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Abstra
t

We analyse the 
lass of 
onvex fun
tionals E over L2(X,m) for a
measure spa
e (X,m) introdu
ed by Cipriani and Grillo [17℄ and ge-

neralising the 
lassi
 bilinear Diri
hlet forms. We investigate whether

su
h non-bilinear forms verify the normal 
ontra
tion property, i.e.,

if E(φ ◦ f) 6 E(f) for all f ∈ L2(X,m), and all 1-Lips
hitz fun
ti-

ons φ : R → R with φ(0) = 0. We prove that normal 
ontra
tion

holds if and only if E is symmetri
 in the sense E(−f) = E(f), for all
f ∈ L2(X,m). An auxiliary result, whi
h may be of independent inte-

rest, states that it su�
es to establish the normal 
ontra
tion property

only for a simple two-parameter family of fun
tions φ.
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1 Introdu
tion

1.1 Setting

1.1.1 Bilinear Diri
hlet forms

Bilinear Diri
hlet forms are a well-established topi
, related to the theory of

Markov pro
esses and semigroups, see [13, 25, 33℄. Let X be a nonempty set,
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let F be a σ−algebra over X , and take a σ−�nite measure m : F → [0,∞].
Let Λ : D(Λ) × D(Λ) → R, be a symmetri
, bilinear, and positive semi-

de�nite form, su
h that D(Λ) ⊂ L2(X,m) is dense. If the form is 
losed,

there exists a unique self-adjoint, positive operator A : D(A) → L2(X,m),
su
h that D(A) ⊂ D(Λ), and

〈Af, g〉 = Λ(f, g), ∀f ∈ D(A), g ∈ D(Λ).

Adopting the notation of fun
tional 
al
ulus, we also have the formulae

D(Λ) = D(A1/2), and Λ(f, g) = 〈A1/2 f, A1/2 g〉, ∀f, g ∈ D(Λ). The bi-

linear form Λ is 
alled a (bilinear) Diri
hlet form if

Λ(1 ∧ f ∨ 0, 1 ∧ f ∨ 0) 6 Λ(f, f), ∀f ∈ D(Λ).

By extension, the term Diri
hlet form also refers to the quadrati
 form

E(f) =

{

1
2
Λ(f, f), iff ∈ D(Λ);

+∞, otherwise;

asso
iated with a bilinear Diri
hlet form Λ. This fun
tional turns out to be

always non-negative, 
onvex (sin
e it is quadrati
), and lower semi
ontinuous.

Moreover, the subdi�erential satis�es ∂E = A.

1.1.2 Non-bilinear Diri
hlet forms

We next turn to de�ning non-bilinear Diri
hlet forms as they will be studied

in the present work. Let E : L2(X,m) → [0,∞] be a 
onvex and l.s.
.

fun
tional. In all the paper we assume that E is not the 
onstant +∞. Let

(Tt)t>0 be the semigroup of nonlinear operators generated by −∂E , where ∂
denotes the subdi�erential operator, via the di�erential equation

{

∂tTt f ∈ −∂E(Tt f), ∀t ∈ (0,∞), ∀u ∈ L2(X,m),

T0 f = f, ∀f ∈ L2(X,m).
(1)

Equation (1) is well-posed for all f ∈ L2(X,m). Its solution is usually 
alled

the gradient �ow of E starting at f . See [1, 14℄ and refer to Se
tion 1.2.1 for

more ba
kground.

We say that a non-negative l.s.
. fun
tional E is a non-bilinear Diri
hlet

form if E is 
onvex and, for all t > 0, the operator Tt : L
2(X,m) → L2(X,m)

veri�es

1. order preservation: Tt f 6 Tt g for all f, g ∈ L2(X,m) su
h that f 6 g
(for the pointwise order up to a negligible set);
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2. L∞
-
ontra
tion: ‖Tt f − Tt g‖∞ 6 ‖f − g‖∞ for all f, g ∈ L2(X,m).

This 
lass of forms was introdu
ed by Cipriani and Grillo [17℄ and we will

provide an equivalent �stati
� de�nition in Theorem 1.3 without referen
e to

the underlying semigroup (also see Theorem 2.1).

Our main goal is to verify the normal 
ontra
tion property for non-bilinear

Diri
hlet forms. A normal 
ontra
tion is a 1−Lips
hitz fun
tion φ : R → R,
su
h that φ(0) = 0. We denote by Φ the set of all normal 
ontra
tions. We

say that a fun
tional E over L2(X,m) has the normal 
ontra
tion property if

E(φ(f)) 6 E(f), ∀φ ∈ Φ, ∀f ∈ L2(X,m). (2)

In the literature this property goes also under the name of Se
ond Beurling-

Deny Criterion sin
e [36℄.

1.2 Ba
kground

1.2.1 Bilinear setting

Aside their interest in probability, for whi
h we refer to the bibliography of

[13, 25, 33℄, bilinear Diri
hlet forms are also well-linked with linear di�usion

equations and semigroups, see [6, 23℄. This link gave fruitful results in the

theory of metri
 measure spa
es, allowing for an intrinsi
/Eulerian approa
h

towards Ri

i 
urvature bounds, [5℄. Under mild hypotheses, the authors of

[5℄ 
ould represent any bilinear Diri
hlet form E as a quadrati
 Cheeger's

energy on the base spa
e X . One important point is that Ambrosio, Gigli,

and Savaré were able to 
reate an appropriate notion of distan
e dE dire
tly

from the Diri
hlet form E . Then, via a 
ondition à la Bakry-Emery, on the


arré du 
hamp asso
iated with the quadrati
 form E , the authors give a

sense to notions su
h as Bo
hner's inequality or a lower bound on the Ri

i


urvature. Their approa
h is equivalent to that of Lott and Villani [31℄ and

Sturm [39, 40℄, based on optimal transport. The 
reation of a distan
e from

a bilinear form is a te
hnique present also in [11℄. Bilinear Diri
hlet forms

also play a role in potential and 
apa
ity theory, see [25, 37℄.

Histori
ally, bilinear Diri
hlet forms have been introdu
ed by Beurling

and Deny in [10℄. One motivation behind their de�nition was the fa
t that

being a bilinear Diri
hlet form was su�
ient to have the normal 
ontra
tion

property (see Eq. (2)). The fa
t that 
ontrolling one normal 
ontra
tion

is ne
essary and su�
ient to 
ontrol all of them is nowadays known as the

Beurling-Deny 
riterion. To prove su
h a property, one usually approximates

the fun
tion f with weighted sums of 
hara
teristi
 fun
tions. The normal


ontra
tion property is a 
ornerstone for many purposes. For instan
e, for
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the development of a di�erential 
al
ulus [5℄ and the 
lassi�
ation of linear

Markov semigroups [25℄, both based on bilinear Diri
hlet forms.

1.2.2 Non-bilinear setting

Generalising the 
on
ept of Diri
hlet form to a non-bilinear setting is a more

re
ent problem, started with the two works [12, 17℄. A di�erent kind of

generalisation is that of [29℄, but we will not fo
us on it, sin
e its purpose is

di�erent. Using instruments from [7, 9, 14℄, Cipriani and Grillo [17℄ provided

two equivalent de�nitions of a non-bilinear Diri
hlet form relevant to us,

whi
h will be dis
ussed in further detail in Se
tion 2. In [17℄, a number of

properties of the 
lass of non-bilinear Diri
hlet forms are given, in parti
ular

with respe
t to Γ−
onvergen
e (see [21℄).
Two re
ent works on the topi
 are [18, 19℄, where Claus re
overs many

stru
tural properties for non-bilinear Diri
hlet forms, among whi
h we �nd a

nonlinear Beurling�Deny prin
iple, see [18, Theorem 2.39℄. In the following

se
tions, he develops a nonlinear theory of 
apa
ity. Furthermore, in [18,

Corollary 2.40℄ (also see [19, Theorem 3.22℄), the normal 
ontra
tion property

is proved for non-bilinear Diri
hlet forms, but only for non-de
reasing normal


ontra
tions and additionally assuming that the form is 0 at 0 (we avert the

reader that in [18, De�nition 2.31℄ non-de
reasing normal 
ontra
tions are

named simply normal 
ontra
tions).

Examples Let us mention two 
lasses of basi
 examples, whi
h generalise


orresponding families of lo
al and nonlo
al bilinear Diri
hlet forms. These

lie at the 
ore of the fun
tionals analysed in the referen
es quoted at the end

of the se
tion. Let Ω be an open subset of Rd
and f : Ω × Rd → R be a

Borel-measurable fun
tion. Let

E(u) =

{

∫

Ω
f(x,Du) dx u ∈ W1,2

loc(Ω),

+∞ otherwise.

(3)

We have that E is a non-bilinear Diri
hlet form if f is non-negative, mea-

surable in the �rst argument and 
onvex and lower-semi
ontinuous in the

se
ond one. See [22℄ for the lower semi
ontinuity of the fun
tional, while

the property of being a non-bilinear Diri
hlet form 
an be inferred as in [17,

Theorem 4.1℄. In addition, E is symmetri
 if f(·,−v) = f(·, v), for all v ∈ Rd.
Finally, E is always lo
al, due to the lo
ality of Du and the fa
t that E is an

integral fun
tional. Among lo
al forms, we 
an 
onsider the following.
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Example 1.1. Let Ω = R. Let f(x, v) = max(v, 0). Then, the integral

fun
tional E asso
iated to f by Eq. (3) is a non-symmetri
 non-bilinear Di-

ri
hlet form, whi
h does not satisfy the normal 
ontra
tion property Eq. (2)

for the fun
tion φ = −id.

In this 
lass of lo
al fun
tionals we also have the distinguished sub
lass

of Finsler metri
s, where

f(x, ·) = ‖ · ‖x, ∀x ∈ Ω.

The form is bilinear if and only if, for all x ∈ Ω, the norm ‖ · ‖x satis�es the

parallelogram identity, see [15, Chapter 5℄.

Some non-lo
al non-bilinear Diri
hlet forms appear in [20℄, for example.

In general we 
an say that any fun
tional E of the form

E(u) =

∫

Ω2

ψ(u(x)− u(y)) dx dy, ∀u ∈ L2(Ω, dx).

is a non-bilinear Diri
hlet form for non-negative, l.s.
., 
onvex ψ su
h that

ψ(0) = 0. Lower semi
ontinuity of the fun
tional 
omes from Fatou's Lemma,

its 
onvexity from the 
onvexity of ψ. Finally, one 
an repeat the 
omputa-

tions in [28, Theorem 2℄ to prove order-preservation and L∞−
ontra
tion for

the semigroup asso
iated with E .
In [17℄, some interesting examples are developed in detail, ranging from

fun
tionals from the 
al
ulus of variations to Sobolev seminorms in the 
on-

text of C⋆−monomodules. The theory of [17℄ 
an be applied to nonlinear dif-

fusion equations (see [20, 24℄ and the referen
es therein), analysis on graphs

[27, 35℄, and analysis on spa
es with a very irregular geometry [26, 34℄. Furt-

hermore, Cheeger's energies on extended metri
 spa
es are known to be non-

bilinear Diri
hlet forms [3℄. We refer to [2, 4, 5℄ for this theory, whi
h ori-

ginates from [16, 38℄. See also [30, 32℄ for more estimates and 
ontra
tion

properties of Cheeger's energies.

1.3 Main results

Our main result is the following.

Theorem 1.2. Let E be a non-bilinear Diri
hlet form. Then E has the

normal 
ontra
tion property Eq. (2) if and only if

E(−f) 6 E(f) ∀f ∈ L2(X,m). (4)
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f(x)

Hα(f, g)(x)

g(x)0

2α

Figure 1: Graph of the fun
tion Hα(f, g)(x) for �xed g(x).

This theorem goes in the same dire
tion as the well-established one for

the bilinear 
ase [13, 25, 33℄. We merely prove that a form will operate on

all normal 
ontra
tions, on
e it operates on the simplest one. Hen
eforth,

we say that E is symmetri
 if Eq. (4) holds and, equivalently, E(−f) = E(f)
for all f ∈ L2(X,m). As witnessed by Example 1.1, the ne
essary symmetry

assumption Eq. (4) needs to be made, sin
e this non-bilinear Diri
hlet form

does not have the normal 
ontra
tion property.

Let us highlight that Theorem 1.2 may be viewed as a strengthening of

the result of Claus [18, Corollary 2.40℄, whose proof follows the far more


onventional approa
h of [8, 9℄. The 
lass of normal 
ontra
tions we 
onsider

is ri
her and it 
ontrols, for example, the absolute value of the argument of

the non-bilinear Diri
hlet form, whi
h 
an be very useful (see e.g. [25℄), as

well as more 
ompli
ated 
ontra
tions.

In order to prove Theorem 1.2, we establish two results, both of whi
h may

be of independent interest. Firstly, we provide an equivalent 
hara
terisation

of non-bilinear Diri
hlet forms, whi
h turns out to be more widely for our

purposes than the other equivalent stati
 
hara
terisation of [17, Theorem

3.8℄, re
alled in Theorem 2.1. To do so, we require a bit of notation. For all

f, g ∈ L2(X,m), and α ∈ [0,∞) we denote by f ∨ g and f ∧ g denote the

pointwise maximum and minimum and set Hα(f, g) = (g − α) ∨ f ∧ (g + α)
(see Fig. 1), that is,

Hα(f, g)(x) =











g(x)− α f(x)− g(x) < −α,

f(x) f(x)− g(x) ∈ [−α, α],

g(x) + α f(x)− g(x) > α.

(5)

Theorem 1.3. Let E : L2(X,m) → [0,∞] be a l.s.
. fun
tional. Then, E
is a non-bilinear Diri
hlet form if and only if, for all f, g ∈ L2(X,m), and
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α ∈ [0,∞), E veri�es

E(f ∨ g) + E(f ∧ g) 6 E(f) + E(g), (6)

E(Hα(f, g)) + E(Hα(g, f)) 6 E(f) + E(g). (7)

The advantage of Theorem 1.3 as 
ompared to Theorem 2.1 is that 
on-

ditions Eqs. (6) and (7) are easier to verify and useful to develop other

fun
tional inequalities su
h as the normal 
ontra
tion property Eq. (2).

The se
ond important step towards Theorem 1.2 is a redu
tion.

Lemma 1.4. Let G be the set of all normal 
ontra
tions φ ∈ Φ su
h that

|φ′| = 1 and φ′
has at most two points of dis
ontinuity. Let 〈G〉 be the


olle
tion of all �nite 
ompositions of elements in G. Then, 〈G〉 is dense in

Φ for the pointwise 
onvergen
e on R.

We observe that the elements of G are irredu
ible with respe
t to 
ompo-

sition, so that G is minimal in this sense. While the spa
e G is quite simple,

proving the normal 
ontra
tion property Eq. (2) for φ ∈ G by hand from

symmetry and Eqs. (6) and (7) is still deli
ate, albeit elementary.

1.4 Plan of the paper

The remainder of the paper is stru
tured as follows. In Se
tion 2, we establish

Theorem 1.3. In Se
tion 3, we prove Theorem 1.2, relying on Theorem 1.3.

This is the heart of our work. Finally, we dis
uss future dire
tions of resear
h

in Se
tion 4.

2 E�
ient equivalent 
hara
terisation of non-

bilinear Diri
hlet forms

The goal of the present se
tion is to prove Theorem 1.3.

2.1 Preliminaries

We introdu
e the subsets C1 and C2,α, for α ∈ [0,∞), of L2(X,m;R2) :

C1 =
{

(f, g) ∈ L2(X,m;R2) : f 6 g
}

, (8)

C2,α =
{

(f, g) ∈ L2(X,m;R2) : |f − g| 6 α
}

. (9)
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We noti
e that for all α, the sets C1 and C2,α are 
onvex and 
losed in

the L2−topology. For any 
losed and 
onvex subset C, the 1−Lips
hitz
proje
tion operator PC : L2(X,m;R2) → C is de�ned by

PC(f, g) = argmin
(w,z)∈C

‖f − w‖22 + ‖g − z‖22.

The proje
tion map sends any point (f, g) to the 
losest point PC(f, g) in
C. We denote by P 1

C and P 2
C the two 
omponents of the proje
tion opera-

tor in L2(X,m). More properties of proje
tion maps are studied in [15℄. If

one 
onsiders the sets C1 and C2,α, we have an expli
it expression for the

proje
tions, thanks to [17, Lemma 3.3℄:

P1(f, g) =

(

f −
1

2
((f − g) ∨ 0), g +

1

2
((f − g) ∨ 0)

)

, (10)

P2,α(f, g) =

(

g +
1

2
ϕα ◦ (f − g), f −

1

2
ϕα ◦ (f − g)

)

, (11)

where ϕα : R → R is given by

ϕα(z) = ((z + α) ∨ 0) + ((z − α) ∧ 0). (12)

We further re
all [17, De�nition 3.1, Remark 3.2, Theorem 3.6℄.

Theorem 2.1. Let E : L2(X,m) → [0,∞] be a l.s.
. fun
tional. Then E
is a non-bilinear Diri
hlet form if and only if, for all f, g ∈ L2(X,m) and

α ∈ [0,∞), E veri�es

E
(

P 1
1 (f, g)

)

+ E
(

P 2
1 (f, g)

)

6 E(f) + E(g), (13)

E
(

P 1
2,α(f, g)

)

+ E
(

P 2
2,α(f, g)

)

6 E(f) + E(g). (14)

The key argument is the well-known fa
t from [7, 14℄ stating that

E
(

P 1
C(f, g)

)

+ E
(

P 2
C(f, g)

)

6 E(f) + E(g)

for all f, g ∈ L2(X,m) if and only if the semigroup Tt from Eq. (1) preserves

C :
TtC ⊂ C, ∀t > 0,

where C 
an be any 
onvex and 
losed set. Thus, Eqs. (13) and (14) 
orre-

spond to the order-preservation and the L∞−
ontra
tion properties for (Tt)t,
respe
tively. In [17, Theorem 3.8℄ one more step is made.

Theorem 2.2. Let E : L2(X,m) → [0,∞] be a l.s.
. fun
tional. Then, E
satis�es Eq. (6) if and only if E is 
onvex and satis�es Eq. (13).
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Indeed, the last statement is a 
onsequen
e of the more general [7, Pro-

position 2.5℄, whi
h we will also use.

Theorem 2.3. Let C be a 
losed 
onvex subset of L2(X,m;R2), let PC =
(P 1

C , P
2
C) be the asso
iated orthogonal proje
tion. Let E : L2(X,m) → [0,∞]

be a l.s.
. fun
tional. Let h, k : L2(X,m;R2) → L2(X,m) be two 
ontinuous

mappings su
h that, for all u, v ∈ L2(X,m) and t, s ∈ [0, 1] it holds that

h(ut, vs) = u1−s, k(ut, vs) = v1−t, (15)

where

ut = (1− t)u+ th(u, v), vs = (1− s)v + sk(u, v).

Moreover, assume

PC(u, v) = (u1/2, v1/2). (16)

Then, we have that for all u, v ∈ L2(X,m)

E
(

P 1
C(u, v)

)

+ E
(

P 2
C(u, v)

)

6 E(u) + E(v),

if and only if E is 
onvex and for all u, v ∈ L2(X,m)

E(h(u, v)) + E(k(u, v)) 6 E(u) + E(v).

Remark 2.4. Note that, given Theorems 2.1 and 2.2, it is easy to dedu
e

that every non-bilinear Diri
hlet form satis�es Eqs. (6) and (7), whi
h is the

dire
tion of Theorem 1.3 we will use for proving Theorem 1.2. Indeed,

Hα(f, g) =
1

2
P 1
2,α(f, g) +

1

2
P 2
2,α(g, f)

for all α > 0 and f, g ∈ L2(X,m), so that 
onvexity and Eq. (14) give

E(Hα(f, g)) + E(Hα(g, f))

6
1

2

(

E(P 1
2,α(f, g)) + E(P 2

2,α(g, f)) + E(P 1
2,α(g, f)) + E(P 2

2,α(f, g))
)

6 E(f) + E(g).

2.2 Proof of Theorem 1.3

To 
on
lude the se
tion, we show that the 
onvex sets C2,α verify the hypot-

heses of Theorem 2.3.
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Proof of Theorem 1.3. Fix α > 0. Re
alling the expli
it expression of ϕα

from Eq. (12), for any u, v ∈ L2(X,m) we have

ϕα ◦ (u− v)(x) =











u(x)− v(x)− α u(x)− v(x) 6 −α,

2u(x)− 2v(x) |u(x)− v(x)| 6 α,

u(x)− v(x) + α u(x)− v(x) > α.

Further re
alling the expression of P2,α from Eq. (11), in order to satisfy

Eq. (16), we now 
hoose h, k : L2(X,m;R2) → L2(X,m) su
h that

v +
1

2
ϕα ◦ (u− v) =

u+ h(u, v)

2
, u−

1

2
ϕα ◦ (u− v) =

v + k(u, v)

2
.

Therefore, the expressions for h, k are the following

h(u, v)(x) =











v(x)− α u(x)− v(x) 6 −α,

u(x) |u(x)− v(x)| 6 α,

v(x) + α u(x)− v(x) > α,

k(u, v)(x) =











u(x) + α u(x)− v(x) 6 −α,

v(x) |u(x)− v(x)| 6 α,

u(x)− α u(x)− v(x) > α,

and we noti
e that h(u, v) = Hα(u, v) and k(u, v) = Hα(v, u).
It remains to verify the twist 
ondition Eq. (15). Fix s, t, u, v as in the

hypothesis. Sin
e the values of Hα is de�ned pointwise, we also �x x ∈ X and

drop this parameter for 
ompa
tness of notation. Suppose that |u− v| 6 α,
thenH(u, v) = u,H(v, u) = v, so ut = u1−s = u, vs = v. The 
ase u−v < −α
is analogous to that with u − v > α, sin
e the role of u and v is symmetri
.

Hen
e, we will dis
uss only the former. Here we have

ut = (1− t)u+ t(v − α), vs = (1− s)v + s(u+ α).

We need not dis
uss more sub
ases for the expression of Hα(ut, vs), sin
e

ut − vs = (1− t)u+ t(v − α)− (1− s)v − s(u+ α)

= (1− t− s)(u− v)− (t+ s)α < −α.

Hen
e,

Hα(ut, vs) = vs − α = (1− s)v + su+ (s− 1)α = u1−s,

The se
ond 
ondition in Eq. (15) follows similarly, so we omit it. Thus,

applying Theorem 2.3, Eq. (14) is equivalent to E being 
onvex and Eq. (7).

Yet, Theorem 2.2 gives that the 
onvexity and Eq. (13) are equivalent to

Eq. (6), so Theorem 1.3 redu
es to Theorem 2.1.
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x1 0 x2 x3

Figure 2: Graph of the fun
tion φx1,x2,x3
.

x0

id

σ
x0

0 ∨ id

φx

Figure 3: Illustration of Eq. (18).

3 The normal 
ontra
tion property

Throughout this se
tion we �x a measure spa
e (X,m) and a fun
tional on

L2(X,m) satisfying symmetry and Eqs. (6) and (7) for all f, g ∈ L2(X,m)
and α ∈ [0,∞).

We will prove the normal 
ontra
tion property Eq. (2) progressively,

starting from simple fun
tions φ. More spe
i�
ally, for k ∈ {0, 1, . . . },
x1, . . . , xk ∈ R su
h that −∞ = x0 < x1 < · · · < xk < xk+1 = ∞, we


onsider the 
ontinuous fun
tion φx1,...,xk
: R → R (see Fig. 2) de�ned by

φx1,...,xk
(0) = 0 and

φ′
x1,...,xk

(x) = (−1)i (17)

for x ∈ (xi, xi+1). Let us denote Fk = {φx1,...,xk
: x1 < · · · < xk ∈ R}, so that

F0 = {id}. We further set Φx1,...,xk
= E ◦ φx1,...,xk

.

3.1 Basi
 
ontra
tions

Proposition 3.1. For any x ∈ R and f ∈ L2(X,m) we have Φx(f) 6 E(f).

Proof. Fix x > 0 (the 
ase x < 0 is treated identi
ally) and f . By Eq. (6)

Φx(f) + E(0 ∨ f) 6 E(f) + E(σ ◦ f) (18)

11



0

0 ∨ id

−(0 ∨ id)

2x

x0

−σ

σ

Figure 4: Illustration of Eq. (19).

x10

x2

0 ∨ id

σ

x1

x10

x2

0 ∨ (id− x1)

ψ

Figure 5: Illustration of Eq. (20).

(see Fig. 3), where

σ(y) =











0 y 6 0,

y y ∈ (0, x),

2x− y y > x.

Thus, it su�
es to show that E(0 ∨ f) > E(σ ◦ f).
But symmetry and Eq. (7) with α = 2x (see Fig. 4) give

2E(σ ◦ f) 6 E(σ ◦ f) + E(−σ ◦ f)

6 E(0 ∨ f) + E(−(0 ∨ f)) 6 2E(0 ∨ f),
(19)


on
luding the proof.

Proposition 3.2. For any 0 6 x1 < x2 or x1 < x2 6 0 and f ∈ L2(X,m) it
holds that Φx1,x2

(f) 6 E(f).

12



x10

0 ∨ (id− x1)

0 ∧ (x1 − id)

2(x2 − x1)

x10

x2

−σ

σ

Figure 6: Illustration of Eq. (21).

Proof. Fix 0 6 x1 < x2 and f , the 
ase x1 < x2 6 0 being analogous. Let

σ(x) =











0 x 6 x1,

x1 − x x ∈ (x1, x2),

x+ x1 − 2x2 x > x2,

ψ(x) =

{

0 x 6 0,

φx1,x2
(x) x > 0.

Then Eq. (7) with α = x1 (see Fig. 5) gives

E(ψ ◦ f) + E(0 ∨ (f − x1)) 6 E(0 ∨ f) + E(σ ◦ f). (20)

Moreover, by symmetry and Eq. (7) for α = 2(x2 − x1) (see Fig. 6) we get

2E(0 ∨ (f − x1)) > E(0 ∨ (f − x1)) + E(0 ∧ (x1 − f))

> E(σ ◦ f) + E(−σ ◦ f) > 2E(σ ◦ f),
(21)

so that E(ψ ◦ f) 6 E(0 ∨ f). Furthermore, Eq. (6) gives

Φx1,x2
(f) + E(0 ∨ f) 6 E(ψ ◦ f) + E(f) (22)

(see Fig. 7), yielding the desired 
on
lusion.

Proposition 3.3. For any x1 < 0 < x2 and f ∈ L2(X,m) it holds that

Φx1,x2
(f) 6 E(f).

Proof. Without loss of generality assume that x2 > −x1 and �x f . Consider

ψ(x) =











x− 2x1 x < x1,

−x x1 6 x 6 x2,

−x2 x > x2.

13



x10

x2

id

ψ
x10

x2
0 ∨ id

φx1,x2

Figure 7: Illustration of Eq. (22).

x1 0

id

ψ

2x2
x1 x20

id ∧ x2

φx1,x2

Figure 8: Illustration of Eq. (23).

Then Eq. (7) with α = 2x2 (see Fig. 8) gives

Φx1,x2
(f) + E(f ∧ x2) 6 E(f) + E(ψ ◦ f). (23)

Yet, ψ = φx1
◦ (id∧ x2), so by Proposition 3.1 we have E(ψ ◦ f) 6 E(f ∧ x2).

Combining this with Eq. (23) yields the desired 
on
lusion.

3.2 Redu
tion to basi
 
ontra
tions

As we will see, the next proposition is essentially Lemma 1.4.

Proposition 3.4. Any φ ∈ Fk with k > 0 
an be written as φ1◦· · ·◦φ⌊k/2⌋◦ψ
with φi ∈ F2 for all i ∈ {1, . . . , ⌊k/2⌋} and ψ ∈ Fk−2⌊k/2⌋.

Proof. We pro
eed by indu
tion on k. The statement is trivial for k ∈
{0, 1, 2}. Assume that φ = φx1,...,xk

∈ Fk for k > 3, with −∞ = x0 < x1 <
· · · < xk < xk+1 = ∞. Consider i ∈ {1, . . . , k − 1} su
h that xi+1 − xi <
xj+1 − xj for all j 6= i (we may assume that the inequality is stri
t by

perturbing the xi and taking a limit if ne
essary). We 
onsider the following


ases.

14



• If xi+1 6 0, then set

x′j =

{

xj + 2(xi+1 − xi) 1 6 j < i,

xj+2 i 6 j 6 k − 2.

• If xi > 0, then set

x′j =

{

xj 1 6 j < i,

xj+2 − 2(xi+1 − xi) i 6 j 6 k − 2.

• If xi < 0 < xi+1, then set

x′j =

{

xj − xi 1 6 j < i,

xj+2 − xi+1 i 6 j 6 k − 2.

Then it su�
es to prove that

φ = φx′

1
,...,x′

k−2
◦ φxi,xi+1

.

To do this, we verify Eq. (17) in ea
h 
ase. We will only treat the 
ase xi > 0,
the others two being analogous. We have that

φ′
x′

1
,...,x′

k−2
(φxi,xi+1

(x))× φ′
xi,xi+1

(x) (24)


hanges sign at xi and xi+1 due to the se
ond fa
tor. Moreover, φxi,xi+1
takes

the values in I = R \ [2xi − xi+1, xi] exa
tly on
e and

φxi,xi+1
(xj) =

{

x′j 1 6 j < i,

x′j−2 i+ 2 6 j 6 k.

But our 
hoi
e of i implies I ⊃ {x′1, . . . , x
′
k−2}, so the �rst fa
tor in Eq. (24)


hanges sign pre
isely at x1, . . . , xi−1, xi+2, . . . , xk, 
on
luding the proof.

With Proposition 3.4 it is immediate to dedu
e Lemma 1.4.

Proof of Lemma 1.4. Observe that G = {id,−id} ◦ (F0 ∪ F1 ∪ F2). Thus,

〈G〉 ⊃ {id,−id} ◦ 〈F2〉 ◦ (F0 ∪ F1) ⊃ {id,−id} ◦

∞
⋃

k=0

Fk ⊃ 〈G〉, (25)

where the �rst and third in
lusions follow by de�nition, while the se
ond one

is Proposition 3.4. Thus, 〈G〉 = {id,−id} ◦
⋃∞

k=0 Fk. It therefore remains to

show that 〈G〉 is dense in Φ, in order to 
on
lude the proof.
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To this extent, note that any φ ∈ Φ 
oin
ides with its 1−Lips
hitz enve-
lope, i.e.,

φ(x) = inf
y∈R

φ(y) + |x− y|, ∀x ∈ R.

By 
ontinuity,

φ(x) = inf
y∈Q

φ(y) + |x− y|, ∀x ∈ R.

Taking a sequen
e of �nite sets (Qn)n ↑ Q with Q0 = {0}, we 
an approxi-

mate φ with φn ∈ −id ◦ F2kn−1 for some kn ∈ {1, . . . , |Qn|} given by

φn(x) := inf
y∈Qn

φ(y) + |x− y|, ∀x ∈ R.

The limit φn → φ is in uniform 
onvergen
e on 
ompa
t sets thanks to equi-


ontinuity, so the proof is 
omplete.

We are ready to assemble the proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem 1.3, any non-bilinear Diri
hlet form E
satis�es Eqs. (6) and (7) and is l.s.
. Sin
e symmetry is a hypothesis of

Theorem 1.2, together with Propositions 3.1 to 3.3 it yields that for any

φ ∈ G (re
all Lemma 1.4) and f ∈ L2(X,m) it holds that E(φ ◦ f) 6 E(f).
Indeed, F0 is trivial, Proposition 3.1 deals with F1, Propositions 3.2 and 3.3

give F2 and then symmetry allows us to take opposites. Therefore, the normal


ontra
tion property Eq. (2) also holds for all φ ∈ 〈G〉.
Fix f ∈ L2(X,m) and an arbitrary normal 
ontra
tion φ ∈ Φ. By

Lemma 1.4, there exists a sequen
e φn ∈ 〈G〉 su
h that φn(x) → φ(x) for all
x ∈ R, as n→ ∞, and

E(φn ◦ f) 6 E(f)

for all n. We have that φn(f) → φ(f) pointwise in X, but

|φn ◦ f |
2
6 |f |2 ∈ L1(X,m),

as all fun
tions φn are normal 
ontra
tions. Then, by Lebesgue's dominated


onvergen
e theorem

φn ◦ f → φ ◦ f

in L2(X,m). Thus, we obtain the desired inequality via the l.s.
. of E .
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3.3 Lo
ality

Let us 
on
lude this se
tion with a 
on
ept of lo
ality allowing a mu
h more

dire
t proof of Theorem 1.2 under this hypothesis. We say that a non-

bilinear Diri
hlet form E is lo
al if for all c ∈ R and u, v ∈ L2(X,m) su
h
that u(x)(v(x)− c) = 0 for all x ∈ X , we have

E(u+ v) = E(u) + E(v).

Proof of Theorem 1.2 in the lo
al 
ase. Fix a symmetri
 lo
al non-bilinear

Diri
hlet form E . As in the proof of Theorem 1.2 it su�
es to establish

the normal 
ontra
tion property Eq. (2) for all φ ∈
⋃∞

k=1 Fk (this part of

the proof does not rely on Theorem 1.3 and Propositions 3.1 to 3.4). Fix

φ = φx1,...,xk
for some x1 < · · · < xk. Observe that

φ(x) = ((x− x1) ∧ 0) +

k
∑

i=1

(−1)i((0 ∨ (x− xi)) ∧ (xi+1 − xi)).

Sin
e all summands satisfy the lo
ality 
ondition, we get

E(φ ◦ u) = E((u− x1) ∧ 0)) +
k

∑

i=1

E
(

(−1)i((0 ∨ (u− xi)) ∧ (xi+1 − xi))
)

= E((u− x1) ∧ 0)) +
k

∑

i=1

E((0 ∨ (u− xi)) ∧ (xi+1 − xi)) = E(u),

using symmetry and lo
ality for the se
ond and third equalities.

4 Future dire
tions

Two 
hallenges whi
h are still open are the following. Firstly, we are not

aware of any attempt to obtain a stru
tural de
omposition analogous to the

one of [25℄ in the non-bilinear setting. Se
ondly, the theory of [31, 39, 40℄


overs even the 
ase where Cheeger's energy of the metri
 measure spa
e

is a non-bilinear form, while an analogue of [5℄ for the non-bilinear 
ase is

missing. It is our opinion that the subje
t of metri
 measure spa
es would

pro�t from a study in this dire
tion.

These two problems are strong motivations behind our paper, as we fore-

see that the normal 
ontra
tion property would be 
ru
ial in developing su
h

theories. One di�
ulty we anti
ipate is the generalisation of the 
omputa-

tions in [6℄, whi
h looks 
ompli
ated even in the 
ase of Finsler manifolds.

Finally, establishing the normal 
ontra
tion property adds one stru
tural

argument in favour of the 
hoi
e made by Cipriani and Grillo of the genera-

lisation of bilinear Diri
hlet forms to the non-bilinear setting.
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