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Abstract

We consider constrained-degree percolation on the hypercubic lattice. Initially, all edges are closed,
and each edge independently attempts to open at a uniformly distributed random time; the attempt
succeeds if, at that instant, both end-vertices have degrees strictly less than a prescribed parameter. The
absence of the FKG inequality and the finite energy property, as well as the infinite range of dependency,
make the rigorous analysis of the model particularly challenging. In this work, we show that the one-arm
probability exhibits exponential decay in its entire subcritical phase. The proof relies on the Duminil-
Copin–Raoufi–Tassion randomized algorithm method and resolves a problem of dos Santos and the second
author. At the heart of the argument lies an intricate combinatorial transformation of pivotality in the
spirit of Aizenman–Grimmett essential enhancements, but with unbounded range. This technique may
be of use in other dynamical settings.

MSC2020: 60K35; 82B43
Keywords: sharp threshold; constrained-degree percolation; pivotality

1 Introduction

Percolation models have been extensively studied for decades. Since their introduction in [3], they have
become central objects of research in probability and mathematical physics, with numerous variants of the
original model proposed over time. Several models (see e.g. [10, 12, 13, 16–19, 22, 23]) purposefully feature
degree constraints, often making their analysis intricate. Our model of interest is the constrained degree
percolation (CDP) introduced in [24]. In CDP, each vertex may accept connections up to a fixed limit, after
which no new edges can be formed, while all previously established connections remain intact. Specifically, it
is a dependent continuous-time percolation process, defined by the following dynamics. At time zero, all edges
are closed; each edge attempts to open at a uniformly distributed random time, and the attempt is successful
if, at that moment, both of its end-vertices have degrees strictly smaller than a given parameter κ. A formal
definition of the model is provided in Section 1.1. Unlike classical Bernoulli percolation, the CDP exhibits
dependencies of all orders at any fixed time. Furthermore, the absence of the Fortuin–Kasteleyn–Ginibre
(FKG) inequality and the lack of the finite energy property make its analysis challenging.

1.1 Model and result

Let us start by introducing the CDP on Zd, d ≥ 2. Let 2 ≤ κ ≤ 2d be an integer, which is fixed throughout
the paper and kept implicit. We denote by E the set of nearest neighbour (non-oriented) edges of Zd.

Let U = (Ue)e∈E be a sequence of independent uniform random variables on [0, 1] with corresponding
product measure P. We denote by Ω the set of U ∈ [0, 1]E with distinct coordinates and such that there is
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no infinite walk1 x1, x2, . . . in Zd such that i 7→ Uxixi+1 is strictly monotone. It is classical that P(Ω) = 1,
so we systematically restrict our attention to U ∈ Ω.

For any p ∈ [0, 1], we define the function ωp : Ω→ {0, 1}E as follows. We write ωp(U, e) for the value of
ωp(U) at edge e ∈ E and refer to e as p-open if ωp(U, e) = 1, and p-closed if ωp(U, e) = 0. Initially, only the
(at most one) edge with Ue = 0 is open, that is, ω0(U, e) = 1Ue=0. Each edge e ∈ E attempts to open at
time Ue and is successful only if its addition to the currently open edges would not create a vertex of degree
larger than κ. In other words, p 7→ ωp(U, xy) jumps from 0 to 1 at p = Uxy if

|{z ∈ Zd : xz ∈ E , ωUxy−(U, xz) = 1}| < κ and |{z ∈ Zd : yz ∈ E , ωUxy−(U, yz) = 1}| < κ,

and stays equal to 0 for all p ∈ [0, 1] otherwise. This definition is well-posed in Ω, since for every e ∈ E only
a finite set of coordinates of U suffices to determine (ωp(U, e))p∈[0,1].

We call a path p-open if all of its edges are p-open. The event that x ∈ Zd is connected to y ∈ Zd by a

p-open path is denoted by x
p←→ y. We write x

p←→∞ for the event that there exists an infinite p-open path
starting at x. We consider the standard one-arm probability

θn(p) = P(∃x ∈ Zd, ∥x∥1 = n, 0
p←→ x), θ(p) = P(0 p←→∞) = lim

n→∞
θn(p). (1)

Since θ : [0, 1]→ [0, 1] is clearly non-decreasing, we naturally define

pc = sup{p ∈ [0, 1] : θ(p) = 0},

with the convention sup∅ = 0, which will never enter into effect. Our main result is the following.

Theorem 1 (Sharp phase transition). Consider the CDP on Zd, d ≥ 2, with κ ∈ {2, . . . , 2d}. For p < pc,
there exists αp > 0 such that for all n ≥ 1, θn(p) ≤ e−nαp .

Remark 2. Theorem 1 is stated and proved for Zd with its usual graph structure for concreteness. However,
the proof applies mutatis mutandis for any transitive locally finite bipartite graph. For non-bipartite graphs,
the structure of the switching path from Lemma 6 below becomes more complex, but is still sufficiently
path-like for the argument to adapt to this case as well.

1.2 Background

For κ = 2d, the CDP reduces to the standard Bernoulli percolation model, for which Theorem 1 is a classical
result [1, 9, 20]. We direct the reader to [11] for some background on this model.

It is known that the CDP undergoes a nontrivial phase transition for all d ≥ 2 and most values of κ. For
example, [4] establishes this non triviality for d = 2 and κ = 3, while also proving that percolation does not
occur when d ≥ κ = 2, even at p = 1. Further progress was made in [15], which provides quantitative upper
bounds on the critical time and characterizes the phase transition for all d ≥ 3 and most choices of κ ≥ 3.
Nonetheless, it remains open to determine whether the phase transition is trivial (pc = 1) for κ ∈ {3, . . . , 9}
for some dimensions, but it is conjectured that this is never the case. In view of this, let us emphasise that
Theorem 1 applies regardless of whether the phase transition is trivial.

It is straightforward that the CDP is stochastically dominated by standard Bernoulli percolation for every
fixed p ∈ [0, 1]. Consequently, Theorem 1 holds trivially whenever p lies below the Bernoulli percolation
critical threshold, denoted by pc. However, it is known that pc > pc (see Theorem 1 in [4] for the case d = 2
and κ = 3; the argument extends for the general case), and therefore Theorem 1 remains nontrivial for all
choices of d and κ.

Let p̂c = sup{p ∈ [0, 1] :
∑

x∈Zd P(0
p←→ x) < ∞} ≤ pc denote the suscptibility critical threshold for the

CDP. The recent work [5] proves Theorem 1 for p < p̂c. Our result strengthens their findings: in particular,
Theorem 1 implies pc = p̂c. This answers [5, Question 1.] in the setting of homogeneous (vertex-independent)
constraints κ.

1A walk is a sequence of vertices such that consecutive ones are joined by edges. A path is a walk consisting of distinct
vertices.

2



1.3 Outline of the proof

A standard approach to proving sharpness in percolation models is the one of [8] using a randomised algorithm
(see Section 2.4) and the OSSS inequality [21] (see Section 2.3). Applying this method directly fails. On
the one hand, the measure ωp ◦ P is not monotonic and lacks other good properties. On the other hand, if
we choose to work with the configuration space [0, 1]E instead of {0, 1}E , edges revealed in the exploration
of the occurrence of the one-arm event in (1) do not witness this one-arm event on a smaller scale. For
this reason, as in [14], we introduce an alternative one-arm event (see Section 2.1) for which revealment is
naturally expressed in terms of its probability. Namely, this event requires a path whose first part (head) is
open and whose second part (tail) has decreasing values of the uniform variables on edges. This modified
one-arm event satisfies a Russo formula (see Lemma 5).

Putting the above ingredients together, one reaches the main difficulty: the Russo formula features a
different pivotality event (p-pivotality) from the influences appearing in the OSSS inequality (U -pivotality).
In Proposition 7, we provide a transfer from one to the other. The statement is largely inspired by the
essential enhancement technique of [2]. However, the lack of finite-energy property and the infinite range of
dependence make its implementation very delicate (see e.g. [6] for a very different setting where an intricate
unbounded range pivotality transfer is also performed). The base idea of the proof of Proposition 7 is
simple. The probability that the state of an edge depends on the uniform variables far from it decays super-
exponentially, while configuration modifications usually come at an exponential cost. We can then hope to
modify the configuration in the neighbourhood of the decreasing cluster of a U -pivotal edge in such a way
that we produce a p-pivotal edge. Unfortunately, there exist clusters whose probability of being decreasing
is only exponentially small in their volume (e.g. the fractal ternary square space-filling tree).

In order to remedy this, we need to only focus on a special path through a U -pivotal edge e that we call
its switching path Pe (see Lemma 6). While influence may spread outside of the switching path, the effect
of changing the value of Ue on the configuration of open/closed edges is to switch the state of the edges of
Pe and nothing else. This effect is dictated by the degree constraint and resembles the role of alternating
paths in dimer configurations (perfect matchings). The advantage is that, along paths, the probability of
being decreasing is super-exponential, as opposed to what is the case along clusters. This allows us to pay
for a modification of the uniform variables on all edges on or next to the path.

This strategy is sufficient to treat the case in which, roughly speaking, the U -pivotal edge is in the head
of the path witnessing the modified one-arm event. However, if e is in the tail, we further need to modify
the configuration around the decreasing path from e to the origin, in addition to the switching path. The
actual case distinction is a bit more intricate, but we refer the reader to the proof of Proposition 7 for the
details.

2 Proof

2.1 The one-arm event

For a path P = x1, . . . , xm, we denote by M(P ) the event that p ≥ Ux1x2 > Ux2x3 > · · · > Uxm−1xm , and
say that P is decreasing wheneverM(P ) occurs.

Definition 3 (Modified one-arm). Let n ≥ 1 be an integer and p ∈ [0, 1]. The modified one-arm event
En(p) ⊂ Ω is defined by U = (Ue)e∈E ∈ En(p), if there exists a path of vertices (x0, . . . , xk) with ∥x0∥1 =
n > ∥xi∥1 for i ∈ {1, . . . , k}, xk = 0, and an integer l ∈ {0, . . . , k} such that the following properties hold.

• For all i ∈ {1, . . . , l}, we have ωp(U, xi−1xi) = 1.

• The path xl, . . . , xk is decreasing.

We refer to x0, . . . , xl as the head and to xl, . . . , xk as the tail of the path.

In words, the sphere of radius n is connected to an edge inside the box, from which a decreasing path
reaches the origin. As we will see, this modified version of the standard one-arm event (corresponding to
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l = k above) is motivated by the fact that, when we run the randomized algorithm to explore its occurrence,
it is the modified version that occurs at edges being revealed.

Notice that En(p) is decreasing in n and increasing in p (since p 7→ ωp(U, e) is increasing). Moreover,
En(p) is measurable with respect to (Ue1Ue≤p)e∈E .

2.2 Transforming pivotality

Definition 4 (Pivotal). Fix U ∈ Ω, p ∈ [0, 1], e ∈ E , and an event A ⊂ Ω. We say that e is U -pivotal for A
if there exists U ′ ∈ Ω with Uf = U ′

f for all f ∈ E \ {e} such that 1A(U) ̸= 1A(U
′). We say that e is p-pivotal

for A if Ue > p and, if we set Uf = U ′
f for all f ∈ E \ {e} and U ′

e = p, then U ′ ∈ Ω and 1A(U) ̸= 1A(U
′).

We will only be interested in the event A = En(p) from Definition 3, so we do not specify it below.

Write τn(p) = P(En(p)). The notion of p-pivotality is motivated by the following Russo formula.

Lemma 5 (Russo formula). For any p and n, it holds that τn is differentiable on [0, 1) and

dτn(p)

dp
=

1

1− p

∑
e∈E

P(e is p-pivotal). (2)

Proof. Let δ > 0 and write
τn(p+ δ)− τn(p) = P (En(p+ δ) \ En(p)) , (3)

recalling that p 7→ En(p) is increasing. Let Qp,δ = {uv ∈ E : ∥u∥1 < n,Uuv ∈ (p, p + δ]}. Observe that,
by Definition 3, for U ∈ En(p + δ) \ En(p), we have Qp,δ ̸= ∅, since p 7→ ωp(U, e) may only change at
time Ue and similarly for p 7→ 1p≥Ue≥Ue′ , where e, e′ ∈ E . Note that P(|Qp,δ| ≥ 2) = o(δ). Moreover, if
U ∈ En(p+ δ) \ En(p), |Qp,δ| = 1 and Ue ̸= p for all e ∈ E , then the unique edge must be p-pivotal. Hence,
(3) becomes

τn(p+ δ)− τn(p) = P(En(p+ δ) \ En(p), |Qp,δ| = 1) + o(δ) =
∑
e∈E

P(En(p+ δ) \ En(p),Qp,δ = {e}) + o(δ)

=
∑
e∈E

P (e is p-pivotal, Ue ∈ (p, p+ δ]) + o(δ) =
δ

1− p

∑
e∈E

P(e is p-pivotal) + o(δ).

Dividing both sides by δ and taking δ → 0 yields (2) for the right derivative.
We may proceed similarly to the left, expressing the derivative in terms of pivotal edges at p− instead

of p. To conclude, it remains to prove that the function p 7→
∑

e∈E P(e is p-pivotal) is left-continuous. As
noted above, the sum is over a finite set of edges, so it suffices to prove that each summand is continuous.
To see this, let F be the a.s. finite set of edges uv ∈ E such that there is a decreasing path for p = 1 starting
at a vertex x with ∥x∥1 ≤ n and ending at u ∈ Zd. Then, for any edge e, we have

P(e is p-pivotal) =
∑
F

P(F = F, e is p-pivotal).

The event {e is p-pivotal,F = F} depends only on (1Uf≤p)f∈F and on the order of (Uf )f∈F , of which there
are finitely many and whose probability of occurrence is a polynomial in p. Therefore, the summands above
are continuous and converge uniformly, as

∑
P(F = F ) = 1, so the series is continuous as desired.

Lemma 6 (Switching path). Fix U ∈ Ω∩ (0, 1)E , p ∈ (0, 1), and e ∈ E. We define Ue+ by Ue+
f = Uf for all

f ∈ E\{e} and Ue+
e = 0. We similarly define Ue− with Ue−

e = 1 instead. Then ωp(U) ∈ {ωp(U
e+), ωp(U

e−)}.
Moreover, the set of f ∈ E such that ωp(U

e+, f) ̸= ωp(U
e−, f) is a path containing e with possibly coinciding

endpoints, but no other self-intersections. We refer to this path as the switching path of e and denote it by
Pe. If Pe = x1, . . . , xm with e = xixi+1, then the paths x1, . . . , xi and xm, . . . , xi+1 are decreasing.
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Proof. Since in Ω there are only finite decreasing paths, it is clear that Ee = {f ∈ E : ωp(U
e+, f) ̸= ωp(U, f)}

is finite. First, assume that e ̸∈ Ee, that is, ωp(U, e) = 1. Then, at any time p′ ≤ Ue, the degree of both
endpoints of e in ωp′(U) is at most κ. But then, by induction on the number of attempted updates at edges
in a monotone path containing an endpoint of e, we have ωp′(U, f) = ωp′(Ue+, f) for all f ̸= e and p′ ≤ Ue.
Thus, ωUe

(U) = ωUe
(Ue+) and the Markovian construction of the process guarantees that ωp′(U) = ωp′(Ue+)

for all p′ ≥ Ue. Applying this to p′ = p concludes this case.
Now assume that ωp(U, e) = 0, so e ∈ Ee. Since Uf1Uf<Ue = Ue−

f 1
Ue−

f <Ue
for all f ∈ E , this gives

ωUe
(U) = ωUe

(Ue−). By the Markov property, we have ωp(U) = ωp(U
e−).

For the rest of the proof, we may assume that U = Ue−. Notice that, since each edge attempts to
open once, we have ωp′(U, f) = ωp′(Ue+, f) for all f ∈ E \ Ee and p′ ≤ p. Similarly, for f ∈ Ee we have
ωp′(U, f) = ωp′(Ue+, f) if and only if p′ < Ue+

f .

Set Ee = {e0, . . . , ek} with e0 = e ∈ Ee and Uei+1
> Uei for i ∈ {1, . . . , k − 1}. Also, let pi = Ue+

ei for
i ∈ {0, . . . , k}. We prove by induction on i ∈ {0, . . . , k} that the edges Ei = {e0, . . . , ei} form a path Pi as in
the statement, and moreover satisfy:

• consecutive edges in Pi have different values of ωp(U
e+, f),

• all internal vertices2 of Pi have degree κ in ωp(U
e+, f).

The base case is immediate. Assume the statement holds for some i < k. Then, for p′ ∈ [pi, pi+1), the
only vertices with different degrees in ωp′(U) and ωp′(Ue+) are the endpoints of Pi. If the path has coinciding
endpoints, then all vertices have the same degree (Zd has no odd cycles), so i = k, which is a contradiction.
Clearly, ei+1 has to be incident with at least one endpoint of Pi, which forms a longer path respecting mono-
tonicity. The fact that ei+1 cannot create a self-intersection other than completing a cycle follows from the
fact that internal vertices of Pi already have degree κ. Moreover, since ωpi+1

(U, ei+1) ̸= ωpi+1
(Ue+, ei+1), at

least one endpoint v of Pi contained in ei+1 has degree κ in one of ωpi+1−(U), ωpi+1−(U
e+). For concreteness,

let deg v = κ in ωpi+1−(U) (the other case is analogous). Then ωpi+1
(U, ei+1) = 0, so ωpi+1

(Ue+, ei+1) = 1,
ωpi(U, ej) = 1 and ωpi(U

e+, ej) = 0, where ej is the edge of Pi containing v. Thus, deg v = (κ − 1) + 1 in
ωpi+1(U

e+) and Pi+1 is still alternating.

Proposition 7 (Pivotality transfer). There exists C = C(p, d) > 0, uniformly bounded over compacts of
(0, 1)× N, such that ∑

e∈E
P(e is U -pivotal) ≤ C

∑
e∈E

P(e is p-pivotal).

Proof. Consider a U -pivotal edge e for the event En(p). Let U
+ ∈ En(p) with U+

f = Uf for all f ∈ E \ {e}.
Similarly, define U− ∈ Ω \ En(p) with U−

f = Uf for all f ∈ E \ {e}. We assume U+ and U− (and further

functions of U below) to be selected in some measurable way as a function of U . Let ω+
f = ωp(U

+, f) for
all f ∈ E . For clarity, we denote by Ve and Ee the vertex and edge sets of the switching path Pe (recall
Lemma 6), respectively. We distinguish two cases.

Case A (Head). Assume that there is no decreasing path from a vertex in Ve to the origin in U+ ∈ En(p).
We seek to modify the configuration in the neighbourhood of Ve in order to make a p-pivotal edge appear.
We say that a configuration U ′ ∈ Ω is good, if

• U ′
f > p for all f ∈ E intersecting Ve and such that ω+

f = 0 and

• U ′
f = Uf for all remaining f ∈ E \ Ee.

Claim 8. Any good configuration U ′ satisfies ωp(U
′, f) = ω+

f for all f ∈ E \ Ee, and ωp(U
′, f) = 1U ′

f≤p for

f ∈ Ee.
2We do not view the endpoint of a path with coinciding endpoints as an internal vertex.
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Proof. Using Lemma 6 successively for each f ∈ E intersecting Ve and such that ω+
f = 0, we obtain that

ω+
· = ωp(U

′, ·) for any good configuration U ′ with U ′
f = U+

f for all f ∈ Ee with ω+
f = 1. Yet, by construction,

for any v ∈ Ve and any good configuration U ′′, the number of edges uv such that U ′′
uv ≤ p is at most the

degree of v in ω+, which is at most κ. Therefore, in good configurations, the vertices in Ve are unconstraint.
In particular, changing U ′

f for f ∈ Ee with ω+
f = 1 does not change ωp(U

′, g) for g ̸= f .

Claim 9. No good configuration U ′ with U ′
f > p for all f ∈ Ee belongs to En(p).

Proof. By Claim 8, such configurations satisfy ωp(U
′, f) = ω+

f 1f ̸∈Ee = ωp(U
−, f)1f ̸∈Ee , using Lemma 6 in

the second equality. Since a path witnessing U ′ ∈ Ep(n) cannot use edges f ∈ E with U ′
f > p by Definition 3,

such a path would also witness U− ∈ En(p), which contradicts the definition of U−.

Claim 10. Any good configuration U ′ with U ′
f ≤ p for all f ∈ Ee with ω+

f = 1 belongs to En(p).

Proof. By Claim 8, we have that ω+
f = ωp(U

′, f) for any f ∈ E and such good configuration U ′. Fix a path

witnessing U+ ∈ En(p). By the assumption of Case A, its tail does not intersect Ve. Since U ′
f = U+

f for all
f ∈ E disjoint from Ve by construction, the same path witnesses U ′ ∈ En(p).

Let E+ = {f ∈ Ee : ω+
f = 1}. Let F be a maximal subset of E+, satisfying that no good configuration U ′

with ωp(U
′, f) = 0 for f ∈ E+ \ F belongs to En(p). By Claims 9 and 10, F exists and F ≠ E+. Moreover,

by the assumption of Case A, no witness of a good configuration in En(p) can have a tail intersecting Ve.
Therefore, recalling Claim 8, within good configurations U ′, the event U ′ ∈ En(p) depends only on 1U ′

f≤p

for f ∈ E+. Therefore, for any good configuration U ′ such that 1U ′
f≤p = 1f∈F for all f ∈ E+, we have that

each f ∈ E+ \ F is p-pivotal for U ′ for the event En(p) (recall Definition 4) and, in particular, such f exist.
Given sets F ⊂ P ′ ⊂ E and an edge f ∈ P ′ \ F , we define the event N (f, F, P ′) ⊂ Ω so that U ∈

N (f, F, P ′), if, for all U ′ ∈ Ω ∩ [0, p]F × (p, 1]P
′\F ×

∏
g∈E\P ′{Ug}, it holds that f is p-pivotal for En(p) in

U ′. We just proved that if e is U -pivotal and Case A occurs, then there exists f ∈ E+ \F ⊂ Ee \F such that
N (f,F ,P ′) occurs, where P ′ = Ee ∪ {g ∈ E : g ∩ Ve ̸= ∅, ω+

g = 0}.
Consider a path P = x1, . . . , xm containing e = xixi+1 with possibly coinciding endpoints, and write

|P | = m − 1 for its length. We denote by P⃗ ∈ {(x1, . . . , xi), (xm, . . . , xi+1)} the longest subpath of P not

containing e. Thus, |P⃗ | ≥ ⌊|P |/2⌋. Recall thatM(P⃗ ) denotes the event that P⃗ is decreasing.
From the above, we have

P(e is U -pivotal, Case A) =
∑

P,P ′,F

P(Pe = P,P ′ = P ′,F = F, e is U -pivotal, Case A)

≤
∑
P

∑
P ′

∑
F

∑
f

P(M(P⃗ ),N (f, F, P ′)),

where the sums are over paths P containing e, sets P ′ ⊃ P of edges with at least one endpoint in P , edge
sets F ⊊ P and edges f ∈ P \ F . Noticing thatM(P⃗ ) and N (f, F, P ′) are measurable with respect to the

restriction of U to P⃗ ⊂ P ⊂ P ′ and to E \P ′ respectively, we get that these events are independent. From the

definitions we clearly have P(M(P⃗ )) = p|P⃗ |/|P⃗ |! and P(N (f, F, P ′)) ≤ P(f is p-pivotal)/(p|F |(1−p)|P
′|−|F |).

Hence,

P(e is U -pivotal, Case A) ≤
∑
P

∑
f∈P

22d(|P |+1)22d(|P |+1)

⌊|P |/2⌋!(p(1− p))2d(|P |+1)
P(f is p-pivotal)

≤
∑
P

∑
f∈P

C1

|P ||P |/3P(f is p-pivotal) ≤
∑
f∈E

C2

2δ(e,f)
P(f is p-pivotal),

for some C1 = C1(p, d) > 0 and C2 = C2(p, d) > 0 bounded uniformly on compacts of (0, 1) × N, where
δ(e, f) denotes the ℓ1 distance between the edges e and f . Indeed, in the last inequality, we used that the
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number of paths of given length in Zd is exponential, while |P |−|P |/3 decays super-exponentially. Summing
over e, we obtain ∑

e∈E
P(e is U -pivotal, Case A) ≤ C

2

∑
f∈E

P(f is p-pivotal). (4)

Case B (Tail). Assume there exists a decreasing path from Ve to the origin in U+ (equivalently, in U). We
will proceed similarly to Case A, but modifying the configuration in the neighbourhood of both Ve and one
such decreasing path. Consider a path P0 witnessing U+ ∈ En(p). Recalling Definition 3 and Lemma 6,
we get that it intersects Ve, since otherwise e cannot be U -pivotal. Let P = x1, . . . , xk, . . . , xl, . . . , xm, with
xm = 0, be a walk possibly self-intersecting at vertices, but not edges, defined as follows: follow P0 from the
beginning until it first intersects Ve at a vertex xk ∈ Ve, then follow Pe to a vertex xl ∈ Ve and then follow a
decreasing path from xl to the origin 0 = xm not visiting Ve again. Indeed, a suitable vertex xl exists by the
assumption of Case B and, if its decreasing path to the origin intersects x1, . . . , xk at an edge, erasing the
resulting loop would give a witness of U+ ∈ En(p) not visiting Ve, which is not possible, as argued above.

Let j = max{i ∈ {1, . . . , k} : xi is in the head of P0}. Also define V = {xj , . . . , xm} ∪ Ve and set

V̄ = {x ∈ Zd : δ(x,V) ≤ 5}, V̊ = {x ∈ V̄ : δ(x,V) ≤ 4} and ∂V = V̄ \V̊. Let i = min{h ∈ {1, . . . , j} : xh ∈ V̊}.
We fix a path P ′ = y0, . . . , yr from xi to e1 = (1, 0, . . . , 0) contained in V̊ \ {0}. Indeed, V̊ is connected, as
it is the sum of two connected sets (a δ-ball of radius 4 and V, which is the union of the vertex sets of the
intersecting path Pe and walk xj , . . . , xm) and {x ∈ Zd : δ(x, 0) = 1} ⊂ V̊ is also connected. Let E ′ denote
the edge set of P ′. We call a configuration U ′ ∈ Ω good, if it satisfies the following.

(i) U ′
f = Uf if f ∩ V̄ = ∅,

(ii) U ′
f = Uf if |f ∩ V̄| = 1 and ω+

f = 1,

(iii) U ′
f > p if |f ∩ V̄| = 1 and ω+

f = 0,

(iv) U ′
f = Uf if f ⊂ ∂V and f = xaxa+1 for some a ∈ {1, . . . , i− 2},

(v) U ′
f > p if f ⊂ ∂V and f ̸∈ {xaxa+1 : a ∈ {1, . . . , i− 2}},

(vi) U ′
f = Uf if f = xi−1xi,

(vii) U ′
f ≤ p if f ∈ E ′,

(viii) U ′
f > p if f ∈ E \ (E ′ ∪ {xi−1xi}), f ∩ V̊ ≠ ∅.

Lemma 11. Let U ′ be a good configuration. For any f ∈ E with |f ∩ V̄| ≤ 1, we have ωp(U
′, f) = ω+

f . For

any f ∈ E with f ⊂ V̄, we have ωp(U
′, f) = 1U ′

f≤p.

Proof. The statement holds trivially for edges in (iii), (v), and (viii). The vertices v ∈ V̊ have at most two
incident edges uv with U ′

uv ≤ p by construction, so the edges in (vii) (these are all edges f ⊂ V̊ with U ′
f ≤ p)

indeed satisfy ωp(U
′, uv) = 1. On the other hand, vertices v ∈ ∂V satisfy that all uv ∈ E with U ′

uv ≤ p
also satisfy ω+

uv = 1, so there are at most κ of them. Therefore, the edges f in (iv) and (vi) also satisfy
ωp(U

′, f) = 1.
It remains to show that ωp(U

+, f) = ωp(U
′, f) for all f in (i) and (ii). To do this, denote by f1, . . . , fs

the edges in (ii) ordered so that a 7→ Ufa is increasing. Setting Uf0 = 0 and Ufs+1
= p, we show by

induction on a ∈ {0, . . . , s + 1} that ωp′(U ′, f) = ωp′(U+, f) for all p′ ≤ and f ∈ E such that |f ∩ V̄| ≤ 1.
The base case is trivial. Assume the induction statement is true for some a ∈ {0, . . . , s}. Then, for all
p′ < Ufa+1 and f ∈ E with |f ∩ V̄| = 1, it holds that ωp′(U ′, f) = ωUfa

(U ′, f) = ωUfa
(U+, f) = ωp′(U+, f).

Since this edge set separates the edges in (i) from the remaining edges (recall that Ve ⊂ V̊ and that, by
Lemma 6, ωp′(U+, f) = ωp′(U, f) for all p′ ≤ p and f ∈ E \ Ee), we get that ωp′(U ′, f) = ωp′(U+, f) for
all p′ < Ufa+1

and f ∈ E with |f ∩ V̄| ≤ 1. If a = s, we are done. Otherwise, it remains to prove that
ωUfa+1

(U ′, fa+1) = ωUfa+1
(U+, fa+1) = 1. This holds since the vertices in V̄ are unconstraint in U ′ as noted

above. This completes the proof of the induction and the lemma.
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Corollary 12. The edge 0e1 is p-pivotal for any good configuration.

Proof. Fix a good U ′. Notice that, by construction, all edges containing 0 are in (viii), so U ′ ̸∈ En(p) by
Definition 3. Moreover, there is exactly one edge of the form xe1 with Uxe1 ≤ p, so it suffices to show that,
in U ′, each edge f in the path x1, . . . , xi, y1, . . . , yr satisfies ωp(U

′, f) = 1. Inspecting the definition of good
configurations, Lemma 11 completes the proof. Indeed, the edges f in x1, . . . , xi are in the head of P0 by
definition of j and i, so they satisfy ω+

f = 1 and U ′
f = Uf ≤ p.

With Corollary 12 at hand, we conclude essentially as in Case A, but we spell out the details for the
reader’s convenience. Given disjoint edge sets E+, E− ⊂ E , we define the event N (E+, E−) so that U ∈
N (E+, E−), if, for all U

′ ∈ Ω∩ [0, p]E+ × (p, 1]E− ×
∏

f∈E\(E+∪E−){Uf}, it holds that 0e1 is p-pivotal in U ′.

By Corollary 12, if e is U -pivotal and Case B occurs, then N (E+, E−) occurs, where E+ are the edges in (vii)
and E− are the edges in (iii), (v) and (viii). Notice that all edges f ∈ E with f ⊂ V̊ are either in (vii) or
(viii), so they belong to E+ ∪ E−.

Given U , we denote by P⃗ the longest (breaking ties arbitrarily) path among the following four paths:

• xj , . . . , xk;

• xl, . . . , xm;

• the part of Pe up to e excluded;

• the part of −Pe up to e excluded, where −Pe denotes Pe in reverse order.

Notice that the union of the vertex sets of these paths is V, so |P⃗| ≥ (|V| − 2)/4. Moreover,M(P⃗) occurs,
since each of the four paths is decreasing by construction.

Thus, we get

P(e is U -pivotal, Case B) =
∑
V

∑
E+,E−,P⃗

P(V = V, E+ = E+, E− = E−, P⃗ = P⃗ , e is U -pivotal, Case B)

≤
∑
V

∑
E+,E−,P⃗

P(M(P⃗ ),N (E+, E−)),

where the sums are over

• finite connected vertex sets V ⊂ Zd containing e and 0,

• disjoint edge sets E+, E− ⊂ E whose elements are contained in {x ∈ Zd : δ(x, V ) ≤ 6} and satisfying that
all f ∈ E such that f ⊂ {x ∈ Zd : δ(x, V ) ≤ 4} satisfy f ∈ E+ ∪ E−,

• paths P⃗ with vertex set contained in V and satisfying |P⃗ | ≥ (|V | − 2)/4.

Observing that the edges of P⃗ are contained in E+ ∪ E−, we get thatM(P⃗ ) and N (E+, E−) are inde-

pendent. By definition, we have P(M(P⃗ )) = p|P⃗ |/|P⃗ |! and P(N (E+, E−)) ≤ P(0e1 is p-pivotal)/(p|E+|(1 −
p)|E−|). Hence,

P(e is U -pivotal, Case B) ≤
∑
V

2C4|V |

⌈(|V | − 2)/4⌉!(p(1− p))C4|V |P(0e1 is p-pivotal)

≤ C52
−δ(e,0)P(0e1 is p-pivotal)

for some C4 = C4(d) > 0 and C5 = C5(d, p) > 0, uniformly bounded over compacts of (0, 1) × N, taking
into account the fact that the number of connected sets of a given size containing 0 grows exponentially.
Summing over e yields ∑

e∈E
P(e is U -pivotal, Case B) ≤ C

2
P(0e1 is p-pivotal).

Combining this with (4), concludes the proof of Proposition 7.
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2.3 The OSSS inequality

We briefly recall the OSSS inequality in the context of product probability spaces. Let I be a countable
index set, and consider the product space (XI , π⊗I), where a typical element is denoted by x = (xi)i∈I . We
are interested in Boolean functions f : XI → {0, 1}, which may depend on infinitely many coordinates of x.

An algorithm A determining f reveals the coordinates of x sequentially, with each choice depending on
the values revealed thus far. The process terminates once the value of f(x) is determined, independently of
the unrevealed coordinates. For a formal definition of randomized algorithms, we refer to [21]. Associated
to A and f , we define the revealment and influence of coordinate i ∈ I by

δi(A) := π⊗I (A reveals xi) , Infi(f) := π⊗I
(
f(x) ̸= f(xi)

)
,

where xi is obtained from x by resampling the i-th coordinate independently according to π, leaving the
others unchanged. The OSSS inequality [21] states that for any Boolean function f : XI → {0, 1} and any
algorithm A that determines f ,

Var(f) ≤
∑
i∈I

δi(A) · Infi(f). (5)

This inequality was initially formulated for finite sets X and I. Nonetheless, the result remains valid
when X is a general space and I is countable (see [7, Remark 5]). Applying (5) to X = [0, 1], π the Lebesgue
measure over X and I = E , so that π⊗I = P, and the function f = 1En(p), and setting δ(A) = maxe∈E δe(A),
we obtain

τn(p)(1− τn(p)) ≤ δ(A)
∑
e∈E

Infe(1En(p)) ≤ Cδ(A)
∑
e∈E

P(e is p-pivotal) = C(1− p)δ(A)
dτn(p)

dp
, (6)

using Infe(1En(p)) ≤ P(e is U -pivotal) and Proposition 7 in the second inequality and Lemma 5 for the last
equality.

2.4 The randomized algorithm approach

In this section, we apply the method of [8, Section 3] to produce a randomized algorithm with low revealment
and deduce a sharpness result for the modified one-arm event En(p). Since there is little novelty here, the
presentation is rather concise and we recommend referring to [8] for more details.

Lemma 13 (Differential inequality implies sharpness [8, Lemma 3.1]). Consider a converging sequence of
differentiable functions fn : [p−, p+]→ [0, 1] satisfying

f ′
n ≥

n

Σn
fn,

for all n ≥ 1, where Σn =
∑n−1

k=0 fk. Then, there exists p∗ ∈ [p−, p+] such that

(i) for any p < p∗, there exists cp > 0 such that for any n large enough, fn(p) ≤ exp(−cpn);

(ii) for any p > p∗, f = lim
n→∞

fn satisfies f(p) ≥ p− p∗.

Recall that τn(p) = P(En(p)), with the convention τ0(p) = 1, and write Σn =
∑n−1

r=0 τr(p).

Lemma 14. For any n ≥ 1, there exists a randomized algorithm A determining 1En(p) with δ(A) ≤ 10Σn/n.

Proof. We call a path of vertices (x0, . . . , xk) in Zd nice if there exists l ∈ {0, . . . , k} such that, for all
i ∈ {1, . . . , l}, we have ωp(U, xi−1xi) = 1 and the path xl, . . . , xk is decreasing. We refer to xl as the middle
of the nice path. For fixed r ∈ {1, . . . , n}, the algorithm Ar is defined as follows. Initialize R0 = {x ∈ Zd :
∥x∥1 = r} =: ∂r, S0 = ∅ and T0 = ∅. Assume Rm ⊂ Zd and Sm, Tm ⊂ E are given, and proceed according
to the following cases, choosing edges arbitrarily if multiple edges satisfy the conditions.
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(i) If there exist xy ∈ Tm with x ∈ Rm and y ̸∈ Rm, we set Sm+1 = Sm, Tm+1 = Tm and Rm+1 = Rm∪{y}.

(ii) Otherwise, if there exists xy ∈ Sm \ Tm such that ∥x∥1 < n and the restriction of U to Sm is sufficient
to establish that ωp(U, xy) = 1, we let Rm+1 = Rm, Sm+1 = Sm and Tm+1 = Tm ∪ {xy}.

(iii) Otherwise, if there exists xy ∈ E and a decreasing path xl, . . . , xk = x (possibly consisting of a single
vertex) with edges in Sm and xl ∈ Rm, we set Rm+1 = Rm, Sm+1 = Sm ∪ {xy} and Tm+1 = Tm.

(iv) Otherwise, if Rm ̸⊃ ∂n and there is a decreasing path with edges in Sm from ∂r to 0, set Rm+1 =
Rm ∪ ∂n, Sm+1 = Sm, Tm+1 = Tm.

Let us make a few observations about this algorithm. Firstly, whenever (i) does not occur, then Rm is
the set of vertices that can be reached from R′

0 via edges in Tm, where

R′
0 =

{
∂r Rm ̸⊃ ∂n,

∂r ∪ ∂n Rm ⊃ ∂n.

Therefore, whenever we apply (iii), there is a path of edges in Tm from R′
0 to xl, which are therefore known

to be p-open based on the restriction of U to the set Sm of explored edges. In particular, whenever an edge
is explored, we have discovered a nice path from R′

0 to an endpoint of this edge.
Since U ∈ Ω, the algorithm clearly terminates. Assume the algorithm has terminated. Then, for any

edge xy ∈ E \Tm and with ∥x∥1 < n and {x, y}∩Rm ̸= ∅, we have xy ∈ Sm \Tm and ωp(U, xy) = 0. Indeed,
edges forming a decreasing path starting at the above edge xy are certainly in Sm (by (iii)) and are sufficient
to determine ωp(U, xy). Therefore, Rm is exactly the union of the connected components of the vertices in
R′

0 in the graph with edge set {xy ∈ E : ∥x∥1 < n, ωp(U, xy) = 1}. Consequently, all nice paths starting at
R′

0 are contained in Sm, and the restriction of U to Sm suffices to determine that they are nice.
Finally, let us see that the algorithm does determine the value of 1En(p)(U). If Rm ̸⊃ ∂n, then there

is no decreasing path from ∂r to 0, so a path witnessing En(p) would need to have its head xl satisfying
∥xl∥ < r, so we can decompose it into a p-open path from ∂n to ∂r and a nice path from ∂r to 0. Therefore,
the restriction of U to Sm is sufficient to determine whether En(p) occurs. If, on the contrary, Rm ⊃ ∂n,
then in particular we know if there is a nice path from ∂n to 0, which is the event En(p).

Let us fix an edge xy ∈ E and bound δxy(Ar). If (iv) was applied during the algorithm, then Er(p)
occurs. If Er(p) does not occur, then

σxE|∥x∥1−r|(p) ∪ σyE|∥y∥1−r|(p)

occurs, where σz is the shift by z ∈ Zd. By the union bound, this gives

δxy(Ar) ≤ τr(p) + τ|∥x∥1−r|(p) + τ|∥y∥1−r|(p).

Now apply algorithm Ar with probability 1/n for each r ∈ {1, . . . , n}. Then, for any e ∈ E ,

δe(A) =
1

n

n∑
r=1

δe(Ar) ≤
5

n

n∑
k=0

τk(p) ≤
10

n
Σn.

Proposition 15 (Sharpness for the modified one-arm event). Consider the CDP on Zd, d ≥ 2, with κ ∈
{2, . . . , 2d}. There exists p∗ ∈ [0, 1] such that

(i) For p < p∗, there exists δp > 0 such that for all n ≥ 1, τn(p) ≤ e−δpn.

(ii) If p∗ > 0, then there exists c > 0 such that for p > p∗, τ(p) = lim
n→∞

τn(p) > c(p− p∗).

(iii) If p∗ = 0, then τ(p) > 0 for all p > p∗.
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Proof. Fix arbitrary 0 < p− < p+ < 1 and note that 1 − τn(p) ≥ (1 − p)2d ≥ (1 − p+)
2d for p ∈ [p−, p+].

Combining this with Lemma 14 and (6), we obtain

τ ′n(p) ≥
n

CΣn
τn(p),

for a constant C > 0 depending only on p−, p+, d. The desired result then follows from Lemma 13 by taking
p− = 1− p+ → 0.

Proof of Theorem 1. Let us first observe that p∗ in Proposition 15 is not zero. Indeed, this follows by
direct comparison with Bernoulli bond percolation with parameter p in view of Definition 3. It follows
from Definition 3 that θn(p) ≤ τn(p), for all n ≥ 1 and for all p ∈ [0, 1]. Hence, for all p < p∗, we have
θn(p) ≤ exp(−δpn) for all n ≥ 1.

Write E∞(p) = limn→∞ En(p), and assume p > p∗. Let U ∈ E∞(p) and suppose that ωp(U) contains
no infinite cluster. Then, for all j ≥ 1, there exists an infinite path 0 = x0, x1, . . . such that the sequence
i 7→ Uxixi+1 is strictly monotone. This event of probability zero was already excluded in the definition of Ω.
Thus, θ(p) > 0. Hence, pc = p∗, and the proof is complete.
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