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Abstrat

We analyse the lass of onvex funtionals E over L2(X,m) for a
measure spae (X,m) introdued by Cipriani and Grillo [17℄ and ge-

neralising the lassi bilinear Dirihlet forms. We investigate whether

suh non-bilinear forms verify the normal ontration property, i.e.,

if E(φ ◦ f) 6 E(f) for all f ∈ L2(X,m), and all 1-Lipshitz funti-

ons φ : R → R with φ(0) = 0. We prove that normal ontration

holds if and only if E is symmetri in the sense E(−f) = E(f), for all
f ∈ L2(X,m). An auxiliary result, whih may be of independent inte-

rest, states that it su�es to establish the normal ontration property

only for a simple two-parameter family of funtions φ.
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1 Introdution

1.1 Setting

1.1.1 Bilinear Dirihlet forms

Bilinear Dirihlet forms are a well-established topi, related to the theory of

Markov proesses and semigroups, see [13, 25, 33℄. Let X be a nonempty set,
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let F be a σ−algebra over X , and take a σ−�nite measure m : F → [0,∞].
Let Λ : D(Λ) × D(Λ) → R, be a symmetri, bilinear, and positive semi-

de�nite form, suh that D(Λ) ⊂ L2(X,m) is dense. If the form is losed,

there exists a unique self-adjoint, positive operator A : D(A) → L2(X,m),
suh that D(A) ⊂ D(Λ), and

〈Af, g〉 = Λ(f, g), ∀f ∈ D(A), g ∈ D(Λ).

Adopting the notation of funtional alulus, we also have the formulae

D(Λ) = D(A1/2), and Λ(f, g) = 〈A1/2 f, A1/2 g〉, ∀f, g ∈ D(Λ). The bi-

linear form Λ is alled a (bilinear) Dirihlet form if

Λ(1 ∧ f ∨ 0, 1 ∧ f ∨ 0) 6 Λ(f, f), ∀f ∈ D(Λ).

By extension, the term Dirihlet form also refers to the quadrati form

E(f) =

{

1
2
Λ(f, f), iff ∈ D(Λ);

+∞, otherwise;

assoiated with a bilinear Dirihlet form Λ. This funtional turns out to be

always non-negative, onvex (sine it is quadrati), and lower semiontinuous.

Moreover, the subdi�erential satis�es ∂E = A.

1.1.2 Non-bilinear Dirihlet forms

We next turn to de�ning non-bilinear Dirihlet forms as they will be studied

in the present work. Let E : L2(X,m) → [0,∞] be a onvex and l.s..

funtional. In all the paper we assume that E is not the onstant +∞. Let

(Tt)t>0 be the semigroup of nonlinear operators generated by −∂E , where ∂
denotes the subdi�erential operator, via the di�erential equation

{

∂tTt f ∈ −∂E(Tt f), ∀t ∈ (0,∞), ∀u ∈ L2(X,m),

T0 f = f, ∀f ∈ L2(X,m).
(1)

Equation (1) is well-posed for all f ∈ L2(X,m). Its solution is usually alled

the gradient �ow of E starting at f . See [1, 14℄ and refer to Setion 1.2.1 for

more bakground.

We say that a non-negative l.s.. funtional E is a non-bilinear Dirihlet

form if E is onvex and, for all t > 0, the operator Tt : L
2(X,m) → L2(X,m)

veri�es

1. order preservation: Tt f 6 Tt g for all f, g ∈ L2(X,m) suh that f 6 g
(for the pointwise order up to a negligible set);
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2. L∞
-ontration: ‖Tt f − Tt g‖∞ 6 ‖f − g‖∞ for all f, g ∈ L2(X,m).

This lass of forms was introdued by Cipriani and Grillo [17℄ and we will

provide an equivalent �stati� de�nition in Theorem 1.3 without referene to

the underlying semigroup (also see Theorem 2.1).

Our main goal is to verify the normal ontration property for non-bilinear

Dirihlet forms. A normal ontration is a 1−Lipshitz funtion φ : R → R,
suh that φ(0) = 0. We denote by Φ the set of all normal ontrations. We

say that a funtional E over L2(X,m) has the normal ontration property if

E(φ(f)) 6 E(f), ∀φ ∈ Φ, ∀f ∈ L2(X,m). (2)

In the literature this property goes also under the name of Seond Beurling-

Deny Criterion sine [36℄.

1.2 Bakground

1.2.1 Bilinear setting

Aside their interest in probability, for whih we refer to the bibliography of

[13, 25, 33℄, bilinear Dirihlet forms are also well-linked with linear di�usion

equations and semigroups, see [6, 23℄. This link gave fruitful results in the

theory of metri measure spaes, allowing for an intrinsi/Eulerian approah

towards Rii urvature bounds, [5℄. Under mild hypotheses, the authors of

[5℄ ould represent any bilinear Dirihlet form E as a quadrati Cheeger's

energy on the base spae X . One important point is that Ambrosio, Gigli,

and Savaré were able to reate an appropriate notion of distane dE diretly

from the Dirihlet form E . Then, via a ondition à la Bakry-Emery, on the

arré du hamp assoiated with the quadrati form E , the authors give a

sense to notions suh as Bohner's inequality or a lower bound on the Rii

urvature. Their approah is equivalent to that of Lott and Villani [31℄ and

Sturm [39, 40℄, based on optimal transport. The reation of a distane from

a bilinear form is a tehnique present also in [11℄. Bilinear Dirihlet forms

also play a role in potential and apaity theory, see [25, 37℄.

Historially, bilinear Dirihlet forms have been introdued by Beurling

and Deny in [10℄. One motivation behind their de�nition was the fat that

being a bilinear Dirihlet form was su�ient to have the normal ontration

property (see Eq. (2)). The fat that ontrolling one normal ontration

is neessary and su�ient to ontrol all of them is nowadays known as the

Beurling-Deny riterion. To prove suh a property, one usually approximates

the funtion f with weighted sums of harateristi funtions. The normal

ontration property is a ornerstone for many purposes. For instane, for
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the development of a di�erential alulus [5℄ and the lassi�ation of linear

Markov semigroups [25℄, both based on bilinear Dirihlet forms.

1.2.2 Non-bilinear setting

Generalising the onept of Dirihlet form to a non-bilinear setting is a more

reent problem, started with the two works [12, 17℄. A di�erent kind of

generalisation is that of [29℄, but we will not fous on it, sine its purpose is

di�erent. Using instruments from [7, 9, 14℄, Cipriani and Grillo [17℄ provided

two equivalent de�nitions of a non-bilinear Dirihlet form relevant to us,

whih will be disussed in further detail in Setion 2. In [17℄, a number of

properties of the lass of non-bilinear Dirihlet forms are given, in partiular

with respet to Γ−onvergene (see [21℄).
Two reent works on the topi are [18, 19℄, where Claus reovers many

strutural properties for non-bilinear Dirihlet forms, among whih we �nd a

nonlinear Beurling�Deny priniple, see [18, Theorem 2.39℄. In the following

setions, he develops a nonlinear theory of apaity. Furthermore, in [18,

Corollary 2.40℄ (also see [19, Theorem 3.22℄), the normal ontration property

is proved for non-bilinear Dirihlet forms, but only for non-dereasing normal

ontrations and additionally assuming that the form is 0 at 0 (we avert the

reader that in [18, De�nition 2.31℄ non-dereasing normal ontrations are

named simply normal ontrations).

Examples Let us mention two lasses of basi examples, whih generalise

orresponding families of loal and nonloal bilinear Dirihlet forms. These

lie at the ore of the funtionals analysed in the referenes quoted at the end

of the setion. Let Ω be an open subset of Rd
and f : Ω × Rd → R be a

Borel-measurable funtion. Let

E(u) =

{

∫

Ω
f(x,Du) dx u ∈ W1,2

loc(Ω),

+∞ otherwise.

(3)

We have that E is a non-bilinear Dirihlet form if f is non-negative, mea-

surable in the �rst argument and onvex and lower-semiontinuous in the

seond one. See [22℄ for the lower semiontinuity of the funtional, while

the property of being a non-bilinear Dirihlet form an be inferred as in [17,

Theorem 4.1℄. In addition, E is symmetri if f(·,−v) = f(·, v), for all v ∈ Rd.
Finally, E is always loal, due to the loality of Du and the fat that E is an

integral funtional. Among loal forms, we an onsider the following.

4



Example 1.1. Let Ω = R. Let f(x, v) = max(v, 0). Then, the integral

funtional E assoiated to f by Eq. (3) is a non-symmetri non-bilinear Di-

rihlet form, whih does not satisfy the normal ontration property Eq. (2)

for the funtion φ = −id.

In this lass of loal funtionals we also have the distinguished sublass

of Finsler metris, where

f(x, ·) = ‖ · ‖x, ∀x ∈ Ω.

The form is bilinear if and only if, for all x ∈ Ω, the norm ‖ · ‖x satis�es the

parallelogram identity, see [15, Chapter 5℄.

Some non-loal non-bilinear Dirihlet forms appear in [20℄, for example.

In general we an say that any funtional E of the form

E(u) =

∫

Ω2

ψ(u(x)− u(y)) dx dy, ∀u ∈ L2(Ω, dx).

is a non-bilinear Dirihlet form for non-negative, l.s.., onvex ψ suh that

ψ(0) = 0. Lower semiontinuity of the funtional omes from Fatou's Lemma,

its onvexity from the onvexity of ψ. Finally, one an repeat the omputa-

tions in [28, Theorem 2℄ to prove order-preservation and L∞−ontration for

the semigroup assoiated with E .
In [17℄, some interesting examples are developed in detail, ranging from

funtionals from the alulus of variations to Sobolev seminorms in the on-

text of C⋆−monomodules. The theory of [17℄ an be applied to nonlinear dif-

fusion equations (see [20, 24℄ and the referenes therein), analysis on graphs

[27, 35℄, and analysis on spaes with a very irregular geometry [26, 34℄. Furt-

hermore, Cheeger's energies on extended metri spaes are known to be non-

bilinear Dirihlet forms [3℄. We refer to [2, 4, 5℄ for this theory, whih ori-

ginates from [16, 38℄. See also [30, 32℄ for more estimates and ontration

properties of Cheeger's energies.

1.3 Main results

Our main result is the following.

Theorem 1.2. Let E be a non-bilinear Dirihlet form. Then E has the

normal ontration property Eq. (2) if and only if

E(−f) 6 E(f) ∀f ∈ L2(X,m). (4)
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f(x)

Hα(f, g)(x)

g(x)0

2α

Figure 1: Graph of the funtion Hα(f, g)(x) for �xed g(x).

This theorem goes in the same diretion as the well-established one for

the bilinear ase [13, 25, 33℄. We merely prove that a form will operate on

all normal ontrations, one it operates on the simplest one. Heneforth,

we say that E is symmetri if Eq. (4) holds and, equivalently, E(−f) = E(f)
for all f ∈ L2(X,m). As witnessed by Example 1.1, the neessary symmetry

assumption Eq. (4) needs to be made, sine this non-bilinear Dirihlet form

does not have the normal ontration property.

Let us highlight that Theorem 1.2 may be viewed as a strengthening of

the result of Claus [18, Corollary 2.40℄, whose proof follows the far more

onventional approah of [8, 9℄. The lass of normal ontrations we onsider

is riher and it ontrols, for example, the absolute value of the argument of

the non-bilinear Dirihlet form, whih an be very useful (see e.g. [25℄), as

well as more ompliated ontrations.

In order to prove Theorem 1.2, we establish two results, both of whih may

be of independent interest. Firstly, we provide an equivalent haraterisation

of non-bilinear Dirihlet forms, whih turns out to be more widely for our

purposes than the other equivalent stati haraterisation of [17, Theorem

3.8℄, realled in Theorem 2.1. To do so, we require a bit of notation. For all

f, g ∈ L2(X,m), and α ∈ [0,∞) we denote by f ∨ g and f ∧ g denote the

pointwise maximum and minimum and set Hα(f, g) = (g − α) ∨ f ∧ (g + α)
(see Fig. 1), that is,

Hα(f, g)(x) =











g(x)− α f(x)− g(x) < −α,

f(x) f(x)− g(x) ∈ [−α, α],

g(x) + α f(x)− g(x) > α.

(5)

Theorem 1.3. Let E : L2(X,m) → [0,∞] be a l.s.. funtional. Then, E
is a non-bilinear Dirihlet form if and only if, for all f, g ∈ L2(X,m), and
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α ∈ [0,∞), E veri�es

E(f ∨ g) + E(f ∧ g) 6 E(f) + E(g), (6)

E(Hα(f, g)) + E(Hα(g, f)) 6 E(f) + E(g). (7)

The advantage of Theorem 1.3 as ompared to Theorem 2.1 is that on-

ditions Eqs. (6) and (7) are easier to verify and useful to develop other

funtional inequalities suh as the normal ontration property Eq. (2).

The seond important step towards Theorem 1.2 is a redution.

Lemma 1.4. Let G be the set of all normal ontrations φ ∈ Φ suh that

|φ′| = 1 and φ′
has at most two points of disontinuity. Let 〈G〉 be the

olletion of all �nite ompositions of elements in G. Then, 〈G〉 is dense in

Φ for the pointwise onvergene on R.

We observe that the elements of G are irreduible with respet to ompo-

sition, so that G is minimal in this sense. While the spae G is quite simple,

proving the normal ontration property Eq. (2) for φ ∈ G by hand from

symmetry and Eqs. (6) and (7) is still deliate, albeit elementary.

1.4 Plan of the paper

The remainder of the paper is strutured as follows. In Setion 2, we establish

Theorem 1.3. In Setion 3, we prove Theorem 1.2, relying on Theorem 1.3.

This is the heart of our work. Finally, we disuss future diretions of researh

in Setion 4.

2 E�ient equivalent haraterisation of non-

bilinear Dirihlet forms

The goal of the present setion is to prove Theorem 1.3.

2.1 Preliminaries

We introdue the subsets C1 and C2,α, for α ∈ [0,∞), of L2(X,m;R2) :

C1 =
{

(f, g) ∈ L2(X,m;R2) : f 6 g
}

, (8)

C2,α =
{

(f, g) ∈ L2(X,m;R2) : |f − g| 6 α
}

. (9)
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We notie that for all α, the sets C1 and C2,α are onvex and losed in

the L2−topology. For any losed and onvex subset C, the 1−Lipshitz
projetion operator PC : L2(X,m;R2) → C is de�ned by

PC(f, g) = argmin
(w,z)∈C

‖f − w‖22 + ‖g − z‖22.

The projetion map sends any point (f, g) to the losest point PC(f, g) in
C. We denote by P 1

C and P 2
C the two omponents of the projetion opera-

tor in L2(X,m). More properties of projetion maps are studied in [15℄. If

one onsiders the sets C1 and C2,α, we have an expliit expression for the

projetions, thanks to [17, Lemma 3.3℄:

P1(f, g) =

(

f −
1

2
((f − g) ∨ 0), g +

1

2
((f − g) ∨ 0)

)

, (10)

P2,α(f, g) =

(

g +
1

2
ϕα ◦ (f − g), f −

1

2
ϕα ◦ (f − g)

)

, (11)

where ϕα : R → R is given by

ϕα(z) = ((z + α) ∨ 0) + ((z − α) ∧ 0). (12)

We further reall [17, De�nition 3.1, Remark 3.2, Theorem 3.6℄.

Theorem 2.1. Let E : L2(X,m) → [0,∞] be a l.s.. funtional. Then E
is a non-bilinear Dirihlet form if and only if, for all f, g ∈ L2(X,m) and

α ∈ [0,∞), E veri�es

E
(

P 1
1 (f, g)

)

+ E
(

P 2
1 (f, g)

)

6 E(f) + E(g), (13)

E
(

P 1
2,α(f, g)

)

+ E
(

P 2
2,α(f, g)

)

6 E(f) + E(g). (14)

The key argument is the well-known fat from [7, 14℄ stating that

E
(

P 1
C(f, g)

)

+ E
(

P 2
C(f, g)

)

6 E(f) + E(g)

for all f, g ∈ L2(X,m) if and only if the semigroup Tt from Eq. (1) preserves

C :
TtC ⊂ C, ∀t > 0,

where C an be any onvex and losed set. Thus, Eqs. (13) and (14) orre-

spond to the order-preservation and the L∞−ontration properties for (Tt)t,
respetively. In [17, Theorem 3.8℄ one more step is made.

Theorem 2.2. Let E : L2(X,m) → [0,∞] be a l.s.. funtional. Then, E
satis�es Eq. (6) if and only if E is onvex and satis�es Eq. (13).
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Indeed, the last statement is a onsequene of the more general [7, Pro-

position 2.5℄, whih we will also use.

Theorem 2.3. Let C be a losed onvex subset of L2(X,m;R2), let PC =
(P 1

C , P
2
C) be the assoiated orthogonal projetion. Let E : L2(X,m) → [0,∞]

be a l.s.. funtional. Let h, k : L2(X,m;R2) → L2(X,m) be two ontinuous

mappings suh that, for all u, v ∈ L2(X,m) and t, s ∈ [0, 1] it holds that

h(ut, vs) = u1−s, k(ut, vs) = v1−t, (15)

where

ut = (1− t)u+ th(u, v), vs = (1− s)v + sk(u, v).

Moreover, assume

PC(u, v) = (u1/2, v1/2). (16)

Then, we have that for all u, v ∈ L2(X,m)

E
(

P 1
C(u, v)

)

+ E
(

P 2
C(u, v)

)

6 E(u) + E(v),

if and only if E is onvex and for all u, v ∈ L2(X,m)

E(h(u, v)) + E(k(u, v)) 6 E(u) + E(v).

Remark 2.4. Note that, given Theorems 2.1 and 2.2, it is easy to dedue

that every non-bilinear Dirihlet form satis�es Eqs. (6) and (7), whih is the

diretion of Theorem 1.3 we will use for proving Theorem 1.2. Indeed,

Hα(f, g) =
1

2
P 1
2,α(f, g) +

1

2
P 2
2,α(g, f)

for all α > 0 and f, g ∈ L2(X,m), so that onvexity and Eq. (14) give

E(Hα(f, g)) + E(Hα(g, f))

6
1

2

(

E(P 1
2,α(f, g)) + E(P 2

2,α(g, f)) + E(P 1
2,α(g, f)) + E(P 2

2,α(f, g))
)

6 E(f) + E(g).

2.2 Proof of Theorem 1.3

To onlude the setion, we show that the onvex sets C2,α verify the hypot-

heses of Theorem 2.3.
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Proof of Theorem 1.3. Fix α > 0. Realling the expliit expression of ϕα

from Eq. (12), for any u, v ∈ L2(X,m) we have

ϕα ◦ (u− v)(x) =











u(x)− v(x)− α u(x)− v(x) 6 −α,

2u(x)− 2v(x) |u(x)− v(x)| 6 α,

u(x)− v(x) + α u(x)− v(x) > α.

Further realling the expression of P2,α from Eq. (11), in order to satisfy

Eq. (16), we now hoose h, k : L2(X,m;R2) → L2(X,m) suh that

v +
1

2
ϕα ◦ (u− v) =

u+ h(u, v)

2
, u−

1

2
ϕα ◦ (u− v) =

v + k(u, v)

2
.

Therefore, the expressions for h, k are the following

h(u, v)(x) =











v(x)− α u(x)− v(x) 6 −α,

u(x) |u(x)− v(x)| 6 α,

v(x) + α u(x)− v(x) > α,

k(u, v)(x) =











u(x) + α u(x)− v(x) 6 −α,

v(x) |u(x)− v(x)| 6 α,

u(x)− α u(x)− v(x) > α,

and we notie that h(u, v) = Hα(u, v) and k(u, v) = Hα(v, u).
It remains to verify the twist ondition Eq. (15). Fix s, t, u, v as in the

hypothesis. Sine the values of Hα is de�ned pointwise, we also �x x ∈ X and

drop this parameter for ompatness of notation. Suppose that |u− v| 6 α,
thenH(u, v) = u,H(v, u) = v, so ut = u1−s = u, vs = v. The ase u−v < −α
is analogous to that with u − v > α, sine the role of u and v is symmetri.

Hene, we will disuss only the former. Here we have

ut = (1− t)u+ t(v − α), vs = (1− s)v + s(u+ α).

We need not disuss more subases for the expression of Hα(ut, vs), sine

ut − vs = (1− t)u+ t(v − α)− (1− s)v − s(u+ α)

= (1− t− s)(u− v)− (t+ s)α < −α.

Hene,

Hα(ut, vs) = vs − α = (1− s)v + su+ (s− 1)α = u1−s,

The seond ondition in Eq. (15) follows similarly, so we omit it. Thus,

applying Theorem 2.3, Eq. (14) is equivalent to E being onvex and Eq. (7).

Yet, Theorem 2.2 gives that the onvexity and Eq. (13) are equivalent to

Eq. (6), so Theorem 1.3 redues to Theorem 2.1.
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x1 0 x2 x3

Figure 2: Graph of the funtion φx1,x2,x3
.

x0

id

σ
x0

0 ∨ id

φx

Figure 3: Illustration of Eq. (18).

3 The normal ontration property

Throughout this setion we �x a measure spae (X,m) and a funtional on

L2(X,m) satisfying symmetry and Eqs. (6) and (7) for all f, g ∈ L2(X,m)
and α ∈ [0,∞).

We will prove the normal ontration property Eq. (2) progressively,

starting from simple funtions φ. More spei�ally, for k ∈ {0, 1, . . . },
x1, . . . , xk ∈ R suh that −∞ = x0 < x1 < · · · < xk < xk+1 = ∞, we

onsider the ontinuous funtion φx1,...,xk
: R → R (see Fig. 2) de�ned by

φx1,...,xk
(0) = 0 and

φ′
x1,...,xk

(x) = (−1)i (17)

for x ∈ (xi, xi+1). Let us denote Fk = {φx1,...,xk
: x1 < · · · < xk ∈ R}, so that

F0 = {id}. We further set Φx1,...,xk
= E ◦ φx1,...,xk

.

3.1 Basi ontrations

Proposition 3.1. For any x ∈ R and f ∈ L2(X,m) we have Φx(f) 6 E(f).

Proof. Fix x > 0 (the ase x < 0 is treated identially) and f . By Eq. (6)

Φx(f) + E(0 ∨ f) 6 E(f) + E(σ ◦ f) (18)
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0

0 ∨ id

−(0 ∨ id)

2x

x0

−σ

σ

Figure 4: Illustration of Eq. (19).

x10

x2

0 ∨ id

σ

x1

x10

x2

0 ∨ (id− x1)

ψ

Figure 5: Illustration of Eq. (20).

(see Fig. 3), where

σ(y) =











0 y 6 0,

y y ∈ (0, x),

2x− y y > x.

Thus, it su�es to show that E(0 ∨ f) > E(σ ◦ f).
But symmetry and Eq. (7) with α = 2x (see Fig. 4) give

2E(σ ◦ f) 6 E(σ ◦ f) + E(−σ ◦ f)

6 E(0 ∨ f) + E(−(0 ∨ f)) 6 2E(0 ∨ f),
(19)

onluding the proof.

Proposition 3.2. For any 0 6 x1 < x2 or x1 < x2 6 0 and f ∈ L2(X,m) it
holds that Φx1,x2

(f) 6 E(f).
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x10

0 ∨ (id− x1)

0 ∧ (x1 − id)

2(x2 − x1)

x10

x2

−σ

σ

Figure 6: Illustration of Eq. (21).

Proof. Fix 0 6 x1 < x2 and f , the ase x1 < x2 6 0 being analogous. Let

σ(x) =











0 x 6 x1,

x1 − x x ∈ (x1, x2),

x+ x1 − 2x2 x > x2,

ψ(x) =

{

0 x 6 0,

φx1,x2
(x) x > 0.

Then Eq. (7) with α = x1 (see Fig. 5) gives

E(ψ ◦ f) + E(0 ∨ (f − x1)) 6 E(0 ∨ f) + E(σ ◦ f). (20)

Moreover, by symmetry and Eq. (7) for α = 2(x2 − x1) (see Fig. 6) we get

2E(0 ∨ (f − x1)) > E(0 ∨ (f − x1)) + E(0 ∧ (x1 − f))

> E(σ ◦ f) + E(−σ ◦ f) > 2E(σ ◦ f),
(21)

so that E(ψ ◦ f) 6 E(0 ∨ f). Furthermore, Eq. (6) gives

Φx1,x2
(f) + E(0 ∨ f) 6 E(ψ ◦ f) + E(f) (22)

(see Fig. 7), yielding the desired onlusion.

Proposition 3.3. For any x1 < 0 < x2 and f ∈ L2(X,m) it holds that

Φx1,x2
(f) 6 E(f).

Proof. Without loss of generality assume that x2 > −x1 and �x f . Consider

ψ(x) =











x− 2x1 x < x1,

−x x1 6 x 6 x2,

−x2 x > x2.

13



x10

x2

id

ψ
x10

x2
0 ∨ id

φx1,x2

Figure 7: Illustration of Eq. (22).

x1 0

id

ψ

2x2
x1 x20

id ∧ x2

φx1,x2

Figure 8: Illustration of Eq. (23).

Then Eq. (7) with α = 2x2 (see Fig. 8) gives

Φx1,x2
(f) + E(f ∧ x2) 6 E(f) + E(ψ ◦ f). (23)

Yet, ψ = φx1
◦ (id∧ x2), so by Proposition 3.1 we have E(ψ ◦ f) 6 E(f ∧ x2).

Combining this with Eq. (23) yields the desired onlusion.

3.2 Redution to basi ontrations

As we will see, the next proposition is essentially Lemma 1.4.

Proposition 3.4. Any φ ∈ Fk with k > 0 an be written as φ1◦· · ·◦φ⌊k/2⌋◦ψ
with φi ∈ F2 for all i ∈ {1, . . . , ⌊k/2⌋} and ψ ∈ Fk−2⌊k/2⌋.

Proof. We proeed by indution on k. The statement is trivial for k ∈
{0, 1, 2}. Assume that φ = φx1,...,xk

∈ Fk for k > 3, with −∞ = x0 < x1 <
· · · < xk < xk+1 = ∞. Consider i ∈ {1, . . . , k − 1} suh that xi+1 − xi <
xj+1 − xj for all j 6= i (we may assume that the inequality is strit by

perturbing the xi and taking a limit if neessary). We onsider the following

ases.
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• If xi+1 6 0, then set

x′j =

{

xj + 2(xi+1 − xi) 1 6 j < i,

xj+2 i 6 j 6 k − 2.

• If xi > 0, then set

x′j =

{

xj 1 6 j < i,

xj+2 − 2(xi+1 − xi) i 6 j 6 k − 2.

• If xi < 0 < xi+1, then set

x′j =

{

xj − xi 1 6 j < i,

xj+2 − xi+1 i 6 j 6 k − 2.

Then it su�es to prove that

φ = φx′

1
,...,x′

k−2
◦ φxi,xi+1

.

To do this, we verify Eq. (17) in eah ase. We will only treat the ase xi > 0,
the others two being analogous. We have that

φ′
x′

1
,...,x′

k−2
(φxi,xi+1

(x))× φ′
xi,xi+1

(x) (24)

hanges sign at xi and xi+1 due to the seond fator. Moreover, φxi,xi+1
takes

the values in I = R \ [2xi − xi+1, xi] exatly one and

φxi,xi+1
(xj) =

{

x′j 1 6 j < i,

x′j−2 i+ 2 6 j 6 k.

But our hoie of i implies I ⊃ {x′1, . . . , x
′
k−2}, so the �rst fator in Eq. (24)

hanges sign preisely at x1, . . . , xi−1, xi+2, . . . , xk, onluding the proof.

With Proposition 3.4 it is immediate to dedue Lemma 1.4.

Proof of Lemma 1.4. Observe that G = {id,−id} ◦ (F0 ∪ F1 ∪ F2). Thus,

〈G〉 ⊃ {id,−id} ◦ 〈F2〉 ◦ (F0 ∪ F1) ⊃ {id,−id} ◦

∞
⋃

k=0

Fk ⊃ 〈G〉, (25)

where the �rst and third inlusions follow by de�nition, while the seond one

is Proposition 3.4. Thus, 〈G〉 = {id,−id} ◦
⋃∞

k=0 Fk. It therefore remains to

show that 〈G〉 is dense in Φ, in order to onlude the proof.
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To this extent, note that any φ ∈ Φ oinides with its 1−Lipshitz enve-
lope, i.e.,

φ(x) = inf
y∈R

φ(y) + |x− y|, ∀x ∈ R.

By ontinuity,

φ(x) = inf
y∈Q

φ(y) + |x− y|, ∀x ∈ R.

Taking a sequene of �nite sets (Qn)n ↑ Q with Q0 = {0}, we an approxi-

mate φ with φn ∈ −id ◦ F2kn−1 for some kn ∈ {1, . . . , |Qn|} given by

φn(x) := inf
y∈Qn

φ(y) + |x− y|, ∀x ∈ R.

The limit φn → φ is in uniform onvergene on ompat sets thanks to equi-

ontinuity, so the proof is omplete.

We are ready to assemble the proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem 1.3, any non-bilinear Dirihlet form E
satis�es Eqs. (6) and (7) and is l.s.. Sine symmetry is a hypothesis of

Theorem 1.2, together with Propositions 3.1 to 3.3 it yields that for any

φ ∈ G (reall Lemma 1.4) and f ∈ L2(X,m) it holds that E(φ ◦ f) 6 E(f).
Indeed, F0 is trivial, Proposition 3.1 deals with F1, Propositions 3.2 and 3.3

give F2 and then symmetry allows us to take opposites. Therefore, the normal

ontration property Eq. (2) also holds for all φ ∈ 〈G〉.
Fix f ∈ L2(X,m) and an arbitrary normal ontration φ ∈ Φ. By

Lemma 1.4, there exists a sequene φn ∈ 〈G〉 suh that φn(x) → φ(x) for all
x ∈ R, as n→ ∞, and

E(φn ◦ f) 6 E(f)

for all n. We have that φn(f) → φ(f) pointwise in X, but

|φn ◦ f |
2
6 |f |2 ∈ L1(X,m),

as all funtions φn are normal ontrations. Then, by Lebesgue's dominated

onvergene theorem

φn ◦ f → φ ◦ f

in L2(X,m). Thus, we obtain the desired inequality via the l.s.. of E .
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3.3 Loality

Let us onlude this setion with a onept of loality allowing a muh more

diret proof of Theorem 1.2 under this hypothesis. We say that a non-

bilinear Dirihlet form E is loal if for all c ∈ R and u, v ∈ L2(X,m) suh
that u(x)(v(x)− c) = 0 for all x ∈ X , we have

E(u+ v) = E(u) + E(v).

Proof of Theorem 1.2 in the loal ase. Fix a symmetri loal non-bilinear

Dirihlet form E . As in the proof of Theorem 1.2 it su�es to establish

the normal ontration property Eq. (2) for all φ ∈
⋃∞

k=1 Fk (this part of

the proof does not rely on Theorem 1.3 and Propositions 3.1 to 3.4). Fix

φ = φx1,...,xk
for some x1 < · · · < xk. Observe that

φ(x) = ((x− x1) ∧ 0) +

k
∑

i=1

(−1)i((0 ∨ (x− xi)) ∧ (xi+1 − xi)).

Sine all summands satisfy the loality ondition, we get

E(φ ◦ u) = E((u− x1) ∧ 0)) +
k

∑

i=1

E
(

(−1)i((0 ∨ (u− xi)) ∧ (xi+1 − xi))
)

= E((u− x1) ∧ 0)) +
k

∑

i=1

E((0 ∨ (u− xi)) ∧ (xi+1 − xi)) = E(u),

using symmetry and loality for the seond and third equalities.

4 Future diretions

Two hallenges whih are still open are the following. Firstly, we are not

aware of any attempt to obtain a strutural deomposition analogous to the

one of [25℄ in the non-bilinear setting. Seondly, the theory of [31, 39, 40℄

overs even the ase where Cheeger's energy of the metri measure spae

is a non-bilinear form, while an analogue of [5℄ for the non-bilinear ase is

missing. It is our opinion that the subjet of metri measure spaes would

pro�t from a study in this diretion.

These two problems are strong motivations behind our paper, as we fore-

see that the normal ontration property would be ruial in developing suh

theories. One di�ulty we antiipate is the generalisation of the omputa-

tions in [6℄, whih looks ompliated even in the ase of Finsler manifolds.

Finally, establishing the normal ontration property adds one strutural

argument in favour of the hoie made by Cipriani and Grillo of the genera-

lisation of bilinear Dirihlet forms to the non-bilinear setting.
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