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Abstract

We show that for every r ≥ 3, the maximal running time of the Kr
r+1-bootstrap percolation in the

complete r-uniform hypergraph on n vertices Kr
n is Θ(nr). This answers a recent question of Noel

and Ranganathan in the affirmative, and disproves a conjecture of theirs. Moreover, we show that the
prefactor is of the form r−reO(r) as r → ∞.
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1 Introduction

1.1 Background

Bootstrap percolation is a widely studied model for spreading infection or information on a graph. Given
an initial set of infections, this process iteratively adds infections if a certain local pattern of infections
is already present. While the original statistical physics perspective suggests selecting initial infections
at random, interesting computational and extremal combinatorial questions arise when considering de-
terministic instances. The most classical extremal problems are determining the minimal number of
infections necessary for infecting the entire graph and the maximal time until stationarity or complete
infection.

These maximal times have been studied in several settings, including grids [2] and hypercubes [5, 8].
Bootstrap percolation in which one infects the edges of a graph when they complete a copy of a fixed graph
is referred to graph bootstrap percolation or weak saturation. In that setting, the maximal times were
studied in [1, 3, 6]. Finally, our setting of interest is the more general hypergraph bootstrap percolation,
where maximal times were recently investigated by Noel and Ranganathan [7].

1.2 Model and result

For a positive integer r ≥ 2 and an r-uniform hypergraph H (or r-graph for short), we identify H with its
edge set and denote by V (H) the set of vertices of H. In this paper, we pay particular attention to the
complete r-graph on n vertices denoted Kr

n, especially the r-graph Kr
r+1, which we denote Fr for short.
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For a positive integer r ≥ 2 and an r-graph F , the F -bootstrap process in Kr
n is a monotone cellular

automaton described as follows. At the beginning, a subgraph G0 of Kr
n is infected. At every step i ≥ 1,

we define

Gi = Gi−1 ∪ {e ∈ Kr
n : there is a copy F ′ ⊂ Kr

n of F such that e = F ′ \Gi−1}. (1)

The running time until stationarity (that is, the first step i at which Gi = Gi+1) of the F -bootstrap
percolation with initially infected set G0 is denoted by T (F,G0, n). In [7] it was proved that

max
G0⊂Kr

n

T (Kr
m, G0, n) = Θ(nr)

for all fixed m ≥ r + 2 ≥ 5. In this paper, we are interested in the maximum running time of the
Fr-bootstrap percolation Tr(n) defined as

Tr(n) = max
G0⊂Kr

n

T (Fr, G0, n).

In this case, [7] only established that for all r ≥ 3, Tr(n) ≥ crn
r−1 for some cr > 0. Our work closes

the gap between this lower bound and the trivial upper bound Tr(n) ≤
(
n
r

)
. More precisely, we answer

Question 5.2 from [7] in a strong sense, and disprove Conjecture 5.1 from the same paper suggesting that
T3(n) = O(n2).

Question 1 (Question 5.2 from [7]). Does there exist an integer r0 such that, if r ≥ r0, then Tr(n) =
Θ(nr)?

Our main result is the following lower bound.

Theorem 2. For every r ≥ 3 and n ≥ 2r2, we have

nr

2r+3rr
≤ Tr(n) ≤

nrer

rr
.

Let us note that, while our result shows that the constant prefactor is r−reO(r) as r → ∞, our
construction has not been optimised for this purpose, but rather for the clarity of the exposition. We also
observe that the condition n ≥ 2r2 is imposed mostly for technical reasons and is only used in (2).

1.3 Outline of the proof

Theorem 2 is proved as follows. We start with a simple construction showing that T3(2(4k − 3) + 1) ≥
8k2−12k+4 for any k ≥ 1 (see Section 3), which reproves the corresponding result of [7]. The construction
(see Fig. 2) consists of two vertex-disjoint paths, each containing 4k−3 vertices, and an additional vertex
v31. The edges in the initial graph are: v31 together with any 2-edge in some of the paths, v31 together
with the initial vertices of the two paths, and some 3-edges that do not contain v31. This is done so that,
firstly, only one edge is infected per time step, secondly, all edges which become infected contain v31 and
one vertex in each path, and moreover, the process is reversible in the sense that, if we replace the edge
joining the beginnings of the two paths by the last edge infected by the process, the same edges become
infected but in reverse order.

Based on this construction, we prove Theorem 2 for r = 3 by gluing 2k − 1 instances of it, as shown
in Fig. 1 (see Proposition 4). Namely, using an auxiliary vertex v32, we propagate the infection from the
end of the process for the vertex v31 to the end of the same process for a new vertex v33 instead of v31,
which will then run the other way around. Repeating this procedure 2k − 2 times, we obtain a cubic
running time. The key feature of this strategy is that no edges that do not contain v31 are created in the
first construction, so we do not alter the configuration induced by the first 2(4k − 3) vertices. Moreover,
the same gluing technique allows us to extend the construction from r to r + 1 by adding a vertex to all
edges, adding all edges that do not contain this vertex, and then gluing copies of this construction that
differ only in this special vertex while keeping the remaining ones unchanged.
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v12k−3 v12k−2 v12k−1 v12k v12k+1

v22k−3 v22k−2 v22k−1 v22k v22k+1

v31 v32 v33

Figure 1: Illustration of the transition between the last step of stage k − 1 for the vertex v31 and the first
step of the first stage for the vertex v33. On this intermediate step, only the edge v12k−1v

2
2k−1v

3
2 is infected.

Note that 3-edges are represented by smaller homothetic copies of the corresponding triangles.

2 Proof of Theorem 2

To start with, we fix a positive integer k = k(n) to be chosen appropriately later. Then, for all integers
i ≥ 1, we define the vertex sets

Ai = {vi1, vi2, . . . , vi4k−3}, A∗
i =

i⋃
j=1

Aj .

In particular, the sets (Ai)i≥1 are disjoint while the sets (A∗
i )i≥1 form an increasing sequence with respect

to inclusion. Next, we consider a particular case of Fr-bootstrap percolation where a sequence of edges
can be infected both in the given and in a reverse order under a suitable initial condition.

Definition 3. Let r ≥ 3 be an integer and H be an r-graph with vertex set V (H) ⊂ A∗
r and edge set

E(H). Given a sequence (ei)
T
i=0 of edges in E(H), we say that H is (ei)

T
i=0-sequential if the Fr-bootstrap

percolation process in the complete r-graph on V (H) with initially infected r-graph:

(i) H runs for T steps, infecting only the r-edge ei at step i ∈ [1, T ];

(ii) H \ {e0} is stationary (does not infect any r-edge);

(iii) (H1 ∪ {eT }) \ {e0} infects only the r-edge eT−i at step i ∈ [1, T ].

Definition 3 is central in the key construction presented in the next proposition.

Proposition 4. Fix integers r ≥ 3 and k ≥ 2. Let T1 ≥ 2 be an integer and H1 be an r-graph with
vertices A∗

r−1 ∪ {vr1}. Suppose that H1 is (ei)
T1
i=0-sequential with vr1 ∈

⋂T1
i=0 ei. For all j ∈ [1, 2k − 1], let

H2j−1 be a copy of H1 \ {e0} obtained by replacing vr1 by vr2j−1. Moreover, define e−i = ei \ {vr1}, and for
all j ∈ [1, k − 1], let

H4j−2 = {e ⊂ {vr4j−3, v
r
4j−2, v

r
4j−1} ∪ e−T1

: |e| = r, {vr4j−3, v
r
4j−1} ̸⊂ e, e−T1

̸⊂ e}
H4j = {e ⊂ {vr4j−1, v

r
4j , v

r
4j+1} ∪ e−0 : |e| = r, {vr4j−1, v

r
4j+1} ̸⊂ e, e−0 ̸⊂ e}
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(see Fig. 1 for an illustration of H2 with r = 3, one choice of H1 and e−T1
= {v12k−1, v

2
2k−1}, so that H2 =

{v12k−1v
3
1v

3
2, v

2
2k−1v

3
1v

3
2, v

1
2k−1v

3
2v

3
3, v

2
2k−1v

3
2v

3
3}). Let H =

⋃4k−3
j=1 Hj. Then, for T = (2k − 1)T1 + 4(k − 1),

there exists a sequence of r-edges (ei)
T
i=0 extending (ei)

T1
i=0 such that H is (ei)

T
i=0-sequential.

We prove Theorem 2 by induction on r. The induction step is based on Proposition 4, leading to the
following statement.

Proposition 5. Let k ≥ 2. There exist r-edges (ei)
T1
i=0 all containing vr1 and a (ei)

T1
i=0-squential r-graph

H1 with V (H1) = A∗
r−1 ∪ {vr1} and T1 = (2k − 1)r−3(8k2 − 12k + 6)− 2.

The base case r = 3 of Proposition 5 is left to Section 3.

Proof of Proposition 5 assuming the case r = 3. We argue by induction on r, the base being established
in Section 3. Assume the induction hypothesis to be true for some r ≥ 3. Then, Proposition 4 provides
us with an (ei)

T
i=0-sequential r-graph denoted Hr with V (Hr) = A∗

r and

T = (2k − 1)T1 + 4(k − 1) = (2k − 1)r−2(8k2 − 12k + 6)− 2.

Let K be the complete (r + 1)-graph with V (K) = A∗
r . Define the (r + 1)-graph

Hr+1
1 = {e ∪ {vr+1

1 } : e ∈ Hr} ∪K.

We claim that Hr+1
1 is (ei ∪ {vr+1

1 })Ti=0-sequential. To see this, observe that Hr+1
1 \ {e0 ∪ {vr+1

1 }} ⊃ K
and proceed as follows.

Fix any (r+1)-graph H ′ ⊃ K with V (H ′) = A∗
r∪{vr+1

1 }. Let H ′
i be the set of (r+1)-edges infected in

the Fr+1-bootstrap percolation process on the complete graph on V (H ′) and initially infected (r+1)-graph
H ′ at step i. Similarly, let H ′′

i be the set of r-edges infected in the Fr-bootstrap percolation process on
the complete r-graph with vertex set A∗

r with initially infected r-graph H ′′ = {e \ {vr+1
1 } : vr+1

1 ∈ e ∈ H ′}
at step i. Then, by induction on i, it follows from the definition of these processes that

H ′′
i = {e \ {vr+1

1 } : e ∈ H ′
i \K}.

Applying this to H ′ ∈ {Hr+1
1 , Hr+1

1 \ {e0 ∪ {vr+1
1 }}, (Hr+1

1 ∪ {eT ∪ {vr+1
1 }}) \ {e0 ∪ {vr+1

1 }}}, it follows
from Definition 3 that Hr+1

1 is (ei ∪ {vr+1
1 })Ti=0-sequential, as desired.

We are now ready to conclude the proof of Theorem 2.

Proof of Theorem 2. Fix r ≥ 3 and set k = ⌊(n/r+3)/4⌋ ≥ n/(4r)− 1/4. For the lower bound, we apply
Proposition 5 and then Proposition 4 to obtain an r-graph Hr with |A∗

r | = (r− 1)(4k− 3)+ (4k− 3) ≤ n
vertices such that the Fr-bootstrap percolation process on the complete graph on A∗

r with initially infected
r-graph Hr runs for

T = (2k − 1)r−2(8k2 − 12k + 6)− 2 ≥ (2k − 1)r ≥
(

n

2r
− 3

2

)r

≥
( n

2r

)r
(
1− 3r

n

)r

≥
( n

2r

)r
(
1− 3

2r

)r

≥
( n

2r

)r
(
1− 3

2 · 3

)3

=
1

8

( n

2r

)r
. (2)

steps, since n ≥ 2r2 and r ≥ 3. Thus, the lower bound of Theorem 2 is witnessed by the r-graph obtained
by adding n − |A∗

r | ≥ 0 isolated vertices to Hr. The upper bound simply states that the process cannot
run more than

(
n
r

)
≤ nr/r! ≤ (ne/r)r steps.

In the sequel, we call a vertex odd (resp. even) if its subscript is odd (resp. even).
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Proof of Proposition 4. First of all, let us show that the process in H \ {e0} is stationary. Suppose for
contradiction that this is not the case, and suppose that some (r + 1)-tuple of vertices f spans exactly r
edges. To begin with, f cannot contain two non-consecutive vertices in Ar since they are not contained
in a common r-edge of H. Moreover, f cannot be entirely contained in A∗

r−1 since otherwise H1 \ {e0}
would not be stationary. Two cases remain:

• Suppose that |f ∩ Ar| = 1. Then the vertex in f ∩ Ar must be even (otherwise, we obtain a
contradiction with the stationarity of H1 \ {e0}). However, even vertices in Ar are not contained in
edges with r − 1 other vertices in A∗

r−1, so this case is impossible.

• Suppose that f ∩Ar = {vri , vri+1} for some i ∈ [1, 4k− 4]. We further assume that i = 4j is divisible
by 4, the other cases being treated identically. Since the only edges containing vr4j are those in H4j ,

necessarily f = {vr4j , vr4j+1} ∪ e−0 . However, in this case the two edges {vr4j} ∪ e−0 and {vr4j+1} ∪ e−0
are both missing, so we obtain the desired contradiction.

Now, for every j ∈ [1, 2k− 1] and every i ∈ [0, T1], denote ei,j = e−i ∪ {vr2j−1}. In particular, ei,1 = ei.
Further set

H∞ = H ∪ {ei,j : i ∈ [0, T1], j ∈ [1, 2k − 1]} ∪ {{vr4j−2} ∪ e−T1
: j ∈ [1, k − 1]} ∪ {{vr4j} ∪ e−0 : j ∈ [1, k − 1]}.

We claim that H∞ is also stationary. As above, the r+1 tuple f spanning exactly r edges of H∞ falls
in one of the following two cases.

• Suppose that |f ∩ Ar| = 1. Then, the vertex in f ∩ Ar must be even as otherwise we obtain a
contradiction with the fact that H1 ∪ {ei,1 : i ∈ [0, T1]} is stationary (which is true by the definition
of T1). However, even vertices in Ar are contained in only one edge with r − 1 other vertices in
A∗

r−1, so this case is impossible.

• Suppose that f ∩ Ar = {vri , vri+1} for some i ∈ [1, 4k − 4]. Again, we assume that i = 4j. Since the
only edges containing vr4j are those in H4j∪{{vr4j}∪e−0 }, necessarily f = {vr4j , vr4j+1}∪e−0 . However,
f already spans a copy of Fr in H∞, which leads to a contradiction.

Moreover, since H ⊂ H∞, all edges infected by H are contained in H∞.
From Definition 3 one may conclude that for every i ∈ [0, T1], the only copies of Fr in H1 ∪ {ej}T1

j=1

that ei participates in are spanned by ei−1 ∪ ei (if i > 0) and by ei ∪ ei+1 (if i < T1). Moreover, note that:

• for every j ∈ [1, 2k − 1], vr2j−1 is contained in a common edge of H∞ with vr2j−2 (if j ≥ 2) and with
vr2j (if j ≤ 2k − 2), but with no other vertex in Ar,

• no edge among (ei,j)
T1−1
i=1 participates in a copy of Fr in H∞ with any of vr2j−2 and vr2j ,

• for every j ≥ 2, e0,j spans a copy of Fr in H∞ together with vr2j−2 and e1 \ e0 (if j is odd) or
eT1−1 \ eT1 (if j is even) only; for every j ≤ 2k− 2, eT1,j spans a copy of Fr in H∞ together with vr2j
and eT1−1 \ eT1 (if j is odd) or e1 \ e0 (if j is even) only.

Furthermore, for every odd (resp. even) j ∈ [1, 2k− 2], vr2j ∪ e−T1
(resp. vr2j ∪ e−0 ) spans a copy of Fr in H∞

together with vr2j−1 and vr2j+1 only. We conclude that in the sequence of edges

(ei,1)
T1
i=0, v

r
2 ∪ e−T1

, (eT1−i,2)
T1
i=0, v

r
4 ∪ e−0 , (ei,3)

T1
i=0, . . . , (eT1−i,2k−2)

T1
i=0, v

r
4k−4 ∪ e−0 , (ei,2k−1)

T1
i=0, (3)

every edge except the first one and the last one participate in exactly two copies of Fr in H∞, one spanned
together with the edge preceding it and another one with the edge succeeding it. Moreover, the first and
the last edges participate in exactly one copy of Fr in H∞, spanned together with e1,1 and with eT1−1,2k−1,
respectively. Recalling Definition 3, this completes the proof of Proposition 4 since (3) is an enumeration
of all T + 1 edges in H∞ \ (H \ {e0}).
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v21 v22 v23 v24 v25 v24k−6 v24k−5 v24k−4 v24k−3

v11 v12 v13 v14 v15 v14k−5 v14k−4 v14k−3

. . .

. . .

Figure 2: The first stage of the bootstrap percolation process in H1, where all 2-edges depicted are parts
of 3-edges including v31. The edges in F (defined in (5)) and the ignition edge e0 are represented by black
2-edges. They are infected initially, while red edges are created one by one by the process. Green triangles
represent the 3-edges in E1 defined in (4)); they are all infected initially as well. As in Fig. 1, we draw a
3-edge as a smaller homothetic copy of the corresponding triangle.

3 The base case—proof of Proposition 5 for r = 3

In order to prove Proposition 5 for r = 3, our goal is to construct a sequential 3-graph H1 with vertices
A∗

2 ∪ {v31} and running time 8k2 − 12k + 4. For all i ∈ [1, k − 1], define the disjoint edge sets

E1,i = {v12i−1v
2
j v

2
j+1 : j ∈ [2i− 1, 4k − 2− 2i]},

E2,i = {v1j v1j+1v
2
4k−1−2i : j ∈ [2i− 1, 4k − 2− 2i]},

E3,i = {v14k−1−2iv
2
j v

2
j+1 : j ∈ [2i+ 1, 4k − 2− 2i]},

E4,i = {v1j v1j+1v
2
2i+1 : j ∈ [2i+ 1, 4k − 2− 2i]},

Ei = E1,i ∪ E2,i ∪ E3,i ∪ E4,i

(4)

(see Fig. 2 for an illustration of E1). Also, denote E =
⋃k−1

i=1 Ei. This is the set of edges with vertices in
A∗

2 that we infect at the beginning.
In addition to E , some edges containing v31 are also infected initially (see Fig. 2). Denote

F =

4k−4⋃
j=1

2⋃
l=1

{vljvlj+1v
3
1}. (5)

In other words, the set F consists of all triplets containing the vertex v31 and a consecutive pair of vertices
in one of the paths v11v

1
2 . . . v

1
4k−3 and v21v

2
2 . . . v

2
4k−3. Finally, we need the ignition edge e0 = v11v

2
1v

3
1 to

start the growth process.

Lemma 6. The set E ∪ F contains no 3 edges with a total of 4 vertices.

Proof. Let us first consider 4-tuples of vertices in A∗
2. Note that all edges in E contain two odd vertices

and one even vertex. Hence, a set of 4 odd vertices in A∗
2 spans no edges, and a set of 4 vertices in A∗

2

with at most 2 of them odd spans at most 2 edges. Finally, a set of 4 vertices in A∗
2 with 3 of them odd

cannot span 3 edges since at least two of the odd vertices are either both in A1, or both in A2, and hence
cannot participate in the same edge as they are not consecutive.

Now, consider 4-tuples containing the vertex v31. On the one hand, A1 and A2 are independent sets
in the 3-graph E , and moreover the graph with edges {e \ v31 : v31 ∈ e ∈ F} contains no triangles. Thus,
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every 4-tuple containing v31 and three vertices in A1 (respectively in A2) spans no edges of E and at most
2 edges of F . It remains to observe that every 4-tuple containing v31 and at least one vertex from both A1

and A2 cannot span more than 1 edge of F (so 2 edges in total) since F contains no edges intersecting
both A1 and A2.

We are now ready to conclude the proof of Proposition 5 for r = 3 by showing the following statement,
illustrated in Fig. 2 for s = 1 and in Fig. 1 for s = k − 1. The proof is a straightforward but tedious
verification.

Lemma 7. The 3-graph H1 = E ∪F ∪ {e0} is (ei)
T1
i=0-sequential for T1 = 8k2 − 12k+ 4, e0 = v11v

2
1v

3
1 and

ei defined as follows for every i ∈ [1, T1]. Let s = s(i) ∈ [1, k − 1] be the unique integer such that

s−1∑
j=1

(16(k − j)− 4) < i ≤
s∑

j=1

(16(k − j)− 4)

(which clearly exists since T1 =
∑k−1

j=1(16(k − j)− 4)). Moreover, define

α = α(i) = i−
s−1∑
j=1

(16(k − j)− 4) ∈ [1, 16(k − s)− 4].

Then,

• if α ∈ [1, 4(k − s)], then ei = v12s−1v
2
2s−1+αv

3
1;

• if α ∈ [4(k − s) + 1, 8(k − s)], then ei = v16s−4k−1+αv
2
4k−2s−1v

3
1;

• if α ∈ [8(k − s) + 1, 12(k − s)− 2], then ei = v14k−2s−1v
2
12k−10s−1−αv

3
1;

• if α ∈ [12(k − s)− 1, 16(k − s)− 4], then ei = v116k−14s−3−αv
2
2s+1v

3
1.

Note that the sequence of 3-edges indicated in Lemma 7 may be alternatively described in the following
more intuitive way (see Fig. 2). At the beginning, the process first infects the edges v11v

2
j v

3
1 for j ∈

[2, 4k − 3], then v1j v
2
4k−3v

3
1 for j ∈ [2, 4k − 3], then v14k−3v

2
j v

3
1 for j ∈ [3, 4k − 4] in reverse order, then

v1j v
2
3v

3
1 for j ∈ [3, 4k − 4] in reverse order. At this point, s increases from 1 to 2. The process continues

to propagate in a similar way except that, every time s increases, the “ends” shift two vertices towards
the middle (so v13 plays the role of v11 when s is incremented for the first time).

Proof. To begin with, the F3-bootstrap percolation process on the complete 3-graph with vertices A∗
2∪{v31}

and initially infected 3-graph H1\{e0} = E∪F is stationary by Lemma 6. Now, set G−1 = E∪F , G0 = H1

and let the sequence (Gi)i≥1 be defined as in (1). We will show by induction on i ≥ 0 that Gi\Gi−1 = {ei}.
For i = 0 the statement is clear by construction. Suppose that for some i ≥ 0, the induction hypothesis

is satisfied for i. Then, all edges in Gi+1 \ Gi must span 4 vertices with the edge ei, and in particular
must intersect ei in 2 vertices. We consider 4 cases according to the interval containing α = α(i). For
convenience, we extend the notation by setting s(0) = 1 and α(0) = 0 (so that α(i) = 0 only when
s(i) = 1), which is consistent with e0 = v12s−1v

2
2s−1+αv

3
1).

If α ∈ [0, 4(k − s)], then ei = v12s−1v
2
2s−1+αv

3
1. One may easily check that the vertices in A∗

2 that
complete the pair v12s−1v

2
2s−1+α to an edge in Gi−1 are

v22s+α α = 0,

v22s−2+α, v
2
2s+α α ∈ [1, 4(k − s)− 1],

v22s−2+α, v
1
2s α = 4(k − s).
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The vertices that complete the pair v12s−1v
3
1 to an edge in Gi−1 are{

(v22s−1+j)j∈[0,α−1], v
1
2s s = 1,

(v22s−1+j)j∈[0,α−1], v
1
2s, v

1
2s−2, (v

2
2j−1)j∈[2,s−1]∪[2k−s+1,2k−1] s ≥ 2.

Finally, the vertices that complete the pair v22s−1+αv
3
1 to an edge in Gi−1 are

v22s+α α = 0,

(v12j−1)j∈[1,s−1]∪[2k−s+1,2k−1], v
2
2s−2+α, v

2
2s+α α ∈ [1, 4k − 5],

v22s−2+α α = 4k − 4.

Then, the only vertices that complete at least two pairs are
v22 α = 0,

v22s+α, v
2
2s+α α ∈ [1, 4(k − s)− 1],

v22s+α, v
1
2s α = 4(k − s).

However, for α ̸= 0, {v22s−2+α} ∪ ei already spans a copy of F3 in Gi, so the only edge that is generated
from Gi is ei+1.

If α ∈ [4(k− s)+ 1, 8(k− s)], then ei = v16s−4k−1+αv
2
4k−2s−1v

3
1. One may easily check that the vertices

in A∗
2 that complete the pair v16s−4k−1+αv

2
4k−2s−1 to an edge in Gi−1 are{

v16s−4k−2+α, v
1
6s−4k+α α ̸= 8(k − s),

v14k−2s−2, v
2
4k−2s−2 α = 8(k − s).

The vertices that complete the pair v16s−4k−1+αv
3
1 to an edge in Gi−1 are{

v14k−4 α = 8k − 8,

(v22j−1)j∈[2,s−1]∪[2k−s+1,2k−1], v
1
6s−4k−2+α, v

1
6s−4k+α otherwise.

Finally, the vertices that complete the pair v24k−2s−1v
3
1 to an edge in Gi−1 are{

(v15−4k+j)j∈[4(k−1),α−1], v
2
4k−4, s = 1,

(v16s−4k−1+j)j∈[4(k−s),α−1], (v
1
2j−1)j∈[1,s−1]∪[2k−s+1,2k−1], v

2
4k−2s−2, v

2
4k−2s s ̸= 1.

Then, the only vertices that complete at least two pairs are{
v14k−2s−2, v

2
4k−2s−2 α = 8(k − s),

v16s−4k−2+α, v
1
6s−4k+α α ̸= 8(k − s).

However, {v16s−4k−2+α} ∪ ei already spans a copy of F3 in Gi, so the only edge that is generated from Gi

is ei+1.
If α ∈ [8(k − s) + 1, 12(k − s)− 2], then ei = v14k−2s−1v

2
12k−10s−1−αv

3
1. One may easily check that the

vertices in A∗
2 that complete the pair v14k−2s−1v

2
12k−10s−1−α to an edge in Gi−1 are{

v14k−2s−2, v
2
2s+2 α = 12(k − s)− 2,

v212k−10s−2−α, v
2
12k−10s−α α ̸= 12(k − s)− 2.

The vertices that complete the pair v14k−2s−1v
3
1 to an edge in Gi−1 are{

(v212k−11−j)j∈[8k−8,α−1], v
2
4k−3, v

1
4k−4, s = 1,

(v212k−10s−1−j)j∈[8(k−s),α−1], (v
2
2j−1)j∈[2,s]∪[2k−s,2k−1], v

1
4k−2s−2, v

1
4k−2s s ̸= 1.
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The vertices that complete the pair v212k−10s−1−αv
3
1 to an edge in Gi−1 are

(v12j−1)j∈[1,s]∪[2k−s+1,2k−1], v
2
12k−10s−2−α, v

2
12k−10s−α.

Then, the only vertices that complete at least two pairs are{
v14k−2s−2, v

2
2s+2 α = 12(k − s)− 2

v212k−10s−2−α, v
2
12k−10s−α α ̸= 12(k − s)− 2.

However, {v212k−10s−α} ∪ ei already spans a copy of F3 in Gi, so the only edge that is generated from Gi

is ei+1.
If α ∈ [12(k − s) − 1, 16(k − s) − 4], then ei = v116k−14s−3−αv

2
2s+1v

3
1. One may easily check that the

vertices in A∗
2 that complete the pair v116k−14s−3−αv

2
2s+1 to an edge in Gi−1 are

v12k α = 16(k − s)− 4, s = k − 1,

v12s+2, v
2
2s+2 α = 16(k − s)− 4, s ̸= k − 1

v116k−14s−4−α, v
1
16k−14s−2−α α ̸= 16(k − s)− 4.

The vertices that complete the pair v116k−14s−3−αv
3
1 to an edge in Gi−1 are

(v22j−1)j∈[2,s]∪[2k−s,2k−1], v
1
16k−14s−4−α, v

1
16k−14s−2−α.

Finally, the vertices that complete the pair v22s+1v
3
1 to an edge in Gi−1 are

(v116k−14s−3−j)j∈[12(k−s)−2,α−1], (v
1
2j−1)j∈[1,s]∪[2k−s+1,2k−1], v

2
2s, v

2
2s+2.

Then, the only vertices that complete at least two pairs are
v12k α = 16(k − s)− 4, s = k − 1,

v12s+2, v
2
2s+2 α = 16(k − s)− 4, s ̸= k − 1,

v116k−14s−4−α, v
1
16k−14s−2−α α ̸= 16(k − s)− 4.

However, {v116k−14s−2−α} ∪ ei already spans a copy of F3 in Gi, so the only edge that is generated from
Gi is ei+1, and the process stops when it infects eT1 .

It remains to show that the F3-bootstrap percolation process on the complete 3-graph with vertices
A∗

2 ∪ {v31} and initially infected 3-graph E ∪ F ∪ {eT1} infects the edges (ei)
T1−1
i=0 in reverse order. Notice

that in the process started from G0, every copy of F3 that becomes completely infected contains two edges
in E ∪ F and the edges ei and ei+1 for some i ≥ 0. Therefore, starting from E ∪ F ∪ {eT1}, the edges
that do become infected are exactly (ei)

T1
i=0. Moreover, all copies of F3 in GT1 are spanned by some of the

vertex sets (ei−1∪ei)
T1
i=1, which implies that the bootstrap percolation with initial condition E ∪F ∪{eT1}

infects the edges (ei)
T1−1
i=0 in the reverse order.
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Note. A few days after the current article appeared on arxiv, an independent proof of a version of
Theorem 2 was found by Espuny Dı́az, Janzer, Kronenberg and Lada [4].
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