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Abstract

We consider constrained-degree percolation on the hypercubic lattice. Initially, all edges are closed,
and each edge independently attempts to open at a uniformly distributed random time; the attempt
succeeds if, at that instant, both end-vertices have degrees strictly less than a prescribed parameter. The
absence of the FKG inequality and the finite energy property, as well as the infinite range of dependency,
make the rigorous analysis of the model particularly challenging. In this work, we show that the one-arm
probability exhibits exponential decay in its entire subcritical phase. The proof relies on the Duminil-
Copin—-Raoufi-Tassion randomized algorithm method and resolves a problem of dos Santos and the second
author. At the heart of the argument lies an intricate combinatorial transformation of pivotality in the
spirit of Aizenman—Grimmett essential enhancements, but with unbounded range. This technique may
be of use in other dynamical settings.
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1 Introduction

Percolation models have been extensively studied for decades. Since their introduction in [3|, they have
become central objects of research in probability and mathematical physics, with numerous variants of the
original model proposed over time. Several models (see e.g. [10,/12}|13}[16H19,[22/23]) purposefully feature
degree constraints, often making their analysis intricate. Our model of interest is the constrained degree
percolation (CDP) introduced in [24]. In CDP, each vertex may accept connections up to a fixed limit, after
which no new edges can be formed, while all previously established connections remain intact. Specifically, it
is a dependent continuous-time percolation process, defined by the following dynamics. At time zero, all edges
are closed; each edge attempts to open at a uniformly distributed random time, and the attempt is successful
if, at that moment, both of its end-vertices have degrees strictly smaller than a given parameter x. A formal
definition of the model is provided in Section Unlike classical Bernoulli percolation, the CDP exhibits
dependencies of all orders at any fixed time. Furthermore, the absence of the Fortuin-Kasteleyn—Ginibre
(FKG) inequality and the lack of the finite energy property make its analysis challenging.

1.1 Model and result

Let us start by introducing the CDP on Z%, d > 2. Let 2 < k < 2d be an integer, which is fixed throughout
the paper and kept implicit. We denote by & the set of nearest neighbour (non-oriented) edges of Z9.

Let U = (Ug)eece be a sequence of independent uniform random variables on [0, 1] with corresponding
product measure P. We denote by (2 the set of U € [0, 1]¢ with distinct coordinates and such that there is



no infinite W&lki] Z1,Z2,... in Z% such that i — Us,»
so we systematically restrict our attention to U € €.

For any p € [0, 1], we define the function w, : Q — {0,1}¢ as follows. We write w, (U, e) for the value of
wp(U) at edge e € £ and refer to e as p-open if w,(U, e) =1, and p-closed if w,(U, e) = 0. Initially, only the
(at most one) edge with U, = 0 is open, that is, wo(U,e) = 1y, ,—o. Each edge e € £ attempts to open at
time U, and is successful only if its addition to the currently open edges would not create a vertex of degree
larger than x. In other words, p — w, (U, zy) jumps from 0 to 1 at p = Uy, if

.11 1s strictly monotone. It is classical that P(Q2) = 1,

{z €2 2z €& wy,,—(Uzz)=1} <k and |{z € Z? : yz € £, wy,,— (U, yz) = 1}| < &,

and stays equal to 0 for all p € [0, 1] otherwise. This definition is well-posed in €, since for every e € £ only
a finite set of coordinates of U suffices to determine (w,(U, €))peo,1]-

We call a path p-open if all of its edges are p-open. The event that x € Z? is connected to y € Z% by a
p-open path is denoted by z <% y. We write 2 <% oo for the event that there exists an infinite p-open path
starting at x. We consider the standard one-arm probability

0, (p) =P(3x € Z%, ||z|| = n,0 & 2), 8(p) = P(0 & o0) = lim 6,,(p). (1)

n—oo

Since 0 : [0,1] — [0,1] is clearly non-decreasing, we naturally define

pe =sup{p € [0,1] : 6(p) = 0},
with the convention sup @ = 0, which will never enter into effect. Our main result is the following.

Theorem 1 (Sharp phase transition). Consider the CDP on Z¢, d > 2, with k € {2,...,2d}. For p < pe,
there exists o, > 0 such that for alln > 1, 6,(p) < e .

Remark 2. Theorem is stated and proved for Z? with its usual graph structure for concreteness. However,
the proof applies mutatis mutandis for any transitive locally finite bipartite graph. For non-bipartite graphs,
the structure of the switching path from Lemma [f] below becomes more complex, but is still sufficiently
path-like for the argument to adapt to this case as well.

1.2 Background

For r = 2d, the CDP reduces to the standard Bernoulli percolation model, for which Theorem [I]is a classical
result [1,/9,20]. We direct the reader to [11] for some background on this model.

It is known that the CDP undergoes a nontrivial phase transition for all d > 2 and most values of k. For
example, [4] establishes this non triviality for d = 2 and x = 3, while also proving that percolation does not
occur when d > k = 2, even at p = 1. Further progress was made in [15], which provides quantitative upper
bounds on the critical time and characterizes the phase transition for all d > 3 and most choices of k > 3.
Nonetheless, it remains open to determine whether the phase transition is trivial (p. = 1) for x € {3,...,9}
for some dimensions, but it is conjectured that this is never the case. In view of this, let us emphasise that
Theorem [I] applies regardless of whether the phase transition is trivial.

It is straightforward that the CDP is stochastically dominated by standard Bernoulli percolation for every
fixed p € [0,1]. Consequently, Theorem [I| holds trivially whenever p lies below the Bernoulli percolation
critical threshold, denoted by p.. However, it is known that p. > Pe (see Theorem 1 in [4] for the case d = 2
and k = 3; the argument extends for the general case), and therefore Theorem (1| remains nontrivial for all
choices of d and k.

Let p = sup{p € [0,1] : > 4 P(0 & x) < 00} < pe denote the suscptibility critical threshold for the
CDP. The recent work [5] proves Theorem (1| for p < p.. Our result strengthens their findings: in particular,
Theoremimplies Pe = Pe. This answers |5, Question 1.] in the setting of homogeneous (vertex-independent)
constraints k.

LA walk is a sequence of vertices such that consecutive ones are joined by edges. A path is a walk consisting of distinct
vertices.



1.3 Outline of the proof

A standard approach to proving sharpness in percolation models is the one of [§] using a randomised algorithm
(see Section and the OSSS inequality [21] (see Section . Applying this method directly fails. On
the one hand, the measure wy, o P is not monotonic and lacks other good properties. On the other hand, if
we choose to work with the configuration space [0,1]¢ instead of {0,1}¢, edges revealed in the exploration
of the occurrence of the one-arm event in do not witness this one-arm event on a smaller scale. For
this reason, as in [14], we introduce an alternative one-arm event (see Section for which revealment is
naturally expressed in terms of its probability. Namely, this event requires a path whose first part (head) is
open and whose second part (tail) has decreasing values of the uniform variables on edges. This modified
one-arm event satisfies a Russo formula (see Lemma [5)).

Putting the above ingredients together, one reaches the main difficulty: the Russo formula features a
different pivotality event (p-pivotality) from the influences appearing in the OSSS inequality (U-pivotality).
In Proposition [7] we provide a transfer from one to the other. The statement is largely inspired by the
essential enhancement technique of [2]. However, the lack of finite-energy property and the infinite range of
dependence make its implementation very delicate (see e.g. [6] for a very different setting where an intricate
unbounded range pivotality transfer is also performed). The base idea of the proof of Proposition |7 is
simple. The probability that the state of an edge depends on the uniform variables far from it decays super-
exponentially, while configuration modifications usually come at an exponential cost. We can then hope to
modify the configuration in the neighbourhood of the decreasing cluster of a U-pivotal edge in such a way
that we produce a p-pivotal edge. Unfortunately, there exist clusters whose probability of being decreasing
is only exponentially small in their volume (e.g. the fractal ternary square space-filling tree).

In order to remedy this, we need to only focus on a special path through a U-pivotal edge e that we call
its switching path P, (see Lemma @ While influence may spread outside of the switching path, the effect
of changing the value of U, on the configuration of open/closed edges is to switch the state of the edges of
P. and nothing else. This effect is dictated by the degree constraint and resembles the role of alternating
paths in dimer configurations (perfect matchings). The advantage is that, along paths, the probability of
being decreasing is super-exponential, as opposed to what is the case along clusters. This allows us to pay
for a modification of the uniform variables on all edges on or next to the path.

This strategy is sufficient to treat the case in which, roughly speaking, the U-pivotal edge is in the head
of the path witnessing the modified one-arm event. However, if e is in the tail, we further need to modify
the configuration around the decreasing path from e to the origin, in addition to the switching path. The
actual case distinction is a bit more intricate, but we refer the reader to the proof of Proposition [7] for the
details.

2 Proof

2.1 The one-arm event

For a path P = x1,...,Zm, we denote by M(P) the event that p > Uy, p, > Upywy > -+ > Uys,_1,, and
say that P is decreasing whenever M(P) occurs.

Definition 3 (Modified one-arm). Let n > 1 be an integer and p € [0,1]. The modified one-arm event
E,(p) C Qis defined by U = (U.)cce € En(p), if there exists a path of vertices (zo,...,xr) with ||zg|1 =
n > ||z;|1 fori € {1,...,k}, zx, = 0, and an integer [ € {0,...,k} such that the following properties hold.

o Forallie {1,...,1}, we have w,(U, z;_1z;) = 1.
e The path z,...,x; is decreasing.
We refer to xq,...,x; as the head and to xy, ..., x) as the tail of the path.

In words, the sphere of radius n is connected to an edge inside the box, from which a decreasing path
reaches the origin. As we will see, this modified version of the standard one-arm event (corresponding to



I = k above) is motivated by the fact that, when we run the randomized algorithm to explore its occurrence,
it is the modified version that occurs at edges being revealed.

Notice that E,(p) is decreasing in n and increasing in p (since p — w,(U, €) is increasing). Moreover,
E,(p) is measurable with respect to (Uely,<p)ece-

2.2 Transforming pivotality

Definition 4 (Pivotal). Fix U € Q, p € [0,1], e € £, and an event A C Q. We say that e is U-pivotal for A
if there exists U’ € Q with Uy = U; for all f € £\ {e} such that 14(U) # 14(U’). We say that e is p-pivotal
for A if U, > p and, if we set Uy = U} for all f € £\ {e} and U; = p, then U’ € Q and 14(U) # 14(U’).
We will only be interested in the event A = E,(p) from Definition [3| ' so we do not specify it below.

Write 7,,(p) = P(En(p)). The notion of p-pivotality is motivated by the following Russo formula.

Lemma 5 (Russo formula). For any p and n, it holds that 7, is differentiable on [0,1) and

dTn(p)
P(e is iwotal 2
> "1 s ; p-pivotal). (2)
Proof. Let § > 0 and write
Tn(p+5) 77_n(p) :]P)(En(p+5) \En(p))v (3)

recalling that p — E,(p) is increasing. Let Q,s = {uv € &€ : |ull1 < n,Uyy € (p,p + d]}. Observe that,
by Definition 3 for U € E,(p + ¢) \ E,(p), we have Q, 5 # @, since p — w,(U,e) may only change at
time U, and similarly for p — 1,>p,>v,,, where e,e’ € £. Note that P(|Q, ;| > 2) = o(d). Moreover, if
UecE,(p+96)\ En(p), |Qps| =1and U, # p for all e € £, then the unique edge must be p-pivotal. Hence,
becomes

(P +0) = Tn(p) = P(En(p + 0) \ En(p), |@p,s| = 1) +0( ZP n(p+0)\ En(p); @ps = {e}) + 0(9)

ecé&

= ZIF’(e is p-pivotal, U, € (p,p+9]) +0(d) = —— ZIP’ e is p-pivotal) 4 o(9).
—-bp
el ecf

Dividing both sides by § and taking 6 — 0 yields for the right derivative.

We may proceed similarly to the left, expressing the derivative in terms of pivotal edges at p— instead
of p. To conclude, it remains to prove that the function p — > . P(e is p-pivotal) is left-continuous. As
noted above, the sum is over a finite set of edges, so it suffices to prove that each summand is continuous.
To see this, let F be the a.s. finite set of edges uv € £ such that there is a decreasing path for p = 1 starting
at a vertex x with ||z||; < n and ending at u € Z¢. Then, for any edge e, we have

P(e is p-pivotal) = ZP(.F = F,e is p-pivotal).

The event {e is p-pivotal, F = F'} depends only on (1y,<p)rer and on the order of (Uy)ser, of which there
are finitely many and whose probability of occurrence is a polynomial in p. Therefore, the summands above
are continuous and converge uniformly, as Y P(F = F') = 1, so the series is continuous as desired. O

Lemma 6 (Switching path). Fiz U € QN (0,1)¢, p € (0,1), and e € E. We define Ut by Ue+ Uy for all
feé&\{e} andUST = 0. We similarly define U~ with US™ = 1 instead. Thenw,(U) € {wp(UeJr) wp(U7)}.
Moreover, the set of f € € such that w,(UT, f) # w,(U°™, f) is a path containing e with possibly coinciding
endpoints, but no other self-intersections. We refer to this path as the switching path of e and denote it by
Pe. If Pe =21, ...,2m with e = x;x;41, then the paths x1,...,x; and Ty, ..., T;41 are decreasing.



Proof. Since in 2 there are only finite decreasing paths, it is clear that & = {f € £ : w, (U, f) # w,(U, f)}
is finite. First, assume that e & &, that is, w,(U,e) = 1. Then, at any time p’ < U,, the degree of both
endpoints of e in wy (U) is at most x. But then, by induction on the number of attempted updates at edges
in a monotone path containing an endpoint of e, we have w, (U, f) = w, (U, f) for all f # e and p’ < U..
Thus, wy, (U) = wy, (U°") and the Markovian construction of the process guarantees that w, (U) = w, (U")
for all p’ > U.. Applying this to p’ = p concludes this case.

Now assume that w,(U,e) = 0, so e € . Since Usly, <y, = U;1
wy, (U) = wy, (U7). By the Markov property, we have w,(U) = w,(U°*™).

For the rest of the proof, we may assume that U = U°~. Notice that, since each edge attempts to
open once, we have wy (U, f) = wy (Ut, f) for all f € £\ & and p' < p. Similarly, for f € & we have
wy (U, f) = wp (UT, f) if and only if p’ < U)f+.

Set & = {eo,...,ex} with eg = e € & and Ue,,, > U, for i € {1,...,k —1}. Also, let p; = US* for
1 €{0,...,k}. We prove by induction on i € {0, ..., k} that the edges & = {eq,...,e;} form a path P; as in
the statement, and moreover satisfy:

s <u., for all f € &, this gives

e consecutive edges in P; have different values of w,(U°™, f),
e all internal Verticesﬂ of P; have degree  in w,(U®T, f).

The base case is immediate. Assume the statement holds for some i < k. Then, for p’ € [p;, pi11), the
only vertices with different degrees in wy, (U) and w, (U") are the endpoints of P;. If the path has coinciding
endpoints, then all vertices have the same degree (Z? has no odd cycles), so i = k, which is a contradiction.
Clearly, e;+1 has to be incident with at least one endpoint of P;, which forms a longer path respecting mono-
tonicity. The fact that e;;; cannot create a self-intersection other than completing a cycle follows from the
fact that internal vertices of P; already have degree . Moreover, since wy,,, (U, €i41) # wp,,, (UT, €i41), at
least one endpoint v of P; contained in e;41 has degree « in one of wy,,, —(U),wp,,,—(U°T). For concreteness,
let degv = & in wy,,,—(U) (the other case is analogous). Then wy, ., (U, €i11) =0, s0 wp,,, (U°T,e;41) =1,
wp, (U, ;) =1 and w,, (U, e;) = 0, where e; is the edge of P; containing v. Thus, degv = (k — 1) + 1 in
Wy, (UT) and Pjyq is still alternating. O

Proposition 7 (Pivotality transfer). There exists C = C(p,d) > 0, uniformly bounded over compacts of
(0,1) x N, such that

ZP(@ is U-pivotal) < C’Z]P’(e is p-pivotal).

ect ecé
Proof. Consider a U-pivotal edge e for the event F,(p). Let UT € E,(p) with UJT =Uy for all f e &\ {e}.
Similarly, define U~ € Q\ E,(p) with U; = Uy for all f € £\ {e}. We assume U" and U~ (and further

functions of U below) to be selected in some measurable way as a function of U. Let w;{ = w, (U, f) for
all f € £ For clarity, we denote by V. and &, the vertex and edge sets of the switching path P, (recall
Lemma @, respectively. We distinguish two cases.

Case A (Head). Assume that there is no decreasing path from a vertex in V. to the origin in Ut € E,(p).
We seek to modify the configuration in the neighbourhood of V. in order to make a p-pivotal edge appear.
We say that a configuration U’ € Q is good, if

o U J’c > p for all f € £ intersecting V. and such that w;{ =0 and
e U; = Uy for all remaining f € £\ &.

Claim 8. Any good configuration U’ satisfies w,(U’, f) = w}r for all f e &£\ &, and w,(U', f) = lU}gp for
feée.

2We do not view the endpoint of a path with coinciding endpoints as an internal vertex.




Proof. Using Lemma |§| successively for each f € £ intersecting V. and such that w? = 0, we obtain that
wt = w,(U’,) for any good configuration U’ with U} = U]?L for all f € &, with w;[ = 1. Yet, by construction,
for any v € V, and any good configuration U”, the number of edges uv such that U, < p is at most the
degree of v in w™, which is at most x. Therefore, in good configurations, the vertices in V, are unconstraint.
In particular, changing U} for f € & with w}' =1 does not change w,(U’, g) for g # f. O

Claim 9. No good configuration U’ with U} > p for all f € & belongs to E,(p).

Proof. By Claim [8 such configurations satisfy w,(U’, f) = wy Tlige. = wp(U™, f)ljge., using Lemma |§| in
the second equality. Since a path witnessing U’ € E,(n) cannot use edges f € £ with U} F>pby Deﬁmtlonl
such a path would also witness U~ € E,,(p), which contradicts the definition of U~

Claim 10. Any good configuration U’ with U} < p for all f € & with w}' = 1 belongs to E,(p).

Proof. By Claim |8 we have that w}”‘ = w,(U’, f) for any f € £ and such good configuration U’. Fix a path

witnessing U™ € E,(p). By the assumption of Case A, its tail does not intersect V.. Since Uj’c = Uf+ for all
f € & disjoint from V. by construction, the same path witnesses U’ € E,,(p). O

Let &L ={f€é&: w;f = 1}. Let F be a maximal subset of £, satisfying that no good configuration U’
with w, (U’, f) = 0 for f € £ \ F belongs to E,(p). By Claims [J] and [10} F exists and F # £,. Moreover,
by the assumption of Case A, no witness of a good configuration in E,,(p) can have a tail intersecting V..
Therefore, recalling Claim [8] within good configurations U’, the event U’ € E, (p) depends only on ILU/ <p
for f € &,. Therefore, for any good configuration U’ such that ]lU/ <p = Lycr forall f €&y, we have that
each f € &4\ F is p-pivotal for U’ for the event E,(p) (recall Deﬁmtlon [4) and, in particular, such f exist.

Given sets FF C P’ C £ and an edge f € P’ \ F, we define the event N(f,F Py C Qso that U €
N(f, F,P'), if, for all U" € QN [0,p]F x (p,1]7'\F x ngg\P/{Ug}a it holds that f is p-pivotal for E,(p) in
U’. We just proved that if e is U-pivotal and Case A occurs, then there exists f € £, \ F C &, \ F such that
N(f, F,P') occurs, where P = E. U{g € £:gNV. # T, w} = 0}.

Consider a path P = z1,...,x,, containing e = z;x;4+1 with possibly coinciding endpoints, and write
|P| = m — 1 for its length. We denote by P € {(z1,...,2;), (@m,...,xi+1)} the longest subpath of P not
containing e. Thus, |P| > ||P|/2]. Recall that M(P) denotes the event that P is decreasing.

From the above, we have

P(e is U-pivotal, Case A) = Z P(P. = P,P' = P',F = F,e is U-pivotal, Case A)
PP F

<D D DD BM(P).N(f,FEPY),

P P F f

where the sums are over paths P containing e, sets P’ D P of edges with at least one endpoint in P, edge
sets F C P and edges f € P\ F. Noticing that M(P) and N'(f, F, P') are measurable with respect to the
restriction of U to P C P C P’ and to € \ P’ respectively, we get that these events are independent. From the
definitions we clearly have P(M(P)) = p'ﬁ‘/|]3|! and P(N(f, F, P")) < P(f is p-pivotal) /(p!Fl(1 = p)IP'I=1F1.
Hence,

22d(\P|+1)22d(\P|+1)

|P|/2j!(p(1 — p))2d(PI+1)

P(e is U-pivotal, Case A) < Z Z P(f is p-pivotal)

P feP

. C . '
< Z Z ‘p‘lP\/S [ is p-pivotal) < Z 25(72)‘)[[»(‘)0 is p-pivotal),

P feP fe&

for some C; = Cy(p,d) > 0 and Cy = Ca(p,d) > 0 bounded uniformly on compacts of (0,1) x N, where
(e, f) denotes the ¢ distance between the edges e and f. Indeed, in the last inequality, we used that the



number of paths of given length in Z? is exponential, while \P\"P I/3 decays super-exponentially. Summing
over e, we obtain
. . C . :
ZIP’(@ is U-pivotal, Case A) < 3 Z P(f is p-pivotal). (4)
ec& fe€

Case B (Tail). Assume there exists a decreasing path from V), to the origin in U (equivalently, in U). We
will proceed similarly to Case A, but modifying the configuration in the neighbourhood of both V. and one
such decreasing path. Consider a path Py witnessing UT € E,(p). Recalling Definition [3[ and Lemma @
we get that it intersects V., since otherwise e cannot be U-pivotal. Let P = x1,..., %k, ..., X, ..., Tm, With
T, = 0, be a walk possibly self-intersecting at vertices, but not edges, defined as follows: follow Py from the
beginning until it first intersects V. at a vertex zy € V., then follow P, to a vertex z; € V, and then follow a
decreasing path from z; to the origin 0 = z,,, not visiting V. again. Indeed, a suitable vertex x; exists by the
assumption of Case B and, if its decreasing path to the origin intersects x1,...,x; at an edge, erasing the
resulting loop would give a witness of UT € E,(p) not visiting V., which is not possible, as argued above.

Let j = max{t € {1,...,k} : x; is in the head of Py}. Also define V = {zj,..., 2y} U V. and set
V={xeZ: §=V) <5}, V—{$€V §(z,V) <4} and OV = V\ V. Let i = min{h € {1,...,5}: xn €V}
We fix a path P’ = yq, ..., from z; to e; = (1,0,...,0) contained in V' \ {0}. Indeed, V is connected, as
it is the sum of two connected sets (a d-ball of radius 4 and V, which is the union of the vertex sets of the
intersecting path P, and walk z;,...,2y,) and {z € Z? : §(x,0) = 1} C V is also connected. Let & denote
the edge set of P’. We call a configuration U’ € Q good, if it satisfies the following.

() Up=Usif fnV =2,

) Up=Usif [fnV|=1and wf =1,

) Up >pif [f0V]=1and w} =0,

(iv) Uy = Uy if f C OV and f = 242441 for some a € {1,...,i—2},
) Up>pif fCOVand f & {wa@at1:a€{l,...,i—2}},

) U}ZUf ifle‘i_ll‘i,

) Up <pif fed,

(viii) U} > pif f € E\ (' U{zimimi}), FAV # 2.

Lemma 11. Let U’ be a good configuration. For any f € & with |f N V| < 1, we have w,(U’, f) = wf For
any f € € with f CV, we have wp(U', f) = ﬂU}gp-

Proof. The statement holds trivially for edges in and The vertices v € V have at most two
incident edges uv with U/, < p by construction, so the edges in (these are all edges f C V with U +<Dp)
indeed satisfy w,(U’,uv) = 1. On the other hand, vertices v € JV satisfy that all uv € £ with U}, <
also satisfy w}, = 1, so there are at most x of them. Therefore, the edges f in and also satisfy
wp(U/a f) = L.

It remains to show that w,(U™, f) = w,(U’, f) for all f in|( . (1) and |(ii)) m To do this, denote by f1,..., fs
the edges in - (i) ordered so that a + Uy, is increasing. Setting Uf0 = 0 and Uy,,, = p, we show by
induction on a € {0,...,s + 1} that wy (U', f) = wy (UT, f) for all p’ < and f € € such that [f N V| < 1.
The base case is trivial. Assume the induction statement is true for some a € {0,...,s}. Then, for all
p' <Uj,,, and f € & with |f NV| = 1, it holds that w, (U, f) = wy, (U, f) = wy,, (U+,f) = wp,(U+,f).
Since this edge set separates the edges in from the remaining edges (recall that V. C V and that, by
Lemma@ wy (UT, f) = wy (U, f) for all p < p and f € £\ &), we get that wy (U', f) = wy (U, f) for
all p" < Uy,,, and f € £ with [f N V| < 1. If a = s, we are done. Otherwise, it remains to prove that
wuy, ., (U, far1) = wu;, (U™, faxr1) = 1. This holds since the vertices in Y are unconstraint in U’ as noted
above. This completes tTle proof of the induction and the lemma. O



Corollary 12. The edge Oey is p-pivotal for any good configuration.

Proof. Fix a good U’. Notice that, by construction, all edges containing 0 are in so U' ¢ E,(p) by
Definition @ Moreover, there is exactly one edge of the form ze; with U,., < p, so it suffices to show that,
in U’, each edge f in the path x1,...,2;,v1,. ..,y satisfies w,(U’, f) = 1. Inspecting the definition of good
configurations, Lemma [11| completes the proof. Indeed, the edges f in x1,...,x; are in the head of Py by
definition of j and 7, so they satisfy w? =1 and U} =U; <p. O

With Corollary at hand, we conclude essentially as in Case A, but we spell out the details for the
reader’s convenience. Given disjoint edge sets F.,E_ C &, we define the event N (FE,,E_) so that U €
N(E4, B-), if, for all U" € QN [0,p]"+ x (p, 1]"~ x []tee\(m,um )1Us}, it holds that Oc; is p-pivotal in U".

By Corollary [12] if e is U-pivotal and Case B occurs, then N'(€, &) occurs, where £ are the edges in [(vii)
and £_ are the edges in m m and viii)l Notice that all edges f € £ with f C V are either in or

so they belong to &4 UE_.

Given U, we denote by P the longest (breaking ties arbitrarily) path among the following four paths:
Ty, ..., Tk
® Ty, ..., Ty
e the part of P, up to e excluded;
e the part of —P, up to e excluded, where —P, denotes P, in reverse order.

Notice that the union of the vertex sets of these paths is V, so |P| > (|V| — 2)/4. Moreover, M(P) occurs,
since each of the four paths is decreasing by construction.
Thus, we get

P(e is U-pivotal, Case B) = Z Z PV =V,E =FE;, &= E_,P = P,e is U-pivotal, Case B)

)’N(E-l-’ E—))v

IN
]
]

)
<

M

where the sums are over

e finite connected vertex sets V' C Z< containing e and 0,

o disjoint edge sets Fy, E_ C € whose elements are contained in {z € Z% : §(x,V) < 6} and satisfying that
all f € € such that f C {z € Z%: §(x,V) < 4} satisty f € B, UE_,
e paths P with vertex set contained in V and satisfying |P| > (V| — 2)/4.

Observing that the edges of P are contained in E4 U E_, we get that M(P) and N(E,, E_) are inde-
pendent. By definition, we have P(M(P)) = plPl/|P|! and P(N(E,, E_)) < P(0e; is p-pivotal)/(p!E+! (1 —
p)!E-1). Hence,
9C4|V|

—2)/41M(p(1 = p)) <V
< C527°0P(0e; is p-pivotal)

P(e is U-pivotal, Case B) < Z V] P(0Oe; is p-pivotal)
%

for some Cy = Cy4(d) > 0 and C5 = Cs(d,p) > 0, uniformly bounded over compacts of (0,1) x N, taking
into account the fact that the number of connected sets of a given size containing 0 grows exponentially.
Summing over e yields

C
ZIP e is U-pivotal, Case B) < 5 P(0e; is p-pivotal).
ecf
Combining this with , concludes the proof of Proposition O



2.3 The OSSS inequality

We briefly recall the OSSS inequality in the context of product probability spaces. Let I be a countable
index set, and consider the product space (X!, 7®7), where a typical element is denoted by x = (z;);cr. We
are interested in Boolean functions f : X! — {0, 1}, which may depend on infinitely many coordinates of .

An algorithm A determining f reveals the coordinates of x sequentially, with each choice depending on
the values revealed thus far. The process terminates once the value of f(z) is determined, independently of
the unrevealed coordinates. For a formal definition of randomized algorithms, we refer to [21]. Associated
to A and f, we define the revealment and influence of coordinate ¢ € I by

5i(A) := 7® (A reveals z;), Inf;(f) == %" (f(z) # f(z")),

where 2’ is obtained from z by resampling the i-th coordinate independently according to 7, leaving the
others unchanged. The OSSS inequality [21] states that for any Boolean function f : X! — {0,1} and any
algorithm A that determines f,
Var(f) < Z@(A) ~Inf;(f). (5)
iel
This inequality was initially formulated for finite sets X and I. Nonetheless, the result remains valid
when X is a general space and I is countable (see |7, Remark 5]). Applying to X = [0,1], 7 the Lebesgue
measure over X and I = &, so that 7%/ = P, and the function f = 15, (p), and setting 0(A) = maxccg dc(A),
we obtain

dry (p)
dp ~’

7 (p)(1 = 7 (0)) < 5(A) 3" Infe (L, ) < CO(A) " B(e is prpivotal) = C(1 — p)o(A)
ec& ecé

(6)

using Inf. (1, () < P(e is U-pivotal) and Proposition [7]in the second inequality and Lemma [5] for the last
equality.

2.4 The randomized algorithm approach

In this section, we apply the method of 8 Section 3] to produce a randomized algorithm with low revealment
and deduce a sharpness result for the modified one-arm event E, (p). Since there is little novelty here, the
presentation is rather concise and we recommend referring to [8] for more details.

Lemma 13 (Differential inequality implies sharpness |8, Lemma 3.1]). Consider a converging sequence of
differentiable functions f, : [p—,p+] — [0,1] satisfying

n
for alln > 1, where ¥, = Z;S fx. Then, there exists py € [p—,p4| such that
(i) for any p < p«, there exists ¢, > 0 such that for any n large enough, fr(p) < exp(—cpn);
(ii) for any p > p., f = lim f, satisfies f(p) > p — p«.
n—oo

Recall that 7,(p) = P(E,(p)), with the convention 79(p) = 1, and write 3,, = Zf;é 7 (p).
Lemma 14. For anyn > 1, there exists a randomized algorithm A determining 1 g, ) with 6(A) < 105, /n.

Proof. We call a path of vertices (zo,...,zx) in Z% nice if there exists | € {0,...,k} such that, for all
ie{l,...,1l}, we have wy(U, z;—_12;) = 1 and the path z;,. ..,z is decreasing. We refer to z; as the middle
of the nice path. For fixed r € {1,...,n}, the algorithm A, is defined as follows. Initialize Ry = {x € Z? :
lzl|s =7} =: 0, So = @ and Ty = @. Assume R, C Z¢ and S,,, T}, C € are given, and proceed according
to the following cases, choosing edges arbitrarily if multiple edges satisfy the conditions.



(i) If there exist xy € T, with z € Ry, and y & Ry, we set Sppi1 = Sm, Tin1 = T and Ry i1 = R U{y}-

(ii) Otherwise, if there exists xy € Sy, \ Tr, such that ||z||; < n and the restriction of U to S, is sufficient
to establish that w, (U, zy) = 1, we let Ry41 = Ry, Smt1 = Sy and T = T, U {zy}.

(iii) Otherwise, if there exists zy € £ and a decreasing path x;,...,x = = (possibly consisting of a single
vertex) with edges in S,, and z; € R,,,, we set Ry 11 = R, Smt1 = Sm U {zy} and Typ1 = Tin.

(iv) Otherwise, if R,, / 0, and there is a decreasing path with edges in S, from 9, to 0, set R, 11 =
R, U avu Sm+1 = Sm; Tm+1 =Tn.

Let us make a few observations about this algorithm. Firstly, whenever does not occur, then R,, is
the set of vertices that can be reached from R{, via edges in T,,, where
R {ar R  On,

7 0,Udy Ry D 0y
Therefore, whenever we apply there is a path of edges in Ty, from R} to x;, which are therefore known
to be p-open based on the restriction of U to the set .S, of explored edges. In particular, whenever an edge
is explored, we have discovered a nice path from Ry, to an endpoint of this edge.

Since U € , the algorithm clearly terminates. Assume the algorithm has terminated. Then, for any
edge zy € £\ T, and with ||z]|1 < n and {z,y} "R, # &, we have zy € S,, \ T), and w, (U, zy) = 0. Indeed,
edges forming a decreasing path starting at the above edge zy are certainly in S,, (by and are sufficient
to determine w, (U, zy). Therefore, R,, is exactly the union of the connected components of the vertices in

0 in the graph with edge set {zy € € : ||z|l1 < n,w,(U,zy) = 1}. Consequently, all nice paths starting at
R}, are contained in S,,, and the restriction of U to S,, suffices to determine that they are nice.

Finally, let us see that the algorithm does determine the value of 1g, () (U). If R,, 7 Oy, then there
is no decreasing path from 9, to 0, so a path witnessing E,,(p) would need to have its head z; satisfying
lz;|| < r, so we can decompose it into a p-open path from 9, to 9, and a nice path from 9, to 0. Therefore,
the restriction of U to S,, is sufficient to determine whether E,(p) occurs. If, on the contrary, R, D Oy,
then in particular we know if there is a nice path from 9, to 0, which is the event E, (p).

Let us fix an edge zy € £ and bound d,y(A,). If was applied during the algorithm, then E,.(p)
occurs. If E,.(p) does not occur, then

T2 Bz~ (P) U 0y By 1, —r| (P)
occurs, where o, is the shift by z € Z?. By the union bound, this gives

Oay(Ar) < 70 (D) + 7|z ))y —r| (P) + TYyll—r| ()

Now apply algorithm A, with probability 1/n for each r € {1,...,n}. Then, for any e € £,

n

1 5« 10
0c(A) = ~ > (A, < - > m(p) < —Zn. O
k=0

Proposition 15 (Sharpness for the modified one-arm event). Consider the CDP on Z%, d > 2, with x €
{2,...,2d}. There exists p, € [0,1] such that

(i) For p < p., there exists §, > 0 such that for alln > 1, 7,(p) < e~ %",

(i) If p« > 0, then there exists ¢ > 0 such that for p > p,, 7(p) = lUm 7,(p) > c(p — p«).
n—oo

(iii) If p. =0, then 7(p) > 0 for all p > p.

10



Proof. Fix arbitrary 0 < p_ < py < 1 and note that 1 — 7,,(p) > (1 — p)?? > (1 — p; )2 for p € [p_,py].
Combining this with Lemma [14] and @, we obtain

for a constant C' > 0 depending only on p_, p1,d. The desired result then follows from Lemma [13| by taking
p—=1—-—py —0. O

Proof of Theorem[] Let us first observe that p, in Proposition is not zero. Indeed, this follows by
direct comparison with Bernoulli bond percolation with parameter p in view of Definition [3} It follows
from Definition [3| that 6,,(p) < 7,(p), for all n > 1 and for all p € [0,1]. Hence, for all p < p,, we have
0n(p) < exp(—d,n) for all n > 1.

Write Eoo(p) = limp—00 Er(p), and assume p > p,. Let U € E(p) and suppose that w,(U) contains

no infinite cluster. Then, for all j > 1, there exists an infinite path 0 = zg,z1,... such that the sequence
© = Ug,q,,, is strictly monotone. This event of probability zero was already excluded in the definition of €.
Thus, 6(p) > 0. Hence, p. = px, and the proof is complete. O
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