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Abstra
t

Kineti
ally 
onstrained models (KCM) are reversible intera
ting parti
le systems

on Zd
with 
ontinuous-time 
onstrained Glauber dynami
s. They are a natural non-

monotone sto
hasti
 version of the family of 
ellular automata with random initial state

known as U -bootstrap per
olation. KCM have an interest in their own right, owing to

their use for modelling the liquid-glass transition in 
ondensed matter physi
s.

In two dimensions there are three 
lasses of models with qualitatively di�erent s
a-

ling of the infe
tion time of the origin as the density of infe
ted sites vanishes. Here we

study in full generality the 
lass termed `
riti
al'. Together with the 
ompanion paper

by Martinelli and two of the authors [20℄ we establish the universality 
lasses of 
riti
al

KCM and determine within ea
h 
lass the 
riti
al exponent of the infe
tion time as well

as of the spe
tral gap. In this work we prove that for 
riti
al models with an in�nite

number of stable dire
tions this exponent is twi
e the one of their bootstrap per
olation


ounterpart. This is due to the o

urren
e of `energy barriers', whi
h determine the

dominant behaviour for these KCM but whi
h do not matter for the monotone boot-

strap dynami
s. Our result 
on�rms the 
onje
ture of Martinelli, Morris and the last

author [26℄, who proved a mat
hing upper bound.
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1 Introdu
tion

Kineti
ally 
onstrained models (KCM) are intera
ting parti
le systems on the integer lat-

ti
e Zd
, whi
h were introdu
ed in the physi
s literature in the 1980s by Fredri
kson and

Andersen [16℄ in order to model the liquid-glass transition (see e.g. [17, 31℄ for reviews), a

major and still largely open problem in 
ondensed matter physi
s [5℄. A generi
 KCM is a


ontinuous-time Markov pro
ess of Glauber type 
hara
terised by a �nite 
olle
tion U of �-

nite nonempty subsets of Zd
zt0u, its update family. A 
on�guration ω is de�ned by assigning

to ea
h site x P Zd
an o

upation variable ωx P t0, 1u, 
orresponding to an empty or o

upied

site respe
tively. Ea
h site x P Zd
waits an independent, mean one, exponential time and

then, i� there exists U P U su
h that ωy � 0 for all y P U�x, site x is updated to empty with

probability q and to o

upied with probability 1�q. Sin
e ea
h U P U is 
ontained in Zd
zt0u,

the 
onstraint to allow the update does not depend on the state of the to-be-updated site.

As a 
onsequen
e, the dynami
s satis�es detailed balan
e w.r.t. the produ
t Bernoulli(1� q)

measure, µ, whi
h is therefore a reversible invariant measure. Hen
e the pro
ess started at

µ is stationary.

Both from a physi
al and from a mathemati
al point of view, a 
entral issue for KCM

is to determine the speed of divergen
e of the 
hara
teristi
 time s
ales when q Ñ 0. Two

key quantities are: (i) the relaxation time Trel, i.e. the inverse of the spe
tral gap of the

Markov generator (see De�nition 2.5) and (ii) the mean infe
tion time Epτ0q, i.e. the mean

over the stationary pro
ess started at µ of the �rst time at whi
h the origin be
omes empty.

Several works have been devoted to the study of these time s
ales for some spe
i�
 
hoi
es

of the 
onstraints [2, 9, 12, 13, 25, 27℄ (see also [17℄ se
tion 1.4.1 for a non exhaustive list of

referen
es in the physi
s literature). These results show that KCM exhibit a very large variety

of possible s
alings depending on the update family U . A question that naturally emerges,

and that has been �rst addressed in [26℄, is whether it is possible to group all possible update

families into distin
t universality 
lasses so that all models of the same 
lass display the same

divergen
e of the time s
ales.

Before presenting the results and the 
onje
tures of [26℄, we should des
ribe the key


onne
tion of KCM with a 
lass of dis
rete monotone 
ellular automata known as U-bootstrap

per
olation (or simply bootstrap per
olation) [8℄. For U-bootstrap per
olation on Zd
, given

an update family U and a set At of sites infe
ted at time t, the infe
ted sites in At remain

infe
ted at time t � 1, and every site x be
omes infe
ted at time t � 1 if the translate by

x of one of the sets in U is 
ontained in At. The set of initial infe
tions A is 
hosen at

random with respe
t to the produ
t Bernoulli measure with parameter q P r0, 1s, whi
h

identi�es with µ: for every x P Zd
we have µpx P Aq � q. One then de�nes the 
riti
al

probability qc
�

Zd,U
�

to be the in�mum of the q su
h that with probability one the whole

latti
e is eventually infe
ted, namely

�

t¥0At � Zd
. A key time s
ale for this dynami
s is

the �rst time at whi
h the origin is infe
ted, τBP. In order to study this infe
tion time for

models on Z2
, the update families were 
lassi�ed by Bollobás, Smith and Uzzell [8℄ into three

universality 
lasses: super
riti
al, 
riti
al and sub
riti
al, a

ording to a simple geometri



riterion (see De�nition 2.1). In [8℄ they proved that qc
�

Z2,U
�

� 0 if U is super
riti
al or


riti
al, and it was proved by Balister, Bollobás, Przyku
ki and Smith [4℄ that qc
�

Z2,U
�

¡ 0

if U is sub
riti
al. For super
riti
al update families, [8℄ proved that τBP � q�Θp1q
w.h.p.

as q Ñ 0, while in the 
riti
al 
ase τBP � exppq�Θp1q
q. The result for 
riti
al families was

later improved by Bollobás, Duminil-Copin, Morris and Smith [7℄, who identi�ed the 
riti
al

exponent α � αpUq su
h that τBP � exppq�α�op1q
q.

Ba
k to KCM, if we �x an update family U and an initial 
on�guration ω and we identify
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the empty sites with infe
ted sites, a �rst basi
 observation is that the 
lusters of sites that

will never be infe
ted in the U-bootstrap per
olation 
orrespond to 
lusters of sites whi
h are

o

upied and will never be emptied under the KCM dynami
s. A natural issue is whether

there is a dire
t 
onne
tion between the infe
tion me
hanism of bootstrap per
olation and

the relaxation me
hanism for KCM, and, more pre
isely, whether the s
aling of Trel and Epτ0q

is 
onne
ted to the typi
al value of τBP when the law of the initial infe
tions is µ. It is not

di�
ult to establish that µpτBPq provides a lower bound for Epτ0q and Trel (see [27, Lemma 4.3℄

and (10)), but in general, as we will explain, this lower bound does not provide the 
orre
t

behaviour.

In [26℄, Martinelli, Morris and the last author proposed that the super
riti
al 
lass should

be re�ned into unrooted super
riti
al and rooted super
riti
al models in order to 
apture the

ri
her behavior of KCM. For unrooted models the s
aling is of the same type as for bootstrap

per
olation, Trel � Epτ0q � q�Θp1q
as q Ñ 0 [26, Theorem 1(a)℄

1

, while for rooted models

the divergen
e is mu
h faster, Epτ0q � Trel � eΘpplog qq
2
q

(see [26, Theorem 1(b)℄ for the upper

bound and [25, Theorem 4.2℄ for the lower bound).

Con
erning the 
riti
al 
lass, the lower bound with µpτBPq mentioned above and the re-

sults of [8℄ on bootstrap per
olation imply that Trel and Epτ0q diverge at least as exppq
�Θp1q

q.

In [26, Theorem 2℄ an upper bound of the same form was established and a 
onje
ture [26,

Conje
ture 3℄ was put forward on the value of the 
riti
al exponent ν su
h that both Epτ0q and

Trel s
ale as expp| log q|
Op1q

{qνq, with ν in general di�erent from the exponent of the 
orrespon-

ding bootstrap per
olation pro
ess. Furthermore, a toolbox was developed for the study of

the upper bounds, leading to upper bounds mat
hing this 
onje
ture for all models. The main

issue left open in [26℄ was to develop tools to establish sharp lower bounds. A �rst step in this

dire
tion was done by Martinelli and the last two authors [25℄ by analyzing a spe
i�
 
riti
al

model known as the Duarte model for whi
h the update family 
ontains all the 2-elements

subsets of the North, South and West neighbours of the origin. Theorem 5.1 of [25℄ esta-

blishes a sharp lower bound on the infe
tion and relaxation times for the Duarte KCM that,

together with the upper bound in [26, Theorem 2(a)℄, proves EDuarte

pτ0q � exp pΘpplog qq4{q2qq

as q Ñ 0, and the same result holds for Trel. The divergen
e is again mu
h faster than for

the 
orresponding bootstrap per
olation model, for whi
h it holds τBP � eΘpplog qq
2
{qq

w.h.p

as q Ñ 0 [30℄ (see also [6℄, from whi
h the sharp value of the 
onstant follows), namely the


riti
al exponent for the Duarte KCM is twi
e the 
riti
al exponent for the Duarte bootstrap

per
olation.

Both for Duarte and for super
riti
al rooted models, the sharper divergen
e of time s
ales

for KCM is due to the fa
t that the infe
tion time of KCM is not well approximated by

the infe
tion me
hanism of the monotone bootstrap per
olation pro
ess, but is instead the

result of a mu
h more 
omplex infe
tion/healing me
hanism. Indeed, visiting regions of the


on�guration spa
e with an anomalous amount of empty sites is heavily penalised and requires

a very long time to a
tually take pla
e. The basi
 underlying idea is that the dominant

relaxation me
hanism is an East-like dynami
s for large droplets of empty sites. Here East-

like means that the presen
e of an empty droplet allows to empty (or �ll) another adja
ent

droplet but only in a 
ertain dire
tion (or more pre
isely in a limited 
one of dire
tions). This

is reminis
ent of the relaxation me
hanism for the East model, a prototype one-dimensional

KCM for whi
h x 
an be updated i� x � 1 is empty, thus a single empty site allows to


reate/destroy an empty site only on its right (see [15℄ for a review on the East model). For

super
riti
al rooted models, the empty droplets that play the role of the single empty sites

1

For the lower bound of Trel one does not need to use the boostrap per
olation results, as Trel ¥

q�minUPU |U |
{|U | by plugging the test fun
tion 1

tω0�0u in De�nition 2.5.
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for East have a �nite (model dependent) size, hen
e an equilibrium density q
e�

� qΘp1q. For

the Duarte model, droplets have a size that diverges as ℓ � | log q|{q and thus an equilibrium

density q
e�

� qℓ � e�plog qq
2
{q
. Then a (very) rough understanding of the results of [25, 26℄ is

obtained by repla
ing q with q
e�

in the time s
ale for the East model T East

rel � eΘpplog qq
2
q

[2℄. The

main te
hni
al di�
ulty to translate this intuition into a lower bound is that the droplets


annot be identi�ed with a rigid stru
ture. In [25℄ this di�
ulty for the Duarte model

was over
ome by an algorithmi
 
onstru
tion that allows to sequentially s
an the system in

sear
h of sets of empty sites that 
ould (without violating the 
onstraint) empty a 
ertain

rigid stru
ture. These are the droplets that play the role of the empty sites for the East

dynami
s.

In [26℄ all 
riti
al models whi
h have an in�nite number of stable dire
tions (see Se
tion

2.1), of whi
h the Duarte model is but one example, were 
onje
tured to have a 
riti
al

exponent ν � 2α, with α � αpUq the 
riti
al exponent of the 
orresponding bootstrap

per
olation dynami
s (de�ned in De�nition 2.2). The heuristi
s is the same as for the Duarte

model, the only di�eren
e being that droplets would have in general size ℓ � | log q|Op1q{qα.

However, the te
hnique developed in [25℄ for the Duarte model relies heavily on the spe
i�


form of the Duarte 
onstraint and in parti
ular on its oriented nature

2

, and it 
annot be

extended readily to this larger 
lass.

In this work, together with the 
ompanion paper by Martinelli and two of the authors [20℄,

we establish in full generality the universality 
lasses for 
riti
al KCM, determining the 
riti
al

exponent for ea
h 
lass.

Here we treat all 
hoi
es of U for whi
h there is an in�nite number of stable dire
tions

and prove (Theorem 2.8) a lower bound for Trel and Epτ0q that, together with the mat
hing

upper bound of [26, Theorem 2℄, yields

Epτ0q � e| log q|
Op1q

{q2α

for q Ñ 0 and the same result for Trel. Our te
hnique is somewhat inspired by the algorithmi



onstru
tion of [25℄, however, the nature of the droplets whi
h move in an East-like way is

here mu
h more subtle, and in order to identify them we 
onstru
t an algorithm whi
h 
an

be seen as a signi�
ant improvement on the α-
overing and u-i
eberg algorithms developed

in the 
ontext of bootstrap per
olation [7℄.

In the 
ompanion paper [20℄ we prove for the 
omplementary 
lass of models, namely all


riti
al models with a �nite number of stable dire
tions, an upper bound that (together with

the lower bound from bootstrap per
olation) yields instead

Epτ0q � e| log q|
Op1q

{qα

for q Ñ 0 and the same result for Trel.

A 
omparison of our results with Conje
ture 3 of [26℄ is due. The 
lass that we 
onsider

here is, in the notation of [26℄, the 
lass of models with bilateral di�
ulty β � 8, hen
e belong

to the α-rooted 
lass de�ned therein. Therefore, our Theorem 2.8 proves Conje
ture 3(a) in

this 
ase. We underline that it is not a limitation of our lower bound strategy that prevents us

from proving Conje
ture 3(a) for the other α-rooted models, namely those with 2α ¤ β   8.

Indeed, as it is proven in the 
ompanion paper [20℄, in this 
ase the 
onje
ture of [26℄ is not


orre
t, sin
e it did not take into a

ount a subtle relaxation me
hanism whi
h allows to

re
over the same 
riti
al exponent as for the bootstrap per
olation dynami
s.

2

Note that, sin
e the Duarte update rules 
ontain only the North, South and West neighbours of the

origin, the 
onstraint at a site x does not depend on the sites with abs
issa larger than the abs
issa of x.
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The plan of the paper is as follows. In Se
tion 2 we develop the ba
kground for both KCM

and bootstrap per
olation needed to state our result, Theorem 2.8. In Se
tion 3 we give a

sket
h of our reasoning and highlight the important points. In Se
tion 4 we gather some

preliminaries and notation. Se
tion 5 is the 
ore of the paper � there we de�ne the 
entral

notions and establish their key properties, 
ulminating in the Closure Proposition 5.20. In

Se
tion 6 we establish a 
onne
tion between the KCM dynami
s and an East dynami
s and

use this to wrap up the proof of Theorem 2.8. Finally, in Se
tion 7 we dis
uss some open

problems.

2 Models and ba
kground

2.1 Bootstrap per
olation

Before turning to our models of interest, KCM, let us re
all re
ent universality results for

the intimately 
onne
ted bootstrap per
olation models in two dimensions. U-bootstrap per-


olation (or simply bootstrap per
olation) is a very general 
lass of monotone transitive lo
al


ellular automata on Z2
�rst studied in full generality by Bollobás, Smith and Uzzell [8℄. Let

U , 
alled update family, be a �nite family of �nite nonempty subsets, 
alled update rules,

of Z2
zt0u. Let A, 
alled the set of initial infe
tions, be an arbitrary subset of Z2

. Then

the U-bootstrap per
olation dynami
s is the dis
rete time deterministi
 growth of infe
tion

de�ned by A0 � A and, for ea
h t P N,

At�1 � At Y tx P Z2 : DU P U , U � x � Atu.

In other words, at any step ea
h site be
omes infe
ted if a rule translated at it is already fully

infe
ted, and infe
tions never heal. We de�ne the 
losure of the set A by rAs �
�

t¥0At and

we say that A is stable when rAs � A. The set of initial infe
tions A is 
hosen at random

with respe
t to the produ
t Bernoulli measure µ with parameter q P r0, 1s: for every x P Z2

we have µpx P Aq � q.

Arguably, the most natural quantity to 
onsider for these models is the typi
al (e.g. mean)

value of τBP, the infe
tion time of the origin.

The 
ombined results of Bollobás, Smith and Uzzell [8℄ and Balister, Bollobás, Przyku
ki

and Smith [4℄ yield a pre-universality partition of all update families into three 
lasses with

qualitatively di�erent s
alings of the median of the infe
tion time as q Ñ 0. In order to de�ne

this partition we will need a few de�nitions.

For any unitary ve
tor u P S1
� tz P R2 : }z} � 1u (} � } denotes the Eu
lidean norm

in R2
) and any ve
tor x P R2

we denote Hupxq � ty P R2 : xu, y � xy   0u � the open

half-plane dire
ted by u passing through x. We also set Hu � Hup0q. We say that a dire
tion

u P S1
is unstable (for an update family U) if there exists U P U su
h that U � Hu and stable

otherwise. The partition is then as follows.

De�nition 2.1 (De�nition 1.3 of [8℄). An update family U is

• super
riti
al if there exists an open semi-
ir
le of unstable dire
tions,

• 
riti
al if it is not super
riti
al, but there exists an open semi-
ir
le with a �nite number

of stable dire
tions,

• sub
riti
al otherwise.
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The main result of [8℄ then states that in the super
riti
al 
ase τBP � q�Θp1q
with high

probability as q Ñ 0, while in the 
riti
al one τBP � exppq�Θp1q
q. The �nal justi�
ation of

the partition in De�nition 2.1 was given by Balister, Bollobás, Przyku
ki and Smith [4℄ who

proved that the origin is never infe
ted with positive probability for sub
riti
al models for

q ¡ 0 su�
iently small, i.e. qc
�

Z2,U
�

¡ 0 if U is sub
riti
al. From the bootstrap per
olation

perspe
tive super
riti
al models are rather simple, while sub
riti
al ones remain very poorly

understood (see [19℄). Nevertheless, most of the non-trivial models 
onsidered before the

introdu
tion of U-bootstrap per
olation, in
luding the 2-neighbour model (see [1, 22℄ for

further results), fall into the 
riti
al 
lass, whi
h is also the fo
us of our work.

Signi�
antly improving the result of [8℄, Bollobás, Duminil-Copin, Morris and Smith [7℄

found the 
orre
t exponent determining the s
aling of τBP for 
riti
al families. Moreover,

they were able to �nd log τBP up to a 
onstant fa
tor. To state their results we need the

following 
ru
ial notion.

De�nition 2.2 (De�nition 1.2 of [7℄). Let U be an update family and u P S1
be a dire
tion.

Then the di�
ulty of u, αpuq, is de�ned as follows.

• If u is unstable, then αpuq � 0.

• If u is an isolated stable dire
tion (isolated in the topologi
al sense), then

αpuq � mintn P N : DK � Z2, |K| � n, |rZ2
X pHu YKqszHu| � 8u, (1)

i.e. the minimal number of infe
tions allowing Hu to grow in�nitely.

• Otherwise, αpuq � 8.

We de�ne the di�
ulty of U by

αpUq � inf
CPC

sup
uPC

αpuq, (2)

where C � tHu X S1 : u P S1
u is the set of open semi-
ir
les of S1

.

It is not hard to see (Theorem 1.10 of [8℄, Lemma 2.6 of [7℄) that the set of stable

dire
tions is a �nite union of 
losed intervals of S1
and that (Lemmas 2.7 and 2.10 of [7℄) (1)

also holds for unstable and strongly stable dire
tions, that is dire
tions in the interior of the

set of stable dire
tions (but not for semi-isolated stable dire
tions i.e. endpoints of non-trivial

stable intervals). Furthermore (see [7, Lemma 2.7℄, [8, Lemma 5.2℄), 1 ¤ αpuq   8 if and

only if u is an isolated stable dire
tion, so that U is 
riti
al if and only if 1 ¤ αpUq   8. As

a �nal remark we re
all that, 
ontrary to determining whether an update family is 
riti
al,

�nding αpUq is a NP-hard question [21℄.

We are now ready to des
ribe the universality results. A weaker form of the result of [7℄

is that τBP � exppq�αpUq�op1q
q with high probability as q Ñ 0. For the full result however, we

need one last de�nition.

De�nition 2.3. A 
riti
al update family U is balan
ed if there exists a 
losed semi-
ir
le C

su
h that maxuPC αpuq � αpUq and unbalan
ed otherwise.

Then [7℄ provides that for balan
ed models τBP � exppΘp1q{qαpUqq with high probability

as q Ñ 0, while for unbalan
ed ones τBP � exppΘpplog qq2q{qαpUqq. These are the best general

estimates 
urrently known. We refer to [28, 29℄ for re
ent surveys on these results as well as

on sharper results for some spe
i�
 models.
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2.2 Kineti
ally 
onstrained models

Returning to KCM, let us �rst de�ne the general 
lass of KCM introdu
ed by Can
rini,

Martinelli, Roberto and the last author [9℄ dire
tly on Z2
. Fix a parameter q P r0, 1s and an

update family U as in the previous se
tion. The 
orresponding KCM is a 
ontinuous-time

Markov pro
ess on Ω � t0, 1uZ
2

whi
h 
an be informally de�ned as follows. A 
on�guration

ω is de�ned by assigning to ea
h site x P Z2
an o

upation variable ωx P t0, 1u 
orresponding

to an empty (or infe
ted) and o

upied (or healthy) site respe
tively. Ea
h site waits an

independent exponentially distributed time with mean 1 before attempting to update its

o

upation variable. At that time, if the 
on�guration is 
ompletely empty on at least one

update rule translated at x, i.e. if DU P U su
h that ωy � 0 for all y P U�x, then we perform

a legal update or legal spin �ip by setting ωx to 0 with probability q and to 1 with probability

1� q. Otherwise the update is dis
arded. Sin
e the 
onstraint to allow the update never

depends on the state of the to-be-updated site, the produ
t measure µ is a reversible invariant

measure and the pro
ess started at µ is stationary. More formally, the KCM is the Markov

pro
ess on Ω with generator L a
ting on lo
al fun
tions f : Ω ÞÑ R as

pLfqpωq �
¸

xPZ2

cxpωq pµxpfq � fq pωq, (3)

for any ω P Ω, where µxpfq denotes the average of f when the o

upation variable at x has

law Berp1� qq and the other o

upation variables are set to tωyuy�x, and cx is the indi
ator

fun
tion of the event that there exists U P U su
h that U � x is 
ompletely empty, i.e.

ωU�x � 0. We refer the reader to 
hapter I of [24℄, where the general theory of intera
ting

parti
le systems is detailed, for a pre
ise 
onstru
tion of the Markov pro
ess and the proof

that L is the generator of a reversible Markov pro
ess tωptqut¥0 on Ω with reversible measure

µ.

The 
orresponding Diri
hlet form is de�ned as

Dpfq �
¸

xPZ2

µ
�

cxVarxpfq
�

, (4)

where Varxpfq denotes the varian
e of the lo
al fun
tion f with respe
t to the variable ωx


onditionally on tωyuy�x. The expe
tation with respe
t to the stationary pro
ess with initial

distribution µ will be denoted by E � Eq,U
µ . Finally, given a 
on�guration ω P Ω and a site

x P Z2
, we will denote by ωx

the 
on�guration obtained from ω by �ipping site x, namely

by setting pωx
qx � 1 � ωx and pωx

qy � ωy for all y � x. For future use we also need the

following de�nition of legal paths, that are essentially sequen
es of 
on�gurations obtained

by su

essive legal updates.

De�nition 2.4 (Legal path). Fix an update family U , then a legal path γ in Ω is a �nite

sequen
e γ �
�

ω
p0q, . . . , ωpkq

�

su
h that, for ea
h i P t1, . . . , ku, the 
on�gurations ω
pi�1q and

ω
piq di�er by a legal (with respe
t to the 
hoi
e of U) spin �ip at some vertex v � vpω

pi�1q, ωpiqq.

As mentioned in Se
tion 1, our goal is to prove sharp bounds on the 
hara
teristi
 time

s
ales of 
riti
al KCM. Let us start by de�ning pre
isely these time s
ales, namely the re-

laxation time Trel (or inverse of the spe
tral gap) and the mean infe
tion time Epτ0q (with

respe
t to the stationary pro
ess).

De�nition 2.5 (Relaxation time Trel). Given an update family U and q P r0, 1s, we say that

C ¡ 0 is a Poin
aré 
onstant for the 
orresponding KCM if, for all lo
al fun
tions f , we have

Varµpfq � µpf 2
q � µpfq2 ¤ C Dpfq. (5)
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If there exists a �nite Poin
aré 
onstant, we de�ne

Trel � Trelpq,Uq � inf tC ¡ 0 : C is a Poin
aré 
onstantu .

Otherwise we say that the relaxation time is in�nite.

A �nite relaxation time implies that the reversible measure µ is mixing for the semigroup

Pt � etL with exponentially de
aying time auto-
orrelations (see e.g. [3, Se
tion 2.1℄).

De�nition 2.6 (Infe
tion time τ0). The random time τ0 at whi
h the origin is �rst infe
ted

is given by

τ0 � inf
 

t ¥ 0 : ω0ptq � 0
(

,

where we adopt the usual notation letting ω0ptq be the value of the 
on�guration ωptq at the

origin, namely ω0ptq � pωptqq0.

The East model We 
lose this se
tion by de�ning a spe
i�
 example of KCM on Z, the

East model of Jä
kle and Eisinger [23℄, whi
h will be 
ru
ial to understand our results (KCM

on Z are de�ned in the same way as KCM on Z2
). It is de�ned by an update family 
omposed

by a single rule 
ontaining only the site to the left of the origin (�1). In other words, site x


an be updated i� x � 1 is empty. For this model both Trel and Epτ0q s
ale as exp
�

plog qq2

2 log 2

	

as q Ñ 0, see [2, 9, 12℄

3

. One of the key ingredients behind this s
aling is the following


ombinatorial result [32℄ (see [14, Fa
t 1℄ for a more mathemati
al formulation).

Proposition 2.7. Consider the East model on t1, . . . ,Mu de�ned by �xing ω0 � 0 at all time.

Then any legal path γ 
onne
ting the fully o

upied 
on�guration (namely ω s.t. ωx � 1 for

all x P t1, . . . ,Mu) to a 
on�guration ω1

su
h that ω1

M � 0 goes through a 
on�guration with

at least rlog2pM � 1qs empty sites.

This logarithmi
 `energy barrier', to employ the physi
s jargon, and the fa
t that at

equilibrium the typi
al distan
e to the �rst empty site is M � Θp1{qq are responsible for the

divergen
e of the time s
ales as roughly 1{qrlog2pM�1qs
� eΘpplog qq

2
q

.

2.3 Result

In this paper we study 
riti
al KCM with an in�nite number of stable dire
tions or, equiva-

lently, with a non-trivial interval of stable dire
tions. Re
all that E denotes the expe
tation

with respe
t to the stationary KCM pro
ess.

Theorem 2.8. Let U be a 
riti
al update family with an in�nite number of stable dire
tions.

Then there exists a su�
iently large 
onstant C ¡ 0 su
h that

Epτ0q ¥ exp
�

1{
�

Cq2αpUq
��

,

as q Ñ 0 and the same asymptoti
s holds for Trel.

3

A
tually these referen
es fo
us on the study of Trel. A mat
hing upper bound for Epτ0q follows from (10).

The lower bound for Epτ0q follows easily from the lower bound for Ppτ0 ¡ tq with t � exp plogpqq2{2 log 2q

obtained in the proof of Theorem 5.1 of [11℄.
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This theorem 
ombined with the upper bound of Martinelli, Morris and the last author [26,

Theorem 2(a)℄, determines the 
riti
al exponent of these models to be 2α in the sense of

Corollary 2.9 below. We thus 
omplete the proof of universality and Conje
ture 3(a) of [26℄

for these models

4

.

Corollary 2.9. Let U be a 
riti
al update family with an in�nite number of stable dire
tions.

Then

q2αpUq logEpτ0q � p� log qqOp1q

as q Ñ 0 and the same holds for Trel.

Universality for the remaining 
riti
al models is proved in a 
ompanion paper by Martinelli

and the �rst and third authors [20℄ and, in parti
ular, Conje
ture 3(a) of [26℄ is disproved

for models other than those 
overed by Theorem 2.8. It is important to note that Theo-

rem 2.8 signi�
antly improves the best known results for all models with the ex
eption of

the re
ent result of Martinelli and the last two authors [25℄ for the Duarte model. Indeed,

the previous bound had exponent α, and was proved via the general (but in this 
ase far

from optimal) lower bound with the mean infe
tion time for the 
orresponding bootstrap

per
olation model [27, Lemma 4.3℄.

3 Sket
h of the proof

In this se
tion we outline roughly the strategy to derive our main result, Theorem 2.8.

The hypothesis of in�nite number of stable dire
tions provides us with an interval of stable

dire
tions. We 
an then 
onstru
t stable `droplets' of shape as in Figure 3 (see De�nitions 5.5

and 5.6), where we re
all from Se
tion 2.1 that a set is stable if it 
oin
ides with its 
losure.

Thus, if all infe
tions are initially inside a droplet, this will be true at any time under the KCM

dynami
s. The relevan
e and advantage of su
h shapes 
ome from the fa
t that only infe
tions

situated to the left of a droplet 
an indu
e growth left. This is manifestly not feasible without

the hypothesis of having an interval of stable dire
tions. It is worth noting that these shapes,

whi
h may seem strange at �rst sight, are a
tually very natural and intrinsi
ally present in the

dynami
s. Indeed, su
h is the shape of the stable sets for a representative model of this 
lass

� the modi�ed 2-neighbour model with one (any) rule removed, that is the three-rule update

family with rules tp�1, 0q, p0, 1qu,tp�1, 0q, p0,�1qu,tp0,�1q, p1, 0qu (it 
an also be seen as the

modi�ed Duarte model with an additional rule). The stable sets in this 
ase are a
tually

Young diagrams.

We 
onstru
t a 
olle
tion of su
h droplets 
overing the initial 
on�guration of infe
tions,

so that it gives an upper bound on the 
losure. To do this, we devise an improvement of

the α-
overing algorithm of Bollobás, Duminil-Copin, Morris and Smith [7℄. It is important

for us not to overestimate the 
losure as brutally. Indeed, a key step and the main di�
ulty

of our work is the Closure Proposition 5.20, whi
h roughly states that the 
olle
tions of

droplets asso
iated to the 
losure of the initial infe
tions is equal to the 
olle
tion for the

initial infe
tions. This is highly non-trivial, as in order not to overshoot in de�ning the

droplets, one is for
ed to ignore small pat
hes of infe
tions (larger than the ones in [7℄),

whi
h 
an possibly grow signi�
antly when we take the 
losure for the bootstrap per
olation

pro
ess and espe
ially so if they are 
lose to a large infe
ted droplet. In order to remedy this

problem, we introdu
e a relatively intrinsi
 notion of `
rumb' (see De�nition 5.1) su
h that

4

The 
onje
ture involuntarily asks for a positive power of log q, whi
h we do not expe
t to be systemati
ally

present (see Conje
ture 7.1).
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its 
losure remains one and does not di�er too mu
h from it. A further advantage of our

algorithm for 
reating the droplets over the one of [7℄ is that it is somewhat 
anoni
al, with a

well-de�ned unique output, whi
h has parti
ularly ni
e `algebrai
' des
ription and properties

(see Remark 5.10). Another notable di�
ulty we fa
e is systemati
ally working in roughly

a half-plane (see Remark 5.21 for generalisations) with a fully infe
ted boundary 
ondition,

but we manage to extend our reasoning to this setting very 
oherently.

Finally, having established the Closure Proposition 5.20 alongside standard and straig-

htforward results like an Aizenmann-Lebowitz Lemma 5.13 and an exponential de
ay of the

probability of o

urren
e of large droplets (Lemma 5.15), we �nish the proof via the follo-

wing approa
h, inspired by the one developed by Martinelli and the last two authors [25℄ for

the Duarte model. The key step here (see Se
tion 6) is mapping the KCM legal paths to

those of an East dynami
s via a suitable renormalisation. Roughly speaking, we say that a

renormalised site is empty if it 
ontains a large droplet of infe
tions. However, for the renor-

malised 
on�guration to be mostly invariant under the original KCM dynami
s, we rather

look for the droplets in the 
losure of the original set of infe
tions instead. This is where the

Closure Proposition 5.20 is used to 
ompensate the fa
t that the 
losure of equilibrium is not

equilibrium. In turn, this mapping together with the 
ombinatorial result for the East model

re
alled in Se
tion 2.2 (Proposition 2.7), yield a bottlene
k for our dynami
s 
orresponding

to the 
reation of logp1{qeffq droplets, where 1{qeff is the equilibrium distan
e between two

empty sites in the renormalized latti
e, and qeff � e�1{qα
. This provides for the time s
ales

the desired lower bound q
logpqeff q

eff � e1{q
2α

of Theorem 2.8. The last part of the proof follows

very 
losely the ideas put forward in [25℄ for the Duarte model. However, in [25℄, there

was no need to develop a subtle droplet algorithm sin
e, owing to the oriented 
hara
ter of

the Duarte 
onstraint, droplets 
ould simply be identi�ed with some large infe
ted verti
al

segments. It is also worth noting that, thanks to the less rigid notion of droplets that we

develop in the general setting, some of the di�
ulties fa
ed in [25℄ for Duarte are no longer

present here.

4 Preliminaries and notation

Let us �x a 
riti
al update family U with an in�nite number of stable dire
tions for the rest

of the paper. We will omit U from all notation, su
h as αpUq.

Dire
tions The next lemma establishes that one 
an make a suitable 
hoi
e of 4 stable

dire
tions, whi
h we will use for all our droplets. At this point the statement should look

very odd and te
hni
al, but it simply re�e
ts the fa
t that we have a lot of freedom for the


hoi
e and we make one whi
h will simplify a few of the more te
hni
al points in later stages.

Nevertheless, this is to a large extent not needed besides for 
on
ision and 
larity.

A dire
tion u P S1
is 
alled rational if tan u P QY t8u.

Lemma 4.1. There exists rational stable dire
tions S � tu1, u2, v1, v2u (see Figure 1) with

di�
ulty at least α su
h that

• The dire
tions appear in 
outer
lo
kwise order u1, u2, v1, v2.

• No u P S is a semi-isolated stable dire
tion.

• u3�i belongs to the 
one spanned by vi and ui for i P t1, 2u i.e. the stri
tly smaller

interval among rvi, uis and rui, vis 
ontains u3�i.
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u1

u2

v1
1

v1
2

u1 � π

u2 � π

1

2

3

Figure 1: Illustration of Lemma 4.1 and its proof. Thi
kened ar
s

represent intervals of strongly stable dire
tions. Solid dots repre-

sent isolated and semi-isolated stable dire
tions. The di�
ulties of

the isolated stable dire
tions are indi
ated next to them and yield

that the di�
ulty of the model is α � 2. The dire
tions 
hosen in

Lemma 4.1 are the solid ve
tors u1, u2, v1 � v11 and a dire
tion v2
in the strongly stable interval ending at v12 su�
iently 
lose to v12.

Note that the de�nition of v12 (and v11) disregards stable dire
tions

with di�
ulty smaller than α as present on the �gure.

• 0 is 
ontained in the interior of the 
onvex envelope of S.

• Either u2   v1 � π{2 or u1 ¡ v2 � π{2.

• pHu1
YHu2

q X Z2
is stable or, equivalently, EU P U , U � Hu1

YHu2
.

• the dire
tions

u1 �pu1 � u2q{2,

u11 �p3u1 � u2q{4,

u12 �pu1 � 3u2q{4

are rational.

Proof. Sin
e U has an in�nite number of stable dire
tions and they form a �nite union of


losed intervals with rational endpoints [8, Theorem 1.10℄, there exists a non-empty open

interval I3 of stable dire
tions. Further note that the set J of dire
tions u su
h that there

exists a rule U P U and x P U with xx, uy � 0 is �nite, so one 
an �nd a non-trivial 
losed

subinterval I2 � I3 whi
h does not interse
t J . The dire
tions u1 and u2 will be 
hosen in I2,

whi
h 
learly implies that they are strongly stable and thus with in�nite di�
ulty. Moreover,

if there exists U P U with U � Hu1
Y Hu2

, by stability of u2, we have U X pHu1
zHu2

q � ∅,

whi
h 
ontradi
ts I2 X J � ∅.

Sin
e U is 
riti
al it does not have two opposite strongly stable dire
tions, so there is

no strongly stable dire
tion in I2 � π. If there are any (isolated or semi-isolated) stable

dire
tions in I2 � π, we 
an further 
hoose a non-trivial open subinterval I 1 � I2, for whi
h

this is not the 
ase (there is a �nite number of isolated and semi-isolated stable dire
tions).

Let π ¡ δ ¡ 0 be su
h that the angle between any two 
onse
utive dire
tions of di�
ulty

at least α is at most π � δ (it is well de�ned by (2)). We then 
hoose a non-trivial 
losed

subinterval I 1 � I � ru1, u2s with u1 rational and u11 � p3u1 � u2q{4 rational and with

0   u2 � u1   δ   π. It easily follows from the sum and di�eren
e formulas for the tangent

fun
tion that u1, u12 and u2 are also rational.

Let

v11 �maxtv P pu2, u1 � πq : αpvq ¥ αu,

v12 �mintv P pu2 � π, u1q : αpvq ¥ αu.

These both exist, sin
e I � π does not 
ontain stable dire
tions, both pu2, u2 � πq and pu1 �

π, u1q 
ontain dire
tions with di�
ulty at least α by (2) and the set of su
h dire
tions is


losed. If v11 is not semi-isolated, we set v1 � v11 and similarly for v2. Otherwise, we 
hoose a

rational strongly stable dire
tion su�
iently 
lose to v11 as v1 and similarly for v2. We 
laim
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that this 
hoi
e satis�es all the desired 
onditions. Indeed, all dire
tions in S are stable non-

semi-isolated rational with di�
ulty at least α and the last but one 
ondition was already

veri�ed.

One does have that u1 is in the 
one spanned by v2 and u2, whi
h is implied by v2 P

pu2 � π, u1q and similarly for u2, so the third 
ondition is also veri�ed. If v12 � v11 ¥ π, then

there is an open half 
ir
le 
ontained in pv11, v
1

2q with no dire
tion of di�
ulty at least α,

whi
h 
ontradi
ts (2), so v2 � v1   π and the same holds for u1 � v2, u2 � u1 and v1 � u2 by

the de�nition of v11 and v12, the fa
t that v1 and v2 are su�
iently 
lose to them and the fa
t

that I was 
hosen smaller than π. Thus 0 is in the 
onvex envelope of S.

Finally, if one has both v1�u2 ¤ π{2 and u1�v2 ¤ π{2, then one obtains v12�v11 ¡ π� δ,

sin
e I is smaller than δ. However, v11 and v12 are 
onse
utive dire
tions of di�
ulty at least

α, whi
h 
ontradi
ts the de�nition of δ.

Notation For the rest of the paper we �x dire
tions S � tu1, u2, v1, v2u as in Lemma 4.1

and assume without loss of generality that u2   v1 � π{2.

Let us �x large 
onstants

1 ! C1 ! C 1

2 ! C2 ! C3 ! C 1

4 ! C4 ! C5,

ea
h of whi
h 
an depend on previous ones as well as on U and S. We will also use asymptoti


notation whose 
onstants 
an depend on U and S, but not on C1 or the other 
onstants above.

All asymptoti
 notation is with respe
t to q Ñ 0, so we assume throughout that q ¡ 0 is

su�
iently small.

For any two sets K, B � R2
we de�ne rKs

B

� rpK Y Bq X Z2
szB.

Finally, we make the 
onvention that throughout the arti
le all distan
es, balls and dia-

meters are Eu
lidean unless otherwise stated. We say that a set X � R2
is within distan
e δ

of a set Y � R2
if dpx, Y q ¤ δ for all x P X where d is the Eu
lidean distan
e.

5 Droplet algorithm

In this se
tion we de�ne our main tool � the droplet algorithm. It 
an be seen as a signi�
ant

improvement on the α-
overing and u-i
eberg algorithms [7, De�nitions 6.6 and 6.22℄, many

of whose te
hniques we adapt to our setting.

We will work in an in�nite domain Λ de�ned as follows (see Figure 2). Fix some ve
tor

a0 P R2
and let

B �Hu1 YHu1
1
pa0q YHu1

2
pa0q,

Λ �R2
zB,

(6)

where the dire
tions u1, u11 and u12 are those de�ned in Lemma 4.1. In other words, Λ is a


one with sides perpendi
ular to u11 and u12 
ut along a line perpendi
ular to u1. The reader

is invited to simply think that B is a half-plane dire
ted by u1, whi
h will not 
hange the

reasoning.

5.1 Clusters and 
rumbs

Let Γ be the graph with vertex set Z2
but with x � y if and only if }x� y} ¤ C2. Let Γ

1

be

de�ned similarly with C2 repla
ed by C 1

2. Given a �nite K � ΛXZ2
, we say that κ � K is a


onne
ted 
omponent of K in Γ if the subgraph of Γ indu
ed by the vertex set κ is 
onne
ted

and there do not exist verti
es x P Kzκ and y P κ su
h that x � y in Γ.
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a0

B

Λ
u1

u1
1

u1
2

Figure 2: The open domain B de�ned in (6) is shaded, while its 
omplement Λ

is not. The lines are the boundaries of the three half-planes de�ning B. Note

that if a0 R Hu1 , then Λ be
omes simply a 
one.

Crumbs For a given �nite set K � ΛXZ2
of infe
tions we would like to have a notion of a


onne
ted 
omponent being `big' or `small'. `Small' 
omponents will be dubbed `
rumbs' and

will play a negligible perturbative role in the bootstrap per
olation pro
ess, by indu
ing only

`very lo
alised' growth and being `well isolated' from the rest of the infe
tions. A su�
ient


ondition for this, as identi�ed in [7℄, is that |κ|   α. However, 
ontrary to what was the


ase in [7℄, we need the notion of `
rumb' to be stable under the 
losure (with respe
t to the

bootstrap per
olation pro
ess), i.e. the 
losure of a `
rumb' to still be a `
rumb'. We thus

identify as `
rumb' any 
omponent, whi
h is the 
losure of a set of size less than α. Also

taking into a

ount the boundary, this leads us to the following notion.

De�nition 5.1 (Crumb). Fix a �nite set K � ΛX Z2
and let κ be a 
onne
ted 
omponent

of K in Γ. We say that κ is a 
rumb for K if the following 
onditions hold.

• For all x P κ we have dpx, Bq ¡ C2.

• There exists a set Pκ � Z2
su
h that rPκs � κ and |Pκ| � α � 1.

First properties of 
rumbs It follows from the de�nition that a 
rumb κ for K is at

distan
e more than C2 from B Y pKzκq. Moreover, the 
losure of a 
rumb is within bounded

distan
e from the 
rumb, as we shall see in Corollary 5.17 (see Figure 5a). Also, 
rumbs

have diameters mu
h smaller than C3, as we shall see in Corollary 5.17. The proofs of this


orollary and Observation 5.16, whi
h it follows from, are both independent of the rest of the

argument and are only postponed for 
onvenien
e. Nevertheless, we allow ourselves to use

these (easy) results ahead of their proofs.

These properties justify and quantify the intuition that 
rumbs are `small', that they only

grow `lo
ally', and it is 
lear that (if we disregard the boundary) the 
losure of a 
rumb is a


rumb.

Modi�ed 
rumbs Unfortunately, ifK is the union of two 
rumbs at distan
e slightly larger

than C2, it is not ne
essarily true that rKs is still 
omposed of 
rumbs (re
all that, albeit

lo
ally, 
rumbs 
an grow under the bootstrap per
olation pro
ess), whi
h 
an be disastrous.

This is the reason for introdu
ing `modi�ed 
rumbs' with C 1

2 ! C2, so that in the s
enario

above all 
onne
ted 
omponents of rKs in Γ1 are `modi�ed 
rumbs' (there may now be more

than two of them).

De�nition 5.2 (Modi�ed 
rumb). We de�ne a modi�ed 
rumb by repla
ing in De�nition 5.1

Γ by Γ1 and C2 by C 1

2.
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In the sequel we will en
ounter more `modi�ed' notions and 
onstants (like C 1

2). These will

be applied to K equal to the 
losure rK 1

s

B

of some K 1

, whi
h is our initial set of infe
tions.

Our ultimate goal is to ensure that simply using these modi�ed notions based on (mu
h

smaller) modi�ed 
onstants will 
ompensate the 
losure operation.

Clusters We next 
onsider 
onne
ted 
omponents whi
h are not 
rumbs. Sin
e they 
an

be very large (parti
ularly so if we are working with the 
losure of a set), we 
ut them up into

(possibly overlapping) pie
es termed `
lusters', whi
h have bounded size. Roughly speaking,

a `
luster' is any `big, but not too big' 
onne
ted set of infe
tions.

De�nition 5.3 (Cluster). Fix a �nite set K � ΛX Z2
. Let κ be a 
onne
ted 
omponent of

K in Γ whi
h is not a 
rumb. We say that a subset C of κ is a 
luster for K if the following


onditions hold.

• diampCq ¤ C3.

• C is 
onne
ted in Γ (i.e. C is a 
onne
ted 
omponent of C in Γ).

• Either C � κ or for all x P κzC and y P C su
h that x � y in Γ we have diampCYtxuq ¡

C3.

A 
luster is 
alled boundary 
luster if it is at distan
e at most C2 from B. For a 
luster C

we denote by QpCq the smallest open quadrilateral with sides perpendi
ular to S 
ontaining

the set tx P R2 : dpx, Cq   C4u.

We similarly de�ne modi�ed 
luster and modi�ed boundary 
luster by repla
ing Γ by Γ1

and C2 by C 1

2. For a 
luster or modi�ed 
luster C we denote by Q1

pCq the smallest open

quadrilateral with sides perpendi
ular to S 
ontaining the set tx P R2 : dpx, Cq   C 1

4u.

Identifying 
lusters and 
rumbs In order to identify the 
lusters and 
rumbs of K, one

may pro
eed as follows. Determine the 
onne
ted 
omponents of K in Γ and 
onsider ea
h

of them separately. For a given 
omponent κ �rst 
he
k if it is at distan
e at most C2 from

B. If so, then it is not a 
rumb and will give rise to 
lusters. If not, then 
he
k if κ is the


losure of at most α� 1 sites. If this se
ond veri�
ation su

eeds, then κ is determined to be

a 
rumb and, as mentioned above, it must have diameter mu
h smaller than C3.

If κ is thus determined not to be a 
rumb, we pro
eed to identify its 
lusters. If diampκq ¤

C3, then there is a single 
luster � κ � and we are done. If not, we 
onstru
t the 
lusters

of κ by the following algorithm. Initialise the set C � ∅. If there exists y P κzC su
h that

C Y tyu is 
onne
ted in Γ and has diameter at most C3, then repla
e C by C Y tyu and

repeat. If several su
h y exist, then we do this for ea
h possible y in parallel. The 
lusters


ontaining x are all possible sets C obtained via this algorithm to whi
h no y 
an be added.

In parti
ular, this provides us with a partition of K into well separated 
rumbs, single


lusters equal to their 
orresponding 
onne
ted 
omponent and sets of overlapping 
lusters

whose union is a 
onne
ted 
omponent of diameter larger than C3.

First properties of 
lusters Following the algorithm above, we obtain some basi
 pro-

perties of 
lusters.

Observation 5.4. Let C be a non-boundary 
luster or non-boundary modi�ed 
luster for a

�nite K � ΛX Z2
. Then |C| ¥ α.
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Figure 3: The shaded region D is a

distorted Young diagram (DYD) as

in De�nition 5.5. The larger quadri-

lateral with verti
es x, x1, y and x5

is QpDq. Note that QpDq 
an dege-

nerate into a triangle, but we 
all it

a quadrilateral nevertheless. On the

�gure |D| is the length of the v1 side,

but this is not always the 
ase. The

thi
kened region is the 
ut distorted

Young diagram (CDYD) CpDq of D.

The verti
al line is the boundary be-

tween Λ on its left and B on its right.

Proof. Let κ be the 
onne
ted 
omponent of K in Γ 
ontaining C. If diampκq ¤ C3, then

C � κ and κ would be a 
rumb if we had |κ| ¤ α� 1, by taking Pκ � κ. If, on the 
ontrary,

diampκq ¡ C3, then diampCq ¥ C3�C2 (by the third 
ondition of De�nition 5.3) and we 
an


hoose C3 large enough to have

C3�C2

C2
¥ α.

Finally, for every 
luster C we have diampCq ¤ C3, so C interse
ts at most 25C
2
3
other


lusters. Also, QpCq � rCs, sin
e QpCq X Z2
� C is stable. Furthermore, diampQpCqq �

ΘpC4q, as diampCq ¤ C3. Analogous statements hold for modi�ed 
lusters.

5.2 Distorted Young diagrams

We now de�ne the shape that our `droplets' will have, whi
h resembles Young diagrams

5

.

The following de�nitions are illustrated in Figure 3.

De�nition 5.5 (DYD). A distorted Young diagram (DYD) is a subset of R2
of the form

pHv1pxq XHv2pxqq X
£

iPI

pHu1
pxiq YHu2

pxiqq (7)

for a �nite set I, some set X � txi : i P Iu of ve
tors xi P R2
and x P R2

. The ve
tors xi and

x are uniquely de�ned up to redundan
y (and up to the 
onvention that all xi are on the

topologi
al boundary of the DYD). Alternatively, a DYD 
an also be de�ned by

pHv1pxq XHv2pxqq X
¤

iPI

pHu1
pyiq XHu2

pyiqq, (8)

5

For the 3-rule model alluded to in Se
tion 3 stable sets 
onsist pre
isely of Young diagrams and the

dire
tions S provided by Lemma 4.1 
an be arbitrarily 
lose to the four axis dire
tions, yielding Young

diagrams.
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where yi are the 
onvex 
orners of the diagram rather than the 
on
ave ones.

For any DYD D we denote by y the ve
tor su
h that

xy, ujy � sup
aPD

xa, ujy � max
iPI

xyi, ujy

for j P t1, 2u. We further denote

QpDq � Hu1
pyq XHu2

pyq XHv1pxq XHv2pxq,

i.e. the minimal open quadrilateral 
ontaining D with sides dire
ted by S. In these terms, for

any 
luster or modi�ed 
luster C we have that QpCq and Q1

pCq are DYD, QpQpCqq � QpCq

and QpQ1

pCqq � Q1

pCq.

De�nition 5.6 (CDYD). A 
ut distorted Young diagram (CDYD) is a subset of R2
of the

form

ΛX pHu1
pyq XHu2

pyqq X
£

iPI

pHu1
pxiq YHu2

pxiqq

for a �nite set I and some ve
tors xi P R2
and y P Λ. Alternatively, one 
an write

ΛX

¤

iPI

pHu1
pyiq XHu2

pyiqq,

where yi P Λ are the 
onvex 
orners.

For a DYD, D, we denote by CpDq the CDYD de�ned by the same xi and y or the same

yi. We extend the notation CpDq to CDYD by setting CpDq � D if D is a CDYD. Note

that by Lemma 4.1 all DYD and CDYD are stable for the bootstrap per
olation dynami
s

(restri
ted to Λ). Also pay attention to the fa
t that CDYD are not ne
essarily 
onne
ted,


ontrary to DYD.

De�nition 5.7 (Size). For a DYD D we set πpDq � tx P R : D y P D, xy, v1 � π{2y � xu to

be its proje
tion (parallel to v1) and |D| � sup πpDq � inf πpDq to be its size � the length of

the proje
tion. For a CDYD D we denote its size diampDq{C1 by |D|.

Note that if D is a DYD, then |D| � |QpDq| by Lemma 4.1 and the assumption we made

that u2   v1 � π{2. Furthermore, for all DYD diampDq � Θp|D|q again by Lemma 4.1

with 
onstants depending only on S. One should be 
areful with the meaning of size for

dis
onne
ted CDYD, but it will not 
ause problems, as all CDYD arising in our forth
oming

algorithm are 
onne
ted.

Observation 5.8. Note that for any d ¥ 1 the number of dis
retised DYD and CDYD (i.e.

interse
tions of a DYD or CDYD with Z2
) 
ontaining a �xed point a P R2

of diameter at

most d is less than cd for some 
onstant c depending only on S.

Proof. Note that a DYD or CDYD is uniquely determined by its rugged edge formed by

its u1 and u2-sides. However, this edge inje
tively de�nes an oriented per
olation path with

dire
tions perpendi
ular to u1 and u2 on the latti
e

tx P R2 : Dx1, x2 P Z2, xx, u1y � xx1, u1y, xx, u2y � xx2, u2yu

(ex
ept its endpoints, whi
h lie on similar latti
es). Sin
e the graph-length of this path is

bounded by Opdq and its endpoints are within distan
e d from a, the result follows.
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Figure 4: The shaded region D1 and thi
kened region D2 are DYD. Their respe
tive qua-

drilaterals QpDiq are 
ompleted by dashed lines. Their span D1 _ D2 is hat
hed and its

quadrilateral QpD1 _D2q is also 
ompleted by dashed lines.

5.3 Span

We next introdu
e a pro
edure of merging DYD and CDYD. This will be used only for


ouples of interse
ting ones, but 
an be de�ned regardless of whether they interse
t. The

operation is illustrated in Figure 4.

Lemma 5.9. For any two DYD, D1 and D2, the minimal DYD 
ontaining D1 YD2 is well

de�ned. We denote it by D1_D2 and 
all it their span. The operation _ is asso
iative

6

and


ommutative.

Proof. Let D1 be de�ned by Y 1
� ty1i : i P Iu, x1

(see (8)) and similarly for D2. Let x P R2
be

the ve
tor su
h that Hvipx
1
qYHvipx

2
q � Hvipxq for i P t1, 2u. Let Y be the set of yi P Y 1

YY 2

su
h that for all yj P Y 1
Y Y 2

with yi � yj we have Hu1
pyjq XHu2

pyjq � Hu1
pyiq X Hu2

pyiq.

We denote by D the DYD de�ned by Y, x and 
laim that for any DYD D1

� D1YD2 we have

D1

� D, whi
h is enough to 
on
lude that D � D1 _D2 is well de�ned. Let D1

be de�ned

by Y 1, x1.

6

Asso
iativity was referred to as 
ommutativity by previous authors [8℄.
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Note that for ea
h yi P Y (and in fa
t in Y1 Y Y2) there is a sequen
e of points in

D1 or D2 
onverging to yi, so that (by extra
tion of a subsequen
e) there exists y1j with

Hu1
py1jq XHu2

py1jq � Hu1
pyiq X Hu2

pyiq. Similarly, there is a sequen
e of points in D1 or D2


onverging to the boundary of Hv1pxq, so that Hv1px
1

q � Hv1pxq and similarly for v2. Thus,

we do have D1

� D.

Finally, the 
ommutativity is obvious and the asso
iativity follows from the 
hara
terisa-

tion of D1 _D2 as the minimal DYD 
ontaining both D1 and D2.

We analogously de�ne the span D1 _D2 of two CDYD D1 and D2 � the minimal CDYD


ontaining both � and note that it 
oin
ides with their union (whi
h is also 
ommutative and

asso
iative). We also de�ne the span C _ D of a DYD D and a CDYD C as the minimal

CDYD 
ontaining pC Y DqzB, whi
h 
oin
ides with C _ CpDq. The proof that it is well

de�ned is analogous to Lemma 5.9.

We have thus de�ned an asso
iative and 
ommutative binary operation _ on all DYD

and CDYD. Moreover, the idempotent unary operation Cp�q is distributive with respe
t to

_ and CpD1q _ D2 � CpD1 _ D2q. Furthermore, the span of several DYD is the minimal

DYD 
ontaining all of them, while the span of several DYD and at least one CDYD is the

minimal CDYD 
ontaining all the 
orresponding CDYD.

5.4 Droplet algorithm and spanned droplets

A droplet is any DYD 
ontained in Λ or CDYD. We are now ready to de�ne our droplet

algorithm, whi
h takes as input a �nite set K � ΛX Z2
of infe
tions and outputs a set D of

disjoint 
onne
ted droplets. It pro
eeds as follows.

• Form an initial 
olle
tion of DYD D 
onsisting of QpCq for all 
lusters C of K. If a

DYD D P D interse
ts B, repla
e it by its CDYD, CpDq, to obtain a droplet.

• As long as it is possible, repla
e two interse
ting droplets of D by their span. If the

span interse
ts B, repla
e it by its CDYD to obtain a droplet.

• Output the 
olle
tion D obtained when all droplets are disjoint.

We similarly de�ne the modi�ed droplet algorithm by repla
ing QpCq by Q1

pCq and 
lusters

by modi�ed 
lusters above.

The output D is 
learly a 
olle
tion of disjoint 
onne
ted droplets. Indeed, by indu
tion

all xi 
orners of droplets remain in Λ (see Figure 4), so that DYD remain 
onne
ted when

repla
ed by CDYD.

Remark 5.10. From the results of Se
tion 5.3 it is 
lear that the order of merging does not

impa
t the output of the algorithm, whi
h is thus well de�ned. It 
an also be expressed as

the minimal 
olle
tion of disjoint droplets 
ontaining the interse
tion with Λ of the original


olle
tion of quadrilaterals. This minimal 
olle
tion is well de�ned. Consequently, the union

of the output is in
reasing in the input.

De�nition 5.11 (Spanned droplets). Let D be a droplet and K � Z2
. We say that D is

spanned for K with boundary B if the output of the droplet algorithm for KXD has a droplet


ontaining D. We omit K and B if they are 
lear from the 
ontext. Similarly, D is modi�ed

spanned if the output of the modi�ed droplet algorithm for K XD has a droplet 
ontaining

D.
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Note that, when seen as an event, a droplet being spanned is monotone. It is also 
lear

that ea
h droplet appearing in (the intermediate or �nal stages of) the droplet algorithm is

spanned and similarly for the modi�ed droplet algorithm. Indeed, the 
lusters responsible

for 
reating a droplet in the 
ourse of the algorithm are 
ontained in the droplet, so ea
h of

them is still a 
luster of K XD (re
all that 
rumbs have diameter mu
h smaller than C3).

5.5 Properties of the algorithm

We next establish several properties of the algorithm. The approa
h is similar to the one

of [7℄ with the notable ex
eption of the key Closure Proposition 5.20. We start with the

following purely geometri
 statement.

Lemma 5.12 (Subadditivity). Let D1 and D2 be two DYD or CDYD with non-empty inter-

se
tion. Then

|D1 _D2| ¤ |D1| � |D2|.

Furthermore, if D is a DYD interse
ting B, then |CpDq| ¤ |D|.

Proof. First assume that D1 and D2 are DYD. Sin
e |D| � |QpDq| for any DYD D and

D1 _D2 � QpQpD1q _ QpD2qq, it su�
es to prove the assertion for merging quadrilaterals

instead of DYD. But in that 
ase it is not hard to 
he
k dire
tly and is a parti
ular 
ase of

Lemma 15 of the �rst arXiv version of [8℄ (or Lemma 23 of the se
ond version). Sin
e similar

(but a
tually slightly more involved) details were omitted in the proof of the 
orresponding

Lemma 4.6 of [8℄ and di�ered to earlier versions, we will not go into useless detail here either.

To give a sket
h of a possible argument, one 
an 
he
k that for �xed shapes of QpD1q and

QpD2q the maximal QpQpD1q _ QpD2qq is a
hieved when their interse
tion is redu
ed to a

vertex. Yet, in those 
on�gurations one 
an obtain the v1 and v2 sides of QpQpD1q _QpD2qq

as the union of those of QpD1q and translates of those of QpD2q (see Figure 4). This 
on
ludes

the proof, as only v1 and (possibly) v2 sides 
ontribute to | � | by Lemma 4.1.

Next assume that D1 is a DYD and D2 is a CDYD. Let Y � tyi : i P Iu be the set of

ve
tors de�ning CpD1q and let a P D1XD2. Sin
e Y � D1, we have that dpyi, aq ¤ diampD1q.

It then easily follows that the CDYD de�ned by only one 
orner, yi, whi
h we denote Cpyiq,

is within distan
e OpdiampD1qq from Cpaq. But then CpD1q �
�

iPI Cpyiq is within distan
e

OpdiampD1qq from Cpaq. Thus, |D1 _ D2| ¤ pdiampD2q � OpdiampD1qqq{C1 ¤ |D2| � |D1|,

sin
e diampD1q � Op|D1|q and all impli
it 
onstants depend only on S and are thus mu
h

smaller than C1.

Next assume that D1 and D2 are CDYD. Then the statement is trivial, be
ause D1_D2 �

D1 YD2, so diampD1q � diampD2q ¥ diampD1 _D2q by the triangle inequality.

Finally, let D be a DYD interse
ting B. Then, |CpQpDqq| ¥ |CpDq| and |QpDq| � |D|,

so we may assume that D � QpDq and prove |CpDq| ¤ |D|. But in this 
ase it is easy to

see that diampCpDqq � OpdiampDqq � Op|D|q with 
onstants depending only on S, whi
h


on
ludes the proof.

The subadditivity lemma will be used to prove the next two adaptations of 
lassi
al

results.

Lemma 5.13 (Aizenman-Lebowitz). Let K be a �nite set and let D be a spanned droplet

with |D| ¥ C2
4 . Then for all C2

4{C1 ¤ k ¤ |D|{C1 there exists a 
onne
ted spanned droplet

D1

with k ¤ |D1

| ¤ 2k. The same statement holds for modi�ed spanned droplets.
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Proof. By Lemma 5.12 at ea
h step of the droplet algorithm the largest size of a droplet

appearing in the 
olle
tion at most doubles. Initially the largest size is at most C1C4 and in

the end there is a (unique) droplet D2

� D, so that |D2

| ¥ |D|{C1 ¥ C2
4{C1 ¡ C1C4. Then

there is a stage of the algorithm at whi
h the maximal size of a droplet in D is between k and

2k, whi
h is enough sin
e all droplets appearing in the droplet algorithm are 
onne
ted and

spanned. The proof for modi�ed spanned droplets is identi
al, using the modi�ed droplet

algorithm.

Lemma 5.14 (Extremal). Let K � Z2
and let D be a droplet spanned for K. Then the total

number of disjoint 
lusters for K XD in D is at least diampDq{C2
4 .

Proof. In this proof all 
lusters will be 
lusters for KXD. Assume that at the initial stage of

the algorithm there are k 
lusters (not disjoint). One 
an then �nd k{C 1

4 disjoint ones, sin
e

their diameter is at most C3. Furthermore, by Lemma 5.12 the total size of droplets in the


olle
tion D is de
reasing, so that |D|{C1 ¤ |D1

| ¤ kC1C4, where D1

� D is some droplet in

the output of the algorithm. Indeed, |QpCq| ¤ C1C4 for all 
lusters C. This 
on
ludes the

proof, sin
e |D| ¥ diampDq{C1 for all DYD and CDYD.

We next transform this extremal bound into an exponential de
ay of the probability that

a droplet is spanned until saturation at the 
riti
al size. In the following lemma, we identify

the 
on�guration ω having law µ and the set of its zeroes.

Lemma 5.15 (Exponential de
ay). Let D be a droplet with |D| ¤ 2{pC5q
α
q. Then

µpD is spanned for ωq   expp�C4|D|q.

Proof. Let D be a droplet with |D| ¤ 2{pC5q
α
q, so that diampDq � d ¤ 2C1{pC5q

α
q. By

Lemma 5.14 if D is spanned for ω, it 
ontains at least d{C2
4 disjoint 
lusters for ω X D,

ea
h one having diameter at most C3. Ea
h non-boundary 
luster has at least α sites by

Observation 5.4, while boundary 
lusters are non-empty and lo
ated at distan
e at most C2

from B. Thus, we have the union bound

µpD is spanned for ωq ¤

d{C2
4̧

l�0

�

C2α
3 d2

l


�
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4 � l
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re
alling that C5 is su�
iently large depending on C4, C
1

4 and C1.

Our next aim is to prove that the 
losure of a set is 
ontained in its droplet 
olle
tion

up to very lo
al infe
tions next to initial ones. To that end we will need some preliminary

results, similar to those used by Bollobás, Duminil-Copin, Morris and Smith [7℄.

Observation 5.16 (Lemma 6.5 of [7℄). Let u be a rational non-semi-isolated stable dire
tion.

Let K � Z2
with |K|   αpuq (if αpuq � 8 the 
ondition is that K is �nite, but there is no

a priori bound on its size). Then there exists a 
onstant CpU , u, |K|q not depending on K

su
h that rKsHu
is within distan
e CpU , u, |K|q from K.

20



Sin
e we will require some improvements later, we spell out a proof of the above result

for 
ompleteness (a
tually our proof is slightly di�erent from the one in [7℄).

Proof of Observation 5.16. We prove the statement by indu
tion on |K|. For a K � txu this

is easy, sin
e if xx, uy is su�
iently large rKsHu
� K and otherwise there is a single possible


on�guration for ea
h value of xx, uy up to translation. Assume the result holds for |K|   n.

If one 
an write K � K1\K2 with K1, K2 � ∅ and dpK1, K2q ¡ 2CpU , u, n�1q�Op1q, then

rKsHu
� rK1sHu

\ rK2sHu
, sin
e rK1sHu

and rK2sHu
are at su�
iently large distan
e, hen
e

no site 
an use both to be
ome infe
ted. Assume that, on the 
ontrary, there are no large

gaps between parts of K. There is a �nite number of su
h K up to translation and for ea
h

of these rKs is �nite (e.g. sin
e K is 
ontained in a quadrilateral with sides perpendi
ular

to S), so within uniformly bounded distan
e from K. Therefore, if Hu is su�
iently far

from K, rKsHu
� rKs. Otherwise, there is a �nite number of possible K up to translation

perpendi
ular to u and for ea
h of them rKsHu
is �nite, so that one 
an indeed �nd a �nite

uniform 
onstant CpU , u, nq as 
laimed.

A quantitative version of this result was proved by Mezei and the �rst author [21℄. An

easy 
orollary of Observation 5.16 is the fa
t that 
rumbs 
an only grow very lo
ally (see

Figure 5a).

Corollary 5.17. Let C1 be su�
iently large depending on U . Let K � Z2
with |K|   α.

Then rKs is within distan
e C1{p6αq from K. Also, for a (modi�ed) 
rumb κ we have that

diamprκsq ¤ αC2 and rκs is within distan
e C1 from κ.

Proof. The �rst assertion follows from Observation 5.16, sin
e if it were wrong, one 
ould

simply translate a set K su�
iently far from a half-plane yielding a 
ontradi
tion with the

observation.

Next 
onsider a (modi�ed) 
rumb κ and Pκ minimal with |Pκ|   α and rPκs � κ. Then

rκs � rPκs is within distan
e C1{p6αq from Pκ. If the sites of Pκ are not 
onne
ted in the

graph Γ2 on Z2
with 
onne
tions at distan
e at most C1�C2, then either κ is not 
onne
ted

in Γ or Pκ is not minimal, whi
h are both 
ontradi
tions. Similarly, if there is no site of κ at

distan
e smaller than C1{p2αq from a C1{p2αq-
onne
ted 
omponent of Pκ, that 
omponent


an be removed from Pκ, 
ontradi
ting minimality. Hen
e, Pκ is within distan
e C1{2 from

κ. The result is then immediate, as rκs is within distan
e C1{2 � C1{p6αq from κ and its

diameter is at most C1{p3αq � diampPκq, while diampPκq ¤ pα� 1qpC1 � C2q.

In order to treat infe
tion at the 
on
ave 
orners of droplets we will need the following

modi�
ation of Observation 5.16.

Corollary 5.18. Let u1 and u2 be rational strongly stable dire
tions su
h that Hu1
YHu2

is

stable for the bootstrap per
olation dynami
s i.e. EU P U , U � Hu1
YHu2

. Let K � Z2
with

|K| ¤ α � 1. Then rKsHu1
YHu2

is within distan
e CpU , u1, u2q from K.

Proof. We apply a similar indu
tion to the one in the proof of Observation 5.16. The only

di�eren
e is that we 
an no longer use translation invarian
e. If dpK,Hu2
q ¡ CpU , u1, |K|q�

Op1q, by Observation 5.16, we have rKsHu1
YHu2

� rKsHu1
and similarly for u1 and u2 inter-


hanged. We 
an thus assume that K is within distan
e C 1

pU , u1, u2q from the origin. But

then rK YHu1
YHu2

s � Hu1
YHu2

YHu1pC
2

pU , u1, u2qu
1

q, where u1 � pu1 � u2q{2, sin
e the

latter region is stable by the hypothesis on u1, u2.

We next transform these results for in�nite regions into a result for droplets. It states

that a 
rumb next to a droplet 
annot grow signi�
antly (see Figure 5b).
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C1

¤ C2

(a) The dots represent the si-

tes of a 
rumb. The (dis
on-

ne
ted) 
ir
led shape bounds

its 
losure. Note that 
rumbs

may have gaps of size C2 while

the growth allowed is only

C1 ! C2.

8y1

8y2

8x x

y1

y2

C4u0{C1

C4v0{C1

2C3

8D

D

(b) The shaded region is the shrunken DYD

8D of the largest DYD

D. The solid 
ir
les represent 
rumbs and the dashed ar
s are the

bound for their growth provided by Lemma 5.19. The modi�ed


lusters of the 
losure are in
luded in the dotted DYD.

Figure 5: Illustrations of Corollary 5.17, Lemma 5.19 and Proposition 5.20.

Lemma 5.19. Let C1 be su�
iently large depending on U and S. Let D be a DYD at distan
e

at least C3 from B or be a CDYD and let κ be a 
rumb. Then rκsDYB

� rκsD is within distan
e

C1 of κ.

Proof. Assume that D is a DYD at distan
e at least C3 from B. The proof of [7, Lemma 6.10℄

applies using (7), Observation 5.16, Corollary 5.18 and the arguments in the proof of Corollary

5.17 to give the result for rκsD, whi
h is therefore at distan
e at least C2 � C1 from B sin
e

dpκ, Bq ¥ C2, so that in fa
t rκsD � rκsDYB

.

Assume next that D is a CDYD. Then a
tually D Y B 
an be viewed as a DYD on the

entire plane without boundary spe
i�ed by an in�nite number of ve
tors xi, so that we are

in the previous 
ase. In order to avoid introdu
ing the 
orresponding notion of in�nite DYD,

one 
an 
onsider an in
reasing exhaustive sequen
e of DYD Di 
onverging to D Y B in the

produ
t topology and apply the previous result for rκsDi
, whi
h will thereby apply to DYB.

Finally, rκsD � rκsDYB

follows, sin
e dprκsDYB

, Bq ¥ C2 � C1.

The next proposition is key to making the output of the algorithm essentially invariant

under the KCM dynami
s without having to pay for the fa
t that the 
losure for the bootstrap

per
olation dynami
s of infe
tions at equilibrium is not at all at equilibrium itself. The proof

is illustrated in Figure 5b.

Proposition 5.20 (Closure). Let K be a �nite set and D1

be the 
olle
tion of droplets given

by the modi�ed droplet algorithm with input rKs

B

. Let D be the output of the droplet algorithm

for K. Then

�D1

P D1

DD P D, D1

� D.
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Proof. Let K be the set of 
rumbs for K. Set κ0 �
�

κPK κ.

Claim 1. For ea
h 
rumb κ P K its 
losure rκs � rκs
B


onsists of at most α� 1 modi�ed


rumbs of rκs all 
ontained within distan
e C1 from κ.

Proof of Claim 1. There exists a set Pκ as in De�nition 5.1, su
h that rPκs � κ and thus

rPκs � rκs, whi
h proves that all 
onne
ted 
omponents of rκs for Γ1 are modi�ed 
rumbs.

The fa
t that rκs is within distan
e C1 of κ (and thus at distan
e at least C 1

2 from B) was

proved in Corollary 5.17, whi
h also shows that rκs � rκs
B

, sin
e κ is at distan
e more than

C2 from B.

We 
an thus de�ne K1

pκq to be the set of modi�ed 
rumbs of rκs
B

, so that their union

is disjoint and equal to rκs
B

. Moreover, 
rumbs in K are at distan
e at least C2 from ea
h

other, so for any two of them κ1 � κ2 we have that any κ11 P K1

pκ1q and κ12 P K1

pκ2q are at

distan
e at least C2 � 2C1 " C 1

2 and also at su
h distan
e from B, so that rκ0sB �
�

κPKrκsB
has no modi�ed 
luster and 
onsists of modi�ed 
rumbs at distan
e at most C1 from κ0.

For a droplet D P D 
onsider the set of ve
tors Y and x (x is absent for CDYD) de�ning

it. Then de�ne

8Y � Y � C4u0{C1 and 8x � x � C4v0{C1, where u0 P R2
is the ve
tor su
h

that xu0, u1y � xu0, u2y � �1 and v0 is de�ned identi
ally in terms of v1 and v2. We denote

by

8D the droplet de�ned by

8Y and 8x and 
all it a shrunken droplet. Let D0 �
�

DPD
D and

8D0 �
�

DPD
8D. It is 
lear that

8D is at distan
e at least C4{C1 from ΛzD for all droplets

D. In parti
ular, all shrunken droplets are at distan
e at least C4{C1 from ea
h other and

shrunken DYD are at distan
e at least C4{C1 from B, so that Lemma 5.19 applies to them

and r

8D0sB �
8D0.

Claim 2.

8D0 Y κ0 � K.

Proof of Claim 2. Note that it is enough to prove that the 
lusters of K are 
ontained in

8D0.

Assume that there exists a P Kz

8D0 and a P C for some 
luster. Then, QpCqXΛ is 
ontained

in some D P D, whi
h is de�ned by Y and x (x is absent for CDYD). Then sin
e a R

8D,

either for all 8yi P 8Y we have a R Hu1
p 8yiqXHu2

p 8yiq or a R Hv1p8xqXHv2p8xq. In the former 
ase,

a�C4u0{C1 R Hu1
pyiq XHu2

pyiq for all yi P Y . However, QpCq 
ontains the ball of radius C4


entered at a and }u0} � Op1q, so we get a 
ontradi
tion. If a R Hv1p8xq X Hv2p8xq, the �rst

point on the segment from a to a � C4v0{C1 that is not in D is in Λ and in QpCq, hen
e a


ontradi
tion.

Claim 3. The set rKs

B

zrκ0sB is within distan
e C3 of
8D0.

Proof of Claim 3. By Claim 2 we have K0 �
8D0 Y κ0 � K. It then 
learly su�
es to prove

that rK0sBzrκ0sB is within distan
e C3 of
8D0.

Consider a 
rumb κ P K at distan
e at most C2 from
8D0, so at distan
e at most C2 from

a shrunken droplet

8D and ne
essarily at distan
e at least C4{C1 � C2 � C3 from any other

shrunken droplet and from B if D is a DYD. By Lemma 5.19 rκs
8D � rκs

8DYB

is within distan
e

C1 of κ. Hen
e,

rK0 Y Bs �

8D0 Y B Y rκ0s Y

¤

κ,D

rκs
8D, (9)

where the last union is on 
ouples pκ,Dq as above. Indeed, all rκs
8D and rκs (for di�erent κ)

are at distan
e at least C2 � 2C1 from ea
h other and from

8D0z
8D (by the reasoning above),

so for ea
h site of Λ the interse
tion of the ball of radius Op1q 
entered at it with the set on
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u1

u2

v1

v2

u1

u1
2

u1
1

C1

Figure 6: The domain V is

the thi
kened triangle, a por-

tion of whi
h is displayed.

Solid lines separate 
olumns

Ci. Inside the domain is

drawn a DYD, whi
h witnes-

ses Φpωq3 �Ò.

the right-hand side of (9) 
oin
ides with the interse
tion with one of the sets rκY 8Ds, rκs or
8D0 Y B, whi
h are all stable, so no infe
tions o

ur, whi
h proves (9).

The 
laim follows easily from (9), sin
e for every 
ouple κ,D the set rκs
8D is within distan
e

C1 of κ, whi
h is itself at distan
e at most C2 from

8D0, and κ has diameter mu
h smaller

than C3 by Corollary 5.17.

Let C 1

be a modi�ed 
luster of rKs

B

and assume for a 
ontradi
tion that C 1

� rκ0sB. From

De�nition 5.3 we get that C 1

is also a modi�ed 
luster of rκ0sB, but this is a 
ontradi
tion,

sin
e rκ0sB only 
onsists of modi�ed 
rumbs.

Sin
e any modi�ed 
luster C 1

of rKs

B

has diameter at most C3 (by De�nition 5.3) and

interse
ts rKs

B

zrκ0sB, whi
h is within distan
e C3 of
8D0 by Claim 3, we get that C 1

is within

distan
e 2C3 of

8D0. Therefore,

�

C1

PC1prKs

B

q

Q1

pC 1

q � D0 Y B, where the union is over all

modi�ed 
lusters of rKs

B

, sin
e diampQ1

pC 1

qq ! C4{C1 ¤ dp 8D0,ΛzD0q. As D is the output

of the droplet algorithm, D0 is the union of disjoint DYD non-interse
ting B and CDYD, so

it ne
essarily 
ontains

�

D1

PD1

D1

(see Remark 5.10), whi
h 
on
ludes the proof.

Remark 5.21. It should be noted that the algorithm is more easily and naturally de�ned

with no boundary, but that will not be su�
ient for our purposes. However, this `free'

algorithm is trivially obtained as a spe
ialisation of ours. It is also possible to deal with

more general boundaries, with in�nite input sets, as well as with droplets de�ned by more

dire
tions and possibly with several rugged sides.

6 Renormalised East dynami
s

In this se
tion we map the original dynami
s into an East one and 
on
lude the proof of our

main result. In Se
tion 6.1 we introdu
e the ne
essary notation for the relevant geometry. In

Se
tion 6.2 we 
onsider a renormalised dynami
s on the sli
es of Figure 6 by algorithmi
ally

sele
ting 
ertain modi�ed spanned droplets of size Ωp1{qαq. In Se
tion 6.3 we further renor-

malise to re
over an exa
t East dynami
s where q is repla
ed by qeff 
orresponding to the

probability of spanning su
h a droplet. Finally, in Se
tion 6.4 we prove Theorem 2.8 roughly

as in [25℄.

6.1 Geometri
 setup

Let us start by de�ning the domain V we will work in, re
alling the notation from Lemma 4.1.

Roughly speaking, V is an isos
eles triangle with height e1{pC5q
α
q

dire
ted by u1 (see Figure 6).

It is divided into `
olumns' Ci perpendi
ular to u1 of width roughly 1{qα, so that the origin

of Z2
is in the middle of the last 
olumn, 
lose to the tip of V .
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More formally, set L � 1{pC5q
α
q and let ι be the smallest x ¥ 1 su
h that the site

x
2qα

u1

is in Z2
, so that ι � 1�Opqαq. This way our 
olumns will have width ι{qα and be separated

along rational lines. We de�ne the domain

V � Hu1pe
Lu1qz

�

Hu1
2
p�ι{p2qαqu1q YHu1

1
p�ι{p2qαqu1q

�

.

Let us 
hoose C5 so that half the number of 
olumns

N � eLqα{p2ιq � 1{4 � eLqαp1{2�Opqαqq

is an integer. We then partition the domain V �

�2N

i�1 Ci into 
olumns with

Ci � tx P V : eL � ιpi� 1q{qα ¡ xx, u1y ¥ eL � ιi{qαu,

so that 0 is in the middle of C2N and eLu1 P Z2
. We shall refer to Ci as the i-th 
olumn.

Finally, de�ne the half-plane 
ontaining Ci�1, but not interse
ting Ci

Hi � Hu1ppe
L
� ιi{qαqu1q

and the natural boundary for Ci
Bi � Hi Y B̄,

obtained by 
onsidering Cj , j ¥ i� 1 as fully infe
ted, where

B̄ � Hu1
2
p�ι{p2qαqu1q YHu1

1
p�ι{p2qαqu1q.

Note that these boundaries are of the form 
onsidered in Se
tion 5.

6.2 Arrow variables

Let ω P Ω. We will now de�ne a 
olle
tion of arrow variables whi
h depend only on the

restri
tion of ω to V . We naturally identify the restri
tion of ω to V with the subset of V

where ω is 0 and we use the notation ω � ∅ to indi
ate that all sites are �lled (healthy)

in V , namely ωx � 1 for all x P V . Let ωp0q
� ω X V . We de�ne the position of the �rst

up-arrow as the smallest index i1pωq P t1, 2, . . . , 2Nu su
h that there is a modi�ed spanned

droplet of size at least L for rωp0q
s

Bi1pωq
with boundary Bi1pωq. If no su
h i1 exists, we say that

there are no up-arrows and set i1pωq � 8. We further denote ωp1q
� ωp0q

XHi1pωq as soon as

i1pωq   8, while otherwise ωp1q
� ∅.

We de�ne the set Ipωq � ti1pωq, i2pωq, . . . u � t1, . . . , 2Nu 
ontaining the positions of

up-arrows re
ursively as follows. If there are no up-arrows, then I � ∅. Otherwise, we set

Ipωq � ti1pωqu Y Ipωp1q
q and ωpkq

� pωpk�1q
q

p1q
, whi
h de�nes ωpkq

for all k. Let us note that

if i1pωq � 8, then i1pωq   i1pω
p1q
q, sin
e by de�nition rωp1q

s

Bi1pωq
� ∅. Finally, we de�ne

Φpωq P tÒ, Óut1,...,2Nu

as

Φpωqk �

#

Ò if k P Ipωq,

Ó otherwise.

The next Lemma states that the probability to �nd at least one up-arrow de
ays as

qeff � e�L.

Lemma 6.1.

µpi1   8q ¤ qeff .
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Proof. Fix 1 ¤ i ¤ 2N and 
onsider the event i1 � i. It is 
learly in
luded in the event

Ei that there is a modi�ed spanned droplet of size at least L for rωp0q
s

Bi
with boundary Bi.

By Proposition 5.20 there is also a spanned droplet of size at least L{C1 for ωp0q
zBi with

boundary Bi. By Lemma 5.13 this implies that there is also a spanned 
onne
ted droplet of

size between L{C2
1 and 2L{C2

1 . Then one 
an rewrite Ei as the union over all su
h droplets

D of the event that D is spanned. Note that for ea
h dis
retised DYD D X Z2
the event

that there exists a spanned DYD D1

with D1

X Z2
� D X Z2


oin
ides with the event that a

suitably 
hosen su
h D1

0 is spanned. Indeed, the interse
tion of two DYD is a DYD by (7) and

the spanning of all D1

depend only on the �nite number of sites in DXZ2
, so there is a �nite

number of possible events asso
iated to di�erent D1

and one 
an 
onsider the interse
tion

of a D1

de�ning ea
h of these events. The same reasoning holds for CDYD and so for ea
h

dis
retised droplet DXZ2
one 
an bound the probability that there exists a spanned droplet

with su
h dis
retisation using Lemma 5.15. Thus, by the union bound on dis
retised droplets


ounted in Observation 5.8, one obtains

µpEiq ¤ |V |.eL2e�C4L{C
2
1
¤ qeff{p2Nq.

We next 
onsider the event of having at least n up-arrows

Bpnq � tω P Ω : |Ipωq| ¥ nu.

Corollary 6.2. For any 1 ¤ n ¤ 2N we have

µpBpnqq ¤ qneff .

Proof. We prove the statement by indu
tion on n. The base, n � 1, is given by Lemma 6.1.

For n ¡ 1 we have

µp|I| ¥ nq �

2Ņ

i�1

µpi1pωq � i; |Ipω XHiq| ¥ n� 1q

¤

2Ņ

i�1

µpi1 � iqµp|I| ¥ n � 1q

¤qneff ,

where we used that the event i1 � i only depends on ωzHi (i1 is a stopping time for the

�ltration indu
ed by the 
olumns) and that the event |I| ¥ n � 1 is in
reasing for the order

de�ned by ω ¨ ω1

when ω � ω1

.

We will now state a key deterministi
 property of the arrows under legal moves of the

KCM dynami
s.

Lemma 6.3. Let ω P Ω. Let x P Ci be su
h that ωx � 1 and the 
onstraint at x is satis�ed

by ω Y B̄. Assume that Φpωq � Φpωx
q. Let j � maxtk : Φpωqk � Φpωx

qku. Then

Φpωq
ri�1,js � pÒ, Ó, Ò, Ó, Ò, . . . q, Φpωx

q

ri�1,js � pÒ, Ò, Ó, Ò, Ó, . . . q and Φpωq
r0,i�1s � Φpωx

q

r0,i�1s

with the 
onvention that Φpωq0 �Ò for all ω.

Proof. We denote Φ :� Φpωq and Φ1 :� Φpωx
q. Clearly, Φ

r0,i�1s � Φ1

r0,i�1s, sin
e those values

do not depend on ω XHi�1.

Claim 1. Let k ¥ i. If Φk �Ò, then Φ
rk�1,2Ns

¥ Φ1

rk�1,2Ns

for the lexi
ographi
 order

asso
iated to Ò Ó. If Φ1

k �Ò, then Φ
rk�1,2Ns

¤ Φ1

rk�1,2Ns

.
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Proof of Claim 1. The two assertions being analogous, we only prove the �rst one, so assume

that Φk �Ò. Let j
1

� mintl ¡ k : Φl �Òu. Then there is a modi�ed spanned droplet of size

at least L for rωp0q
X HksBj1

with boundary Bj1. But this is also true for ωx
instead of ω, as

they 
oin
ide in Hk, and in parti
ular the position of the �rst up-arrow of Φ1

after k is at

most j1.

Claim 2. Let k ¥ i� 1 be su
h that Φk � Φ1

k �Ó. Then k ¡ j i.e. Φ
rk,2Ns

� Φ1

rk,2Ns

.

Proof of Claim 2. We 
an 
learly assume that k   2N . Further assume for a 
ontradi
tion

that Φk�1 �Ò and Φ1

k�1 �Ó. Let i1 � maxtl   k : Φl �Òu. Then there exists a modi�ed

spanned droplet D of size at least L for rωp0q
XHi1sBk�1

with boundary Bk�1. By Lemma 5.13

we 
an assume that L ¤ |D| ¤ C1L. However, if dpD, Ck�1q ¡ C5, then D is also modi�ed

spanned for rωp0q
XHi1sBk with boundary Bk, 
ontradi
ting the de�nition of i1. Indeed, from

the output of the modi�ed droplet algorithm for rωp0q
XHi1sBk XD with boundary Bk we 
an


reate a 
olle
tion D̂ of droplets for Bk�1 by extending CDYD appropriately, thus D̂ 
ontains

Q1

pC 1

qzBk � Q1

pC 1

qzBk�1 for every modi�ed 
luster C 1

of rωp0q
X Hi1sBk X D with boundary

Bk. Moreover, the modi�ed 
lusters of rωp0q
XHi1sBk�1

XD with boundary Bk�1 are 
ontained

in the modi�ed 
lusters of rωp0q
XHi1sBk XD with boundary Bk, so D̂ 
ontains the output of

the modi�ed droplet algorithm for rωp0q
XHi1sBk�1

XD with boundary Bk�1 by Remark 5.10,

itself 
ontaining D.

Therefore, dpD, Ck�1q ¤ C5. Moreover, D is not modi�ed spanned for rpωx
q

p0q
XHk�1sBk�1

with boundary Bk�1 (otherwise Φ1

rk,k�1s � pÓ, Óq). Therefore, there exists a site y P D su
h

that

y P rωp0q
XHi1sBk�1

zrpωx
q

p0q
XHk�1sBk�1

.

We 
onsider two sub
ases. First assume that dpx,R2
zHi�1q ¥ C1. Then, the 
onstraint

at x is satis�ed by pω XHi�1q Y B̄, so rωp0q
XHk�1sBk�1

� rpωx
q

p0q
XHk�1sBk�1

, and there is a

path

P � rωp0q
XHi1sBk�1

zrpωx
q

p0q
XHk�1sBk�1

from R2
zHk�1 to y su
h that ea
h two 
onse
utive sites are at distan
e at most Op1q. But

dpy,R2
zHk�1q ¥ ι{qα � diampDq � C5 ¥ C2pL � 1q, so one 
an �nd a subpath P 1

� Ck X P

of diameter at least C2L. Yet, it is 
lear that P 1

� rωp0q
X Hi1sBk implies the existen
e of

a modi�ed spanned droplet of size larger than L with boundary Bk, so one would have an

up-arrow of Φ in ri1� 1, ks � a 
ontradi
tion. If, on the 
ontrary, dpx,R2
zHi�1q ¤ C1, we 
an

redo the same reasoning, but P needs to extend to either R2
zHk�1 or x, both of whi
h are

su�
iently far from y.

Thus, Φk�1 � Φ1

k�1, as the 
ase Φk�1 �Ó,Φ1

k�1 �Ò is treated identi
ally. But then

either both are Ò, in whi
h 
ase we are done by Claim 1 or both are Ó and we are done by

indu
tion.

It is easy to see that the only non-identi
al arrow sequen
es Φ
ri�1,js and Φ1

ri�1,js satisfying

the two 
laims are pÒ, Ó, Ò, Ó, . . . q and pÒ, Ò, Ó, Ò, . . . q (in this order using that ωx � 1). Indeed,

by Claims 1 and 2 Φk � Φ1

k for all i ¤ k ¤ j, by Claim 1 one 
annot have two 
onse
utive

up arrows neither in Φ nor in Φ1

in the interval ri, js and by Claim 2 Φi�1 � Φ1

i�1 �Ò.

6.3 Renormalised East dynami
s

We partition t1, . . . , 2Nu into blo
ks Bi � t2i� 1, 2iu for 1 ¤ i ¤ N . Given ω P Ω, we de�ne

ηpωq P t0, 1ut1,...,Nu

by

ηpωqi � 1

t�jPBi:Φpωqj�Óu
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for all i P t1, . . . Nu. Let

n � tLu �

Z

1

C5qα

^

  tlog2Nu.

Re
all the de�nition of legal paths, De�nition 2.4. Given an event E � Ω and a legal

path γ � pω
p0q, . . . , ωpkqq we will say that γ X E � ∅ if ω

piq R E for all i P t0, . . . , ku. Also,

given ω P Ω and A � Ω, we say that γ 
onne
ts ω to A if ω
p0q � ω and ω

pkq P A. Re
all

that Bpnq � Ω is the set of 
on�gurations with at least n up-arrows. The following is a

straightforward but important 
orollary of Lemma 6.3.

Corollary 6.4. For any legal path pω
p0q, . . . , ωpkqq, the path pηpω

p0qq, . . . , ηpωpkqqq is legal for

the East model on t1, . . . , Nu de�ned by �xing η0 � 0.

Proof. By Lemma 6.3 ηpω
pjqq � ηpω

pj�1qq implies that Φpω
pjqq and Φpω

pj�1qq only di�er on

an alternating 
hain of arrows ending in some Bi, pre
eded by Ò. Then 
learly ηpω
pjqql �

ηpω
pj�1qql for all l � i and ηpω

pjqqi�1 � 0.

Let Ω
Ó

and Ω2N
Ò

be respe
tively the set of 
on�gurations whi
h do not have up-arrows,

and the set of 
on�gurations with an up-arrow in the 2N-th 
olumn, namely

Ω
Ó

� tω P Ω : Φpωq � pÓ, . . . , Óqu,

Ω2N
Ò

� tω P Ω : Φpωq2N �Òu.

Combining the last 
orollary with Proposition 2.7, we obtain the most important input

for the proof of the main result.

Corollary 6.5. For any ω P Ω
Ó

there does not exist a legal path γ with γ X Bpn � 1q � ∅


onne
ting ω to Ω2N
Ò

.

6.4 Proof of Theorem 2.8

To prove Theorem 2.8 it is su�
ient to prove the lower bound for the mean infe
tion time

and use the following inequality (see [10, Theorem 4.4℄ and also [26, Se
tion 2.2℄)

Trel ¥ qEpτ0q. (10)

However, it is instru
tive to 
onstru
t at this stage a test fun
tion that dire
tly gives the

desired lower bound on Trel without going through the 
omparison with the mean infe
tion

time. Indeed, the me
hanism will appear more 
learly this way.

Proof of Theorem 2.8 for Trel We de�ne the event

Ã � tω P Ω: D a legal path γ with γ X Bpnq � ∅ 
onne
ting ω Y pZ2
zV q to Ω

Ó

u

and the test fun
tion f : Ω Ñ t0, 1u

f � 1

Ã
.

Then, by De�nition 2.5 we get

Trel ¥
µpÃqp1� µpÃqq

Dpfq
, (11)

where the Diri
hlet form Dpfq is de�ned in (4).
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Lemma 6.6 (Bounds on µpÃq).

µpÃq
�

1� µpÃq
	

¥ exp

�

log q

C4qα




.

Proof. By Lemma 6.1 we have

µpÃq ¥ µpΩ
Ó

q ¥ 1� qeff ¥ 1{2.

On the other hand,

1� µpÃq ¥ µpΩ2N
Ò

q ¥ qC1L
¥ exppC1 log q{pC5q

α
qq,

where we used Corollary 6.5 for the �rst inequality as well as the fa
t that if pω
p0q, . . . , ωpkqq

is a legal path, then pω
pkq, . . . , ωp0qq is one as well, and for the se
ond inequality we noti
e

that for the 2N-th arrow to be up it is su�
ient to have an empty segment of length C1L in

C2N .

Lemma 6.7 (Estimate of the Diri
hlet form). Dpfq ¤ exp p�1{pC3
5q

2α
qq.

Proof. Using the fa
t that fpωq depends only on the values of ω in V , we get

Dpfq �
¸

xPV

µpcxVarxpfqq � qp1� qq
¸

xPV

µ
�

cx1
tωPÃ, ωx

RÃu
� cx1

tωRÃ, ωx
PÃu

	

¤ |V |µpBpn� 1qq,

(12)

sin
e, by Lemma 6.3 ||Ipωq| � |Ipωx
q|| ¤ 1 when cx � 1, so the indi
ators both imply

ω P Bpn � 1q. Indeed, ω P Ã implies the existen
e of a legal path γ from Ω
Ó

to ω Y pZ2
zV q

with ea
h 
on�guration not in Bpnq. Sin
e cx � 1, the path γ̄ obtained by adding the

transition from ω Y pZ2
zV q to ωx

Y pZ2
zV q is also legal, thus the hypothesis ωx

R Ã is not

satis�ed unless ωx
P Bpnq (and similarly for ω R Ã, ωx

P Ã). Thus, the result follows by using

Corollary 6.2.

Then the lower bound for Trel of Theorem 2.8 follows from (11), Lemma 6.6 and Lemma

6.7.

The above proof, together with the mat
hing upper bound of Theorem 2(a) of [26℄ indi
ate

that the bottlene
k dominating the time s
ales is the 
reation of Θplogp1{qeffqq simultaneous

droplets of probability qeff .

Proof of Theorem 2.8 for Epτ0q The proof of the lower bound for the infe
tion time

follows a similar route, with some 
ompli
ations due to the fa
t that we have to identify

a (su�
iently likely) initial set starting from whi
h we have to go through the bottlene
k


on�gurations before infe
ting the origin.

By [25, Corollary 3.4℄, to prove the desired lower bound on Epτ0q it su�
es to 
onstru
t

a lo
al fun
tion φ � φq su
h that

(i) µpφ2
q � 1,

(ii)

µpφq4

Dpφq
¥ expp1{pC4

5q
2α
qq,

(iii) φpωq � 0 if ω0 � 0.
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Inspired by [25℄ we let

Ωg � Ω
Ó

X tω P Ω : ωΛ0
� 1u

where Λ0 � tx P Z2 : dpx, 0q ¤ 1{p4qαqu � C2N and

A � tω P Ω: D a legal path γ with γ X Bpnq � ∅ 
onne
ting ω Y pZ2
zV q to Ωgu.

Then we set

φp�q � 1Ap�q{µpAq
1{2. (13)

We are now left with proving that this fun
tion satis�es (i)-(iii) above.

Property (i) follows immediately from (13). In order to verify (ii) we start by establishing

a lower bound on µpAq. By de�nition it holds that

µpAq ¥ µpΩgq ¥ µpωΛ0
� 1qµpΩ

Ó

q ¥ e�Op1q{q2α�1

p1� qeffq � e�Op1q{q2α�1

, (14)

where we used Harris' inequality [18℄ (tωΛ0
� 1u and Ω

Ó

are in
reasing events if we 
onsider

that ω ¤ ω1

when ωx ¤ ω1

x for all x P Z2
), Lemma 6.1 and |Λ0| � Op1{q2αq.

Furthermore, one 
an repeat the proof of Lemma 6.7 to obtain

Dpφq ¤ e�1{pC3
5
q2αq. (15)

Thus, re
alling (14), Property (ii) holds.

We are therefore only left with proving the next lemma establishing Property (iii), 
om-

pleting the proof of Theorem 2.8.

Lemma 6.8. Let ω be su
h that ω0 � 0. Then any legal path 
onne
ting Ωg to ω interse
ts

Bpnq.

As in the lower bound on 1 � µpÃq for Trel, the proof relies on Corollary 6.5, but an

additional 
ompli
ation arises due to the fa
t that emptying the origin does not a priori

require 
reating a 
riti
al droplet nearby.

Proof of Lemma 6.8. Suppose for a 
ontradi
tion that there exists a 
on�guration ω with

ω0 � 0, a 
on�guration ω
p0q P Ωg and a legal path γ � pω

p0q, . . . , ωpkqq with ω
pkq � ω and

ω
pjq R Bpnq for all j P t0, . . . , ku. Assuming without loss of generality that ω

pjq � ω
pj�1q for

all j, let xj be su
h that ω
pjq � pω

pj�1qq
xj
. Consider the path γ̃ � pω̃

p0q, . . . , ω̃pkqq obtained by

performing the same updates as for γ ex
ept for �ips in the 
olumn C2N , whi
h are performed

only if they 
orrespond to emptying sites. More pre
isely, we let ω̃
p0q � ω

p0q and

ω̃
pjq �

#

pω̃
pj�1qq

xj
if xj R C2N or pω̃

pj�1qqxj
� 1,

ω̃
pj�1q otherwise.

It is not di�
ult to verify by indu
tion that γ̃ is also a legal path with ω̃
pjq ¤ ω

pjq for all j

(where ω ¤ ω1

when ωx ¤ ω1

x for all x P Z2
) and that ω̃

pjq and ω
pjq 
oin
ide outside of C2N .

Then pω̃
pkqq0 ¤ pω

pkqq0 � 0 and by de�nition pω̃
p0qqΛ0

� 1. Therefore, sin
e inside C2N ea
h

site that has been emptied in γ is also empty in ω̃
pkq, we 
on
lude that ne
essarily ω̃

pkqX C2N

ontains a (modi�ed) spanned droplet of size 1{p4C1q

α
q ¡ L with boundary B2N � B̄. Indeed,

there is a path of sites x with steps of size Op1q from Z2
zΛ0 to 0 su
h that pω̃

pkqqx � 0. This

means that ω̃
pkq P Ω2N

Ò

. Furthermore, for all j we have Φpω̃
pjqqr1,2N�1s � Φpω

pjqqr1,2N�1s, as

those do not depend on the sites in C2N . Thus, using Corollary 6.5, together with the fa
ts

that ω̃
p0q P Ωg � Ω

Ó

, ω̃
pkq P Ω2N

Ò

and γ̃ X Bpn � 1q � ∅, we rea
h a 
ontradi
tion.
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7 Open problems

With Theorem 2.8 the s
aling of the infe
tion time is determined up to a polylogarithmi


fa
tor. The next natural question is to pursue determining this fa
tor in the spirit of the

re�ned universality result of [7℄. For the moment there is only one 
riti
al model with

in�nitely many stable dire
tions for whi
h this is known � the Duarte model [25℄. In that


ase the 
orre
tive fa
tor is Θpplog qq4q. However, for bootstrap per
olation there are already

two di�erent possible behaviours of this fa
tor depending on whether the model is balan
ed

or unbalan
ed (see De�nition 2.3). Based on this one 
ould expe
t the following.

Conje
ture 7.1. Let U be a 
riti
al update family with an in�nite number of stable dire
tions.

• If U is balan
ed, then

Epτ0q � exp

�

Θp1q

q2α




.

• If U is unbalan
ed, then

Epτ0q � exp

�

Θ
�

plog qq
4
�

q2α

�

.

The same asymptoti
s hold for Trel.

In other words we expe
t the lower bound of Theorem 2.8 to be sharp for balan
ed models,

while the upper bound of [26, Theorem 2(a)℄ to be sharp for unbalan
ed ones. The balan
ed


ase is not hard and only requires an improvement of the approa
h of [26℄. It will be treated

in a future work, sin
e it shares none of the te
hniques dis
ussed here. In the unbalan
ed 
ase

the plog qq4 should arise as the square of the plog qq2 fa
tor for bootstrap per
olation, itself


aused by the one-dimensional geometry and larger size of 
riti
al droplets. This is indeed

what happens for the Duarte model [25℄, an example of unbalan
ed 
riti
al 
onstraint.
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