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Abstract

We consider local dynamics of the dimer model (perfect matchings) on hypercubic boxes [n]d. These
consist of successively switching the dimers along alternating cycles of prescribed (small) lengths. We
study the connectivity properties of the dimer configuration space equipped with these transitions.
Answering a question of Freire, Klivans, Milet and Saldanha, we show that in three dimensions any
configuration admits an alternating cycle of length at most 6. We further establish that any config-
uration on [n]d features order nd−2 alternating cycles of length at most 4d − 2. We also prove that
the dynamics of dimer configurations on the unit hypercube of dimension d is ergodic when switching
alternating cycles of length at most 4d − 4. Finally, in the planar but non-bipartite case, we show
that parallelogram-shaped boxes in the triangular lattice are ergodic for switching alternating cycles
of lengths 4 and 6 only, thus improving a result of Kenyon and Rémila, which also uses 8-cycles. None
of our proofs make reference to height functions.
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1 Introduction

The dimer model on planar graphs has played a crucial role in statistical mechanics and probability
theory for several reasons: in particular, its integrability properties related to Kasteleyn’s determinantal or
Pfaffian solution and, in the bipartite case, the emergence of macroscopic shapes, arctic curves, conformal
invariance and Gaussian Free Field height fluctuations at large scales (see the monographs [7, 13] and
references therein). The behaviour of the dimer model in dimension higher than 2, or on planar but non-
bipartite graphs, is much less understood, and the same can be said about the model’s Glauber dynamics.
The goal of the present work is to present new results about (local) dimer Glauber dynamics, either on
Zd for d ≥ 3 or on the planar triangular lattice.

The study of Glauber dynamics of the dimer model has a long history and has proved quite challenging.
While it is easy to define local Markov dynamics with update rule consisting in switching alternating
cycles, which ensures that the uniform measure is stationary and reversible, proving that such processes
are ergodic and quantifying their speed of convergence to equilibrium is a much more subtle business. In
the planar bipartite case, the height function [30] turns out to be extremely helpful: it provides a natural
partial order preserved by the dynamics, an easy proof of ergodicity and an intuitive “mean curvature
motion” heuristic suggesting that, in many interesting situations, the mixing time Tmix is of order L2

(in continuous time), with L the diameter of the domain. Under some conditions, the Glauber dynamics
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have in fact been proven to be fast mixing [19, 24, 31] and even to satisfy Tmix = L2+o(1) under suitable
restrictions on the domain geometry [2, 16,17].

As soon as the model is either not planar or not bipartite, there is no canonical definition of height
function and the most basic question of proving that local Glauber dynamics are ergodic, and even that
they have no completely blocked configurations, turn out to be non-trivial. The situation is particularly
unclear for the dimer model on (say, cubic subsets of) Zd for d ≥ 3 where there are no local dynamics
that are known to be ergodic. In fact, the simplest chain whose updates consist in flipping two parallel
dimers fails to be ergodic because of subtle topological obstructions. We refer to Section 1.2 (as well as
to [3, Sections 1, 3 and 9] and [22]) for a more extensive discussion of conjectures, open problems and
previous partial results, and to Section 1.3 for a precise statement of our own results. Let us only briefly
anticipate here that our main results include the proof that for local Glauber dynamics on cubic boxes
of Zd, allowing switching (also called moves in [22] and loop shifts in [3]) along cycles of finite length
(suitably depending on the dimension d only), all connected components of the state space are at least

of size ec(d)n
d−2

, with n the side length of the cube. For comaprison, it was previously an open question
to prove that there are no components of cardinality 1. Let us add that the ergodicity question, besides
being crucial for the use of Markov chains as simulation algorithms, has also attracted interest in the
theoretical physics community due to its connection to the quantum dimer model and to the possible
occurrence of “Hilbert space fragmentation” [26].

Finally, we emphasize that substantial progress in the understanding of the equilibrium properties
of (uniform) dimer configurations in dimension d ≥ 3 has been made recently. This includes a large
deviation principle for the “flow function” of three-dimensional dimers [3] and the proof of occurrence of
macroscopic loops for the d ≥ 3 double dimer model [23]. See also [15,18,25] for different generalisations
of the dimer model to dimension d ≥ 3.

1.1 Model

Given a graph G, a dimer configuration on G is a perfect matching. The edges in a dimer configuration
are called dimers. Fix a graph G and a dimer configuration on G. An alternating cycle is a cycle in G
of even length where every second edge is a dimer. A switching of an alternating cycle is the operation
of exchanging the dimer and the non-dimer edges along the cycle. Note that any switching in a dimer
configuration produces another dimer configuration, see e.g. Figure 1b.

For a graph G, we denote by D(G) the graph with vertices, given by the dimer configurations on G,
where two vertices are connected if there is an alternating cycle whose switching transforms one of the
dimer configurations into the other. Moreover, for an integer ℓ ≥ 2, we denote by Dℓ(G) the spanning
subgraph of D(G) where edges correspond to alternating cycles of length at most 2ℓ. We also say that
the space of dimer configurations is 2ℓ-ergodic (or simply ergodic) if the graph Dℓ(G) is connected. Note
that the superposition of two dimer configurations forms a set of alternating cycles and double edges, so
for any finite graph G and ℓ large enough, Dℓ(G) is necessarily ergodic.

Given a positive integer n, we denote by [n] the set {1, . . . , n}. Given a positive integer d ≥ 1, we refer
to any vector n = (n1, . . . , nd) such that n1, . . . , nd ≥ 2 and the product n1 . . . nd is even as shape. For
a shape n, the n-box Qd

n is defined as follows. The graph Qd
n has vertex set

∏d
i=1[ni] and edges between

u = (u1, . . . , ud) and v = (v1, . . . , vd) if there exists i ∈ [d] such that uj = vj for all j ̸= i and |ui−vi| = 1.
We write Qd

n for Qd
n with n = (n, . . . , n) ∈ Zd and Qd for the unit hypercube Qd

2. For simplicity, we often
identify boxes Qd

n with their natural embedding in the d-dimensional Euclidean space.
We further define the triangular lattice T as the graph with vertex set Z2 where every vertex v is

adjacent to v + (1, 0),v + (−1, 0),v + (0, 1),v + (0,−1),v + (1,−1),v + (−1, 1). For positive integers
m,n with mn even, we denote by Tm,n the graph induced from T by the vertex set [m]× [n]. Note that,
while Tm,n is a (rectangular) box in the embedding of T chosen above, in the more standard isoradial
embedding, these domains correspond to parallelograms.

We set out to study the ergodicity of Dℓ(Qd
n) and Dℓ(Tm,n).
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(a) A configuration in Q3
(3,3,2) with

no alternating 4-cycles
(b) Configurations in a domain of
T with no alternating 4 or 6-cycles.

(c) A dimer configuration on T4,3

without alternating 4-cycles.

Figure 1: Example configurations with no short alternating cycles.

1.2 Background

Given a planar graph drawn in the plane, a domain is a union of faces (seen as closed polygons in
the plane) of the lattice. Of course, any domain may be seen as a portion of the lattice with its proper
dimer configurations and cycle-switching dynamics. The ergodicity of simply connected domains in planar
bipartite lattices (with cycle length given by the length of the largest inner face) is a classical fact and
follows directly by considering the associated height function (see [29,30]). Recently, the ergodicity of local
dynamics on a number of planar lattices was studied by Røising and Zhang [26], extending an approach
of Kenyon and Rémila [12]. We note that the techniques used there do not rely on height functions but
use planarity in a substantial way, and also involve a certain amount of manual verification.

The main goal of our work is to go beyond the planar case. The most natural setting in this respect
corresponds to studying Dℓ(Q3

n) for fixed ℓ and large 3-dimensional shapes n. It is not hard to check
that D2(Q3

n) is not connected and even has isolated vertices e.g. for n = (3, 3, 2) (and similarly for
n = (n1, n2, n3) with n1 and n2 divisible by 3 and n3 even), see Figure 1a. This suggests the existence
of an invariant preserved by switching 4-cycles. One such invariant was noted in [5] (also see [1]), and a
much more informative one called the twist was introduced in [22] and further studied in [20, 21], thus
establishing interesting algebraic, topological and geometric connections alongside the combinatorial ones.

This suggests considering Dℓ(Q3
n) for ℓ ≥ 3. Milet and Saldanha [21] asked whether D3(Q3

n) is
connected for 3-dimensional shapes n. This was reiterated by Freire, Klivans, Milet and Saldanha in [6,27]
and very recently by Chandgotia, Sheffield and Wolfram [3, Problem 9.1]. We promote it to the following
conjecture, which is one of the main motivations behind our work.

Conjecture 1. For all 3-dimensional shapes n, the graph D3(Q3
n) is connected.

Several weaker results in the direction of Conjecture 1 have been obtained. Firstly, for n = (n1, n2, 2),
6-ergodicity was established in [22]. In [6], Conjecture 1 was proved up to refinement, that is, repeatedly
replacing each dimer in the configuration by a copy of a dimer configuration on Q(5,5,10), Q(5,10,5) or
Q(10,5,5) with dimers parallel to the original one. In [28], Conjecture 1 was proved for n = (n,m,N) with
N large enough (depending on n and m) and restricting attention to dimer configurations whose last
sufficiently many layers (again, depending on n and m) are filled with vertical dimers.

In view of the above, the following question weakening Conjecture 1 was asked in [6], where it was
checked that no small counterexamples exist.

Question 2. Do there exist even n such that D3(Q3
n) has isolated vertices?

Higher dimensions have been explored even less. Indeed, we are only aware of a binary invariant for
4-cycle switchings considered in [14], where results similar to those from [28] were proved.

1.3 Results

In the present work, we prove several results on the connectivity properties of the graphs Dℓ(Qd
n) and

Dℓ(Tm,n). Contrary to previous approaches that mainly used the algebraic, topological and geometric
aspects of the Milet–Saldanha twist invariant, our arguments are purely combinatorial and elementary.
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(a) The dimer configuration on odd sections. (b) The dimer configuration on even sections.

Figure 2: The pyramid dimer configuration on Q3
n (see Example 15; the parity of a section is determined

by the parity of the vertex (1, 1,v′)). The horizontal sections alternate between the two 2-dimensional
dimer configurations shown above. These contain no vertical dimers. The only short alternating cycles
are around the middle column. Red dimers are solid, blue ones are dashed.

Our first result immediately entails a negative answer to Question 2.

Theorem 3 (Extraction of a dense Qd). Let d ≥ 2 and n be a d-dimensional shape. Then, for any dimer
configuration D on Qd

n, there exists x ∈ Zd such that the unit cube x+Qd ⊆ Qd
n contains at least 2d−2+1

dimers in D.

Indeed, when d = 3, this yields a unit cube with 3 dimers, which is readily checked to contain an
alternating cycle of length 4 or 6. One can similarly check that in 4 dimensions, we obtain an alternating
cycle of length at most 8. We believe that any set of 2d−2+1 disjoint dimers in Qd admits an alternating
cycle of length at most 2d for any d ≥ 2 but have been unable to prove this. Let us emphasise that it is
crucial that x+Qd contains 2d−2 + 1 dimers and not less: in fact, one can check that there exist various
very different examples of configurations with 2d−2 dimers containing no alternating cycle of any length.

Theorem 3 proves the absence of isolated vertices in D3(Q3
n) for all 3-dimensional shapes n. At the

cost of increasing the value of ℓ, we are able to prove much more.

Theorem 4 (Degree and component size). Fix d ≥ 3 and an even positive integer n. The minimum

degree of D2d−1(Qd
n) is at least n

d−2/(320d6) and each connected component contains at least 2n
d−2/(320d6)

dimer configurations.

Let us note that we have specialised the result for boxes of equal sides only for the sake of readability.
The bound on the minimum degree is optimal up to a factor independent of n, as shown by the pyramid
configuration defined in Example 15 where alternating cycles of length ℓ should stay at distance at most
ℓ from the centers of the (d − 2)-dimensional horizontal sections, see Figure 2. We further remark that

the total number of dimer configurations on Qd
n is of order eC(d)nd

for some C(d) > 0 as n grows [8].
Next, we focus our attention on unit hypercubes Qd for which we can prove stronger results. Firstly,

the following improvement of Theorem 4 can be deduced in the same way.

Theorem 5 (Degree and component size in Qd). Fix d ≥ 3. The minimum degree of Dd−1(Qd) is at least

2d/d4 and each connected component contains at least 22
d/d4 dimer configurations.

While this result is only interesting for large d, at which point the size of alternating cycles also grows,
we emphasise that the size of cycles we allow is very small compared to the total volume of the hypercube.
At the cost of allowing switching along cycles twice as long, we are able to prove ergodicity in the following
strong form.
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Theorem 6 (Ergodicity on Qd). For every d ≥ 2, the graph D2d−2(Qd) is connected and has diameter at
most (d− 1)2d−1.

In view of this bound on the diameter of the dimer configuration space on the unit hypercube that is
almost linear (as a function of the volume of the hypercube), it is natural to ask whether the diameter
of Dℓ(Qd

n) can also be linear in the volume. In two dimensions, this is not the case since a lower bound
of order n3 follows by considering the height functions of the two configurations in Figure 2, while for
non-bipartite graphs such as the triangular lattice, the diameter can be linear in the volume [12]. In
higher dimensions, the situation is only clarified by the following result, which also offers a proof in two
dimensions without height functions.

Theorem 7 (Diameter lower bound). For all d, ℓ, n ≥ 2 with n even, the graph Dℓ(Qd
n) has diameter at

least
nd−1(n2 − 1)

6ℓ2
.

Finally, while it is tempting to look for the minimal value of ℓ ensuring ergodicity in each setting, this
is a rather sensitive matter. In this direction, we prove the following result.

Theorem 8 (Ergodicity on Tm,n). For all positive integers m,n with mn even, the graph D3(Tm,n) is
connected and has diameter at most 2mn.

This should be compared to [12] showing an analogous result for 8-ergodicity but for any simply con-
nected domain of the triangular lattice. While there do exist domains for which 8-cycles are necessary (see
Figure 1b), we show that for boxes, cycles of length 4 and 6 suffice. While there is a dimer configuration
on T4,3 without alternating 4-cycles (see Figure 1c), it remains unclear whether 6-cycles can be avoided
for sufficiently large values of mn.

With the exception of Theorems 4 and 5, the above results are shown by completely different means,
thus providing several approaches for further use. The proofs provided in subsequent sections are therefore
completely independent.

2 Extraction of a dense Qd: proof of Theorem 3

In this section, we show that any dimer configuration on Qd
n contains a unit hypercube containing at least

2d−2 + 1 dimers. The proof is a simple double counting argument.

Proof of Theorem 3. Fix a dimension d ≥ 2, a d-dimensional shape n and a dimer configuration D on Qd
n.

We count the couples of a vertex u ∈ Qd
n and a unit hypercube x+Qd ⊆ Qd

n containing the dimer of u inD.
We say that a vertex x ∈ Qd

n is of type I(x) = {i ∈ [d] : xi ∈ {1, ni}}, which indicates in which coordinates
x is on the boundary of Qd

n. The type of a dimer uv is defined as I(uv) = {i ∈ [d] : ui = vi ∈ {1, ni}}
so that I(uv) ⊆ I(u) ∩ I(v). Then, for every i ∈ I(uv), all unit hypercubes that contain uv contain
only vertices whose i-th component is either in the set {1, 2} (if ui = vi = 1) or in the set {ni − 1, ni} (if
ui = vi = ni). One may easily check that there are exactly 2d−|I(uv)|−1 ≥ 2d−|I(u)|−1 such unit hypercubes.

On the other hand, the number of vertices of type I ⊆ [d] is 2|I|
∏

i∈[d]\I(nj − 2). Treating separately

the corners of Qd
n, each of which is contained in a single unit hypercube, we obtain that the number of

couples (u,x) as above is at least

2d +
∑
I⊊[d]

2d−|I|−1 × 2|I|
∏

j∈[d]\I

(nj − 2) = 2d−1

1 +
∑
I⊆[d]

∏
i∈[d]\I

(ni − 2)

 = 2d−1

1 +
∏
i∈[d]

(ni − 1)

 .

Since there are exactly
∏

i∈[d](ni − 1) unit hypercubes and each dimer is counted twice for every unit
hypercube that contains it (once for each of its endvertices), there has to be a unit hypercube containing
at least 2d−2 + 1 dimers, as desired.
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3 Degree and component size: proof of Theorem 4 and 5

Throughout this section, we fix d ≥ 3, an even positive integer n and a dimer configuration D on Qd
n. We

say that a vertex w ∈ Qd
n is forbidden (by a dimer uv ∈ D) if there exists i ∈ [d] such that uj = vj = wj

for all j ∈ [d] \ {i}, uv is a dimer and uw or vw is an edge in Qd
n. In other words, the dimer uv forbids

w if w is a neighbour of u or v aligned with uv. A vertex that is not forbidden is called authorised.
Observe that for n ≥ 3, a dimer containing a vertex on the boundary of Qd

n (that is, one with less than
2d neighbours) may forbid one or two vertices in Qd

n, while all other dimers forbid two vertices.
We next show that there is a short alternating cycle close to each authorised vertex.

Lemma 9. Fix an authorised vertex w ∈ Qd
n. Then, there is an alternating cycle of length at most

4d− 2 contained in the second neighbourhood of w in Qd
n. Moreover, if n = 2, every vertex in Qd has an

alternating cycle of length at most 2d− 2 in its second neighbourhood.

Proof. Let (vi)mi=1 be the neighbours of the authorised vertex w in Qd
n for some m ∈ [d, 2d]. More-

over, suppose without loss of generality that the dimers in the second neighbourhood of w are wv1 and
(uivi)mi=2.

If ui is a neighbour of v1 in Qd
n for some i ∈ [2,m], then v1,w,vi,ui is an alternating cycle of length 4,

as desired. Suppose that none of (ui)mi=2 is a neighbour of v1. Note that since w is an authorised vertex,
the vectors w − vi and vi − ui are orthogonal for every i ∈ [2,m], which implies that ui has exactly two
neighbours among (vj)mj=2 in Qd

n (or otherwise said, vertex (1, 1, 0, 0, . . . , 0) has exactly two neighbours in

common with the origin in Zd). Now, consider the graph induced from Qd
n by the vertices

⋃m
i=2{ui,vi},

and orient the dimer edges from (vi)mi=2 to (ui)mi=2 and the other edges from (ui)mi=2 to (vi)mi=2. We obtain
a digraph on 2m− 2 vertices where every vertex has out-degree at least 1, and for every (directed) path
in this digraph, exactly one of every two consecutive edges is a dimer. Thus, one may find an alternating
cycle of length at most 2m − 2 ≤ 4d − 2 by starting from any vertex and making steps in the digraph
until the first time a vertex is visited twice.

It remains to notice that when n = 2, every vertex is authorised and has degree d in Qd.

Lemma 9 implies that if there are many authorised vertices in a dimer configuration on Qd
n, then there

must be many alternating cycles in that configuration. The next lemma shows that there must be many
authorised vertices.

Lemma 10. Fix n ≥ 4. Then, there are at least nd−2/(20d2) authorised vertices.

Proof. By the pigeonhole principle there exists j ∈ [d] such that at least nd/(2d) of all dimers differ in
their j-th coordinate. We assume that j = d without loss of generality. For v ∈ Qd

n, the level of v is
vd ∈ [n]. For every i ∈ [2, n], denote by ki the number of dimers uv with ud = i − 1 and vd = i. In
particular,

n∑
i=2

ki ≥
nd

2d
. (1)

For convenience of notation, we extend the sequence by setting k0 = k1 = kn+1 = kn+2 = 0.
For every i ∈ [n], denote by Ni the number of vertices on level i that are either forbidden by at least

two dimers or authorised. To begin with, we show that the sum of (Ni)
n
i=1 is at most twice the number

of all authorised vertices. For every j ∈ {0, . . . , 2d}, denote by Fj the number of vertices forbidden by
exactly j dimers. Since each of the nd/2 dimers in the configuration forbids at most two vertices, we have

F1 − 2F0 + 2
n∑

i=1

Ni = F1 +
2d∑
j=2

2Fj ≤
2d∑
j=1

jFj ≤ nd =
2d∑
j=0

Fj = F1 +
n∑

i=1

Ni,

which implies that
∑n

i=1Ni ≤ 2F0. In particular, if
∑n

i=1Ni ≥ nd−2/(10d2), then the proof is completed.
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We focus on the analysis of the sequence (Ni)
n
i=1. Suppose that

∑n
i=1Ni < nd−2/(10d2). Observe

that for every i ∈ [n], every dimer uv satisfying ud + 1 = vd ∈ {i− 1, i+ 2} forbids one vertex on level i
but has no vertex on level i itself. Conversely, every dimer uv satisfying ud + 1 = vd ∈ {i, i+ 1} contains
one vertex on level i while forbidding none. Moreover, the dimers with two vertices on level i forbid one
or two vertices on that level. Let si be the number of such dimers forbidding one vertex on level i, and
ti be the number of such dimers forbidding two vertices on level i. Then, the total number of forbidden
vertices on level i counted with multiplicities (that is, a vertex forbidden by j dimers is counted j times)
is si + 2ti + ki−1 + ki+2. Note that this expression may be rewritten as

2(si + ti) + ki−1 + ki+2 − si = (nd−1 − ki − ki+1) + ki−1 + ki+2 − si

= nd−1 − (si − ki−1 + ki + ki+1 − ki+2). (2)

As a consequence, the total number of authorised vertices is bounded from below by

nd −
n∑

i=1

(nd−1 − (si − ki−1 + ki + ki+1 − ki+2)) = k2 + kn +

n∑
i=1

si.

Hence, if
∑n

i=1 si ≥ nd−2/(20d2), then the proof is completed.
Suppose that

∑n
i=1 si < nd−2/(20d2). Since the minimum of (2) and nd−1 is an upper bound on the

number of vertices on level i forbidden by exactly one dimer and no vertex is forbidden more than 2d
times, we have that for every i ∈ [n],

2dNi ≥ |si − ki−1 + ki + ki+1 − ki+2|.

In particular, combining this with the triangle inequality implies that for every i ∈ [n],

||ki+2 − ki+1| − |ki − ki−1|| ≤ |ki−1 − ki − ki+1 + ki+2| ≤ si + 2dNi. (3)

Now, for every positive integer m ≤ n/2, summing (3) for i ∈ {2, 4, . . . , 2m − 2} and applying the
triangle inequality yields

||k2m − k2m−1| − k2| = ||k2m − k2m−1| − |k2 − k1|| ≤
m−1∑
i=1

(s2i + 2dN2i) <
3nd−2

10d
, (4)

while summing over i ∈ {2m− 1, 2m+ 1, . . . , n− 1} instead yields

|kn − |k2m−1 − k2m−2|| = ||kn+1 − kn| − |k2m−1 − k2m−2|| ≤
n/2∑
i=m

(s2i−1 + 2dN2i−1) <
3nd−2

10d
. (5)

To finish the proof, we show that k2 ≥ nd−2/(10d) or kn ≥ nd−2/(10d). Indeed, in this case, there
are at least nd−2/(10d) dimers that forbid only one vertex, which is a lower bound on the number of
authorised vertices. Suppose for a contradiction that both k2 < nd−2/(10d) and kn < nd−2/(10d). Then,
by (4) and (5) we have that for every i ∈ [n], |ki− ki−1| ≤ 4nd−2/(10d). At the same time, by (1) there is
i ∈ [2, n] such that ki ≥ nd−1/(2d). Thus, both k2 and kn must be at least nd−1/(2d)−n×4nd−2/(10d) =
nd−2/(10d), which leads to a contradiction and finishes the proof.

Proof of Theorem 4. By Lemma 10 there are at least nd−2/(20d2) authorised vertices in D. Moreover,
since for any vertex v ∈ Qd

n, the number of vertices at (graph) distance at most 4 from v is at most
1 + 2d + 2d(2d − 1) + 2d(2d − 1)2 + 2d(2d − 1)3 < (2d)4, we may find nd−2/(320d6) authorised vertices
at distance at least 5 from each other in Qd

n. Then, the alternating cycles in the second neighbourhoods
of these vertices ensured by Lemma 9 are disjoint, and therefore may be switched independently of each
other, thus proving the desired result.
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Proof of Theorem 5. Since for any vertex v ∈ Qd, the number of vertices at (graph) distance at most 4
from v is at most 1 + d + d(d − 1) + d(d − 1)2 + d(d − 1)3 < d4, we may find 2d/d4 vertices at distance
at least 5 from each other in Qd. Then, the alternating cycles in the second neighbourhoods of these
vertices ensured by Lemma 9 are disjoint, and therefore may be switched independently of each other,
thus proving the desired result.

4 Ergodicity of the high-dimensional hypercube: proof of Theorem 6

First, let us briefly outline the proof strategy. Let Q1 (resp. Q2) be the hypercube containing all vertices
whose last coordinate is 1 (resp. 2), and call an edge (or a dimer) in Qd crossing if it contains one vertex
in Q1 and one vertex in Q2. For any given d ≥ 2, we fix a dimer configuration on Qd and iteratively
decrease the number of crossing edges until none are left so that we can apply induction on d. At each
step, the idea is to find an alternating cycle of length at most 4d− 4 in which all edges between Q1 and
Q2 are dimers. To do this, we combine several technical lemmas related to the expansion properties of
the hypercube with the analysis of a suitable exploration procedure of Q1 and Q2 along the alternating
cycles in Qd that do not use crossing edges which are not dimers.

We now turn to the details. For a set A ⊆ Qd, we denote by ∂A the set of vertices at (graph) distance
1 from A in Qd. The next result is a version of a classical theorem of Harper [9] (see also [4, 10,11]).

Theorem 11 ([9], or also Lemma 5 and Theorem 2 in [10]). Fix positive integers d and a < 2d. Then,
there exists a unique choice of integers 1 ≤ t ≤ k + 1 ≤ d and t ≤ at < · · · < ak < d such that

a =

d∑
j=k+1

(
d

j

)
+

k∑
i=t

(
ai
i

)
.

Moreover,

min
{
|A ∪ ∂A| : A ⊆ [2]d, |A| = a

}
= ϕd(a) :=

d∑
j=k

(
d

j

)
+

k∑
i=t

(
ai

i− 1

)
.

The same holds trivially with ϕd(0) := 0 and ϕd(2
d) := 2d.

While a direct application of Theorem 11 would be inappropriate in our setting, it becomes a useful
tool in combination with the following lemma. Call a vertex in Qd even if the sum of its coordinates is
even, and odd otherwise. We also say that a subset of vertices of Qd is even (resp. odd) if it contains only
even (resp. odd) vertices.

Lemma 12. Fix an integer d ≥ 2 and an even set A ⊆ Qd. Then,

|∂A| ≥ min
{
|B ∪ ∂B| : B ⊆ Qd−1, |B| = |A|

}
.

Proof. Define the map π : Qd → Qd−1 : (v1, . . . , vd) 7→ (v1, . . . , vd−1) and consider a vertex u in the
first neighbourhood of π(A) in Qd−1. If u ∈ π(A), then there are two distinct vertices u1,u2 ∈ Qd

with π(u1) = π(u2) = u and u2 ∈ A. Thus, u is the image of the odd vertex u1 ∈ ∂A. Moreover, if
u ∈ ∂ π(A), then there is a vertex v ∈ A such that π(v) is a neighbour of u. Thus, u is the image of a
neighbour of v under π, which is an odd vertex in ∂A. Combining the two observations above shows that
|∂A| ≥ |π(A) ∪ ∂ π(A)|, which finishes the proof.

Fix a dimer configuration D in Qd, and suppose that v is an even vertex in Q1 contained in a crossing
dimer. We define the graph Γ with vertex set [2]d and edge set E(Q1) ∪E(Q2) ∪D where E(G) denotes
the edge set of a graph G. In particular, D may naturally be seen as a dimer configuration on Γ.
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For every integer k ≥ 0, denote by Ek (resp. Ok) the set of even (resp. odd) vertices that may be
reached from v by following an alternating path in Γ of length at most 2k (resp. 2k + 1) starting with a
non-dimer edge. In particular, E0 = {v} and O0 = Q1 ∩ ∂{v}. Also, we define Ek,i = Ek ∩Qi for i ∈ [2].
Note that for every integer k ≥ 0,

|Ek+1| ≥ |Ok| ≥ |∂Ek,1 ∩Q1|+ |∂Ek,2 ∩Q2|. (6)

The following lemma is a preliminary technical result.

Lemma 13. Fix d ≥ 1 and k ∈ [0, d], and let ϕ = ϕd from Theorem 11. Let l1, l2 ∈ [2d] and l = l1 + l2.

1. If l ≤ 2d, then ϕ(l1) + ϕ(l2) ≥ ϕ(l).

2. If l > 2d, then ϕ(l1) + ϕ(l2) ≥ 2d + ϕ(l − 2d).

Proof. We prove both statements simultaneously. If some of l1 and l2 is 2d, there is nothing to prove.
Without loss of generality, suppose that 1 ≤ l1 ≤ l2 ≤ 2d − 1. Let X1 and X2 be two subsets of Qd with
|X1| = l1, |X2| = l2, |X1 ∪ ∂X1| = ϕ(l1), |X2 ∪ ∂X2| = ϕ(l2) and X1 ̸⊆ X2. Define Y1 = X1 ∪ X2 and
Y2 = X1 ∩X2. We claim that

|Y1 ∪ ∂Y1|+ |Y2 ∪ ∂Y2| ≤ |X1 ∪ ∂X1|+ |X2 ∪ ∂X2|. (7)

Indeed, let w ∈ Y1∪∂Y1. Then, w belongs to at least one of X1∪∂X1 and X2∪∂X2. Moreover, if w also
belongs to Y2 ∪ ∂Y2, then w belongs to both X1 ∪ ∂X1 and X2 ∪ ∂X2, thus showing (7) after summation
over all vertices in Qd.

In particular, this shows that for every pair of integers 1 ≤ l1 ≤ l2 ≤ 2d − 1 there are integers m1,m2

such that 0 ≤ m1 < l1, l2 < m2 ≤ 2d and m1 +m2 = l1 + l2 such that ϕ(m1) + ϕ(m2) ≤ ϕ(l1) + ϕ(l2).
Iterating this observation finishes the proof of both points.

Now, we define the sequences (ak)k≥0 and (bk)k≥0 by setting b0 = 2d−2 + a0 = 2d−2 +1, and for every
integer k ≥ 0, ak+1 (resp. bk+1) is the minimum of |∂X1 ∩ Q1| + |∂X2 ∩ Q2| over all even sets X1 ⊆ Q1

and X2 ⊆ Q2 such that |X1| + |X2| = ak (resp. |X1| + |X2| = bk). Note that by (6), for every integer
k ≥ 0, |Ek| ≥ ak, and if |Em| ≥ b0 for some m, then for every integer k ≥ 0, |Ek+m| ≥ bk.

Corollary 14. We have ad−2 = 2d−2 and bd−2 = 2d−1.

Proof. If d = 2, the statement is trivial. Suppose that d ≥ 3. We show by induction that for every integer
k ∈ [0, d−2], min(ak, bk−2d−2) ≥

∑d−2
j=d−2−k

(
d−2
j

)
. The proof for bk−2d−2 being identical, we only prove

the inequality for ak. The statement is trivially satisfied for k = 0. Suppose that for some k ∈ [d − 2],
the statement holds for k − 1. Fix even sets X1 ⊆ Q1 and X2 ⊆ Q2 of size resp. l1 and l2 such that
l = l1 + l2 =

∑d−2
j=d−1−k

(
d−2
j

)
≤ ak−1. Denoting ϕ = ϕd−2 from Theorem 11, and applying Theorem 11

with d− 2 instead of d and Lemma 12 with d− 1 instead of d, we obtain that

|∂X1 ∩Q1| ≥ ϕ(l1) and |∂X2 ∩Q2| ≥ ϕ(l2). (8)

Thus, Lemma 13 shows that

|∂X1 ∩Q1|+ |∂X2 ∩Q2| ≥ ϕ(l1) + ϕ(l2) ≥ ϕ(l) =

d−2∑
j=d−2−k

(
d− 2

j

)
,

which completes the induction.
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Proof of Theorem 6. Fix an integer d ≥ 2 and any dimer configuration D on Qd. We show that by
switching along alternating cycles of length at most 4d − 4, we can reach the configuration where every
dimer uv satisfies that u1 ̸= v1, that is, all dimers are parallel to the first dimension.

We show this by induction on the dimension. The base case is clear. Fix an integer d ≥ 3 and
suppose that the statement holds for d− 1. If D contains no crossing dimers, then it consists of a dimer
configuration on Q1 and a dimer configuration on Q2. Then, the conclusion follows from the induction
hypothesis for d− 1.

Now, suppose that D contains a crossing dimer. Fix an even vertex v ∈ Q1 contained in a crossing
dimer. We show that |E2d−3| = 2d−1. On the one hand, by Corollary 14, Ed−2 has size at least 2d−2. If
the inequality is strict, then |Ed−2| ≥ b0 and consequently |E2(d−2)| ≥ bd−2 = 2d−1.

Suppose that |Ed−2| = 2d−2. We show that |Od−2| ≥ 2d−2 + 1. If Ed−2,1 and Ed−2,2 are both
non-empty, we show that the sizes of the vertex boundaries of both Ed−2,1 in Q1 and of Ed−2,2 in Q2

must be resp. (strictly) larger than Ed−2,1 and Ed−2,2. Indeed, for i ∈ [2], the number of edges between
Ed−2,i and its vertex boundary (in Qi) is (d − 1)|Ed−2,i|, and at the same time this number is at most
(d− 1)|∂Ed−2,i ∩Qi|. Moreover, equality holds only if ∂Ed−2,i ∩Qi is not adjacent to any vertex outside
Ed−2,i in Qi, which may only happen when Ed−2,i contains all even vertices in Qi, which in our case shows
that |∂Ed−2,i ∩ Qi| > |Ed−2,i|. Now, if Ed−2,2 = ∅, say, then Ed−2 must contain all even vertices in Q1.
However, as there is a crossing dimer with an even vertex in Q1, there is also one with an odd vertex in
Q1 and therefore in Od−2. Hence, |Ed−1,1| ≥ |Ed−2,1| = 2d−2 and Ed−1,2 ̸= ∅, so |Ed−1| ≥ 2d−2 + 1 and
an application of Corollary 14 shows that |E2d−3| ≥ bd−2 = 2d−1.

Let v′ be the odd vertex of the crossing dimer containing v. Since E2d−3 contains all even vertices
in Qd, it contains a neighbour of v′ in Q2, so v′ ∈ O2d−3. Hence, there is an alternating cycle in Γ of
length at most 4d−4 containing the dimer vv′, whose switching decreases the number of crossing dimers.
Iterating the above approach leaves no crossing dimers eventually, and thus finishes the proof of the first
point.

For the second step, note that every switching decreases the number of crossing dimers by at least
two, so 2d−2 steps are sufficient to make all crossing dimers (in a fixed dimension) disappear. Since the
induction above consists of d − 1 steps, the distance (in D2d−2(Qd)) from any dimer configuration D to
the configuration where all dimers are parallel to the first dimension is at most (d− 1)2d−2, and therefore
the diameter of D2d−2(Qd) is at most twice as large.

5 Diameter lower bound: proof of Theorem 7

For this section we fix n even and ℓ, d ≥ 2. As above, we call a site v ∈ Qd
n even if

∑
i∈[d] vi is even and

odd otherwise. Given a dimer configuration D, we define a colouring of the vertices of Qd
n in two colours

(red and blue) as follows. Let uv ∈ D be a dimer with u odd and v even. Let i ∈ [d] be such that
|ui − vi| = 1. We colour both u and v red if ui − vi = 1, and blue if ui − vi = −1.

Example 15 (Pyramid configuration). As an example, let us consider the pyramid configuration of
Figure 2 defined formally as follows. For each v′ ∈ Qd−2

n and even v ∈ Qd
n such that v = (v1, v2,v

′), the
second vertex in the dimer of v is:

(v1 + 1, v2,v
′) if v1 < v2 and v1 ≥ n+ 1− v2,

(v1, v2 + 1,v′) if v1 ≤ v2 and v1 < n+ 1− v2,

(v1 − 1, v2,v
′) if v1 > v2 and v1 ≤ n+ 1− v2,

(v1, v2 − 1,v′) if v1 ≥ v2 and v1 > n+ 1− v2.

In terms of colouring, the dimers corresponding to the former two cases are red, while the remaining ones
are blue. In particular, all sites u ∈ Qd

n with u1 < u2 are red, while those with u1 > u2 are blue.

Theorem 7 will follow easily from Example 15 and the following observation.
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Figure 3: Illustration of Case 1 of the proof of Theorem 8.

Lemma 16. For any dimer configuration on Qd
n there are exactly nd/2 red vertices.

Proof. Fix i ∈ [d] and j ∈ [n]. Consider the dimers uv such that ui = j and vi = j+1. Since the numbers
of even and odd sites w with wi ≤ j are equal, the number of such dimers with u even is equal to the
number of such dimers with u odd. Since these two types of dimers have different colours (red and blue,
respectively) and each dimer is considered for exactly one choice of (i, j), the result follows.

Proof of Theorem 7. It is clear that switching a cycle cannot modify the colours of vertices outside the
cycle. Therefore, by Lemma 16, switching any cycle can only alter the colours of the sites within the
cycle without changing the amount of sites of either colour. Consider the pyramid dimer configuration D
from Example 15 and its inverse D̄ obtained by using the configuration in Figure 2a on even sections and
Figure 2b on odd ones instead, which also leads to exchanging the two colours. Thus, all sites u ∈ Qd

n

with u1 < u2 are red in D and blue in D̄. Among these sites, for each i ∈ [n − 1], there are (n − i)nd−2

at distance i from the complement of this set. Since each switching moves at most ℓ red sites at graph
distance at most ℓ, in order to reach D̄ from D, we need to switch at least

nd−2

ℓ2

n−1∑
i=1

(n− i)i =
nd−1(n2 − 1)

6ℓ2

alternating cycles.

6 Ergodicity on Tm,n: proof of Theorem 8

In this section, we fix positive integers m,n with m even. The proof of Theorem 8 proceeds by induction
by showing that, starting with any dimer configuration on Tm,n, we can make all dimers on the lower
boundary horizontal. Thereby, one can directly apply the induction hypothesis to the remaining box
(0, 1) + Tm,n−1. The base of the induction are the cases n ∈ {1, 2}. The first one is trivial (there is one
dimer configuration), and the second one boils down to switching 4-cycles on Q2

(m,2) (which is easily seen

to be ergodic with diameter m − 1) due to absence of diagonal dimers. We may therefore assume that
n ≥ 3.

We proceed by a further induction. Let x ∈ [m/2] be maximal such that (2y− 1, 1), (2y, 1) is a dimer
in the present configuration for all y ∈ [x]. If x = m/2, we are done. Otherwise, we consider two cases
for the other end x of the dimer containing (2x+ 1, 1).
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Figure 4: Illustration of Case 2 of the proof of Theorem 8.

Case 1 Assume x = (2x + 1, 2) (see Figure 3 for an illustration). Let y be the other end of the
dimer of (2x + 2, 2). If y = (2x + 2, 1), we are done after switching the 4-cycle (2x + 1, 1), (2x +
1, 2), (2x + 2, 2), (2x + 2, 1). We assume this is not the case, so necessarily (2x + 2, 1), (2x + 3, 1) is a
dimer. If y = (2x+ 3, 2), then switching the 4-cycle (2x+ 2, 1), (2x+ 3, 1), (2x+ 3, 2), (2x+ 2, 2) brings
us to the previous case, so we are done. If y = (2x + 1, 3), then we are done by switching the 6-cycle
(2x+ 1, 1), (2x+ 2, 1), (2x+ 3, 1), (2x+ 2, 2), (2x+ 1, 3), (2x+ 1, 2).

We may therefore assume that y = (2x + 2, 3), and note that it suffices to move this dimer to
(2x+2, 2), (2x+2, 3) since all other cases were already dealt with. Let z be the other end of the dimer of
(2x+3, 2). If z = (2x+3, 3), it suffices to switch the 4-cycle (2x+2, 2), (2x+3, 2), (2x+3, 3), (2x+2, 3). If
z = (2x+4, 1), it suffices to switch the 6-cycle (2x+2, 1), (2x+3, 1), (2x+4, 1), (2x+3, 2), (2x+2, 3), (2x+
2, 2). Finally, it remains to consider the case z = (2x+ 4, 2), which entails that (2x+ 4, 1), (2x+ 5, 1) is
a dimer. Then, we can switch the 4-cycle (2x + 4, 1), (2x + 5, 1), (2x + 4, 2), (2x + 3, 2), returning to the
previous case.

Case 2 Assume x = (2x, 2) (see Figure 4 for an illustration). Let y be the other end of the dimer of
(2x+ 1, 2). If y = (2x, 3), then switching the 4-cycle (2x+ 1, 2), (2x, 3), (2x, 2), (2x+ 1, 1) brings us back
to Case 1. If y = (2x + 2, 1), then we are done by switching the 4-cycle (2x + 1, 1), (2x + 2, 1), (2x +
1, 2), (2x, 2). If y = (2x + 2, 2), then (2x + 2, 1), (2x + 3, 1) has to be a dimer and switching the 4-cycle
(2x+ 2, 1), (2x+ 3, 1), (2x+ 2, 2), (2x+ 1, 2) returns us to the previous case.

We may therefore assume that y = (2x+1, 3) and it suffices to move this dimer to (2x+1, 2), (2x+2, 2).
Let z be the other end of the dimer of (2x + 2, 2). If z ∈ {(2x + 2, 1), (2x + 2, 3)}, this forms a 4-cycle
with (2x + 1, 2), (2x + 1, 3) and we are done. It therefore remains that z = (2x + 3, 2), which forces
(2x+ 2, 1), (2x+ 3, 1) to be a dimer, and switching the 4-cycle formed by these two dimers returns us to
the previous case.

This completes the induction as well as the proof of the first statement in Theorem 8. For the second
statement, note that we switch at most 4 alternating cycles in the process of making the dimer at (2x+1, 1)
horizontal.

Remark 17. Let us note that the proof entails that the minimum degree of D6(Tm,n) is at least linear
in the semi-perimeter m+ n. In contrast, the minimum degree of D8(Tm,n) can be shown to be of order
mn since there is an alternating cycle of length at most 8 within the third neighbourhood of each vertex.
We also observe that “sufficiently regular” domains such as triangles or hexagons with even number of
vertices can be treated along the lines of Theorem 8.
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