that s ď minpc, d, tq, t ď C2 logp1{pq

and maxpc, dq ě log9p1{pq (corresponding to Case 4.).
Case 4.1-F (Tall S). Assume that c ď log4p1{pq, so that d ě log9p1{pq, since we have
maxpt, c, dq ě log9p1{pq. By Lemma 3.2 we have

Pp

`

IF
pSq

˘

Pp

`

IF
pT q

˘

ď p2spq
s`t´1

ˆ

cpξF
ˆ

c ` d ´ 1

d ´ 1

˙˙c`d´1

ď p2C2p logp1{pqq
s`t´1

´

cp
´

1 ` log´9{2
p1{pq

¯¯c`d´1

(56)

On the other hand, by Observation 2.8 (iii), IF
locpS ` T 1q is implied by the presence of an

L-shaped set of 2pc ` minps1, t1qq ´ 1 infections at the bottom-left corner of S ` T 1 and
the top-most translate of Rpc` s1, d` t1 ´ c´ s1q contained in S `T 1 having no horizontal
gap. Therefore, recalling that fpzq “ ´ log z ` Opzq and q “ p ` Opp2q, we get

Pp

`

IF
locpS ` T 1

q
˘

ě p2c`2s1´1 expp´pd ` t1
´ c ´ s1

qfppc ` s1
qqqq

ě p2c`2s1´1
ppc ` s1

qpq
d`t1´c´s1

e´Opcdpq

ě pc`d´1`s`t´1
´

e´Opp log4p1{pqq
pc ` 1q

¯d´log4p1{pq

, (57)

since s1 ` t1 “ s ` t ´ 1.
Combining Eqs. (50) and (57), we get

PppIFpSqqPppIFpT qq

PppIF
locpS ` T 1qq

ď p2C2 logp1{pqq
2C2 logp1{pq pce2 log

´9{2p1{pqqc`d´1

pc ` 1qd´log4p1{pq

ď elog
2p1{pq

p2cq2 log
4p1{pq exp

ˆ

`

d ´ log4p1{pq
˘

ˆ

´
1

2
log´4

p1{pq ` 2 log´9{2
p1{pq

˙˙

ď exp
´

log9{2
p1{pq ´ d{

`

3 log4p1{pq
˘

¯

ď exp
`

´ log5p1{pq{6
˘

.
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By (45) this yields

PppIFpSqqPppIFpT qqPppCFprS Y T s, Rqq

PppĪF
locpRqq

ď exp
`

´ log5p1{pq{6
˘

. (58)

The Case 4.2-F. of d ď log4p1{pq and c ě log9p1{pq is analogous and therefore omitted.
Case 4.3-F (Squarish S) Assume that minpc, dq ě log4p1{pq. By Lemma 3.2

Pp

`

IF
pT q

˘

ď p2spq
s`t´1.

Moreover, using that for any x ď Λ, e´fpxqq ě xp{pC2 logp1{pqq, we get

Pp

`

CF
pS, S ` T 1

q
˘

ě expp´fpdqqs1
´ fpcqqt1

q ě
cdp2

C2
2 log

2
p1{pq

ˆ

p log3p1{pq

C2

˙s1`t1´2

.

Combining these two bound with (47) as above, we obtain

PppIFpSqqPppIFpT qqPppCFprS Y T s, Rqq

PppĪF
locpRqq

ď
log8p1{pq

cd

ˆ

2C2
2

log2p1{pq

˙s`t´1

ΦF
pSq.

This concludes Case 4.3-F. The rest of the proof of Proposition 3.4 for Froböse bootstrap
percolation is identical to the one for two-neighbour model.

The next lemma is fairly standard (morally going back to [6]), but we include the
proof for completeness and in order to state it in a convenient form.

Lemma 3.5 (Critical internal filling determines τ). Let R “ RpΛ,Λq. Then

lim
pÑ0

Pp

˜

| logpτ
a

PppIpRqqq|

logp1{pq
ď 7

¸

“ 1, (59)

The same holds for τloc with I replaced by Iloc or Īloc. The same holds for Froböse
bootstrap percolation.

Proof. Let us first show that

PppIpRqq “ p1 ´ op1qqmaxPppIpRpa, bqqq, (60)

where the maximum runs over a, b ě 1 such that maxpa, bq{Λ P r1{2, 1s. Indeed,
PppIpRqq “ PppIpRpΛ,Λqqq ď maxPppIpRpa, bqqq is clear. To prove the converse first
note that by the Harris inequality Lemma 2.1

PppIpRqq ě PppIpRpa, bqqqPppE1q

for any a, b ě 1 with maxpa, bq{Λ P r1{2, 1s, where E1 is the event that every row or
column of length Λ{2 in RpΛ,Λq contains an infection. This entails (60), since

PppE1q ě 1 ´ Λ2
p1 ´ pq

Λ{2
“ 1 ´ op1q.

By the classical results of Aizenman–Lebowitz [6] we have that Pppτ ď e´1{pC1pqq Ñ 0.
For any T ě 1, define the event T pT q “ te1{pC1pq ă τ ă T u. If T pT q occurs, then there
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exists a set A0 Ă Rp´T,´T ;T, T q of infections such that 0 P rA0s. Therefore, by the
rectangles process (recall Section 2.4), there exists a rectangle R1 Ă Rp´T,´T ;T, T q such
that 0 P R1, |R1| ě e1{pC1pq and IpR1q occurs. However, by Lemma 2.6, this implies the
existence of a rectangle R2 with longest side of length in rΛ{2,Λs contained in R1. By
the union bound and (60) we have that for any T ě 1

PppT pT qq ď 9T 2Λ2maxPppIpRpa, bqqq ď T 2p´3PppIpRqq{2. (61)

On the other hand, the Harris inequality Lemma 2.1 gives that for any T ą e1{pC1pq,

PppT pT qq ě

´

1 ´ p1 ´ PppE2qPppIpRqqq
pTp4{Λq2

¯

PppE3q, (62)

where E2 is the event that every row or column of length Λ in Rp1{p3, 1{p3q contains an
infection and E3 is the event that every row or column of length 1{p3 in R̄T contains an
infection, where RT “ Rp´p4T,´p4T ; p4T, p4T q. Indeed, if E3 occurs, there exists x P RT

such that Ipx`Rq occurs and E2 translated by x occurs, then τ ď Λ2`Λ{p3`Tp4{p3 ă T .
By a union bound we obtain

PppE2q ě 1 ´ p´6
p1 ´ pq

Λ
“ 1 ´ op1q, (63)

PppE3q ě 1 ´ T 2
p1 ´ pq

1{p3
“ 1 ´ op1q, (64)

for any T ď exppp´4{3q. Putting Eqs. (61) to (64) together and taking into account that
PppIpRqq “ op1q e.g. by [6], we obtain (59), as desired.

The proofs for local and/or Froböse bootstrap percolation are identical.

Combining Proposition 3.4 and Lemma 3.5, we obtain the following result, which
allows us to completely restrict our attention to the local model in the remainder of the
work.

Corollary 3.6 (τ is local). Let R “ RpΛ,Λq (recall (40)). Then

lim
pÑ0

Pp

ˆ

e´ log20p1{pq
ď τ

b

PppIlocpRqq ď p´7

˙

“ 1.

The same holds for Froböse bootstrap percolation.

Proof. Since τ ď τloc, Lemma 3.5 gives that

τ
b

PppIlocpRqq ď τloc

b

PppIlocpRqq ď p´7

with high probability. Moreover, by Proposition 3.4 and Lemma 3.5,

τ
b

Pp

`

ĪlocpRq
˘

ě τe´ log19p1{pq

b

PppIpRqq ě p7e´ log19p1{pq

with high probability. It remains to note, by applying Lemma 3.5 twice, that

PppIlocpRqq ě p28Pp

`

ĪlocpRq
˘

.

The proof for Froböse bootstrap percolation is analogous.
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4 Growth sequences
In view of Corollary 3.6, we focus on the local Froböse model for the rest of the paper
and seek to prove Theorem 1.2. In this section we analyse the detailed structure of the
events CFpS,Rq for rectangles S Ă R.

4.1 Buffers and Frames

As mentioned in Section 1, we will analyse the infection from one rectangle R to a larger
R1 by relating it to a Markov chain. This is done using an exploration procedure that
selectively reveals whether certain regions around a rectangle are occupied or not. To
make this exploration precise, we first introduce the notion of buffers and frames.

Given a rectangle R “ Rpa, b; c, dq, we define its right, up, left and bottom buffers
respectively as

Br
pRq “ Rpc, b; c ` 1, dq, Bu

pRq “ Rpa, d; c, d ` 1q

Bl
pRq “ Rpa ´ 1, b; a, dq, Bd

pRq “ Rpa, b ´ 1; c, bq.
(65)

Observe that if all these buffers are free of infections, then a germ located in R cannot
locally infect anything outside this enclosed region.

As we inspect the buffers around a rectangle, our Markov exploration process will
transition between eight classes of states, that we call frames.

Definition 4.1 (Frame). A framed rectangle is a rectangle Rpa, b; c, dq equipped with a
label s P t0, 1, 11, 12, 2, 21, 3, 4u. We denote it by F pa, b; c, d; sq and refer to pc ´ a, d ´ bq
as its dimensions and to s as its frame state. For a framed rectangle F “ F pa, b; c, d; sq

we set F˝ “ Rpa, b; c, dq and define frame of F by

F˝ “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∅ s “ 0,

BrpF˝q s “ 1,

BrpF˝q Y BupF˝q s “ 2,

BrpF˝q Y BupF˝q Y BlpF˝q s “ 3,

BupF˝q Y BlpF˝q s “ 21,

BlpF˝q s “ 11,

BrpF˝q Y BupF˝q Y BlpF˝q Y BdpF˝q s “ 4,

BupF˝q s “ 12,

see Fig. 4. We denote F■ “ F˝ Y F˝.

4.2 The framed rectangle Markov chain

We next define a Markov chain on framed rectangles. Each framed rectangle only has
transitions to a bounded number of others, so that such transitions are translation in-
variant. That is, the probability of the transition from F pa, b; c, d; sq to F pa1, b1; c1, d1; s1q

is the same as the one from F p0, 0; c´ a, d´ b; sq to F pa1 ´ a, b1 ´ b; c1 ´ a, d1 ´ b; s1q. The
transition probabilities are given in Table 1 and illustrated in Fig. 4. The first seven are
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Figure 4: Here we represent all the frame classes as rectangles. Their respective buffers
are featured in gray, while the transitions are shown as arrows under the following color
code: green for buffer creation, blue for loops, orange for single buffer deletions, red for
double buffer deletions and black for the transition with a triple buffer deletion. Each
rectangle (except for the one corresponding to the absorbing state 4) is decorated with a
gray arrow that indicates the direction that will be explored next.

s s1 α β γ δ ´ log π s s1 α β γ δ ´ log π

0 1 0 0 0 0 qb 1 0 0 0 1 1 logp1{pq ` fpqaq

1 2 0 0 0 0 qa 2 1 1 0 0 1 logp1{pq ` fpqbq ` q
2 3 0 0 0 0 qb 3 2 1 1 0 0 logp1{pq ` fpqaq ` 2q
3 4 0 0 0 0 qa 3 2’ 0 1 1 0 logp1{pq ` fpqaq ` 2q
2’ 3 0 0 0 0 qb 2’ 1’ 0 0 1 1 logp1{pq ` fpqbq ` q
1’ 2’ 0 0 0 0 qa 1’ 0 1 0 0 1 logp1{pq ` fpqaq

1” 2 0 0 0 0 qb 1” 0 0 0 1 1 logp1{pq ` fpqbq
0 0 0 0 1 0 fpqbq 2 0 1 0 1 1 2 logp1{pq ` fpqbq
1 1 0 0 0 1 fpqaq ` q 2’ 0 1 0 1 1 2 logp1{pq ` fpqbq
2 2 1 0 0 0 fpqbq ` q 3 1 1 1 0 1 2 logp1{pq ` fpqaq ` 2q
3 3 0 1 0 0 fpqaq ` 2q 3 1’ 0 1 1 1 2 logp1{pq ` fpqaq ` 2q
2’ 2’ 0 0 1 0 fpqbq ` q 3 1” 1 1 1 0 2 logp1{pq ` fpqaq ` 2q
1’ 1’ 0 0 0 1 fpqaq ` q 3 0 1 1 1 1 3 logp1{pq ` fpqaq ´ logp4 ´ 3pq

1” 1” 0 0 1 0 fpqbq ` q
4 4 0 0 0 0 0

Table 1: Transition probabilities π “ PppT pF p0, 0; a, b; sq, F p´α,´β; a ` γ, b ` δ; s1qqq of
the framed rectangle Markov chain for local Froböse bootstrap percolation.
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0 1 1 2 0

Figure 5: Illustration of some of the transitions in the Markovian exploration. The frame
F˝ is indicated in gray and the frame state is given below the framed rectangle. The
sites that have already been revealed are black or white, depending on whether they
are infected or not, respectively. The thick rectangle is the interior F˝ of the framed
rectangle. Finally, a gray arrow represents the direction in which the exploration will
continue, while the transition arrows use the color code of Fig. 4.

called buffer creations (note that there is no such transition from s “ 0 to s1 “ 11), the
next eight are called loops, the next seven are the single buffer deletions, the next five are
the double buffer deletions, while the last one is the triple buffer deletion.

As we will see, only the buffer creations, loops and single buffer deletions contribute
to the second term in the asymptotic behaviour described in Theorem 1.2. Moreover,
since the only transition towards frame state 12 is a double buffer deletion, this state
(and all transitions to and from it) also does not contribute to the final result nor does
the absorbing frame state 4.

We are now in position to define the events that correspond to the transitions of the
Markov chain (see Fig. 5 for an illustration). Recalling Eqs. (20) and (21), we say that
the transition from state (framed rectangle) F “ F pa, b; c, d; sq to F 1 “ F pa1, b1; c1, d1; s1q

as in Table 1 and Fig. 4 occurs if

T pF, F 1
q “

␣

A : pAzF■q P
`

CF
pF˝, F

1
˝q X Oc

pF 1
˝q
˘(

(66)

occurs. Intuitively speaking, we require that the set of infections that have not been
explored yet (that is AzF■) should be able to transform F˝ into F 1

˝, while also respecting
the buffers of F 1. If F˝ “ F 1

˝, the event CFpF˝, F
1
˝q always occurs by definition ((20)).

Recalling Eqs. (22) and (28), Observation 2.3, and Section 2.1.4, one can check the
following assertions.

Observation 4.2. Table 1 defines a stochastic matrix denoted by T . For any framed
rectangle F , the events T pF, F 1q (see (66)) corresponding to transitions present in T are
disjoint for different choices of F 1. For each transition T pF, F 1q we have F˝ Ă F 1

˝ and
F■ Ĺ F 1

■, unless F has buffer state 4. The transition events T pF, F 1q define a Markov
chain pFptqqtPN with transition matrix T , whose state Fptq is measurable with respect to
A X Fptq■.

Given a rectangle S, we denote by pFSptqqtPN the chain with initial state S and frame
state 0. If IF

locpSq occurs, then for all t ě 0, IF
locpFS

˝ ptqq X OcpFS
˝ ptqq occurs. We denote

FSp8q “
Ť

tě0FS
˝ ptq. Then for any x P Z2, either F txup8q “ rAsxF, in case rAsxF is finite,

or both rAsxF and F txup8q are infinite (although not necessarily equal).

Corollary 4.3. Given nested rectangles S Ă R “ Rpa, bq, we have

Pp

`

CF
pS,Rq

˘

“
PppFSp8q “ Rq

e´2pa`bqq
,
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Proof. Consider the event E “ OcpR˝q, where we associate buffer state 4 to R. Then

PppEq “ e´2pa`bqq, tFp8q “ Ru “ E X CF
pS,Rq

and the latter two events are independent.

4.3 The entropy function

We next introduce the function h which governs the second term in (7):

h : p0,8q Ñ p0,8q : z ÞÑ

d

2 `
?
2

ez ´ 1
. (67)

However, in order to make it appear more naturally, let us start with an heuristic inves-
tigation of Table 1. In view of Lemma 2.10, it is not surprising that one should focus on
squares, so we consider transitions from a framed square F p0, 0; a, a; sq. Intuitively, since
we are interested in the second term, we want to isolate the part of T giving rise to the
first term in (7). This corresponds to taking a factor e´fpqaq for increasing the width or
height of the rectangle by 1. Further neglecting double and triple buffer deletions and
those to frame states 4 and 12, as well as the additive terms q and 2q in Table 1, we ob-
tain that buffer creations “cost” e´qa; loops “cost” 1; single buffer deletions “cost” pefpqaq.
This gives a positive 6 ˆ 6 matrix, whose Perron–Frobenius eigenvalue will turn out to
be 1 ` hpqaq

?
p “ 1 `

a

2 `
?
2
a

e´qa ¨ pefpqaq (where
a

2 `
?
2 is the Perron–Frobenius

eigenvalue of the unweighted bi-directed 6-cycle with one directed edge removed as in
Fig. 4). Moreover, the remaining transitions neglected above only perturb this value by
a smaller order term, as we rigorously establish in Sections 5.2 and 6.2 below.

We need the following properties of h, whose elementary proofs are left to the reader.
The function h is analytic, decreasing and satisfies9

hpzq “

$

&

%

b

2`
?
2

z
p1 ´ Opzqq z Ñ 0,

?
2`

?
2

ez{2 p1 ` Ope´zqq z Ñ 8.
(68)

In particular, (68) implies that h is integrable, so λF
2 :“

ş8

0
h P p0,8q. Furthermore, one

can explicitly compute

λF
2 :“

ż 8

0

h “

b

2 `
?
2

ż 8

0

dz
?
ez ´ 1

“ 2

b

2 `
?
2
“

arctan
`?

ez ´ 1
˘‰8

0
“ π

b

2 `
?
2.

(69)

5 Upper bound
In this section we prove the upper bound in Theorem 1.2.

9Again, we will also use analogous asymptotics for h1.
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5.1 Proof of the upper bound in Theorem 1.2

In view of Corollary 3.6, the upper bound in Theorem 1.2 follows immediately, if we prove

Pp

`

IF
loc

`

R
`

apMq, apMq
˘˘˘

ě exp

˜

´
2

q

ż 8

0

f `
2

?
q

ż 8

0

h ´
2C2 log

3{2
p1{qq

3
?
q

¸

, (70)

with apMq “ Λ (recall (40)) and f, h, q from Eqs. (22), (28) and (67). To do this, we
recursively prove a lower bound on the probability of locally internally filling larger and
larger squares Rpiq “ Rpapiq, apiqq. We start with ap0q “ 1, so that

Pp

`

IF
loc

`

Rp0q
˘˘

“ p ě p exp

˜

´
2

q

ż ap0qq

0

f

¸

. (71)

The sequence apiq is defined recursively so that api`1q ´ apiq “ rpapiqq2{3s, until reaching
the final size apMq “ Λ (for the sake of simplicity, we assume that this is possible for an
integer M). The exponent 2{3 is not of fundamental importance, but it is chosen in order
to optimise the third term in (70). In order to bound M , observe that api`1q ´ apiq ě

papmqq2{3 for any i ě m. Therefore, apm`rpapmqq1{3sq ě 2apmq, so

M ď

log2 a
pMq

ÿ

m“0

1 `

ˆ

Λ

2m

˙1{3

ď
log1{2

p1{qq

3
?
q

. (72)

Next comes the main technical result of this section, whose proof is left to Section 5.2.
Intuitively speaking, the proposition below provides a lower bound on the transition
probabilities during a step from apiq to api`1q. These piecewise estimates will be composed
to provide (70), through a Riemann sum.

Proposition 5.1 (Coarse step lower bound). Let a ě 1 and b “ a ` ra2{3s ď Λ. Then

PppIF
locpRpb, bqqq

PppIF
locpRpa, aqqq

ě exp

ˆ

´
2

q

ż bq

aq

f ` 2hpaqqpb ´ aq
?
q ´ C2

1 logp1{qq

˙

.

Applying Proposition 5.1 to a “ apiq, telescoping and then recalling Eqs. (71) and (72),
we obtain

Pp

`

IF
loc

`

RpMq
˘˘

(73)

ě Pp

`

IF
loc

`

Rp0q
˘˘

exp

˜

´
2

q

ż apMqq

ap0qq

f ` 2
?
q
M´1
ÿ

i“0

h
`

apiqq
˘ `

api`1q
´ apiq

˘

´ C2
1M logp1{qq

¸

ě exp

˜

´
2

q

ż apMqq

0

f ` 2
?
q
M´1
ÿ

i“0

h
`

apiqq
˘ `

api`1q
´ apiq

˘

´
C2 log

3{2
p1{qq

3
?
q

¸

.

Since f is positive, the integral above is less than λF
1 “

ş8

0
f . It therefore remains to
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evaluate the discrepancy between the Riemann sum in (73) and λF
2 “

ş8

0
h. Yet,

ˇ

ˇ

ˇ

ˇ

ˇ

q
M´1
ÿ

i“0

h
`

apiqq
˘ `

api`1q
´ apiq

˘

´

ż apMqq

ap0qq

h

ˇ

ˇ

ˇ

ˇ

ˇ

ď

M´1
ÿ

i“0

max
aPrapiq,api`1qs

|h1
pqaq|

`

qapi`1q
´ qapiq

˘2

h1pzq“Opz´3{2q

ď O
`

q1{3
˘

M´1
ÿ

i“0

`

qapi`1q
˘´3{2 `

qapiq
˘2{3 `

qapi`1q
´ qapiq

˘

ď O
`

q1{3
˘

ż qapMq

0

dx

x5{6
ď Opq1{3

q log1{6
p1{qq.

(74)

Moreover, (68) gives

0 ď λF
2 ´

ż apMqq

ap0qq

h ď O
´

a

ap0qq ` e´apMqq{2
¯

“ Op
?
qq. (75)

Putting Eqs. (73) to (75) together, we obtain (70), as desired.

5.2 Proof of Proposition 5.1

We next turn to proving Proposition 5.1. Fix a ě ap0q and b “ a ` ra2{3s ď Λ. Recalling
Observation 2.3, we have

PppIF
locpRpb, bqqq

PppIF
locpRpa, aqqq

ě max
x,y

Pp

`

CF
pRpx, y;x ` a, y ` aq, Rpb, bq

˘

,

where the max ranges over all possible positions px, yq P Rpb ´ a ` 1, b ´ a ` 1q of a
translate of Rpa, aq inside Rpb, bq. Further recalling Corollary 4.3, we get

PppIF
locpRpb, bqqq

PppIF
locpRpa, aqqq

“ max
x,y

PppFRpx,y;x`a,y`aqp8q “ Rpb, bqq

e´4bq

ě q3
ÿ

x,y

Pp

`

FRpa,aq
p8q “ Rp´x,´y; b ´ x, b ´ yq

˘

, (76)

where the term q3 accommodates the number of choices for x, y in the sum (recalling
a, b ď Λ).

For the sake of an upper bound, we may simply discard the transitions of the framed
rectangle Markov chain that would yield a negligible contribution. To that end, we call
a trajectory pRptqqNt“0 of this chain good, if the following all hold:

• it only features good transitions : buffer creations, loops and single buffer deletions;

• Fp0q “ F p0, a; 0, a; 0q;

• FpN ´ 1q ‰ FpNq “ F p´x,´y; b´ x, b´ y; 4q for some px, yq P Rpb´ a` 1, b´ a` 1q.
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In order to lower bound (76) we evaluate the probability of each good trajectory
individually. We start by examining a single transition.

Lemma 5.2 (Probability of a single transition). Let pF, F 1q be a transition in a good
trajectory with F “ F pi, j; k, l; sq and F 1 “ F pi ´ α, j ´ β; k ` γ, l ` δ; s1q. Then

PppT pF, F 1
qq “

$

’

&

’

%

1 ˆ e´qa ˆ eOpqa2{3q buffer creation,
e´pα`γqfpqpl´jqq´pβ`δqfpqpk´iqq ˆ 1 ˆ eOpqq loop,
e´fpqpl´jqq´fpqpk´i`1qq ˆ pefpqaq ˆ eOpa´1{3q 1-buffer deletion.

Note that α, β, γ, δ P t0, 1u and for good trajectories their sum is either 0, 1 or 2, corre-
sponding to the three cases above respectively.

Remark 5.3. Before digging into the proof, a few observations are in order.

• Each term above is spelled as a product AˆB ˆC, where the first factor corresponds
to growth costs, while B stands for buffer manipulations and C for error terms.

• Note also that the term A in the third line (corresponding to buffer deletions) has been
artificially factored in a way that makes the diagonal growth of the box dimensions
mimic the cost of one horizontal and one vertical steps (see Figure Fig. 6). The cost
of this modification is absorbed in the corresponding error term C.

Proof of Lemma 5.2. For concreteness, we assume that s “ 2, the other cases being
treated identically. If s1 “ 3 (buffer creation), then Table 1 gives

PppT pF, F 1
qq “ e´qpl´jq

“ e´qaeqOpb´aq.

If s1 “ 2 (loop), so that α “ 1 and β “ γ “ δ “ 0, then Table 1 gives directly the result
stated. If s1 “ 1 (buffer deletion), then Table 1 gives

PppT pF, F 1
qq “ pe´fpqpl´jqq´q

“ e´fpqpl´jqq´fpqpk´i`1qqpefpqaq exp

ˆ

Opqq ` qOpb ´ aq max
zPraq,bqs

|f 1
pzq|

˙

“ e´fpqpl´jqq´fpqpk´i`1qqpefpqaq exppOpqq ` Opb ´ aq{aq, (77)

where above we have expanded f linearly around qa and used that |f 1pzq| ď Opz´1q.

In the language of Remark 5.3, note that in Lemma 5.2, the terms A, B, C will
contribute to the first, second and third order terms in (70). Moreover, the A terms are
made so that along a trajectory they give the differential form WF

p (recall Section 2.7)
evaluated along a certain path from pa, aq to pb, bq. In order to control this arbitrary
path, we need the following analytic bound.

Lemma 5.4 (Diagonal deviation cost). Let 1 ď a ď b and γ be a piecewise linear
coordinatewise non-decreasing path from pa, aq to pb, bq. Then

ˇ

ˇ

ˇ

ˇ

WF
p pγq ´

2

q

ż bq

aq

f

ˇ

ˇ

ˇ

ˇ

ď O
`

pb ´ aq
3
{a2

˘

.
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pa, aq

pb, bq

state 0

state 1

state 2

Figure 6: A good trajectory, with frame states marked with the symbols in the legend.
Blue edges maintain a state, green arrows correspond to buffer creation and orange edges
stand for (single) buffer deletions, as in Figure 4 (in particular, loops in this picture do
not correspond to loops in Figure 4). The dashed lines represent the transformation
indicated in the buffer deletion case of Lemma 5.2.

Proof. Let γp “ q ¨ γ. Then

qWF
p pγq “ WF

pγpq “

ż

γp

pfpyqdx ` fpxqdyq

“

ż

γp

pfpxqdx ` fpyqdyq `

ż

γp

pfpxq ´ fpyqqpdy ´ dxq

“ 2

ż bq

aq

f ` f 1
paqq

ż

γp

px ´ yqpdy ´ dxq ` Opqb ´ qaq
3 sup
xPraq,bqs

f2
pxq

“ 2

ż bq

aq

f ` Opqpb ´ aqq
3
{paqq

2,

where we used (25) and the fact that the differential form px´yqpdy´dxq “ ´1
2
dpx´yq2

is exact, so closed, to get
ż

γp

px ´ yqpdy ´ dxq “

ż

ppaq,aqq,pbq,bqqq

px ´ yqpdy ´ dxq “ 0.

We next put together the contributions of all the transitions in a good trajectory
pFptqqNt“0. Denote by K the number of (single) buffer deletions performed by pFptqqNt“0.
As noted below Lemma 5.2, each of these buffer deletions correspond to a diagonal jump
in the size of the box and it can be transformed into one horizontal and one vertical steps,
giving rise to a new trajectory γ, depicted with dashed lines in Fig. 6.

Next we will follow the trajectory γ, multiplying the cost of each of its steps, according
to Lemma 5.2. Note that these costs are written as a the product of three factors and
we group those in the calculation below. Let γ be the path formed by the first terms in
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Lemma 5.2. Further note that the number of buffer creations is K ` 4. Then,

N
ź

t“1

PppT pFpt ´ 1q,Fptqqq “ e´WF
p pγq

ˆ e´4qa
`

e´qapefpqaq
˘K

ˆ eOpqpb´aqq`OpK`1qpqa2{3`a´1{3q,

“ exp

ˆ

´
2

q

ż bq

aq

f

˙

ˆ

ˆ

p

eaq ´ 1

˙K

ˆ eOp1`qaqp1`Ka´1{3q. (78)

In view of (78), it remains to add up all good trajectories. Moreover, since we are only
proving an upper bound, we are free to choose the value of K, so fix

K “ thpaqqpb ´ aq
?
pu “ O

`

a1{6
˘

(79)

(recall (67)). Since the right-hand side of (78) only depends on the trajectory through K,
it remains to count the number of good trajectories with K buffer deletions. Note that
a good trajectory that goes from state zero to four, while performing K buffer deletions,
undergoes exactly 2K `3 non-loop transitions. Moreover, given the sequence of non-loop
transitions performed, one still has to distribute the loop ones respecting the total change
in height and width. Thus, the total number of such trajectories is

ˆ

b ´ a ` 1

K ` 1

˙2

M2K`3
p0, 3q ě

ˆ

b ´ a

K

˙2

M2K`3
p0, 3q, (80)

where M2K`3p0, 3q is the p0, 3q-entry of the p2K ` 3q-rd power of the matrix

M “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‚

, (81)

corresponding to good non-loop transitions between frame states 0, 1, 2, 3, 21 and 11. But
M is bipartite, so

M2K`3
p0, 3q

“
`

1 0 0
˘

¨

˝

1 1 0
1 2 1
1 1 2

˛

‚

K`1¨

˝

0
1
1

˛

‚

“
`

1 0 0
˘

¨

˚

˝

´1 2`
?
2

4
2´

?
2

4

0 ´ 1
2

?
2

1
2

?
2

1 ´ 1
2

?
2

1
2

?
2

˛

‹

‚

¨

˝

1 0 0
0 2 ´

?
2 0

0 0 2 `
?
2

˛

‚

K`1¨

˝

0 ´1 1
1 ´

?
2 1

1
?
2 1

˛

‚

¨

˝

0
1
1

˛

‚

“
p1 ´

?
2qp2 ´

?
2qK ` p1 `

?
2qp2 `

?
2qK

2
ě

´

2 `
?
2
¯K

. (82)
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Let us first deal with the case K “ 0, which only arises for a ě p1{3` op1qq logp1{qq{q
(recall Eqs. (68) and (79)). Then, plugging Eqs. (78), (80) and (82) into (76) yields

PppIF
locpRpb, bqqq

PppIF
locpRpa, aqqq

ě q3 exp

ˆ

´
2

q

ż bq

aq

f ´ Op1 ` qaq

˙

ě exp

ˆ

´
2

q

ż bq

aq

f ` 2hpaqqpb ´ aq
?
q ´ OpC1q logp1{qq

˙

,

as desired, since a ď b ď Λ.
We may now assume that K ě 1. Recall that for any

?
n ě m ě 1 it holds10 that

`

n
m

˘

ě nm{p4m!q ě pen{mqm{p4emq. Plugging Eqs. (78), (80) and (82) into (76) and
using this fact, we obtain

PppIF
locpRpb, bqqq

PppIF
locpRpa, aqqq

ě
q3e´ 2

q

şbq
aq f

p4eKq2

¨

˝

d

pp2 `
?
2q

eaq ´ 1
¨
epb ´ aq

K

˛

‚

2K

eOp1`qaqp1`Ka´1{3q

p79q,p67q

ě
q3

p4eKq2
exp

ˆ

´
2

q

ż bq

aq

f ` 2K ` Op1 ` qaq

˙

p79q

ě q4 exp

ˆ

´
2

q

ż bq

aq

f ` 2K ` Opqaq

˙

ě exp

ˆ

´
2

q

ż bq

aq

f ` 2hpaqqpb ´ aq
?
q ´ OpC1q logp1{qq

˙

(83)

where in the last inequality we used (28), together with the fact that b ď Λ, completing
the proof of Proposition 5.1.

6 Lower bound

6.1 Deducing the lower bound of Theorem 1.2 from Proposi-
tion 6.1

By Corollary 3.6, in order to prove the lower bound in Theorem 1.2, it suffices to prove

Pp

`

IF
locpRq

˘

ď exp

ˆ

´
2λF

1

q
`

2λF
2

?
q

`
log2p1{pq

3
?
q

˙

(84)

with R “ RpΛ,Λq. In order to do this, we will use the following lower bound analogue of
Proposition 5.1, whose proof is left to Section 6.2.

Proposition 6.1 (Coarse step upper bound). Let S Ă T be rectangles with longpT q ď

mint2C2 shortpT q,Λu, longpSq ď 2C2 shortpSq and the semi-perimeters such that ϕpT q “

ϕpSq ` rpϕpSqq2{3s. Then

Pp

`

CF
pS, T q

˘

ď exp
`

´WF
p pγS,T q ` hpq shortpT qqpϕpT q ´ ϕpSqq

?
q ` C3 logp1{qq

˘

.

10https://rjlipton.wpcomstaging.com/2014/01/15/bounds-on-binomial-coefficents/
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In order to apply Proposition 6.1, we need to extract a sequence of rectangles anal-
ogous to Rpiq in Section 5.1. By iterating Lemma 2.7, we see that IF

locpRq implies the
existence of a sequence of nested rectangles pRiq

2Λ
i“2 such that R2Λ “ R, ϕpRiq “ i for all

i P t2, . . . , 2Λu and the event

tR0 Ă Au X

2Λ
č

i“1

CF
pRi´1, Riq (85)

occurs.
In view of the hypotheses of Proposition 6.1, we need to ensure that typically there

are no rectangles with too large aspect ratio. Such uneven rectangles can appear before,
during or after the critical scale.

This motivates us to introduce N0 and N1, which intuitively correspond to the last
violation of the aspect ratio before the critical scale and to the first violation after the
critical scale respectively. More precisely,

N0 “ max ti P t2, . . . , 2Λu : longpRiq P rC2 shortpRiq, 1{pC1qqsu , (86)
N1 “ min ti P t2, . . . , 2Λu : shortpRiq P rC1{q, longpRiq{C2su , (87)

with the conventions that for a ą b, ra, bs “ ∅, max∅ “ 2 and min∅ “ 2Λ.
Let us now give an overview of the proof of the lower bound in Theorem 1.2 that

follows. We will first consider what happens between N0 and N1, which clearly encap-
sulates the critical region r1{pC1qq, C1{qs. This critical region comprises the bulk of the
contributions in our estimates and the existence of uneven rectangles within it will be
ruled out in (89). In (101), we show that what happens after N1 can be ignored without
affecting our bounds. Finally, we prove that any potential gain one could have obtained
by reaching a rectangle with large aspect ratio before 1{pC1qq (this event corresponds to
N0 ą 2) would be offset by the cost of creating such an anisotropic rectangle to start
with, see (101).

We start by coarse-graining the sequence pRiq
N1
i“N0

. To do so, we set ϕ0 “ N0, recur-
sively define ϕk`1 “ ϕk ` rϕ

2{3
k s and choose M so that N1 P pϕM´1, ϕM s. For the sake of

simplicity we assume that N1 “ ϕM and recall that (72) applies.
We call a sequence of rectangles pRϕj

qMj“0, which can be obtained as above a coarse
sequence and we say that a coarse sequence pRϕj

qMj“0 is good, if for every j P t0, . . . ,Mu we
have longpRϕj

q ď 2C2 shortpRϕj
q. Of course we will need to control non-good sequences

as well and for this we introduce the following definition. We say that a rectangle R1 Ă R
is strange if longpR1q ě C2 shortpR

1q, longpR1q ą 1{pC1qq and shortpR1q ă C1{q, or in
words: R1 is critical and has a large aspect ratio.

We now use (85) and Observation 2.3 to write our main decomposition

Pp

`

IF
locpRq

˘

ď
ÿ

R1 strange

Pp

`

IF
locpR

1
q
˘

`
ÿ

M

ÿ

pRϕj
qMj“0

Pp

˜

IF
locpRϕ0q X

M
č

j“1

CF
`

Rϕj´1
, Rϕj

˘

¸

,

(88)
where the above sum ranges over all possible good coarse sequences.

We start by controlling the first term above. By Observation 2.8 (i) and (29),
ÿ

R1strange

Pp

`

IF
locpR

1
q
˘

ď
ÿ

R1strange

exp t´ longpR1
qf pq shortpR1

qqu .
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However, there are at most |R|2 ď p´5 possible R1 and

longpR1
qfpq shortpR1

qq ě

$

’

&

’

%

C2fpC1q

C1q
1{pC1qq ď shortpR1q ď C1{q

fpC1{C2q

C1q
1{pC1qq ď longpR1q ď C1{q

C1fp1{C1qq

q
shortpR1q ă 1{pC1qq, longpR1q ě C1{q,

so that
ÿ

R1strange

Pp

`

IF
locpR

1
q
˘

ď exp p´C1{qq , (89)

which is much smaller than our objective in (84).
In order to control the second term in (88), we start by observing that the number of

coarse sequences is at most the number of ways to choose the number M and then the
M rectangles contained in R. Thus, by Eqs. (40) and (72), for small enough q there are
at most

q´1{2
`

q´5
˘log1{2p1{qq{ 3

?
q

ď exp

˜

log5{3
p1{qq

3
?
q

¸

(90)

coarse sequences.
By definition, for any good coarse sequence pRϕj

qMj“0, we can apply Proposition 6.1
and (72) to get

Pp

˜

M
č

j“1

CF
`

Rϕj´1
, Rϕj

˘

¸

ď exp

˜

M
ÿ

j“1

´

´WF
p

´

γRϕj´1
,Rϕj

¯

` hpajqqpϕj ´ ϕj´1q
?
q
¯

` C3 log
3{2

p1{qq{ 3
?
q

¸

, (91)

where aj “ shortpRϕj
q. Since both the first and second terms above depend on the choice

of the good coarse sequence, we need a refinement of Lemma 2.10 optimising both terms
simultaneously. However, the second order term being of smaller order, the optimal path
will only be a perturbation of γRϕ0

,RϕM
. This is established in the following lemma.

Lemma 6.2. Fix rectangles S Ă T such that longpT q ď Λ. Let

Hppγq “

ż

γ

fpyqqdx ` fpxqqdy ´
?
qhpqminpx, yqqpdx ` dyq.

Then for any path γ from S to T contained in tpx, yq P p0,8q2 : y{p3C2q ď x ď 3C2yu

we have
Hppγq ě HppγS,T q ´ C2 logp1{qq,

recalling that γS,T from (31) and Fig. 2.

Proof. By symmetry we may assume that S “ Rpa, bq and T “ Rpc, dq with a ď b, c ď d,

γ Ă ∆ “
␣

px, yq P r1,8q
2 : x ď y ď minp3C2x,Λq

(

. (92)
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By Green’s theorem, defining Γ as the region enclosed by qγ and qγS,T ,

qHppγS,T q ´ qHppγq “

ĳ

Γ

pf 1
pxq ´

?
qh1

pxq ´ f 1
pyqqdxdy

ď

ĳ

Γ̄

pf 1
pxq ´

?
qh1

pxq ´ f 1
pyqqdxdy. (93)

with Γ̄ “ tpx, yq P q∆ : f 1pyq ď f 1pxq ´
?
qh1pxqu. Recalling that f is convex and writing

yx “ maxty : px, yq P Γ̄u, we get that (93) is at most

´
?
q

ż Λq

q

dx

ż yx

x

h1
pxqdy “ ´

?
q

ż Λq

q

pyx ´ xqh1
pxqdx, (94)

which will be bounded by splitting the integral in three separate intervals.
Observe that by Eqs. (25) and (68), for any x P rC1q, logp1{qq ´ C1s, we have

´
?
qh1pxq ď ´f 1pxq{2, so that f 1pyxq P rf 1pxq, f 1pxq{2s. But then (25) implies that

f2pyq “ Ωpf2pxqq for any x P rC1q, logp1{qq ´ C1s and y P rx, yxs, so that

yx ď x ` Op
?
qq

|h1pxq|

f2pxq
ď x `

Op
?
qq

minp1, xq|h1pxq|
,

where in the last inequality we used Eqs. (25) and (68). Therefore,

´
?
q

ż logp1{qq´C1

C1q

pyx ´ xqh1
pxqdx ď Opqq

ż logp1{qq´C1

C1q

dx

minp1, xq
ď Opq logp1{qqq. (95)

Turning to x P rq, C1qs, we can use Eqs. (68) and (92) to get

´
?
q

ż C1q

q

pyx ´ xqh1
pxqdx ď ´3C2C1q

3{2

ż C1q

q

h1
pxqdx ď C2

2q. (96)

Finally, for x P rlogp1{qq ´ C1,Λs, by Eqs. (40), (68) and (92), we have

´
?
q

ż Λq

logp1{qq´C1

pyx ´ xqh1
pxqdx ď ´q3{2Λ

ż 8

logp1{qq´C1

h1
pxqdx ď C2q logp1{qq{2. (97)

Plugging Eqs. (95) to (97) into (94), we obtain the desired

qHppγS,T q ´ qHppγq ď C2q logp1{qq.

Returning to (91), the fact that h is decreasing and Lemma 6.2 give

M
ÿ

j“1

WF
p

´

γRϕj´1
,Rϕj

¯

´ hpajqq pϕj ´ ϕj´1q ě

M
ÿ

j“1

Hp

´

γRϕj´1
,Rϕj

¯

ě Hp

´

γRϕ0
,RϕM

¯

´ C2 log
1

q
. (98)
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We would like to relate the last quantity to

2λF
1

q
“ lim

xÑ0
yÑ8

WF
p ppx, xq, py, yqq,

2λF
2

?
q

“ lim
xÑ0
yÑ8

`

WF
p ´ Hp

˘

ppx, xq, py, yqq (99)

(recall Eqs. (27) and (69)), so we need to deal with the two segments in γRϕ0
,RϕM

off
the diagonal (recall (32)). By Eqs. (25) and (68), if N1 ‰ 2Λ, then (87) implies that
shortpRN1q ď longpRN1q{C2 ď Λ{C2 ă logp1{qq{pC1qq and

HpppshortpRN1q, shortpRN1qq, RN1q “ plongpRN1q ´ shortpRN1qqpf ´
?
qhqpq shortpRN1qq

ě
2

q

ż qΛ

q shortpRN1
q

f. (100)

Similarly, using Lemma 3.2 and (86), recall that fpzq “ ´ log z ` Opzq for z Ñ 0 to get

Pp

`

IF
locpRN0q

˘

ď p2p shortpRN0qq
N0´1

ď expp´N0fpq longpRN0q{C1qq.

Hence, if N0 ‰ 2, then Eqs. (25) and (68) give

Pp

`

IF
locpRN0q

˘

expp´HppRN0 , plongpRN0q, longpRN0qqqq

“ Pp

`

IF
loc pRN0q

˘

exp

˜

´plongpRN0q ´ shortpRN0qqfpq longpRN0qq `
1

?
q

ż q longpRN0
q

q shortpRN0
q

h

¸

ď exp p´2 longpRN0qplogpq longpRN0qq ` C0qq

ď exp

˜

´
2

q

ż q longpRN0
q

q

f

¸

. (101)

Assembling Eqs. (100) and (101) and using that shortpRϕM
q ě C1{q ě 1{pC1qq ě

longpRϕ0q by definition, we get (regardless whether N0 “ 2 and/or N1 “ 2Λ)

Pp

`

IF
loc pRϕ0q

˘

exp
´

´Hp

´

γRϕ0
,RϕM

¯¯

ď exp

ˆ

´
2

q

ż qΛ

q

pf ´
?
qhq

˙

ď exp

ˆ

´
2λF

1

q
`

2λF
2

?
q

` 3 log
1

q

˙

,

using Eqs. (25), (27), (68) and (69). Further recalling Eqs. (91) and (98), we deduce that
for any good coarse sequence pRϕj

qMj“0

Pp

˜

IF
locpRϕ0q X

M
č

j“1

CF
`

Rϕj´1
, Rϕj

˘

¸

ď Pp

`

IF
locpRϕ0q

˘

exp

˜

´Hp

´

γRϕ0
,RϕM

¯

` C2 log
1

q
` C3

log3{2
p1{qq

3
?
q

¸

ď exp

˜

´
2λF

1

q
`

2λF
2

?
q

` 2C3
log3{2

p1{qq

3
?
q

¸

.

(102)
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We finally turn back to (88). Together with Eqs. (89), (90) and (102), it leads to

Pp

`

IF
locpRq

˘

ď e´C1{q
` exp

˜

´
2λF

1

q
`

2λF
2

?
q

`
2 log5{3

p1{qq

3
?
q

¸

, (103)

This concludes the proof of (84) and, therefore, of Theorem 1.2, modulo proving Propo-
sition 6.1.

6.2 One coarse step: proof of Proposition 6.1

The proof of Proposition 6.1 is also based on the decomposition into growth sequences
introduced in Section 4. Fix rectangles S and T as in the statement. We may further
assume that shortpT q ě C2, because otherwise PppCFpS, T qq ď 1 ď e´WF

p pγS,T q`C3 logp1{qq.
We begin by using Corollary 4.3 to write

Pp

`

CF
pS, T q

˘

“
PppFSp8q “ T q

e´2ϕpT qq

ϕpT qď2Λ

ď e5C1 logp1{pq Pp

`

FS
p8q “ T

˘

, (104)

so that one can focus on the last probability above. In turn, it can be decomposed as

Pp

`

FS
p8q “ T

˘

“
ÿ

F1,...,FJ

J
ź

i“1

Pp pT pFi´1, Fiqq , (105)

where J “ 4 ` ϕpT q ´ ϕpSq and F1, . . . , FJ ranges over the possible trajectories of FS

reaching T .
The next result is analogous to Lemma 5.2, but it is not restricted to good transitions.

Lemma 6.3. Let pF, F 1q be a transition in a trajectory from S to T such that F “

F pi, j; k, l; sq and F 1 “ F pi ´ α, j ´ β; k ` γ, l ` δ; s1q. Setting a “ shortpT q, we have

PppT pF, F 1
qq

ď

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 ˆ e´qa ˆ eOpC2qa2{3q buffer creation,
e´pα`γqfpqpl´jqq´pβ`δqfpqpk´iqq ˆ 1 ˆ 1 loop,
e´fpqpl´jqq´fpqpk´i`1qq ˆ pefpqaq ˆ eOpC2a´1{3q 1-buffer deletion,
e´pα`γqfpqpl´jqq´pβ`δqfpqpk´i`α`γqq ˆ p2e2fpqaq ˆ eOpC2a´1{3q 2-buffer deletion,
e´2fpqpl´jqq´2fpqpk´i`2qq ˆ p3e3fpqaq ˆ eOpC2a´1{3q 3-buffer deletion.

Note that α, β, γ, δ P t0, 1u and their sum can assume any value between 0 and 4, corre-
sponding to the five cases above respectively.

Remark 6.4. It is worth noting that:

• The lemma only states upper bounds, in contrast with Lemma 5.2.

• The same observations made in Remark 5.3 are in place here, with the manipulation
of the A term being pertinent to all types of buffer deletions.
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• In the case of buffer deletions, B includes a factor of the form eKfpqaq, where K always
corresponds to the number of buffers being deleted.

• The first three cases of Lemma 6.3 were considered in Lemma 5.2 as well. However, the
error estimates differ because in this section we deal with more skewed aspect ratios
and only provide upper bounds.

Proof. For concreteness, consider the case s “ 3, s1 “ 12, α “ β “ γ “ 1 and δ “ 0,
which is a 2-buffer deletion. In this case, by Table 1, we have

T pF, F 1
q “ p2e´fpqpk´iqq´2q

ď e´2fpqpl´jqq´fpqpk´i`2qqp2e2fpq shortpSqq

“ e´pα`γqfpqpl´jqq´pβ`δqfpqpk´i`α`γqqp2e2fpqaqeOpqpa´shortpSqq|f 1pq shortpSqq|q

“ e´pα`γqfpqpl´jqq´pβ`δqfpqpk´i`α`γqqp2e2fpqaqeOpC2
2a

´1{3q,

where we used that f is non-increasing convex and in the second one we recalled that
|f 1pzq| ď Op1{zq. The other transitions are treated analogously.

We are now in position to prove Proposition 6.1.

Proof of Proposition 6.1. With Lemma 6.3, we can return to (105) and fix any trajectory
F1, . . . , FJ from S to T . This trajectory naturally induces a path γ on Z2 going from
paS, bSq to paT , bT q (the dimensions of S and T respectively). This path only makes
unitary jumps to the north of east directions and it is obtained as in Fig. 6 by replacing
any transitions involving a buffer deletion by multiple unitary jumps. Further let K0 `

4, K1, K2, K3, K4 be the number of buffer creations, loops, single, double and triple buffer
deletions in the trajectory F1, . . . , FJ respectively. Observe that

K0 “ K2 ` 2K3 ` 3K4,
4
ÿ

i“0

iKi “ ϕpT q ´ ϕpSq (106)

(recall Table 1). Recalling (30) and Lemma 6.3, we obtain
J
ź

i“1

Pp pT pFi´1, Fiqq “ e´WF
p pγq

ˆ pK0eK0p´qa`fpqaqq
ˆ e´4qa`OpK0`1qC2

2 pqa2{3`a´1{3q,

ď e´WF
p pγS,T q

ˆ pK0eK0p´qa`fpqaqq
ˆ eOpK0`1qC2

2 pqa2{3`a´1{3q, (107)

using (106) and Lemma 2.10. Moreover, the total number of transitions is J “ 4 `
ř4

i“0Ki “ 4 ` ϕpT q ´ ϕpSq. Hence, summing (107) over all trajectories gives

ÿ

F1,...,FJ

J
ź

i“1

Pp pT pFi´1, Fiqq ď e´WF
p pγS,T qp´3

pI ` MpP 1
qq

J´1
p0, 3q, (108)

where I is the identity matrix and

Mpxq “

¨

˚

˚

˚

˚

˚

˚

˝

0 x 0 0 0 0
1 0 x 0 0 0
1 1 0 x 0 0
1 2 1 0 1 1
1 0 0 x 0 1
1 0 0 0 x 0

˛

‹

‹

‹

‹

‹

‹

‚

P 1
“ pe´aq`fpaqq`OpC2

2 qpqa2{3`a´1{3q,
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recall Fig. 4.
Note that the matrix Mpxq does not include the 12 state, like in (81). However,

since we are now looking for an upper bound on the probability, we had to compensate
for this removal by doubling the entry corresponding to the 3 Ñ 1 transition. In order
to see why this is enough, note first that the weights going out of 1 and 12 are the
same. Therefore, since we are evaluating pI ` MqJ´1 at p0, 3q, we can join together the
transitions 3 Ñ 1 Ñ s with those of type 3 Ñ 12 Ñ s.

Clearly, setting P “ pe´aq`fpaqq, we have MpP 1q ď MpP qeOpC2
2 qpqa2{3`a´1{3q entry-wise.

Note that since a “ shortpT q ě C2, we have P ď pefpaqq ď C´2
1 . We next seek to bound

the spectral radius ρpMpP qq, viewing it as a perturbation of the same matrix without the
double and triple buffer deletions, which amounts to the matrix we already considered in
(81).

The characteristic polynomial of MpP q{
?
P reads

pX ´ 1qpX ` 1q

´

X4
´ 4X2

` 2 ´ 4X
?
P ´ P

¯

.

Setting pλiq
6
i“1 “ p

a

2 `
?
2, 1,

a

2 ´
?
2,´

a

2 ´
?
2,´1,´

a

2 `
?
2q, we have

X4
´ 4X2

` 2 “ pX ´ λ1qpX ´ λ3qpX ´ λ4qpX ´ λ6q.

Yet, for some constant C ą 0 and any y P tλi ` ξC
?
P : i P t1, . . . , 6u, ξ P t´1, 1uu, we

have
ˇ

ˇ

ˇ
4y

?
P ` P

ˇ

ˇ

ˇ
ă
ˇ

ˇy4 ´ 4y2 ` 2
ˇ

ˇ .

Hence, the sign of the characteristic polynomial at λi ˘ C
?
P remains unchanged by the

perturbation. Since
?
P ă 1{C1, the intermediate value theorem allows us to conclude

that MpP q{
?
P has eigenvalues pλ1

iq
6
i“1 with |λi ´ λ1

i| ď C
?
P for i P t1, . . . , 6u.11 In

particular,

ρpMpP qq ď

b

2 `
?
2
?
PeOp

?
P q.

However, in (108), we need a particular coefficient of a power of I ` MpP q, so we
also need some control on the norm of MpP q and not only its spectral radius (because
the matrix is not symmetric). The following linear algebra result can be deduced from
the surprisingly recent bound of Jiang and Lam [65]. For the reader’s convenience we
produce a simpler proof.

Lemma 6.5. Fix a dimension d ě 1 and a submultiplicative norm ~¨~ on the space MdpCq

of d ˆ d complex matrices.12 Let pλiq
d
i“1 be the eigenvalues of M P MdpCq. Assume that

ε “ mini‰j |λi ´ λj| ą 0. Then for every n ě 0 we have

~Mn
~ ď d

ˆ

p1 ` ~I~q~M~

ε

˙d´1

ρpMq
n.

11Note that if the non-perturbed matrix had complex eigenvalues, we would have used Rouché’s the-
orem instead.

12For instance, the operator norm, but recall that in finite dimension all norms are equivalent.

45



Proof. This proof is due to Quentin Moulard.
Consider the Lagrange interpolation polynomials

LipXq “

ś

j‰ipX ´ λjq
ś

j‰ipλj ´ λiq
.

Note that Mn “
řd

i“1 λ
n
i LipMq, so

~Mn
~ ď dρpMq

nmax
i

~LipMq~.

Yet, by submultiplicativity, for any i P t1, . . . , du, we get

~LipMq~ ď

ś

j‰i ~M ´ λjI~
ś

j‰i |λj ´ λi|
ď

ˆ

~M~ ` ρpMq~I~

ε

˙d´1

,

which concludes the proof since ρpMq “ limmÑ8 ~Mm~1{m ď ~M~.

We are now ready to conclude the proof of Proposition 6.1. Assembling Lemma 6.5
and Eqs. (104), (105) and (108), we obtain

Pp

`

CF
pS, T q

˘

ď e´WF
p pγS,T qp´6C1

ˆ

1 `

b

2 `
?
2
?
P exp

´

O
´?

P ` C2
2

`

qa2{3
` a´1{3

˘

¯¯

˙ϕpT q´ϕpSq

.

Recalling that hpaqq “
a

2 `
?
2
a

P {p (see Eqs. (22) and (67)) and (28), we get

Pp

`

CF
pS, T q

˘

ď e´WF
p pγS,T qp´6C1epϕpT q´ϕpSqq

?
phpaqqp1`Op

?
P`C2

2 pqa2{3`a´1{3qqq

ď e´WF
p pγS,T q`pϕpT q´ϕpSqq

?
qhpaqqp´6C1eC

4
2a

2{3
?
P p

?
P`qa2{3`a´1{3q

ďe´WF
p pγS,T q`pϕpT q´ϕpSqq

?
qhpaqqp´6C1eC

5
2 ,

where in the last inequality we observed that P “ pe´aq`fpaqq “ Op1{aq by Eqs. (25)
and (28) and a´1{6 ` qa5{6 ď 1, since 1 ď a ď Λ. This concludes the proof of Proposi-
tion 6.1.

7 The bootstrap percolation paradox
Having completed the proof of Theorem 1.2, we may return to the bootstrap percolation
paradox. We focus on the Froböse model, but one can proceed analogously for the two-
neighbour and modified two-neighbour models (see Fig. 8b).

Recalling Corollary 3.6, estimating τ is equivalent to computing

rΠppq “
`

Pp

`

IF
locpRpΛ,Λqq

˘˘´1{2
.

Also recalling (85), Observation 2.3, and Corollary 4.3, we obtain that

rΠppq “ pOpC1q max
xPRpΛ,Λq

`

Pp

`

Dt ě 0 : F txu
ptq “ RpΛ,Λq

˘˘´1{2
.
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Proceeding in a very similar way, it is possible to show the more convenient result (recall
that ϕpRq denotes the semi-perimeter of the rectangle R)

Πppq :“

ˆ

Pp

ˆ

Dt ě 0 : ϕ
`

F t0u
ptq

˘

“

R

2 logp1{pq

p

V˙˙´1{2

“ rΠppqpOpC1q. (109)

In order to compute Πppq more efficiently, we project the Markov chain F t0u to a
process on N2 ˆ t0, 1, 11, 12, 2, 21, 3, 4u via the mapping F pa, b; c, d; sq ÞÑ pc ´ a, d ´ b, sq.
We denote this process pRptqqtě0 with Rp0q “ p1, 1, 0q. Using translation invariance, it
is not hard to check that this process is also a Markov chain, whose transition probabili-
ties can be obtained by summing the appropriate transition probabilities of the original
chain listed in Table 1 (the corresponding expressions can be found in the supplementary
material Rust code13). Since ϕpF t0uptqq increases by at most 4 at each step and the chain
R has no cycles except the absorbing states, we can compute the probability of reaching
each possible state of R recursively via dynamic programming. This way, for any fixed
p, we can compute Πppq exactly.

The main practical issue with the above algorithm is that the probabilities we com-
pute are of order expp´λF

1 {pq, which quickly becomes too small for conventional data
types (IEEE 754). In order to substantially increase the precision, we store the loga-
rithms of each probability a “ logprq, using the expression logpr ` sq “ logpea ` ebq “

maxta, bu` logp1`e´|a´b|q in order to obtain the log of the sum or two probabilities with-
out losing precision. Other optimisations have also been implemented, such as restricting
calculations to only regions where the probabilities are non-zero. But most importantly,
we have made use of a Graphical Processing Unit (GPU) in order to take advantage of
the parallelism built into our algorithm, which was responsible for large speed benefits.

Our implementation of the algorithm can be found in the supplementary material,13
but we emphasise that it still has a lot of room for further optimisations (hand-written
CUDA code, optimal scheduling, extra and more powerful GPU’s...). We ran this code
on a Intel Xeon E3-1240 v3, with a single NVIDIA GeForce RTX 4060 8GB during 24
hours. The resulting data is plotted in Fig. 1 and given in Table 2. In Fig. 7 we use it to
successively estimate α, λF

1 , β ă α and λF
2 , given the exact values of the previous ones,

so that

log Πppq «
λF
1

pα
´

λF
2

pβ
. (110)

Since there the numerical results are exact up to computation precision and we are in-
terested in asymptotics, we use a simple linear regression based on the last three data
points. This somewhat arbitrary choice was made before the data was generated, in order
to avoid overfitting. The results are in excellent agreement with the rigorous result (7).
Moreover, directly fitting all four parameters in (110) based on the last four data points
in Table 2 yields

α « 0.99978, λF
1 « 1.6507, β « 0.53239, λF

2 « 4.2518, (111)

which is also in good agreement with Theorem 1.2, see code for fitting and plotting in
the tagged repository. Note that the data points in Figs. 1 and 7 are simply reparametri-
sations of the ones given in Table 2).

13Implementations in C, Rust and Python-Taichi can be found in https://github.com/
augustoteixeira/bootstrap or as part of the arxiv submission source.
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(a) Simultaneously estimating α « 1.007 and
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(b) Estimating λF
1 « 1.635, given α “ 1.
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(c) Simultaneously estimating β « 0.5100 and
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(d) Estimating λF
2 « 5.735, given α “ 1, λF

1 “

π2{6 and β “ 1{2.

Figure 7: Estimating the asymptotic expansion (110), using the numerical estimates of
Πppq from (109) for Froböse bootstrap percolation. In Theorem 1.2 we showed that in
fact α “ 1, λF

1 “ π2{6 « 1.6449, β “ 1{2, λF
2 “ π

a

2 `
?
2 « 5.8049.

8 Outlook

8.1 Froböse and two-neighbour bootstrap percolation

Naturally, one may want to improve the bounds in Theorems 1.2 and 1.3. In view of
Theorem 1.1, this problem only concerns the corresponding local models. Such sharper
results can be obtained along lines of our proof, but, as the precision increases, additional
technical issues arise.

The main problem is the fact that we artificially cut trajectories into coarse steps,
imposing their endpoints to be squares in Section 5.1. Similarly, in Section 6.1, we take a
union bound on coarse sequences. In order to go beyond the error term q´1{3, one would
need to cut trajectories into larger pieces (or, preferably, not at all). Yet, this entails
problems, when applying Lemma 5.4. Therefore, one would like to restrict attention
to paths γ not deviating too much form the diagonal. Taking this into account and
despite Fig. 8a, we do not believe that the third order exponent equals 1{5, but heuristic
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log2
1
p

log Πppq log2
1
p

log Πppq log2
1
p

log Πppq log2
1
p

log Πppq

2 1.8231469544522168 6 71.22104704459092 10 1519.9177238798902 14 26243.443273103207

3 4.742671577932995 7 159.10494055779233 11 3130.360634994818 15 52891.342141028406

4 12.392931032600497 8 344.5259389380065 12 6393.748024566681 16 106363.14234086743

5 30.54732365348029 9 729.489374480061 13 12981.361913134877 17 213556.78508818566

Table 2: The numerical results for Πppq of (109) for (local) Froböse bootstrap percolation.

computations rather suggest it to be 1{4 (recall that in Theorem 1.2 we showed that it
is at most 1{3, which is certainly compatible with Fig. 8a).

For the two-neighbour model additional problems arise due to parity, somewhat like in
Case 4.3 of the proof of Proposition 3.4. More precisely, the error term on the right-hand
side of Lemma A.1 eventually becomes large. This translates the fact that, at small scales,
the amount of consecutive loop transitions we typically want to use is insufficient for the
two-term recurrence (117) to stabilise. Consequently, the factor αpaqq in Lemma A.7
becomes essentially equal to 2 for even ℓ and 0 for odd ℓ. This needs to be taken into
account when counting trajectories.

8.2 Modified two-neighbour bootstrap percolation

A much more challenging model to tackle is modified two-neighbour bootstrap percola-
tion. Much of the treatment carried out here can also be done for its local version. This
leads to the function

h21pzq “

b

p2 `
?
2qe´ze2fpzq “

a

2 `
?
2

2 sinhpz{2q
, (112)

which is not integrable at 0. The logarithmic divergence of the primitive of h21 led to the
discovery of [56]. Thus, in order to obtain the second term, one needs to integrate h21

down to scale 1{
?
p, at which point it stops being valid. Indeed, below that scale one

would use essentially no loop transitions.
However, a more serious problem arises for the modified model. Namely, locality

in the strong form of Theorem 1.1 does not hold. To see this, observe that at small
scales, configurations with minimal number of infections dominate. But a minimal con-
figuration of infections internally filling a square is an object known under the name
separable permutation (this was observed in some form already in [78]; also see [39] for
a recent account of extremal problems in bootstrap percolation). The latter are counted
by Schröder numbers, which grow exponentially faster than the number of local inter-
nally filling configurations. Indeed, typical separable permutations admit a scaling limit
called the Browninan separable permuton [21], which is far from corresponding to a local
decomposition. Moreover, non-local decompositions arise naturally on scale 1{

?
p from

successive single buffer deletion, buffer creation, single buffer deletion, which can be re-
placed by finding a 1 ˆ 1 internally filled square at the corner of the current rectangle.
Thus, we expect that the second term of the asymptotic expansion of log τ will coincide
with its its local analogue, but will be followed by a subsequent correction only logp1{pq

away reflecting non-locality.
In view of the above discussion, we ask the following.
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(a) Estimating the third order exponent 0.194
for Froböse bootstrap percolation. Examining
the discrete derivatives suggests that it is not
yet close to its limiting value.
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(b) Estimating the second order constant λ1
2 «

0.960 for modified two-neighbour bootstrap
percolation on Z2. In Question 1 we ask
whether λ1

2 “
a

2 `
?
2{2 « 0.924.

Figure 8: Estimating the asymptotics, using the numerical estimates of Πppq from (109).

Question 1. For modified two-neighbour bootstrap percolation on Z2 and any ε ą 0, do
we have

lim
pÑ0

Pp

˜

exp

˜

π2

6p
´

p
a

2 `
?
2 ` εq logp1{pq

2
?
p

¸

ď τmod

ď exp

˜

π2

6p
´

p
a

2 `
?
2 ´ εq logp1{pq

2
?
p

¸¸

“ 1?

We supply a numerical estimate along the lines discussed in Section 7 in Fig. 8b
supporting an affirmative answer to Question 1 in the case of the local modified model.
Note that

a

2 `
?
2{2 « 0.924 is indeed only 4% away from the estimated value for

the second order constant. Although previous predictions for the local modified two-
neighbour model based on similar methods [36] were proved to be erroneous in [49], we
believe this was simply due to the logp1{pq factor only discovered later in [56]. Indeed, it
is visible from the inset of [36, Figure 3] that the value of the exponent being estimated
has not yet converged.

8.3 Generalisations

Recall that [40] provides sharp thresholds analogous to (2) for a range of well-behaved
models. It is then natural to investigate when locality holds for them. Roughly speaking,
we expect this to be the case, whenever “corner growth is not more advantageous than
side growth”. If, on the contrary, “corner growth is more advantageous than side growth”,
then we expect the phenomenology of modified two-neighbour model to arise and the
model to deviate from its local counterpart at some polynomial scale (smaller than the
critical one). It should also be noted that periodicity issues as displayed by the models
mentioned in [40, Section 6] are also a natural obstacle to locality.
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It is also natural to consider higher dimensional models, starting with two-neighbour
bootstrap percolation in 3 dimensions (or its variants), but eventually also the r-neighbour
model (see [14] for the analogue of (2)). It is also unclear whether locality can be useful
for studying bootstrap percolation beyond Zd (also see e.g. [68]).

Independently of establishing locality, our work provides motivation for studying lo-
cal models in their own right. One could define a general local model as a polygon
with prescribed side directions and finite number of possible frame states which grows
in each direction with a certain size-dependent probability in a Markovian way (recall
Section 4.2). Can one quantify their probability of never being absorbed?

8.4 Bootstrap percolation paradox

Finally, we end with a note of optimism regarding numerical work. While simulations
have previously proved highly unreliable for studying bootstrap percolation, locality has
allowed us to obtain very accurate results at par with rigorous results. Can this new
viewpoint enable numerical works to go beyond theoretical ones and provide reliable
predictions for the behaviour of bootstrap percolation models? One interesting specific
direction of research along this line is the following. In [40], the sharp threshold constant
λ1 is determined implicitly as the solution of an infinite-dimensional optimisation problem
with a cost functional which is itself implicitly defined. It is therefore not clear how one
could determine this constant in practice. The numerical approach discussed in Section 7
may allow to numerically estimate these constants.
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A Local two-neighbour bootstrap percolation
In this appendix we discuss the additional technicalities needed for the proof of The-
orem 1.3 as compared to Theorem 1.2. We will not dwell on trivial changes such as
replacing f by g, WF by W , etc. In view of Corollary 3.6, Theorem 1.3 is proved as soon
as we establish

exp

ˆ

´
2λ1

q
`

2λ2
?
q

´
log2p1{qq

3
?
q

˙

ď PppIlocpRqq ď exp

ˆ

´
2λ1

q
`

2λ2
?
q

`
log2p1{qq

3
?
q

˙

,

(113)
where R “ RpΛ,Λq (recall Eqs. (27), (28) and (40)) and λ2 “

ş8

0
h2 with h2 defined in

(119) below.
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A.1 Preliminaries

A.1.1 Refined traversability

We first need the auxiliary function α for the following refinement of Lemma 2.9. Recall
f, β, g, q from Eqs. (22) to (24) and (28) and set

α : p0,8q Ñ p1, 2q : z ÞÑ
2βpe´fpzqq

a

e´fpzqp4 ´ 3e´fpzqq
, (114)

β̄ : p0, 1q Ñ r´1{3, 0q : u ÞÑ
u ´

a

up4 ´ 3uq

2
. (115)

Lemma A.1 (Refined traversability probability). Let R “ Rpa, bq be a rectangle. Set
u “ 1 ´ e´bq “ e´fpbqq. Then

ˇ

ˇ

ˇ

ˇ

PppTÑpRqq

αpbqq expp´agpbqqq
´ 1

ˇ

ˇ

ˇ

ˇ

ď

ˆ

|β̄puq|

βpuq

˙a`1

.

Proof. Let xn “ PppTÑpRpn, bqqq for any non-negative integer n. We first claim that

xn “
pβpuqqn`1 ´ pβ̄puqqn`1

βpuq ´ β̄puq
. (116)

This is verified directly for n P t0, 1u. Moreover,

xn`2 “ xn`1u ` xnp1 ´ uqu. (117)

Solving this recurrence relation, we obtain (116). Finally, we use that

αpbqqe´agpbqq
“

pβpuqqa`1

βpuq ´ β̄puq
.

A.1.2 The entropy function

With (114) at hand, we are ready to define h. Recalling Eqs. (22), (24) and (114), define
the following functions from p0,8q to itself

M2,1pzq “ pe´fpzq`3gpzq, M3,1pzq “ pe´fpzq`4gpzq,

M2,2pzq “ 2pe´fpzq`4gpzq´z, M3,2pzq “ pe´2fpzq`5gpzq´z,

M0,0pzq “ e´2z, (118)

h2pzq “ αpzq

d

´

2 `
?
2
¯

M0,0pzq
M2,1pzq ` M3,1pzq ` M2,2pzq ` M3,2pzq

p
. (119)

We will need the following properties of the above functions, whose elementary proofs
are left to the reader (or to a computation software). The functions α and h are analytic,

αpzq “

#

1 `
?
z
2

` Opzq z Ñ 0,

2 ´ 2e´z ` Ope´2zq z Ñ 8,

h2pzq “

$

&

%

b

3p2`
?
2q

z

´

1 ´
?
z
6

` Opzq

¯

z Ñ 0,

2
?

2p2`
?
2q

ez
p1 ` Ope´zqq z Ñ 8.

(120)
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In particular, (68) implies that h2 is integrable, so λ2 “
ş8

0
h2 P p0,8q and one can

numerically compute that λ2 « 7.054547.

A.1.3 Frames

We first need to change (65) into

Br
pRq “ Rpc, b; c ` 2, dq, Bu

pRq “ Rpa, d; c, d ` 2q

Bl
pRq “ Rpa ´ 2, b; a, dq, Bd

pRq “ Rpa, b ´ 2; c, bq.
(121)

Then Definition 4.1 is replaced by the following. In words, each buffer now has thickness
2 and whenever two adjacent ones are present, we also add the corner site between them.

Definition A.2. A framed rectangle is a rectangle Rpa, b; c, dq equipped with a label
s P t0, 1, 11, 12, 2, 21, 22, 3, 4u. We denote it by F pa, b; c, d; sq. We refer to pc ´ a, d ´ bq as
its dimensions and to s as its frame state. For a framed rectangle F “ F pa, b; c, d; sq we
set F˝ “ Rpa, b; c, dq and define the frame of F by

F˝ “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∅ s “ 0,

BrpF˝q s “ 1,

BrpF˝q Y tpc, dqu Y BupF˝q s “ 2,

BrpF˝q Y tpc, dqu Y BupF˝q Y tpa ´ 1, dqu Y BlpF˝q s “ 3,

BupF˝q Y tpa ´ 1, dqu Y BlpF˝q s “ 21,

BlpF˝q s “ 11,

BupF˝q s “ 12,

BrpF˝q Y BlpF˝q s “ 22,

Br
pF˝q Y tpc, dqu Y Bu

pF˝q Y tpa ´ 1, dqu Y Bl
pF˝q

Y tpa ´ 1, b ´ 1qu Y Bd
pF˝q Y tpc, b ´ 1qu

x “ 4,

see [58, Fig. 1]. We denote F■ “ F˝ Y F˝.

Note that an additional frame state 22 appeared with respect to Definition 4.1.

A.1.4 The framed rectangle Markov chain

It is possible to construct a Markov chain along the lines of Section 4.2. Unfortunately,
doing so requires an extensive amount of casework, which we have not been able to
condense into a reasonable amount of space. We therefore restrict our attention to proving
the lower bound of (113). We nevertheless mention that for the upper bound of (113)
the changes only affect Section 6.2 and go along the same lines as the ones for the lower
bound.

For the purposes of the lower bound of (113), it is sufficient to construct a sub-
Markovian process by only considering the relevant transitions, which are nonetheless
rather numerous. We thus replace Table 1 by Table 3.

In order to keep transition events T pF, F 1q disjoint for distinct choices of F 1 we need a
finer choice of events as compared to (66). Since they are completely analogous, we only
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provide the definitions (and associated verifications in the sequel) for transitions from
framed rectangles with frame state 1 (for other frame states the only difference, except
symmetry, is that we also need to enforce a bounded number of additional sites in F 1

˝zF˝

to be healthy). For F “ F p0, 0; a, b; 1q and F 1 “ F p0, 0; a ` γ, b ` δ; s1q we define

T pF, F 1
q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

OcpRp0, b; a, b ` 2qq X Ocptpa, bquq ps1, γ, δq “ p2, 0, 0q

OcpRpa, b; a ` 2, b ` 1qq X OpRp0, b; a, b ` 1qq ps1, γ, δq “ p1, 0, 1q

Oc
pRpa, b; a ` 2, b ` 2qq X Oc

pRp0, b; a, b ` 1qq

X OpRp0, b ` 1; a, b ` 2qq
ps1, γ, δq “ p1, 0, 2q

OpRp0, b; a ` 1, b ` 1qq X Optpa ` 1, bquq ps1, γ, δq “ p0, 2, 1q

Optpa, bquq X Oc
ptpa ` 1, bquq

X OpRpa ` 1, 0; a ` 2, b ` 1qq
ps1, γ, δq “ p0, 3, 1q

Oc
pRp0, b; a ` 1, b ` 1qq X OpRp0, b ` 1; a, b ` 2qq

X OpRpa ` 1, b; a ` 2, b ` 2qq
ps1, γ, δq “ p0, 2, 2q

Oc
pRp0, b; a ` 1, b ` 1qq X OpRp0, b ` 1; a, b ` 2qq

X Oc
pRpa ` 1, b; a ` 2, b ` 2qq X Optpa, b ` 1quq

X OpRpa ` 1, 0; a ` 2, b ` 2qq

ps1, γ, δq “ p0, 3, 2q

(122)
We note that for F with frame state 1 the only transitions we are omitting (as they are
not required for the upper bound) correspond to ps1, γ, δq P tp1, 1, 1q, p1, 1, 2qu, but for
frame states 2, 21 there are tens of them and for frame state 3 almost a hundred.

As in Observation 4.2, we have the following.

Observation A.3. Table 3 defines a sub-stochastic matrix T . For any framed rectangle
F , the events T pF, F 1q (see (122) corresponding to transitions present in T are disjoint
for different choices of F 1. For each transition T pF, F 1q we have F˝ Ă F 1

˝ and F■ Ĺ F 1
■,

unless F has buffer state 4. If F “ F pa, b; c, d; sq and F 1 “ F pa1, b1; c1, d1; sq, then

T pF, F 1
q Ă

␣

A : pAzF■q P
`

CF
pRpa, b; c, dq, Rpa1, b1; c1, d1

qq X Oc
pF 1

˝q
˘(

.

The transition events T pF, F 1q define a sub-Markovian process pFptqqtPN with transition
matrix T , whose state Fptq is measurable with respect to A X Fptq■.14

Given a rectangle S, we denote by pFSptqqtPN this process with initial state S with
frame state 0. If IlocpSq occurs, then for all t ě 0, IlocpFS

˝ ptqq X OcpFS
˝ ptqq occurs. We

denote FSp8q “
Ť

tě0FS
˝ ptq. Then for any x P Z2, either F txup8q “ rAsx, in case rAsx

is finite, or both rAsx and F txup8q are infinite (although not necessarily equal).

Similarly, Corollary 4.3 becomes the following.

Corollary A.4. Given nested rectangles S Ă R “ Rpa, bq, we have

Pp pCpS,Rqq ě
PppFSp8q “ Rq

e´4pa`b`1qq
.

14For the reader’s convenience, we recall that such a sub-Markovian process may be viewed simply as
a Markov chain with an additional absorbing cemetery state.
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s s1 α β γ δ ´ logPppT pF p0, 0; a, b; sq, F p´α,´β; a ` γ, b ` δ; s1qqq

0 1 0 0 0 0 2qb
1 2 0 0 0 0 qp2a ` 1q

2 3 0 0 0 0 qp2b ` 1q

3 4 0 0 0 0 qp2a ` 2q

2’ 3 0 0 0 0 qp2b ` 1q

1’ 2’ 0 0 0 0 qp2a ` 1q

0 0 0 0 1 0 fpqbq
0 0 0 0 2 0 fpqbq ` qb
1 1 0 0 0 1 fpqaq ` 2q
1 1 0 0 0 2 fpqaq ` 4q ` qa
2 2 1 0 0 0 fpqbq ` 2q
2 2 2 0 0 0 fpqbq ` 4q ` qb
3 3 0 1 0 0 fpqaq ` 4q
3 3 0 2 0 0 fpqaq ` 8q ` qa
2’ 2’ 0 0 1 0 fpqbq ` 2q
2’ 2’ 0 0 2 0 fpqbq ` 4q ` qb
1’ 1’ 0 0 0 1 fpqaq ` 4q
1’ 1’ 0 0 0 2 fpqaq ` 8q ` qa
4 4 0 0 0 0 0
1 0 0 0 2 1 logp1{pq ` fpqpa ` 1qq

1 0 0 0 3 1 logp1{pq ` fpqpb ` 1qq ` q
1 0 0 0 2 2 fp2qq ` fpqaq ` qpa ` 1q

1 0 0 0 3 2 logp1{pq ` fpqaq ` fpqpb ` 2qq ` qpa ` 3q

1’ 0 2 0 0 1 logp1{pq ` fpqpa ` 1qq

1’ 0 3 0 0 1 logp1{pq ` fpqpb ` 1qq ` q
1’ 0 2 0 0 2 fp2qq ` fpqaq ` qpa ` 1q

1’ 0 3 0 0 2 logp1{pq ` fpqaq ` fpqpb ` 2qq ` qpa ` 3q

2 1 1 0 0 2 logp1{pq ` fpqpb ` 1qq ` 3q
2 1 1 0 0 3 logp1{pq ` fpqpa ` 1qq ` 6q
2 1 2 0 0 2 fp2qq ` fpqbq ` qpb ` 4q

2 1 2 0 0 3 logp1{pq ` fpqbq ` fpqpa ` 2qq ` qpb ` 8q

2’ 1’ 0 0 1 2 logp1{pq ` fpqpb ` 1qq ` 3q
2’ 1’ 0 0 1 3 logp1{pq ` fpqpa ` 1qq ` 6q
2’ 1’ 0 0 2 2 fp2qq ` fpqbq ` qpb ` 4q

2’ 1’ 0 0 2 3 logp1{pq ` fpqbq ` fpqpa ` 2qq ` qpb ` 8q

3 2’ 0 1 2 0 logp1{pq ` fpqpa ` 1qq ` 5q
3 2’ 0 1 3 0 logp1{pq ` fpqpb ` 1qq ` 8q
3 2’ 0 2 2 0 fp2qq ` fpqaq ` qpa ` 8q

3 2’ 0 2 3 0 logp1{pq ` fpqaq ` fpqpb ` 2qq ` qpa ` 12q

3 2 2 1 0 0 logp1{pq ` fpqpa ` 1qq ` 5q
3 2 3 1 0 0 logp1{pq ` fpqpb ` 1qq ` 8q
3 2 2 2 0 0 fp2qq ` fpqaq ` qpa ` 8q

3 2 3 2 0 0 logp1{pq ` fpqaq ` fpqpb ` 2qq ` qpa ` 12q

Table 3: Transition probabilities for the framed rectangle (sub-)Markov chain for local
two-neighbour bootstrap percolation. The table only features the transitions which ac-
tually contribute to the final result—Theorem 1.3.
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A.2 Lower bound of (113)

We are now ready to proceed to proving the lower bound of (113), which gives the upper
bound of Theorem 1.3. Section 5.1 requires essentially no change. The only difference is
that we start our sequence with ap0q “ q´2{3, while apMq “ Λ remains unchanged (once
again, we assume for simplicity that these are both integers and that an integer M is
compatible with the recurrence relation api`1q ´ apiq “ rpapiqq2{3s). This makes the error
term in (75) of order 6

?
q instead, but does not impact the final result. Furthermore, (71)

is replaced by
Pp

`

Iloc

`

Rp0q
˘˘

ě p3 exp p´Wp pγRp0qqq ,

as provided by Proposition 2.11. It therefore remains to prove the following analogue of
Proposition 5.1 by applying the method of Section 5.2.

Proposition A.5 (Coarse step lower bound). Let a ě ap0q and b “ a` ra2{3s ď Λ. Then

PppIlocpRpb, bqqq

PppIlocpRpa, aqqq
ě exp

ˆ

´
2

q

ż bq

aq

g ` 2h2paqqpb ´ aq
?
q ´ C2

1 logp1{qq

˙

.

Proof. Fix a ě ap0q and b “ a ` ra2{3s ď Λ and recall (118). Since we have already
restricted T to the relevant transitions, we may directly proceed to the analogue of
Lemma 5.2.

Lemma A.6 (Probability of a single transition). Let pF, F 1q be a transition in Table 3
with F “ F pi, j; c, d; sq and F 1 “ F pi´α, j ´ β; c` γ, d` δ; s1q, such that tc´ i, d´ ju Ă

ra, bs. If s “ 1 ‰ s1 and α “ β “ 0, then

Pp pT pF, F 1
qq “ e´γgpqpd´jqq´δgpqpc´i`γqq

ˆ Mγ,δpaqq ˆ

#

eOpa´1{3q s1 “ 0,

eOpqa2{3q s1 “ 2.

The same expressions apply for s P t0, 11, 2, 21, 3u up to symmetry.

The proof of Lemma A.6 is analogous to the one of Lemma 5.2 and therefore omitted.
However, note that loops were left out. Indeed we need to pay special attention to
sequences of loops, since there are now two loops per frame state rather than a single
one. This is dealt with by the following lemma.

Lemma A.7 (Loop sequences). Let F “ F p0, 0; c, d; 1q and F 1 “ F p0, 0; c, d ` ℓ; 1q be
framed rectangles with ℓ ě C1 logp1{qqmaxp1, 1{

?
cqq and c P ra, bs. Then

T pF, F 1
q :“ Pp pDt ě 1,Fptq “ F 1

|Fp0q “ F q ě e´ℓgpcqq
ˆ αpaqq ˆ e´Opqℓ`

?
qa1{6q.

Analogous statements hold for other buffer states.

Proof. Recalling Observation 2.3 and (122), we obtain

Pp pDt ě 1,Fptq “ F 1
|Fp0q “ F q “ Pp pOc

pF 1
˝zF˝qqPp pTÒpRpc, ℓqqq

ě αpcqqe´ℓgpcqq

˜

1 ´

ˆ

|β̄pe´fpcqqq|

βpe´fpcqqq

˙ℓ`1
¸

e´Opqℓq

ě αpcqqe´ℓgpcqqe´Opqℓq,
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using Lemma A.1 in the first inequality and ℓ ě C1 logp1{qqmaxp1, 1{
?
cqq and the fact

that |β̄puq|{βpuq ď 1 ´
?
u{2 for any u P r0, 1s in the second one (recall Eqs. (23)

and (115)). Moreover,

αpcqq ě αpaqq exp

ˆ

´qOpb ´ aq max
zPraq,bqs

|plogαq
1
pzq|

˙

“ αpaqq exp p´qOpb ´ aq{
?
aqq “ αpaqq exp

`

´O
`?

qa1{6
˘˘

.

Consider a possible trajectory pF ptqqtě0 of the (sub-Markovian) chain pFRpa,aqptqqtě0.
Let pF ptqqtě0 be the sequence obtained by omitting any F ptq such that the previous and
next transitions are both loops. We call this sequence a reduced trajectory. Similarly, we
denote the (random) reduced trajectory associated to pFRpa,aqptqqtě0 by pF ptqqtě0. Note
that the reduced trajectory becomes finite, if FRpa,aqp8q is finite.

Definition A.8 (Good reduced trajectory). We say that a finite reduced trajectory
pF ptqq

4K`8
t“0 is good if it satisfies the following conditions. For each t P r0, 2K ` 3s,

• F p2tq and F p2t`1q have the same frame state,

• F p2t`1q and F p2t`2q have distinct frame states,

• ϕpF p2t`1qq ´ ϕpF p2tqq ě C1 logp1{qqmaxp1, 1{
?
aqq.

Assembling Lemmas A.6 and A.7, we obtain that for any fixed good finite reduced
trajectory pF ptqq

4K`8
t“0 with F p4K`8q of frame state 4, we have15

Pp

`

@t ď 4K ` 8,F ptq
“ F ptq

˘

“

4K`8
ź

t“1

Pp

`

T
`

F pt´1q, F ptq
˘˘

ě e´Wppγq
ˆ

2K`3
ź

t“0

pαpaqqMγt,δtpaqqq ˆ e´Opqpb´aq`pK`1qpqa2{3`a´1{3`
?
qa1{6qq

where γ is the piecewise linear path from pa, aq to pb, bq corresponding to the first order
terms in Lemmas A.6 and A.7 and γt, δt are γ, δ in Lemma A.6 for F “ F p2t`1q, F 1 “

F p2t`2q. Furthermore, Lemma 5.4 applies without change to Wp and g. Thus,

Pp

`

@t ď 4K ` 8,F ptq
“ F ptq

˘

ě exp

ˆ

´
2

q

ż bq

aq

g

˙

ˆ

2K`3
ź

t“0

pαpaqqMγt,δtpaqqq ˆ e´Op1`pK`1qpqa2{3`a´1{3qq.

We now set K to be given by (79) with h2 instead of h (recall (119)). The last
ingredient we need is an analogue of (80). Namely, we seek to bound the number
NpΓq of good finite reduced trajectories pF ptqq

4K`8
t“0 with F p0q “ F p0, 0; a, a; 0q, F p4K`8q “

F p´x,´y; b ´ x, b ´ y; 4q for any px, yq P Z2 featuring a given sequence Γ “ pγt, δtq
2K`3
t“0 .

15Note that we use the notation T from Table 3 and Lemma A.6 for even and odd t respectively.
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Note that γt for odd t and δt for even t correspond to extending rectangles in the horizontal
directions, while the remaining γt and δt are vertical extensions. Let

α “

K`1
ÿ

t“0

δ2t ` γ2t`1, β “

K`1
ÿ

t“0

γ2t ` δ2t`1

and m “ rC1 logp1{qqmaxp1, 1{
?
aqqs ď 2C1 logp1{qqa´1{4 (since a ě ap0q). Then

NpΓq “

ˆ

b ´ a ´ α ´ mpK ` 2q ` pK ` 1q

K ` 1

˙ˆ

b ´ a ´ β ´ mpK ` 2q ` pK ` 1q

K ` 1

˙

ě

ˆ

b ´ a ´ 2mK

K

˙2

.

Proceeding as in Eqs. (76), (82) and (83) we conclude that

PppIlocpRpa, aqqq

PppIlocpRpb, bqqq

ě exp

ˆ

´
2

q

ż bq

aq

g

˙

ˆ e2h2paqqpb´aq
?
q

ˆ e´OpC1q logp1{qq

ˆ

1 ´
OpmKq

b ´ a

˙OpKq

.

This concludes the proof of Proposition A.5, since, recalling (79) gives

mK2

b ´ a
ď

OpC1q logp1{qqa´1{4`2{6

a2{3
ď a´1{13

ď q1{20,

so that
ˆ

1 ´
OpmKq

b ´ a

˙OpKq

ě 1{2.
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