
Universality for ritial KCM:

in�nite number of stable diretions

Ivailo Hartarsky

∗,1,2
, Laure Marêhé

†,3
, and Cristina Toninelli

‡,2

1

DMA UMR 8553, Éole Normale Supérieure

CNRS, PSL Researh University

45 rue d'Ulm, 75005 Paris, Frane

2

CEREMADE UMR 7534, Université Paris-Dauphine

CNRS, PSL Researh University

Plae du Maréhal de Lattre de Tassigny, 75775 Paris Cedex 16, Frane

3

LPSM UMR 8001, Université Paris Diderot

CNRS, Sorbonne Paris Cité

75013 Paris, Frane

April 8, 2020

Abstrat

Kinetially onstrained models (KCM) are reversible interating partile systems

on Zd
with ontinuous-time onstrained Glauber dynamis. They are a natural non-

monotone stohasti version of the family of ellular automata with random initial state

known as U -bootstrap perolation. KCM have an interest in their own right, owing to

their use for modelling the liquid-glass transition in ondensed matter physis.

In two dimensions there are three lasses of models with qualitatively di�erent sa-

ling of the infetion time of the origin as the density of infeted sites vanishes. Here we

study in full generality the lass termed `ritial'. Together with the ompanion paper

by Martinelli and two of the authors [20℄ we establish the universality lasses of ritial

KCM and determine within eah lass the ritial exponent of the infetion time as well

as of the spetral gap. In this work we prove that for ritial models with an in�nite

number of stable diretions this exponent is twie the one of their bootstrap perolation

ounterpart. This is due to the ourrene of `energy barriers', whih determine the

dominant behaviour for these KCM but whih do not matter for the monotone boot-

strap dynamis. Our result on�rms the onjeture of Martinelli, Morris and the last

author [26℄, who proved a mathing upper bound.
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1 Introdution

Kinetially onstrained models (KCM) are interating partile systems on the integer lat-

tie Zd
, whih were introdued in the physis literature in the 1980s by Fredrikson and

Andersen [16℄ in order to model the liquid-glass transition (see e.g. [17, 31℄ for reviews), a

major and still largely open problem in ondensed matter physis [5℄. A generi KCM is a

ontinuous-time Markov proess of Glauber type haraterised by a �nite olletion U of �-

nite nonempty subsets of Zd
zt0u, its update family. A on�guration ω is de�ned by assigning

to eah site x P Zd
an oupation variable ωx P t0, 1u, orresponding to an empty or oupied

site respetively. Eah site x P Zd
waits an independent, mean one, exponential time and

then, i� there exists U P U suh that ωy � 0 for all y P U�x, site x is updated to empty with

probability q and to oupied with probability 1�q. Sine eah U P U is ontained in Zd
zt0u,

the onstraint to allow the update does not depend on the state of the to-be-updated site.

As a onsequene, the dynamis satis�es detailed balane w.r.t. the produt Bernoulli(1� q)

measure, µ, whih is therefore a reversible invariant measure. Hene the proess started at

µ is stationary.

Both from a physial and from a mathematial point of view, a entral issue for KCM

is to determine the speed of divergene of the harateristi time sales when q Ñ 0. Two

key quantities are: (i) the relaxation time Trel, i.e. the inverse of the spetral gap of the

Markov generator (see De�nition 2.5) and (ii) the mean infetion time Epτ0q, i.e. the mean

over the stationary proess started at µ of the �rst time at whih the origin beomes empty.

Several works have been devoted to the study of these time sales for some spei� hoies

of the onstraints [2, 9, 12, 13, 25, 27℄ (see also [17℄ setion 1.4.1 for a non exhaustive list of

referenes in the physis literature). These results show that KCM exhibit a very large variety

of possible salings depending on the update family U . A question that naturally emerges,

and that has been �rst addressed in [26℄, is whether it is possible to group all possible update

families into distint universality lasses so that all models of the same lass display the same

divergene of the time sales.

Before presenting the results and the onjetures of [26℄, we should desribe the key

onnetion of KCM with a lass of disrete monotone ellular automata known as U-bootstrap

perolation (or simply bootstrap perolation) [8℄. For U-bootstrap perolation on Zd
, given

an update family U and a set At of sites infeted at time t, the infeted sites in At remain

infeted at time t � 1, and every site x beomes infeted at time t � 1 if the translate by

x of one of the sets in U is ontained in At. The set of initial infetions A is hosen at

random with respet to the produt Bernoulli measure with parameter q P r0, 1s, whih

identi�es with µ: for every x P Zd
we have µpx P Aq � q. One then de�nes the ritial

probability qc
�

Zd,U
�

to be the in�mum of the q suh that with probability one the whole

lattie is eventually infeted, namely

�

t¥0At � Zd
. A key time sale for this dynamis is

the �rst time at whih the origin is infeted, τBP. In order to study this infetion time for

models on Z2
, the update families were lassi�ed by Bollobás, Smith and Uzzell [8℄ into three

universality lasses: superritial, ritial and subritial, aording to a simple geometri

riterion (see De�nition 2.1). In [8℄ they proved that qc
�

Z2,U
�

� 0 if U is superritial or

ritial, and it was proved by Balister, Bollobás, Przykuki and Smith [4℄ that qc
�

Z2,U
�

¡ 0

if U is subritial. For superritial update families, [8℄ proved that τBP � q�Θp1q
w.h.p.

as q Ñ 0, while in the ritial ase τBP � exppq�Θp1q
q. The result for ritial families was

later improved by Bollobás, Duminil-Copin, Morris and Smith [7℄, who identi�ed the ritial

exponent α � αpUq suh that τBP � exppq�α�op1q
q.

Bak to KCM, if we �x an update family U and an initial on�guration ω and we identify
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the empty sites with infeted sites, a �rst basi observation is that the lusters of sites that

will never be infeted in the U-bootstrap perolation orrespond to lusters of sites whih are

oupied and will never be emptied under the KCM dynamis. A natural issue is whether

there is a diret onnetion between the infetion mehanism of bootstrap perolation and

the relaxation mehanism for KCM, and, more preisely, whether the saling of Trel and Epτ0q

is onneted to the typial value of τBP when the law of the initial infetions is µ. It is not

di�ult to establish that µpτBPq provides a lower bound for Epτ0q and Trel (see [27, Lemma 4.3℄

and (10)), but in general, as we will explain, this lower bound does not provide the orret

behaviour.

In [26℄, Martinelli, Morris and the last author proposed that the superritial lass should

be re�ned into unrooted superritial and rooted superritial models in order to apture the

riher behavior of KCM. For unrooted models the saling is of the same type as for bootstrap

perolation, Trel � Epτ0q � q�Θp1q
as q Ñ 0 [26, Theorem 1(a)℄

1

, while for rooted models

the divergene is muh faster, Epτ0q � Trel � eΘpplog qq
2
q

(see [26, Theorem 1(b)℄ for the upper

bound and [25, Theorem 4.2℄ for the lower bound).

Conerning the ritial lass, the lower bound with µpτBPq mentioned above and the re-

sults of [8℄ on bootstrap perolation imply that Trel and Epτ0q diverge at least as exppq
�Θp1q

q.

In [26, Theorem 2℄ an upper bound of the same form was established and a onjeture [26,

Conjeture 3℄ was put forward on the value of the ritial exponent ν suh that both Epτ0q and

Trel sale as expp| log q|
Op1q

{qνq, with ν in general di�erent from the exponent of the orrespon-

ding bootstrap perolation proess. Furthermore, a toolbox was developed for the study of

the upper bounds, leading to upper bounds mathing this onjeture for all models. The main

issue left open in [26℄ was to develop tools to establish sharp lower bounds. A �rst step in this

diretion was done by Martinelli and the last two authors [25℄ by analyzing a spei� ritial

model known as the Duarte model for whih the update family ontains all the 2-elements

subsets of the North, South and West neighbours of the origin. Theorem 5.1 of [25℄ esta-

blishes a sharp lower bound on the infetion and relaxation times for the Duarte KCM that,

together with the upper bound in [26, Theorem 2(a)℄, proves EDuarte

pτ0q � exp pΘpplog qq4{q2qq

as q Ñ 0, and the same result holds for Trel. The divergene is again muh faster than for

the orresponding bootstrap perolation model, for whih it holds τBP � eΘpplog qq
2
{qq

w.h.p

as q Ñ 0 [30℄ (see also [6℄, from whih the sharp value of the onstant follows), namely the

ritial exponent for the Duarte KCM is twie the ritial exponent for the Duarte bootstrap

perolation.

Both for Duarte and for superritial rooted models, the sharper divergene of time sales

for KCM is due to the fat that the infetion time of KCM is not well approximated by

the infetion mehanism of the monotone bootstrap perolation proess, but is instead the

result of a muh more omplex infetion/healing mehanism. Indeed, visiting regions of the

on�guration spae with an anomalous amount of empty sites is heavily penalised and requires

a very long time to atually take plae. The basi underlying idea is that the dominant

relaxation mehanism is an East-like dynamis for large droplets of empty sites. Here East-

like means that the presene of an empty droplet allows to empty (or �ll) another adjaent

droplet but only in a ertain diretion (or more preisely in a limited one of diretions). This

is reminisent of the relaxation mehanism for the East model, a prototype one-dimensional

KCM for whih x an be updated i� x � 1 is empty, thus a single empty site allows to

reate/destroy an empty site only on its right (see [15℄ for a review on the East model). For

superritial rooted models, the empty droplets that play the role of the single empty sites

1

For the lower bound of Trel one does not need to use the boostrap perolation results, as Trel ¥

q�minUPU |U |
{|U | by plugging the test funtion 1

tω0�0u in De�nition 2.5.
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for East have a �nite (model dependent) size, hene an equilibrium density q
e�

� qΘp1q. For

the Duarte model, droplets have a size that diverges as ℓ � | log q|{q and thus an equilibrium

density q
e�

� qℓ � e�plog qq
2
{q
. Then a (very) rough understanding of the results of [25, 26℄ is

obtained by replaing q with q
e�

in the time sale for the East model T East

rel � eΘpplog qq
2
q

[2℄. The

main tehnial di�ulty to translate this intuition into a lower bound is that the droplets

annot be identi�ed with a rigid struture. In [25℄ this di�ulty for the Duarte model

was overome by an algorithmi onstrution that allows to sequentially san the system in

searh of sets of empty sites that ould (without violating the onstraint) empty a ertain

rigid struture. These are the droplets that play the role of the empty sites for the East

dynamis.

In [26℄ all ritial models whih have an in�nite number of stable diretions (see Setion

2.1), of whih the Duarte model is but one example, were onjetured to have a ritial

exponent ν � 2α, with α � αpUq the ritial exponent of the orresponding bootstrap

perolation dynamis (de�ned in De�nition 2.2). The heuristis is the same as for the Duarte

model, the only di�erene being that droplets would have in general size ℓ � | log q|Op1q{qα.

However, the tehnique developed in [25℄ for the Duarte model relies heavily on the spei�

form of the Duarte onstraint and in partiular on its oriented nature

2

, and it annot be

extended readily to this larger lass.

In this work, together with the ompanion paper by Martinelli and two of the authors [20℄,

we establish in full generality the universality lasses for ritial KCM, determining the ritial

exponent for eah lass.

Here we treat all hoies of U for whih there is an in�nite number of stable diretions

and prove (Theorem 2.8) a lower bound for Trel and Epτ0q that, together with the mathing

upper bound of [26, Theorem 2℄, yields

Epτ0q � e| log q|
Op1q

{q2α

for q Ñ 0 and the same result for Trel. Our tehnique is somewhat inspired by the algorithmi

onstrution of [25℄, however, the nature of the droplets whih move in an East-like way is

here muh more subtle, and in order to identify them we onstrut an algorithm whih an

be seen as a signi�ant improvement on the α-overing and u-ieberg algorithms developed

in the ontext of bootstrap perolation [7℄.

In the ompanion paper [20℄ we prove for the omplementary lass of models, namely all

ritial models with a �nite number of stable diretions, an upper bound that (together with

the lower bound from bootstrap perolation) yields instead

Epτ0q � e| log q|
Op1q

{qα

for q Ñ 0 and the same result for Trel.

A omparison of our results with Conjeture 3 of [26℄ is due. The lass that we onsider

here is, in the notation of [26℄, the lass of models with bilateral di�ulty β � 8, hene belong

to the α-rooted lass de�ned therein. Therefore, our Theorem 2.8 proves Conjeture 3(a) in

this ase. We underline that it is not a limitation of our lower bound strategy that prevents us

from proving Conjeture 3(a) for the other α-rooted models, namely those with 2α ¤ β   8.

Indeed, as it is proven in the ompanion paper [20℄, in this ase the onjeture of [26℄ is not

orret, sine it did not take into aount a subtle relaxation mehanism whih allows to

reover the same ritial exponent as for the bootstrap perolation dynamis.

2

Note that, sine the Duarte update rules ontain only the North, South and West neighbours of the

origin, the onstraint at a site x does not depend on the sites with absissa larger than the absissa of x.
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The plan of the paper is as follows. In Setion 2 we develop the bakground for both KCM

and bootstrap perolation needed to state our result, Theorem 2.8. In Setion 3 we give a

sketh of our reasoning and highlight the important points. In Setion 4 we gather some

preliminaries and notation. Setion 5 is the ore of the paper � there we de�ne the entral

notions and establish their key properties, ulminating in the Closure Proposition 5.20. In

Setion 6 we establish a onnetion between the KCM dynamis and an East dynamis and

use this to wrap up the proof of Theorem 2.8. Finally, in Setion 7 we disuss some open

problems.

2 Models and bakground

2.1 Bootstrap perolation

Before turning to our models of interest, KCM, let us reall reent universality results for

the intimately onneted bootstrap perolation models in two dimensions. U-bootstrap per-

olation (or simply bootstrap perolation) is a very general lass of monotone transitive loal

ellular automata on Z2
�rst studied in full generality by Bollobás, Smith and Uzzell [8℄. Let

U , alled update family, be a �nite family of �nite nonempty subsets, alled update rules,

of Z2
zt0u. Let A, alled the set of initial infetions, be an arbitrary subset of Z2

. Then

the U-bootstrap perolation dynamis is the disrete time deterministi growth of infetion

de�ned by A0 � A and, for eah t P N,

At�1 � At Y tx P Z2 : DU P U , U � x � Atu.

In other words, at any step eah site beomes infeted if a rule translated at it is already fully

infeted, and infetions never heal. We de�ne the losure of the set A by rAs �
�

t¥0At and

we say that A is stable when rAs � A. The set of initial infetions A is hosen at random

with respet to the produt Bernoulli measure µ with parameter q P r0, 1s: for every x P Z2

we have µpx P Aq � q.

Arguably, the most natural quantity to onsider for these models is the typial (e.g. mean)

value of τBP, the infetion time of the origin.

The ombined results of Bollobás, Smith and Uzzell [8℄ and Balister, Bollobás, Przykuki

and Smith [4℄ yield a pre-universality partition of all update families into three lasses with

qualitatively di�erent salings of the median of the infetion time as q Ñ 0. In order to de�ne

this partition we will need a few de�nitions.

For any unitary vetor u P S1
� tz P R2 : }z} � 1u (} � } denotes the Eulidean norm

in R2
) and any vetor x P R2

we denote Hupxq � ty P R2 : xu, y � xy   0u � the open

half-plane direted by u passing through x. We also set Hu � Hup0q. We say that a diretion

u P S1
is unstable (for an update family U) if there exists U P U suh that U � Hu and stable

otherwise. The partition is then as follows.

De�nition 2.1 (De�nition 1.3 of [8℄). An update family U is

• superritial if there exists an open semi-irle of unstable diretions,

• ritial if it is not superritial, but there exists an open semi-irle with a �nite number

of stable diretions,

• subritial otherwise.
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The main result of [8℄ then states that in the superritial ase τBP � q�Θp1q
with high

probability as q Ñ 0, while in the ritial one τBP � exppq�Θp1q
q. The �nal justi�ation of

the partition in De�nition 2.1 was given by Balister, Bollobás, Przykuki and Smith [4℄ who

proved that the origin is never infeted with positive probability for subritial models for

q ¡ 0 su�iently small, i.e. qc
�

Z2,U
�

¡ 0 if U is subritial. From the bootstrap perolation

perspetive superritial models are rather simple, while subritial ones remain very poorly

understood (see [19℄). Nevertheless, most of the non-trivial models onsidered before the

introdution of U-bootstrap perolation, inluding the 2-neighbour model (see [1, 22℄ for

further results), fall into the ritial lass, whih is also the fous of our work.

Signi�antly improving the result of [8℄, Bollobás, Duminil-Copin, Morris and Smith [7℄

found the orret exponent determining the saling of τBP for ritial families. Moreover,

they were able to �nd log τBP up to a onstant fator. To state their results we need the

following ruial notion.

De�nition 2.2 (De�nition 1.2 of [7℄). Let U be an update family and u P S1
be a diretion.

Then the di�ulty of u, αpuq, is de�ned as follows.

• If u is unstable, then αpuq � 0.

• If u is an isolated stable diretion (isolated in the topologial sense), then

αpuq � mintn P N : DK � Z2, |K| � n, |rZ2
X pHu YKqszHu| � 8u, (1)

i.e. the minimal number of infetions allowing Hu to grow in�nitely.

• Otherwise, αpuq � 8.

We de�ne the di�ulty of U by

αpUq � inf
CPC

sup
uPC

αpuq, (2)

where C � tHu X S1 : u P S1
u is the set of open semi-irles of S1

.

It is not hard to see (Theorem 1.10 of [8℄, Lemma 2.6 of [7℄) that the set of stable

diretions is a �nite union of losed intervals of S1
and that (Lemmas 2.7 and 2.10 of [7℄) (1)

also holds for unstable and strongly stable diretions, that is diretions in the interior of the

set of stable diretions (but not for semi-isolated stable diretions i.e. endpoints of non-trivial

stable intervals). Furthermore (see [7, Lemma 2.7℄, [8, Lemma 5.2℄), 1 ¤ αpuq   8 if and

only if u is an isolated stable diretion, so that U is ritial if and only if 1 ¤ αpUq   8. As

a �nal remark we reall that, ontrary to determining whether an update family is ritial,

�nding αpUq is a NP-hard question [21℄.

We are now ready to desribe the universality results. A weaker form of the result of [7℄

is that τBP � exppq�αpUq�op1q
q with high probability as q Ñ 0. For the full result however, we

need one last de�nition.

De�nition 2.3. A ritial update family U is balaned if there exists a losed semi-irle C

suh that maxuPC αpuq � αpUq and unbalaned otherwise.

Then [7℄ provides that for balaned models τBP � exppΘp1q{qαpUqq with high probability

as q Ñ 0, while for unbalaned ones τBP � exppΘpplog qq2q{qαpUqq. These are the best general

estimates urrently known. We refer to [28, 29℄ for reent surveys on these results as well as

on sharper results for some spei� models.
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2.2 Kinetially onstrained models

Returning to KCM, let us �rst de�ne the general lass of KCM introdued by Canrini,

Martinelli, Roberto and the last author [9℄ diretly on Z2
. Fix a parameter q P r0, 1s and an

update family U as in the previous setion. The orresponding KCM is a ontinuous-time

Markov proess on Ω � t0, 1uZ
2

whih an be informally de�ned as follows. A on�guration

ω is de�ned by assigning to eah site x P Z2
an oupation variable ωx P t0, 1u orresponding

to an empty (or infeted) and oupied (or healthy) site respetively. Eah site waits an

independent exponentially distributed time with mean 1 before attempting to update its

oupation variable. At that time, if the on�guration is ompletely empty on at least one

update rule translated at x, i.e. if DU P U suh that ωy � 0 for all y P U�x, then we perform

a legal update or legal spin �ip by setting ωx to 0 with probability q and to 1 with probability

1� q. Otherwise the update is disarded. Sine the onstraint to allow the update never

depends on the state of the to-be-updated site, the produt measure µ is a reversible invariant

measure and the proess started at µ is stationary. More formally, the KCM is the Markov

proess on Ω with generator L ating on loal funtions f : Ω ÞÑ R as

pLfqpωq �
¸

xPZ2

cxpωq pµxpfq � fq pωq, (3)

for any ω P Ω, where µxpfq denotes the average of f when the oupation variable at x has

law Berp1� qq and the other oupation variables are set to tωyuy�x, and cx is the indiator

funtion of the event that there exists U P U suh that U � x is ompletely empty, i.e.

ωU�x � 0. We refer the reader to hapter I of [24℄, where the general theory of interating

partile systems is detailed, for a preise onstrution of the Markov proess and the proof

that L is the generator of a reversible Markov proess tωptqut¥0 on Ω with reversible measure

µ.

The orresponding Dirihlet form is de�ned as

Dpfq �
¸

xPZ2

µ
�

cxVarxpfq
�

, (4)

where Varxpfq denotes the variane of the loal funtion f with respet to the variable ωx

onditionally on tωyuy�x. The expetation with respet to the stationary proess with initial

distribution µ will be denoted by E � Eq,U
µ . Finally, given a on�guration ω P Ω and a site

x P Z2
, we will denote by ωx

the on�guration obtained from ω by �ipping site x, namely

by setting pωx
qx � 1 � ωx and pωx

qy � ωy for all y � x. For future use we also need the

following de�nition of legal paths, that are essentially sequenes of on�gurations obtained

by suessive legal updates.

De�nition 2.4 (Legal path). Fix an update family U , then a legal path γ in Ω is a �nite

sequene γ �
�

ω
p0q, . . . , ωpkq

�

suh that, for eah i P t1, . . . , ku, the on�gurations ω
pi�1q and

ω
piq di�er by a legal (with respet to the hoie of U) spin �ip at some vertex v � vpω

pi�1q, ωpiqq.

As mentioned in Setion 1, our goal is to prove sharp bounds on the harateristi time

sales of ritial KCM. Let us start by de�ning preisely these time sales, namely the re-

laxation time Trel (or inverse of the spetral gap) and the mean infetion time Epτ0q (with

respet to the stationary proess).

De�nition 2.5 (Relaxation time Trel). Given an update family U and q P r0, 1s, we say that

C ¡ 0 is a Poinaré onstant for the orresponding KCM if, for all loal funtions f , we have

Varµpfq � µpf 2
q � µpfq2 ¤ C Dpfq. (5)
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If there exists a �nite Poinaré onstant, we de�ne

Trel � Trelpq,Uq � inf tC ¡ 0 : C is a Poinaré onstantu .

Otherwise we say that the relaxation time is in�nite.

A �nite relaxation time implies that the reversible measure µ is mixing for the semigroup

Pt � etL with exponentially deaying time auto-orrelations (see e.g. [3, Setion 2.1℄).

De�nition 2.6 (Infetion time τ0). The random time τ0 at whih the origin is �rst infeted

is given by

τ0 � inf
 

t ¥ 0 : ω0ptq � 0
(

,

where we adopt the usual notation letting ω0ptq be the value of the on�guration ωptq at the

origin, namely ω0ptq � pωptqq0.

The East model We lose this setion by de�ning a spei� example of KCM on Z, the

East model of Jäkle and Eisinger [23℄, whih will be ruial to understand our results (KCM

on Z are de�ned in the same way as KCM on Z2
). It is de�ned by an update family omposed

by a single rule ontaining only the site to the left of the origin (�1). In other words, site x

an be updated i� x � 1 is empty. For this model both Trel and Epτ0q sale as exp
�

plog qq2

2 log 2

	

as q Ñ 0, see [2, 9, 12℄

3

. One of the key ingredients behind this saling is the following

ombinatorial result [32℄ (see [14, Fat 1℄ for a more mathematial formulation).

Proposition 2.7. Consider the East model on t1, . . . ,Mu de�ned by �xing ω0 � 0 at all time.

Then any legal path γ onneting the fully oupied on�guration (namely ω s.t. ωx � 1 for

all x P t1, . . . ,Mu) to a on�guration ω1

suh that ω1

M � 0 goes through a on�guration with

at least rlog2pM � 1qs empty sites.

This logarithmi `energy barrier', to employ the physis jargon, and the fat that at

equilibrium the typial distane to the �rst empty site is M � Θp1{qq are responsible for the

divergene of the time sales as roughly 1{qrlog2pM�1qs
� eΘpplog qq

2
q

.

2.3 Result

In this paper we study ritial KCM with an in�nite number of stable diretions or, equiva-

lently, with a non-trivial interval of stable diretions. Reall that E denotes the expetation

with respet to the stationary KCM proess.

Theorem 2.8. Let U be a ritial update family with an in�nite number of stable diretions.

Then there exists a su�iently large onstant C ¡ 0 suh that

Epτ0q ¥ exp
�

1{
�

Cq2αpUq
��

,

as q Ñ 0 and the same asymptotis holds for Trel.

3

Atually these referenes fous on the study of Trel. A mathing upper bound for Epτ0q follows from (10).

The lower bound for Epτ0q follows easily from the lower bound for Ppτ0 ¡ tq with t � exp plogpqq2{2 log 2q

obtained in the proof of Theorem 5.1 of [11℄.
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This theorem ombined with the upper bound of Martinelli, Morris and the last author [26,

Theorem 2(a)℄, determines the ritial exponent of these models to be 2α in the sense of

Corollary 2.9 below. We thus omplete the proof of universality and Conjeture 3(a) of [26℄

for these models

4

.

Corollary 2.9. Let U be a ritial update family with an in�nite number of stable diretions.

Then

q2αpUq logEpτ0q � p� log qqOp1q

as q Ñ 0 and the same holds for Trel.

Universality for the remaining ritial models is proved in a ompanion paper by Martinelli

and the �rst and third authors [20℄ and, in partiular, Conjeture 3(a) of [26℄ is disproved

for models other than those overed by Theorem 2.8. It is important to note that Theo-

rem 2.8 signi�antly improves the best known results for all models with the exeption of

the reent result of Martinelli and the last two authors [25℄ for the Duarte model. Indeed,

the previous bound had exponent α, and was proved via the general (but in this ase far

from optimal) lower bound with the mean infetion time for the orresponding bootstrap

perolation model [27, Lemma 4.3℄.

3 Sketh of the proof

In this setion we outline roughly the strategy to derive our main result, Theorem 2.8.

The hypothesis of in�nite number of stable diretions provides us with an interval of stable

diretions. We an then onstrut stable `droplets' of shape as in Figure 3 (see De�nitions 5.5

and 5.6), where we reall from Setion 2.1 that a set is stable if it oinides with its losure.

Thus, if all infetions are initially inside a droplet, this will be true at any time under the KCM

dynamis. The relevane and advantage of suh shapes ome from the fat that only infetions

situated to the left of a droplet an indue growth left. This is manifestly not feasible without

the hypothesis of having an interval of stable diretions. It is worth noting that these shapes,

whih may seem strange at �rst sight, are atually very natural and intrinsially present in the

dynamis. Indeed, suh is the shape of the stable sets for a representative model of this lass

� the modi�ed 2-neighbour model with one (any) rule removed, that is the three-rule update

family with rules tp�1, 0q, p0, 1qu,tp�1, 0q, p0,�1qu,tp0,�1q, p1, 0qu (it an also be seen as the

modi�ed Duarte model with an additional rule). The stable sets in this ase are atually

Young diagrams.

We onstrut a olletion of suh droplets overing the initial on�guration of infetions,

so that it gives an upper bound on the losure. To do this, we devise an improvement of

the α-overing algorithm of Bollobás, Duminil-Copin, Morris and Smith [7℄. It is important

for us not to overestimate the losure as brutally. Indeed, a key step and the main di�ulty

of our work is the Closure Proposition 5.20, whih roughly states that the olletions of

droplets assoiated to the losure of the initial infetions is equal to the olletion for the

initial infetions. This is highly non-trivial, as in order not to overshoot in de�ning the

droplets, one is fored to ignore small pathes of infetions (larger than the ones in [7℄),

whih an possibly grow signi�antly when we take the losure for the bootstrap perolation

proess and espeially so if they are lose to a large infeted droplet. In order to remedy this

problem, we introdue a relatively intrinsi notion of `rumb' (see De�nition 5.1) suh that

4

The onjeture involuntarily asks for a positive power of log q, whih we do not expet to be systematially

present (see Conjeture 7.1).
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its losure remains one and does not di�er too muh from it. A further advantage of our

algorithm for reating the droplets over the one of [7℄ is that it is somewhat anonial, with a

well-de�ned unique output, whih has partiularly nie `algebrai' desription and properties

(see Remark 5.10). Another notable di�ulty we fae is systematially working in roughly

a half-plane (see Remark 5.21 for generalisations) with a fully infeted boundary ondition,

but we manage to extend our reasoning to this setting very oherently.

Finally, having established the Closure Proposition 5.20 alongside standard and straig-

htforward results like an Aizenmann-Lebowitz Lemma 5.13 and an exponential deay of the

probability of ourrene of large droplets (Lemma 5.15), we �nish the proof via the follo-

wing approah, inspired by the one developed by Martinelli and the last two authors [25℄ for

the Duarte model. The key step here (see Setion 6) is mapping the KCM legal paths to

those of an East dynamis via a suitable renormalisation. Roughly speaking, we say that a

renormalised site is empty if it ontains a large droplet of infetions. However, for the renor-

malised on�guration to be mostly invariant under the original KCM dynamis, we rather

look for the droplets in the losure of the original set of infetions instead. This is where the

Closure Proposition 5.20 is used to ompensate the fat that the losure of equilibrium is not

equilibrium. In turn, this mapping together with the ombinatorial result for the East model

realled in Setion 2.2 (Proposition 2.7), yield a bottlenek for our dynamis orresponding

to the reation of logp1{qeffq droplets, where 1{qeff is the equilibrium distane between two

empty sites in the renormalized lattie, and qeff � e�1{qα
. This provides for the time sales

the desired lower bound q
logpqeff q

eff � e1{q
2α

of Theorem 2.8. The last part of the proof follows

very losely the ideas put forward in [25℄ for the Duarte model. However, in [25℄, there

was no need to develop a subtle droplet algorithm sine, owing to the oriented harater of

the Duarte onstraint, droplets ould simply be identi�ed with some large infeted vertial

segments. It is also worth noting that, thanks to the less rigid notion of droplets that we

develop in the general setting, some of the di�ulties faed in [25℄ for Duarte are no longer

present here.

4 Preliminaries and notation

Let us �x a ritial update family U with an in�nite number of stable diretions for the rest

of the paper. We will omit U from all notation, suh as αpUq.

Diretions The next lemma establishes that one an make a suitable hoie of 4 stable

diretions, whih we will use for all our droplets. At this point the statement should look

very odd and tehnial, but it simply re�ets the fat that we have a lot of freedom for the

hoie and we make one whih will simplify a few of the more tehnial points in later stages.

Nevertheless, this is to a large extent not needed besides for onision and larity.

A diretion u P S1
is alled rational if tan u P QY t8u.

Lemma 4.1. There exists rational stable diretions S � tu1, u2, v1, v2u (see Figure 1) with

di�ulty at least α suh that

• The diretions appear in outerlokwise order u1, u2, v1, v2.

• No u P S is a semi-isolated stable diretion.

• u3�i belongs to the one spanned by vi and ui for i P t1, 2u i.e. the stritly smaller

interval among rvi, uis and rui, vis ontains u3�i.
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u1

u2

v1
1

v1
2

u1 � π

u2 � π

1

2

3

Figure 1: Illustration of Lemma 4.1 and its proof. Thikened ars

represent intervals of strongly stable diretions. Solid dots repre-

sent isolated and semi-isolated stable diretions. The di�ulties of

the isolated stable diretions are indiated next to them and yield

that the di�ulty of the model is α � 2. The diretions hosen in

Lemma 4.1 are the solid vetors u1, u2, v1 � v11 and a diretion v2
in the strongly stable interval ending at v12 su�iently lose to v12.

Note that the de�nition of v12 (and v11) disregards stable diretions

with di�ulty smaller than α as present on the �gure.

• 0 is ontained in the interior of the onvex envelope of S.

• Either u2   v1 � π{2 or u1 ¡ v2 � π{2.

• pHu1
YHu2

q X Z2
is stable or, equivalently, EU P U , U � Hu1

YHu2
.

• the diretions

u1 �pu1 � u2q{2,

u11 �p3u1 � u2q{4,

u12 �pu1 � 3u2q{4

are rational.

Proof. Sine U has an in�nite number of stable diretions and they form a �nite union of

losed intervals with rational endpoints [8, Theorem 1.10℄, there exists a non-empty open

interval I3 of stable diretions. Further note that the set J of diretions u suh that there

exists a rule U P U and x P U with xx, uy � 0 is �nite, so one an �nd a non-trivial losed

subinterval I2 � I3 whih does not interset J . The diretions u1 and u2 will be hosen in I2,

whih learly implies that they are strongly stable and thus with in�nite di�ulty. Moreover,

if there exists U P U with U � Hu1
Y Hu2

, by stability of u2, we have U X pHu1
zHu2

q � ∅,

whih ontradits I2 X J � ∅.

Sine U is ritial it does not have two opposite strongly stable diretions, so there is

no strongly stable diretion in I2 � π. If there are any (isolated or semi-isolated) stable

diretions in I2 � π, we an further hoose a non-trivial open subinterval I 1 � I2, for whih

this is not the ase (there is a �nite number of isolated and semi-isolated stable diretions).

Let π ¡ δ ¡ 0 be suh that the angle between any two onseutive diretions of di�ulty

at least α is at most π � δ (it is well de�ned by (2)). We then hoose a non-trivial losed

subinterval I 1 � I � ru1, u2s with u1 rational and u11 � p3u1 � u2q{4 rational and with

0   u2 � u1   δ   π. It easily follows from the sum and di�erene formulas for the tangent

funtion that u1, u12 and u2 are also rational.

Let

v11 �maxtv P pu2, u1 � πq : αpvq ¥ αu,

v12 �mintv P pu2 � π, u1q : αpvq ¥ αu.

These both exist, sine I � π does not ontain stable diretions, both pu2, u2 � πq and pu1 �

π, u1q ontain diretions with di�ulty at least α by (2) and the set of suh diretions is

losed. If v11 is not semi-isolated, we set v1 � v11 and similarly for v2. Otherwise, we hoose a

rational strongly stable diretion su�iently lose to v11 as v1 and similarly for v2. We laim
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that this hoie satis�es all the desired onditions. Indeed, all diretions in S are stable non-

semi-isolated rational with di�ulty at least α and the last but one ondition was already

veri�ed.

One does have that u1 is in the one spanned by v2 and u2, whih is implied by v2 P

pu2 � π, u1q and similarly for u2, so the third ondition is also veri�ed. If v12 � v11 ¥ π, then

there is an open half irle ontained in pv11, v
1

2q with no diretion of di�ulty at least α,

whih ontradits (2), so v2 � v1   π and the same holds for u1 � v2, u2 � u1 and v1 � u2 by

the de�nition of v11 and v12, the fat that v1 and v2 are su�iently lose to them and the fat

that I was hosen smaller than π. Thus 0 is in the onvex envelope of S.

Finally, if one has both v1�u2 ¤ π{2 and u1�v2 ¤ π{2, then one obtains v12�v11 ¡ π� δ,

sine I is smaller than δ. However, v11 and v12 are onseutive diretions of di�ulty at least

α, whih ontradits the de�nition of δ.

Notation For the rest of the paper we �x diretions S � tu1, u2, v1, v2u as in Lemma 4.1

and assume without loss of generality that u2   v1 � π{2.

Let us �x large onstants

1 ! C1 ! C 1

2 ! C2 ! C3 ! C 1

4 ! C4 ! C5,

eah of whih an depend on previous ones as well as on U and S. We will also use asymptoti

notation whose onstants an depend on U and S, but not on C1 or the other onstants above.

All asymptoti notation is with respet to q Ñ 0, so we assume throughout that q ¡ 0 is

su�iently small.

For any two sets K, B � R2
we de�ne rKs

B

� rpK Y Bq X Z2
szB.

Finally, we make the onvention that throughout the artile all distanes, balls and dia-

meters are Eulidean unless otherwise stated. We say that a set X � R2
is within distane δ

of a set Y � R2
if dpx, Y q ¤ δ for all x P X where d is the Eulidean distane.

5 Droplet algorithm

In this setion we de�ne our main tool � the droplet algorithm. It an be seen as a signi�ant

improvement on the α-overing and u-ieberg algorithms [7, De�nitions 6.6 and 6.22℄, many

of whose tehniques we adapt to our setting.

We will work in an in�nite domain Λ de�ned as follows (see Figure 2). Fix some vetor

a0 P R2
and let

B �Hu1 YHu1
1
pa0q YHu1

2
pa0q,

Λ �R2
zB,

(6)

where the diretions u1, u11 and u12 are those de�ned in Lemma 4.1. In other words, Λ is a

one with sides perpendiular to u11 and u12 ut along a line perpendiular to u1. The reader

is invited to simply think that B is a half-plane direted by u1, whih will not hange the

reasoning.

5.1 Clusters and rumbs

Let Γ be the graph with vertex set Z2
but with x � y if and only if }x� y} ¤ C2. Let Γ

1

be

de�ned similarly with C2 replaed by C 1

2. Given a �nite K � ΛXZ2
, we say that κ � K is a

onneted omponent of K in Γ if the subgraph of Γ indued by the vertex set κ is onneted

and there do not exist verties x P Kzκ and y P κ suh that x � y in Γ.
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a0

B

Λ
u1

u1
1

u1
2

Figure 2: The open domain B de�ned in (6) is shaded, while its omplement Λ

is not. The lines are the boundaries of the three half-planes de�ning B. Note

that if a0 R Hu1 , then Λ beomes simply a one.

Crumbs For a given �nite set K � ΛXZ2
of infetions we would like to have a notion of a

onneted omponent being `big' or `small'. `Small' omponents will be dubbed `rumbs' and

will play a negligible perturbative role in the bootstrap perolation proess, by induing only

`very loalised' growth and being `well isolated' from the rest of the infetions. A su�ient

ondition for this, as identi�ed in [7℄, is that |κ|   α. However, ontrary to what was the

ase in [7℄, we need the notion of `rumb' to be stable under the losure (with respet to the

bootstrap perolation proess), i.e. the losure of a `rumb' to still be a `rumb'. We thus

identify as `rumb' any omponent, whih is the losure of a set of size less than α. Also

taking into aount the boundary, this leads us to the following notion.

De�nition 5.1 (Crumb). Fix a �nite set K � ΛX Z2
and let κ be a onneted omponent

of K in Γ. We say that κ is a rumb for K if the following onditions hold.

• For all x P κ we have dpx, Bq ¡ C2.

• There exists a set Pκ � Z2
suh that rPκs � κ and |Pκ| � α � 1.

First properties of rumbs It follows from the de�nition that a rumb κ for K is at

distane more than C2 from B Y pKzκq. Moreover, the losure of a rumb is within bounded

distane from the rumb, as we shall see in Corollary 5.17 (see Figure 5a). Also, rumbs

have diameters muh smaller than C3, as we shall see in Corollary 5.17. The proofs of this

orollary and Observation 5.16, whih it follows from, are both independent of the rest of the

argument and are only postponed for onveniene. Nevertheless, we allow ourselves to use

these (easy) results ahead of their proofs.

These properties justify and quantify the intuition that rumbs are `small', that they only

grow `loally', and it is lear that (if we disregard the boundary) the losure of a rumb is a

rumb.

Modi�ed rumbs Unfortunately, ifK is the union of two rumbs at distane slightly larger

than C2, it is not neessarily true that rKs is still omposed of rumbs (reall that, albeit

loally, rumbs an grow under the bootstrap perolation proess), whih an be disastrous.

This is the reason for introduing `modi�ed rumbs' with C 1

2 ! C2, so that in the senario

above all onneted omponents of rKs in Γ1 are `modi�ed rumbs' (there may now be more

than two of them).

De�nition 5.2 (Modi�ed rumb). We de�ne a modi�ed rumb by replaing in De�nition 5.1

Γ by Γ1 and C2 by C 1

2.

13



In the sequel we will enounter more `modi�ed' notions and onstants (like C 1

2). These will

be applied to K equal to the losure rK 1

s

B

of some K 1

, whih is our initial set of infetions.

Our ultimate goal is to ensure that simply using these modi�ed notions based on (muh

smaller) modi�ed onstants will ompensate the losure operation.

Clusters We next onsider onneted omponents whih are not rumbs. Sine they an

be very large (partiularly so if we are working with the losure of a set), we ut them up into

(possibly overlapping) piees termed `lusters', whih have bounded size. Roughly speaking,

a `luster' is any `big, but not too big' onneted set of infetions.

De�nition 5.3 (Cluster). Fix a �nite set K � ΛX Z2
. Let κ be a onneted omponent of

K in Γ whih is not a rumb. We say that a subset C of κ is a luster for K if the following

onditions hold.

• diampCq ¤ C3.

• C is onneted in Γ (i.e. C is a onneted omponent of C in Γ).

• Either C � κ or for all x P κzC and y P C suh that x � y in Γ we have diampCYtxuq ¡

C3.

A luster is alled boundary luster if it is at distane at most C2 from B. For a luster C

we denote by QpCq the smallest open quadrilateral with sides perpendiular to S ontaining

the set tx P R2 : dpx, Cq   C4u.

We similarly de�ne modi�ed luster and modi�ed boundary luster by replaing Γ by Γ1

and C2 by C 1

2. For a luster or modi�ed luster C we denote by Q1

pCq the smallest open

quadrilateral with sides perpendiular to S ontaining the set tx P R2 : dpx, Cq   C 1

4u.

Identifying lusters and rumbs In order to identify the lusters and rumbs of K, one

may proeed as follows. Determine the onneted omponents of K in Γ and onsider eah

of them separately. For a given omponent κ �rst hek if it is at distane at most C2 from

B. If so, then it is not a rumb and will give rise to lusters. If not, then hek if κ is the

losure of at most α� 1 sites. If this seond veri�ation sueeds, then κ is determined to be

a rumb and, as mentioned above, it must have diameter muh smaller than C3.

If κ is thus determined not to be a rumb, we proeed to identify its lusters. If diampκq ¤

C3, then there is a single luster � κ � and we are done. If not, we onstrut the lusters

of κ by the following algorithm. Initialise the set C � ∅. If there exists y P κzC suh that

C Y tyu is onneted in Γ and has diameter at most C3, then replae C by C Y tyu and

repeat. If several suh y exist, then we do this for eah possible y in parallel. The lusters

ontaining x are all possible sets C obtained via this algorithm to whih no y an be added.

In partiular, this provides us with a partition of K into well separated rumbs, single

lusters equal to their orresponding onneted omponent and sets of overlapping lusters

whose union is a onneted omponent of diameter larger than C3.

First properties of lusters Following the algorithm above, we obtain some basi pro-

perties of lusters.

Observation 5.4. Let C be a non-boundary luster or non-boundary modi�ed luster for a

�nite K � ΛX Z2
. Then |C| ¥ α.
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u2

u1
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Figure 3: The shaded region D is a

distorted Young diagram (DYD) as

in De�nition 5.5. The larger quadri-

lateral with verties x, x1, y and x5

is QpDq. Note that QpDq an dege-

nerate into a triangle, but we all it

a quadrilateral nevertheless. On the

�gure |D| is the length of the v1 side,

but this is not always the ase. The

thikened region is the ut distorted

Young diagram (CDYD) CpDq of D.

The vertial line is the boundary be-

tween Λ on its left and B on its right.

Proof. Let κ be the onneted omponent of K in Γ ontaining C. If diampκq ¤ C3, then

C � κ and κ would be a rumb if we had |κ| ¤ α� 1, by taking Pκ � κ. If, on the ontrary,

diampκq ¡ C3, then diampCq ¥ C3�C2 (by the third ondition of De�nition 5.3) and we an

hoose C3 large enough to have

C3�C2

C2
¥ α.

Finally, for every luster C we have diampCq ¤ C3, so C intersets at most 25C
2
3
other

lusters. Also, QpCq � rCs, sine QpCq X Z2
� C is stable. Furthermore, diampQpCqq �

ΘpC4q, as diampCq ¤ C3. Analogous statements hold for modi�ed lusters.

5.2 Distorted Young diagrams

We now de�ne the shape that our `droplets' will have, whih resembles Young diagrams

5

.

The following de�nitions are illustrated in Figure 3.

De�nition 5.5 (DYD). A distorted Young diagram (DYD) is a subset of R2
of the form

pHv1pxq XHv2pxqq X
£

iPI

pHu1
pxiq YHu2

pxiqq (7)

for a �nite set I, some set X � txi : i P Iu of vetors xi P R2
and x P R2

. The vetors xi and

x are uniquely de�ned up to redundany (and up to the onvention that all xi are on the

topologial boundary of the DYD). Alternatively, a DYD an also be de�ned by

pHv1pxq XHv2pxqq X
¤

iPI

pHu1
pyiq XHu2

pyiqq, (8)

5

For the 3-rule model alluded to in Setion 3 stable sets onsist preisely of Young diagrams and the

diretions S provided by Lemma 4.1 an be arbitrarily lose to the four axis diretions, yielding Young

diagrams.
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where yi are the onvex orners of the diagram rather than the onave ones.

For any DYD D we denote by y the vetor suh that

xy, ujy � sup
aPD

xa, ujy � max
iPI

xyi, ujy

for j P t1, 2u. We further denote

QpDq � Hu1
pyq XHu2

pyq XHv1pxq XHv2pxq,

i.e. the minimal open quadrilateral ontaining D with sides direted by S. In these terms, for

any luster or modi�ed luster C we have that QpCq and Q1

pCq are DYD, QpQpCqq � QpCq

and QpQ1

pCqq � Q1

pCq.

De�nition 5.6 (CDYD). A ut distorted Young diagram (CDYD) is a subset of R2
of the

form

ΛX pHu1
pyq XHu2

pyqq X
£

iPI

pHu1
pxiq YHu2

pxiqq

for a �nite set I and some vetors xi P R2
and y P Λ. Alternatively, one an write

ΛX

¤

iPI

pHu1
pyiq XHu2

pyiqq,

where yi P Λ are the onvex orners.

For a DYD, D, we denote by CpDq the CDYD de�ned by the same xi and y or the same

yi. We extend the notation CpDq to CDYD by setting CpDq � D if D is a CDYD. Note

that by Lemma 4.1 all DYD and CDYD are stable for the bootstrap perolation dynamis

(restrited to Λ). Also pay attention to the fat that CDYD are not neessarily onneted,

ontrary to DYD.

De�nition 5.7 (Size). For a DYD D we set πpDq � tx P R : D y P D, xy, v1 � π{2y � xu to

be its projetion (parallel to v1) and |D| � sup πpDq � inf πpDq to be its size � the length of

the projetion. For a CDYD D we denote its size diampDq{C1 by |D|.

Note that if D is a DYD, then |D| � |QpDq| by Lemma 4.1 and the assumption we made

that u2   v1 � π{2. Furthermore, for all DYD diampDq � Θp|D|q again by Lemma 4.1

with onstants depending only on S. One should be areful with the meaning of size for

disonneted CDYD, but it will not ause problems, as all CDYD arising in our forthoming

algorithm are onneted.

Observation 5.8. Note that for any d ¥ 1 the number of disretised DYD and CDYD (i.e.

intersetions of a DYD or CDYD with Z2
) ontaining a �xed point a P R2

of diameter at

most d is less than cd for some onstant c depending only on S.

Proof. Note that a DYD or CDYD is uniquely determined by its rugged edge formed by

its u1 and u2-sides. However, this edge injetively de�nes an oriented perolation path with

diretions perpendiular to u1 and u2 on the lattie

tx P R2 : Dx1, x2 P Z2, xx, u1y � xx1, u1y, xx, u2y � xx2, u2yu

(exept its endpoints, whih lie on similar latties). Sine the graph-length of this path is

bounded by Opdq and its endpoints are within distane d from a, the result follows.
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Figure 4: The shaded region D1 and thikened region D2 are DYD. Their respetive qua-

drilaterals QpDiq are ompleted by dashed lines. Their span D1 _ D2 is hathed and its

quadrilateral QpD1 _D2q is also ompleted by dashed lines.

5.3 Span

We next introdue a proedure of merging DYD and CDYD. This will be used only for

ouples of interseting ones, but an be de�ned regardless of whether they interset. The

operation is illustrated in Figure 4.

Lemma 5.9. For any two DYD, D1 and D2, the minimal DYD ontaining D1 YD2 is well

de�ned. We denote it by D1_D2 and all it their span. The operation _ is assoiative

6

and

ommutative.

Proof. Let D1 be de�ned by Y 1
� ty1i : i P Iu, x1

(see (8)) and similarly for D2. Let x P R2
be

the vetor suh that Hvipx
1
qYHvipx

2
q � Hvipxq for i P t1, 2u. Let Y be the set of yi P Y 1

YY 2

suh that for all yj P Y 1
Y Y 2

with yi � yj we have Hu1
pyjq XHu2

pyjq � Hu1
pyiq X Hu2

pyiq.

We denote by D the DYD de�ned by Y, x and laim that for any DYD D1

� D1YD2 we have

D1

� D, whih is enough to onlude that D � D1 _D2 is well de�ned. Let D1

be de�ned

by Y 1, x1.

6

Assoiativity was referred to as ommutativity by previous authors [8℄.
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Note that for eah yi P Y (and in fat in Y1 Y Y2) there is a sequene of points in

D1 or D2 onverging to yi, so that (by extration of a subsequene) there exists y1j with

Hu1
py1jq XHu2

py1jq � Hu1
pyiq X Hu2

pyiq. Similarly, there is a sequene of points in D1 or D2

onverging to the boundary of Hv1pxq, so that Hv1px
1

q � Hv1pxq and similarly for v2. Thus,

we do have D1

� D.

Finally, the ommutativity is obvious and the assoiativity follows from the haraterisa-

tion of D1 _D2 as the minimal DYD ontaining both D1 and D2.

We analogously de�ne the span D1 _D2 of two CDYD D1 and D2 � the minimal CDYD

ontaining both � and note that it oinides with their union (whih is also ommutative and

assoiative). We also de�ne the span C _ D of a DYD D and a CDYD C as the minimal

CDYD ontaining pC Y DqzB, whih oinides with C _ CpDq. The proof that it is well

de�ned is analogous to Lemma 5.9.

We have thus de�ned an assoiative and ommutative binary operation _ on all DYD

and CDYD. Moreover, the idempotent unary operation Cp�q is distributive with respet to

_ and CpD1q _ D2 � CpD1 _ D2q. Furthermore, the span of several DYD is the minimal

DYD ontaining all of them, while the span of several DYD and at least one CDYD is the

minimal CDYD ontaining all the orresponding CDYD.

5.4 Droplet algorithm and spanned droplets

A droplet is any DYD ontained in Λ or CDYD. We are now ready to de�ne our droplet

algorithm, whih takes as input a �nite set K � ΛX Z2
of infetions and outputs a set D of

disjoint onneted droplets. It proeeds as follows.

• Form an initial olletion of DYD D onsisting of QpCq for all lusters C of K. If a

DYD D P D intersets B, replae it by its CDYD, CpDq, to obtain a droplet.

• As long as it is possible, replae two interseting droplets of D by their span. If the

span intersets B, replae it by its CDYD to obtain a droplet.

• Output the olletion D obtained when all droplets are disjoint.

We similarly de�ne the modi�ed droplet algorithm by replaing QpCq by Q1

pCq and lusters

by modi�ed lusters above.

The output D is learly a olletion of disjoint onneted droplets. Indeed, by indution

all xi orners of droplets remain in Λ (see Figure 4), so that DYD remain onneted when

replaed by CDYD.

Remark 5.10. From the results of Setion 5.3 it is lear that the order of merging does not

impat the output of the algorithm, whih is thus well de�ned. It an also be expressed as

the minimal olletion of disjoint droplets ontaining the intersetion with Λ of the original

olletion of quadrilaterals. This minimal olletion is well de�ned. Consequently, the union

of the output is inreasing in the input.

De�nition 5.11 (Spanned droplets). Let D be a droplet and K � Z2
. We say that D is

spanned for K with boundary B if the output of the droplet algorithm for KXD has a droplet

ontaining D. We omit K and B if they are lear from the ontext. Similarly, D is modi�ed

spanned if the output of the modi�ed droplet algorithm for K XD has a droplet ontaining

D.
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Note that, when seen as an event, a droplet being spanned is monotone. It is also lear

that eah droplet appearing in (the intermediate or �nal stages of) the droplet algorithm is

spanned and similarly for the modi�ed droplet algorithm. Indeed, the lusters responsible

for reating a droplet in the ourse of the algorithm are ontained in the droplet, so eah of

them is still a luster of K XD (reall that rumbs have diameter muh smaller than C3).

5.5 Properties of the algorithm

We next establish several properties of the algorithm. The approah is similar to the one

of [7℄ with the notable exeption of the key Closure Proposition 5.20. We start with the

following purely geometri statement.

Lemma 5.12 (Subadditivity). Let D1 and D2 be two DYD or CDYD with non-empty inter-

setion. Then

|D1 _D2| ¤ |D1| � |D2|.

Furthermore, if D is a DYD interseting B, then |CpDq| ¤ |D|.

Proof. First assume that D1 and D2 are DYD. Sine |D| � |QpDq| for any DYD D and

D1 _D2 � QpQpD1q _ QpD2qq, it su�es to prove the assertion for merging quadrilaterals

instead of DYD. But in that ase it is not hard to hek diretly and is a partiular ase of

Lemma 15 of the �rst arXiv version of [8℄ (or Lemma 23 of the seond version). Sine similar

(but atually slightly more involved) details were omitted in the proof of the orresponding

Lemma 4.6 of [8℄ and di�ered to earlier versions, we will not go into useless detail here either.

To give a sketh of a possible argument, one an hek that for �xed shapes of QpD1q and

QpD2q the maximal QpQpD1q _ QpD2qq is ahieved when their intersetion is redued to a

vertex. Yet, in those on�gurations one an obtain the v1 and v2 sides of QpQpD1q _QpD2qq

as the union of those of QpD1q and translates of those of QpD2q (see Figure 4). This onludes

the proof, as only v1 and (possibly) v2 sides ontribute to | � | by Lemma 4.1.

Next assume that D1 is a DYD and D2 is a CDYD. Let Y � tyi : i P Iu be the set of

vetors de�ning CpD1q and let a P D1XD2. Sine Y � D1, we have that dpyi, aq ¤ diampD1q.

It then easily follows that the CDYD de�ned by only one orner, yi, whih we denote Cpyiq,

is within distane OpdiampD1qq from Cpaq. But then CpD1q �
�

iPI Cpyiq is within distane

OpdiampD1qq from Cpaq. Thus, |D1 _ D2| ¤ pdiampD2q � OpdiampD1qqq{C1 ¤ |D2| � |D1|,

sine diampD1q � Op|D1|q and all impliit onstants depend only on S and are thus muh

smaller than C1.

Next assume that D1 and D2 are CDYD. Then the statement is trivial, beause D1_D2 �

D1 YD2, so diampD1q � diampD2q ¥ diampD1 _D2q by the triangle inequality.

Finally, let D be a DYD interseting B. Then, |CpQpDqq| ¥ |CpDq| and |QpDq| � |D|,

so we may assume that D � QpDq and prove |CpDq| ¤ |D|. But in this ase it is easy to

see that diampCpDqq � OpdiampDqq � Op|D|q with onstants depending only on S, whih

onludes the proof.

The subadditivity lemma will be used to prove the next two adaptations of lassial

results.

Lemma 5.13 (Aizenman-Lebowitz). Let K be a �nite set and let D be a spanned droplet

with |D| ¥ C2
4 . Then for all C2

4{C1 ¤ k ¤ |D|{C1 there exists a onneted spanned droplet

D1

with k ¤ |D1

| ¤ 2k. The same statement holds for modi�ed spanned droplets.
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Proof. By Lemma 5.12 at eah step of the droplet algorithm the largest size of a droplet

appearing in the olletion at most doubles. Initially the largest size is at most C1C4 and in

the end there is a (unique) droplet D2

� D, so that |D2

| ¥ |D|{C1 ¥ C2
4{C1 ¡ C1C4. Then

there is a stage of the algorithm at whih the maximal size of a droplet in D is between k and

2k, whih is enough sine all droplets appearing in the droplet algorithm are onneted and

spanned. The proof for modi�ed spanned droplets is idential, using the modi�ed droplet

algorithm.

Lemma 5.14 (Extremal). Let K � Z2
and let D be a droplet spanned for K. Then the total

number of disjoint lusters for K XD in D is at least diampDq{C2
4 .

Proof. In this proof all lusters will be lusters for KXD. Assume that at the initial stage of

the algorithm there are k lusters (not disjoint). One an then �nd k{C 1

4 disjoint ones, sine

their diameter is at most C3. Furthermore, by Lemma 5.12 the total size of droplets in the

olletion D is dereasing, so that |D|{C1 ¤ |D1

| ¤ kC1C4, where D1

� D is some droplet in

the output of the algorithm. Indeed, |QpCq| ¤ C1C4 for all lusters C. This onludes the

proof, sine |D| ¥ diampDq{C1 for all DYD and CDYD.

We next transform this extremal bound into an exponential deay of the probability that

a droplet is spanned until saturation at the ritial size. In the following lemma, we identify

the on�guration ω having law µ and the set of its zeroes.

Lemma 5.15 (Exponential deay). Let D be a droplet with |D| ¤ 2{pC5q
α
q. Then

µpD is spanned for ωq   expp�C4|D|q.

Proof. Let D be a droplet with |D| ¤ 2{pC5q
α
q, so that diampDq � d ¤ 2C1{pC5q

α
q. By

Lemma 5.14 if D is spanned for ω, it ontains at least d{C2
4 disjoint lusters for ω X D,

eah one having diameter at most C3. Eah non-boundary luster has at least α sites by

Observation 5.4, while boundary lusters are non-empty and loated at distane at most C2

from B. Thus, we have the union bound

µpD is spanned for ωq ¤

d{C2
4̧

l�0

�

C2α
3 d2

l


�
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4 � l
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q
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4
q

�
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4C

1

4e
2C2

4 q
	l1

¤ expp�C4dq,

realling that C5 is su�iently large depending on C4, C
1

4 and C1.

Our next aim is to prove that the losure of a set is ontained in its droplet olletion

up to very loal infetions next to initial ones. To that end we will need some preliminary

results, similar to those used by Bollobás, Duminil-Copin, Morris and Smith [7℄.

Observation 5.16 (Lemma 6.5 of [7℄). Let u be a rational non-semi-isolated stable diretion.

Let K � Z2
with |K|   αpuq (if αpuq � 8 the ondition is that K is �nite, but there is no

a priori bound on its size). Then there exists a onstant CpU , u, |K|q not depending on K

suh that rKsHu
is within distane CpU , u, |K|q from K.
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Sine we will require some improvements later, we spell out a proof of the above result

for ompleteness (atually our proof is slightly di�erent from the one in [7℄).

Proof of Observation 5.16. We prove the statement by indution on |K|. For a K � txu this

is easy, sine if xx, uy is su�iently large rKsHu
� K and otherwise there is a single possible

on�guration for eah value of xx, uy up to translation. Assume the result holds for |K|   n.

If one an write K � K1\K2 with K1, K2 � ∅ and dpK1, K2q ¡ 2CpU , u, n�1q�Op1q, then

rKsHu
� rK1sHu

\ rK2sHu
, sine rK1sHu

and rK2sHu
are at su�iently large distane, hene

no site an use both to beome infeted. Assume that, on the ontrary, there are no large

gaps between parts of K. There is a �nite number of suh K up to translation and for eah

of these rKs is �nite (e.g. sine K is ontained in a quadrilateral with sides perpendiular

to S), so within uniformly bounded distane from K. Therefore, if Hu is su�iently far

from K, rKsHu
� rKs. Otherwise, there is a �nite number of possible K up to translation

perpendiular to u and for eah of them rKsHu
is �nite, so that one an indeed �nd a �nite

uniform onstant CpU , u, nq as laimed.

A quantitative version of this result was proved by Mezei and the �rst author [21℄. An

easy orollary of Observation 5.16 is the fat that rumbs an only grow very loally (see

Figure 5a).

Corollary 5.17. Let C1 be su�iently large depending on U . Let K � Z2
with |K|   α.

Then rKs is within distane C1{p6αq from K. Also, for a (modi�ed) rumb κ we have that

diamprκsq ¤ αC2 and rκs is within distane C1 from κ.

Proof. The �rst assertion follows from Observation 5.16, sine if it were wrong, one ould

simply translate a set K su�iently far from a half-plane yielding a ontradition with the

observation.

Next onsider a (modi�ed) rumb κ and Pκ minimal with |Pκ|   α and rPκs � κ. Then

rκs � rPκs is within distane C1{p6αq from Pκ. If the sites of Pκ are not onneted in the

graph Γ2 on Z2
with onnetions at distane at most C1�C2, then either κ is not onneted

in Γ or Pκ is not minimal, whih are both ontraditions. Similarly, if there is no site of κ at

distane smaller than C1{p2αq from a C1{p2αq-onneted omponent of Pκ, that omponent

an be removed from Pκ, ontraditing minimality. Hene, Pκ is within distane C1{2 from

κ. The result is then immediate, as rκs is within distane C1{2 � C1{p6αq from κ and its

diameter is at most C1{p3αq � diampPκq, while diampPκq ¤ pα� 1qpC1 � C2q.

In order to treat infetion at the onave orners of droplets we will need the following

modi�ation of Observation 5.16.

Corollary 5.18. Let u1 and u2 be rational strongly stable diretions suh that Hu1
YHu2

is

stable for the bootstrap perolation dynamis i.e. EU P U , U � Hu1
YHu2

. Let K � Z2
with

|K| ¤ α � 1. Then rKsHu1
YHu2

is within distane CpU , u1, u2q from K.

Proof. We apply a similar indution to the one in the proof of Observation 5.16. The only

di�erene is that we an no longer use translation invariane. If dpK,Hu2
q ¡ CpU , u1, |K|q�

Op1q, by Observation 5.16, we have rKsHu1
YHu2

� rKsHu1
and similarly for u1 and u2 inter-

hanged. We an thus assume that K is within distane C 1

pU , u1, u2q from the origin. But

then rK YHu1
YHu2

s � Hu1
YHu2

YHu1pC
2

pU , u1, u2qu
1

q, where u1 � pu1 � u2q{2, sine the

latter region is stable by the hypothesis on u1, u2.

We next transform these results for in�nite regions into a result for droplets. It states

that a rumb next to a droplet annot grow signi�antly (see Figure 5b).
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(a) The dots represent the si-

tes of a rumb. The (dison-

neted) irled shape bounds

its losure. Note that rumbs

may have gaps of size C2 while

the growth allowed is only

C1 ! C2.
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(b) The shaded region is the shrunken DYD

8D of the largest DYD

D. The solid irles represent rumbs and the dashed ars are the

bound for their growth provided by Lemma 5.19. The modi�ed

lusters of the losure are inluded in the dotted DYD.

Figure 5: Illustrations of Corollary 5.17, Lemma 5.19 and Proposition 5.20.

Lemma 5.19. Let C1 be su�iently large depending on U and S. Let D be a DYD at distane

at least C3 from B or be a CDYD and let κ be a rumb. Then rκsDYB

� rκsD is within distane

C1 of κ.

Proof. Assume that D is a DYD at distane at least C3 from B. The proof of [7, Lemma 6.10℄

applies using (7), Observation 5.16, Corollary 5.18 and the arguments in the proof of Corollary

5.17 to give the result for rκsD, whih is therefore at distane at least C2 � C1 from B sine

dpκ, Bq ¥ C2, so that in fat rκsD � rκsDYB

.

Assume next that D is a CDYD. Then atually D Y B an be viewed as a DYD on the

entire plane without boundary spei�ed by an in�nite number of vetors xi, so that we are

in the previous ase. In order to avoid introduing the orresponding notion of in�nite DYD,

one an onsider an inreasing exhaustive sequene of DYD Di onverging to D Y B in the

produt topology and apply the previous result for rκsDi
, whih will thereby apply to DYB.

Finally, rκsD � rκsDYB

follows, sine dprκsDYB

, Bq ¥ C2 � C1.

The next proposition is key to making the output of the algorithm essentially invariant

under the KCM dynamis without having to pay for the fat that the losure for the bootstrap

perolation dynamis of infetions at equilibrium is not at all at equilibrium itself. The proof

is illustrated in Figure 5b.

Proposition 5.20 (Closure). Let K be a �nite set and D1

be the olletion of droplets given

by the modi�ed droplet algorithm with input rKs

B

. Let D be the output of the droplet algorithm

for K. Then

�D1

P D1

DD P D, D1

� D.
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Proof. Let K be the set of rumbs for K. Set κ0 �
�

κPK κ.

Claim 1. For eah rumb κ P K its losure rκs � rκs
B

onsists of at most α� 1 modi�ed

rumbs of rκs all ontained within distane C1 from κ.

Proof of Claim 1. There exists a set Pκ as in De�nition 5.1, suh that rPκs � κ and thus

rPκs � rκs, whih proves that all onneted omponents of rκs for Γ1 are modi�ed rumbs.

The fat that rκs is within distane C1 of κ (and thus at distane at least C 1

2 from B) was

proved in Corollary 5.17, whih also shows that rκs � rκs
B

, sine κ is at distane more than

C2 from B.

We an thus de�ne K1

pκq to be the set of modi�ed rumbs of rκs
B

, so that their union

is disjoint and equal to rκs
B

. Moreover, rumbs in K are at distane at least C2 from eah

other, so for any two of them κ1 � κ2 we have that any κ11 P K1

pκ1q and κ12 P K1

pκ2q are at

distane at least C2 � 2C1 " C 1

2 and also at suh distane from B, so that rκ0sB �
�

κPKrκsB
has no modi�ed luster and onsists of modi�ed rumbs at distane at most C1 from κ0.

For a droplet D P D onsider the set of vetors Y and x (x is absent for CDYD) de�ning

it. Then de�ne

8Y � Y � C4u0{C1 and 8x � x � C4v0{C1, where u0 P R2
is the vetor suh

that xu0, u1y � xu0, u2y � �1 and v0 is de�ned identially in terms of v1 and v2. We denote

by

8D the droplet de�ned by

8Y and 8x and all it a shrunken droplet. Let D0 �
�

DPD
D and

8D0 �
�

DPD
8D. It is lear that

8D is at distane at least C4{C1 from ΛzD for all droplets

D. In partiular, all shrunken droplets are at distane at least C4{C1 from eah other and

shrunken DYD are at distane at least C4{C1 from B, so that Lemma 5.19 applies to them

and r

8D0sB �
8D0.

Claim 2.

8D0 Y κ0 � K.

Proof of Claim 2. Note that it is enough to prove that the lusters of K are ontained in

8D0.

Assume that there exists a P Kz

8D0 and a P C for some luster. Then, QpCqXΛ is ontained

in some D P D, whih is de�ned by Y and x (x is absent for CDYD). Then sine a R

8D,

either for all 8yi P 8Y we have a R Hu1
p 8yiqXHu2

p 8yiq or a R Hv1p8xqXHv2p8xq. In the former ase,

a�C4u0{C1 R Hu1
pyiq XHu2

pyiq for all yi P Y . However, QpCq ontains the ball of radius C4

entered at a and }u0} � Op1q, so we get a ontradition. If a R Hv1p8xq X Hv2p8xq, the �rst

point on the segment from a to a � C4v0{C1 that is not in D is in Λ and in QpCq, hene a

ontradition.

Claim 3. The set rKs

B

zrκ0sB is within distane C3 of
8D0.

Proof of Claim 3. By Claim 2 we have K0 �
8D0 Y κ0 � K. It then learly su�es to prove

that rK0sBzrκ0sB is within distane C3 of
8D0.

Consider a rumb κ P K at distane at most C2 from
8D0, so at distane at most C2 from

a shrunken droplet

8D and neessarily at distane at least C4{C1 � C2 � C3 from any other

shrunken droplet and from B if D is a DYD. By Lemma 5.19 rκs
8D � rκs

8DYB

is within distane

C1 of κ. Hene,

rK0 Y Bs �

8D0 Y B Y rκ0s Y

¤

κ,D

rκs
8D, (9)

where the last union is on ouples pκ,Dq as above. Indeed, all rκs
8D and rκs (for di�erent κ)

are at distane at least C2 � 2C1 from eah other and from

8D0z
8D (by the reasoning above),

so for eah site of Λ the intersetion of the ball of radius Op1q entered at it with the set on
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u1

u2

v1

v2

u1

u1
2

u1
1

C1

Figure 6: The domain V is

the thikened triangle, a por-

tion of whih is displayed.

Solid lines separate olumns

Ci. Inside the domain is

drawn a DYD, whih witnes-

ses Φpωq3 �Ò.

the right-hand side of (9) oinides with the intersetion with one of the sets rκY 8Ds, rκs or
8D0 Y B, whih are all stable, so no infetions our, whih proves (9).

The laim follows easily from (9), sine for every ouple κ,D the set rκs
8D is within distane

C1 of κ, whih is itself at distane at most C2 from

8D0, and κ has diameter muh smaller

than C3 by Corollary 5.17.

Let C 1

be a modi�ed luster of rKs

B

and assume for a ontradition that C 1

� rκ0sB. From

De�nition 5.3 we get that C 1

is also a modi�ed luster of rκ0sB, but this is a ontradition,

sine rκ0sB only onsists of modi�ed rumbs.

Sine any modi�ed luster C 1

of rKs

B

has diameter at most C3 (by De�nition 5.3) and

intersets rKs

B

zrκ0sB, whih is within distane C3 of
8D0 by Claim 3, we get that C 1

is within

distane 2C3 of

8D0. Therefore,

�

C1

PC1prKs

B

q

Q1

pC 1

q � D0 Y B, where the union is over all

modi�ed lusters of rKs

B

, sine diampQ1

pC 1

qq ! C4{C1 ¤ dp 8D0,ΛzD0q. As D is the output

of the droplet algorithm, D0 is the union of disjoint DYD non-interseting B and CDYD, so

it neessarily ontains

�

D1

PD1

D1

(see Remark 5.10), whih onludes the proof.

Remark 5.21. It should be noted that the algorithm is more easily and naturally de�ned

with no boundary, but that will not be su�ient for our purposes. However, this `free'

algorithm is trivially obtained as a speialisation of ours. It is also possible to deal with

more general boundaries, with in�nite input sets, as well as with droplets de�ned by more

diretions and possibly with several rugged sides.

6 Renormalised East dynamis

In this setion we map the original dynamis into an East one and onlude the proof of our

main result. In Setion 6.1 we introdue the neessary notation for the relevant geometry. In

Setion 6.2 we onsider a renormalised dynamis on the slies of Figure 6 by algorithmially

seleting ertain modi�ed spanned droplets of size Ωp1{qαq. In Setion 6.3 we further renor-

malise to reover an exat East dynamis where q is replaed by qeff orresponding to the

probability of spanning suh a droplet. Finally, in Setion 6.4 we prove Theorem 2.8 roughly

as in [25℄.

6.1 Geometri setup

Let us start by de�ning the domain V we will work in, realling the notation from Lemma 4.1.

Roughly speaking, V is an isoseles triangle with height e1{pC5q
α
q

direted by u1 (see Figure 6).

It is divided into `olumns' Ci perpendiular to u1 of width roughly 1{qα, so that the origin

of Z2
is in the middle of the last olumn, lose to the tip of V .
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More formally, set L � 1{pC5q
α
q and let ι be the smallest x ¥ 1 suh that the site

x
2qα

u1

is in Z2
, so that ι � 1�Opqαq. This way our olumns will have width ι{qα and be separated

along rational lines. We de�ne the domain

V � Hu1pe
Lu1qz

�

Hu1
2
p�ι{p2qαqu1q YHu1

1
p�ι{p2qαqu1q

�

.

Let us hoose C5 so that half the number of olumns

N � eLqα{p2ιq � 1{4 � eLqαp1{2�Opqαqq

is an integer. We then partition the domain V �

�2N

i�1 Ci into olumns with

Ci � tx P V : eL � ιpi� 1q{qα ¡ xx, u1y ¥ eL � ιi{qαu,

so that 0 is in the middle of C2N and eLu1 P Z2
. We shall refer to Ci as the i-th olumn.

Finally, de�ne the half-plane ontaining Ci�1, but not interseting Ci

Hi � Hu1ppe
L
� ιi{qαqu1q

and the natural boundary for Ci
Bi � Hi Y B̄,

obtained by onsidering Cj , j ¥ i� 1 as fully infeted, where

B̄ � Hu1
2
p�ι{p2qαqu1q YHu1

1
p�ι{p2qαqu1q.

Note that these boundaries are of the form onsidered in Setion 5.

6.2 Arrow variables

Let ω P Ω. We will now de�ne a olletion of arrow variables whih depend only on the

restrition of ω to V . We naturally identify the restrition of ω to V with the subset of V

where ω is 0 and we use the notation ω � ∅ to indiate that all sites are �lled (healthy)

in V , namely ωx � 1 for all x P V . Let ωp0q
� ω X V . We de�ne the position of the �rst

up-arrow as the smallest index i1pωq P t1, 2, . . . , 2Nu suh that there is a modi�ed spanned

droplet of size at least L for rωp0q
s

Bi1pωq
with boundary Bi1pωq. If no suh i1 exists, we say that

there are no up-arrows and set i1pωq � 8. We further denote ωp1q
� ωp0q

XHi1pωq as soon as

i1pωq   8, while otherwise ωp1q
� ∅.

We de�ne the set Ipωq � ti1pωq, i2pωq, . . . u � t1, . . . , 2Nu ontaining the positions of

up-arrows reursively as follows. If there are no up-arrows, then I � ∅. Otherwise, we set

Ipωq � ti1pωqu Y Ipωp1q
q and ωpkq

� pωpk�1q
q

p1q
, whih de�nes ωpkq

for all k. Let us note that

if i1pωq � 8, then i1pωq   i1pω
p1q
q, sine by de�nition rωp1q

s

Bi1pωq
� ∅. Finally, we de�ne

Φpωq P tÒ, Óut1,...,2Nu

as

Φpωqk �

#

Ò if k P Ipωq,

Ó otherwise.

The next Lemma states that the probability to �nd at least one up-arrow deays as

qeff � e�L.

Lemma 6.1.

µpi1   8q ¤ qeff .
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Proof. Fix 1 ¤ i ¤ 2N and onsider the event i1 � i. It is learly inluded in the event

Ei that there is a modi�ed spanned droplet of size at least L for rωp0q
s

Bi
with boundary Bi.

By Proposition 5.20 there is also a spanned droplet of size at least L{C1 for ωp0q
zBi with

boundary Bi. By Lemma 5.13 this implies that there is also a spanned onneted droplet of

size between L{C2
1 and 2L{C2

1 . Then one an rewrite Ei as the union over all suh droplets

D of the event that D is spanned. Note that for eah disretised DYD D X Z2
the event

that there exists a spanned DYD D1

with D1

X Z2
� D X Z2

oinides with the event that a

suitably hosen suh D1

0 is spanned. Indeed, the intersetion of two DYD is a DYD by (7) and

the spanning of all D1

depend only on the �nite number of sites in DXZ2
, so there is a �nite

number of possible events assoiated to di�erent D1

and one an onsider the intersetion

of a D1

de�ning eah of these events. The same reasoning holds for CDYD and so for eah

disretised droplet DXZ2
one an bound the probability that there exists a spanned droplet

with suh disretisation using Lemma 5.15. Thus, by the union bound on disretised droplets

ounted in Observation 5.8, one obtains

µpEiq ¤ |V |.eL2e�C4L{C
2
1
¤ qeff{p2Nq.

We next onsider the event of having at least n up-arrows

Bpnq � tω P Ω : |Ipωq| ¥ nu.

Corollary 6.2. For any 1 ¤ n ¤ 2N we have

µpBpnqq ¤ qneff .

Proof. We prove the statement by indution on n. The base, n � 1, is given by Lemma 6.1.

For n ¡ 1 we have

µp|I| ¥ nq �

2Ņ

i�1

µpi1pωq � i; |Ipω XHiq| ¥ n� 1q

¤

2Ņ

i�1

µpi1 � iqµp|I| ¥ n � 1q

¤qneff ,

where we used that the event i1 � i only depends on ωzHi (i1 is a stopping time for the

�ltration indued by the olumns) and that the event |I| ¥ n � 1 is inreasing for the order

de�ned by ω ¨ ω1

when ω � ω1

.

We will now state a key deterministi property of the arrows under legal moves of the

KCM dynamis.

Lemma 6.3. Let ω P Ω. Let x P Ci be suh that ωx � 1 and the onstraint at x is satis�ed

by ω Y B̄. Assume that Φpωq � Φpωx
q. Let j � maxtk : Φpωqk � Φpωx

qku. Then

Φpωq
ri�1,js � pÒ, Ó, Ò, Ó, Ò, . . . q, Φpωx

q

ri�1,js � pÒ, Ò, Ó, Ò, Ó, . . . q and Φpωq
r0,i�1s � Φpωx

q

r0,i�1s

with the onvention that Φpωq0 �Ò for all ω.

Proof. We denote Φ :� Φpωq and Φ1 :� Φpωx
q. Clearly, Φ

r0,i�1s � Φ1

r0,i�1s, sine those values

do not depend on ω XHi�1.

Claim 1. Let k ¥ i. If Φk �Ò, then Φ
rk�1,2Ns

¥ Φ1

rk�1,2Ns

for the lexiographi order

assoiated to Ò Ó. If Φ1

k �Ò, then Φ
rk�1,2Ns

¤ Φ1

rk�1,2Ns

.
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Proof of Claim 1. The two assertions being analogous, we only prove the �rst one, so assume

that Φk �Ò. Let j
1

� mintl ¡ k : Φl �Òu. Then there is a modi�ed spanned droplet of size

at least L for rωp0q
X HksBj1

with boundary Bj1. But this is also true for ωx
instead of ω, as

they oinide in Hk, and in partiular the position of the �rst up-arrow of Φ1

after k is at

most j1.

Claim 2. Let k ¥ i� 1 be suh that Φk � Φ1

k �Ó. Then k ¡ j i.e. Φ
rk,2Ns

� Φ1

rk,2Ns

.

Proof of Claim 2. We an learly assume that k   2N . Further assume for a ontradition

that Φk�1 �Ò and Φ1

k�1 �Ó. Let i1 � maxtl   k : Φl �Òu. Then there exists a modi�ed

spanned droplet D of size at least L for rωp0q
XHi1sBk�1

with boundary Bk�1. By Lemma 5.13

we an assume that L ¤ |D| ¤ C1L. However, if dpD, Ck�1q ¡ C5, then D is also modi�ed

spanned for rωp0q
XHi1sBk with boundary Bk, ontraditing the de�nition of i1. Indeed, from

the output of the modi�ed droplet algorithm for rωp0q
XHi1sBk XD with boundary Bk we an

reate a olletion D̂ of droplets for Bk�1 by extending CDYD appropriately, thus D̂ ontains

Q1

pC 1

qzBk � Q1

pC 1

qzBk�1 for every modi�ed luster C 1

of rωp0q
X Hi1sBk X D with boundary

Bk. Moreover, the modi�ed lusters of rωp0q
XHi1sBk�1

XD with boundary Bk�1 are ontained

in the modi�ed lusters of rωp0q
XHi1sBk XD with boundary Bk, so D̂ ontains the output of

the modi�ed droplet algorithm for rωp0q
XHi1sBk�1

XD with boundary Bk�1 by Remark 5.10,

itself ontaining D.

Therefore, dpD, Ck�1q ¤ C5. Moreover, D is not modi�ed spanned for rpωx
q

p0q
XHk�1sBk�1

with boundary Bk�1 (otherwise Φ1

rk,k�1s � pÓ, Óq). Therefore, there exists a site y P D suh

that

y P rωp0q
XHi1sBk�1

zrpωx
q

p0q
XHk�1sBk�1

.

We onsider two subases. First assume that dpx,R2
zHi�1q ¥ C1. Then, the onstraint

at x is satis�ed by pω XHi�1q Y B̄, so rωp0q
XHk�1sBk�1

� rpωx
q

p0q
XHk�1sBk�1

, and there is a

path

P � rωp0q
XHi1sBk�1

zrpωx
q

p0q
XHk�1sBk�1

from R2
zHk�1 to y suh that eah two onseutive sites are at distane at most Op1q. But

dpy,R2
zHk�1q ¥ ι{qα � diampDq � C5 ¥ C2pL � 1q, so one an �nd a subpath P 1

� Ck X P

of diameter at least C2L. Yet, it is lear that P 1

� rωp0q
X Hi1sBk implies the existene of

a modi�ed spanned droplet of size larger than L with boundary Bk, so one would have an

up-arrow of Φ in ri1� 1, ks � a ontradition. If, on the ontrary, dpx,R2
zHi�1q ¤ C1, we an

redo the same reasoning, but P needs to extend to either R2
zHk�1 or x, both of whih are

su�iently far from y.

Thus, Φk�1 � Φ1

k�1, as the ase Φk�1 �Ó,Φ1

k�1 �Ò is treated identially. But then

either both are Ò, in whih ase we are done by Claim 1 or both are Ó and we are done by

indution.

It is easy to see that the only non-idential arrow sequenes Φ
ri�1,js and Φ1

ri�1,js satisfying

the two laims are pÒ, Ó, Ò, Ó, . . . q and pÒ, Ò, Ó, Ò, . . . q (in this order using that ωx � 1). Indeed,

by Claims 1 and 2 Φk � Φ1

k for all i ¤ k ¤ j, by Claim 1 one annot have two onseutive

up arrows neither in Φ nor in Φ1

in the interval ri, js and by Claim 2 Φi�1 � Φ1

i�1 �Ò.

6.3 Renormalised East dynamis

We partition t1, . . . , 2Nu into bloks Bi � t2i� 1, 2iu for 1 ¤ i ¤ N . Given ω P Ω, we de�ne

ηpωq P t0, 1ut1,...,Nu

by

ηpωqi � 1

t�jPBi:Φpωqj�Óu
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for all i P t1, . . . Nu. Let

n � tLu �

Z

1

C5qα

^

  tlog2Nu.

Reall the de�nition of legal paths, De�nition 2.4. Given an event E � Ω and a legal

path γ � pω
p0q, . . . , ωpkqq we will say that γ X E � ∅ if ω

piq R E for all i P t0, . . . , ku. Also,

given ω P Ω and A � Ω, we say that γ onnets ω to A if ω
p0q � ω and ω

pkq P A. Reall

that Bpnq � Ω is the set of on�gurations with at least n up-arrows. The following is a

straightforward but important orollary of Lemma 6.3.

Corollary 6.4. For any legal path pω
p0q, . . . , ωpkqq, the path pηpω

p0qq, . . . , ηpωpkqqq is legal for

the East model on t1, . . . , Nu de�ned by �xing η0 � 0.

Proof. By Lemma 6.3 ηpω
pjqq � ηpω

pj�1qq implies that Φpω
pjqq and Φpω

pj�1qq only di�er on

an alternating hain of arrows ending in some Bi, preeded by Ò. Then learly ηpω
pjqql �

ηpω
pj�1qql for all l � i and ηpω

pjqqi�1 � 0.

Let Ω
Ó

and Ω2N
Ò

be respetively the set of on�gurations whih do not have up-arrows,

and the set of on�gurations with an up-arrow in the 2N-th olumn, namely

Ω
Ó

� tω P Ω : Φpωq � pÓ, . . . , Óqu,

Ω2N
Ò

� tω P Ω : Φpωq2N �Òu.

Combining the last orollary with Proposition 2.7, we obtain the most important input

for the proof of the main result.

Corollary 6.5. For any ω P Ω
Ó

there does not exist a legal path γ with γ X Bpn � 1q � ∅

onneting ω to Ω2N
Ò

.

6.4 Proof of Theorem 2.8

To prove Theorem 2.8 it is su�ient to prove the lower bound for the mean infetion time

and use the following inequality (see [10, Theorem 4.4℄ and also [26, Setion 2.2℄)

Trel ¥ qEpτ0q. (10)

However, it is instrutive to onstrut at this stage a test funtion that diretly gives the

desired lower bound on Trel without going through the omparison with the mean infetion

time. Indeed, the mehanism will appear more learly this way.

Proof of Theorem 2.8 for Trel We de�ne the event

Ã � tω P Ω: D a legal path γ with γ X Bpnq � ∅ onneting ω Y pZ2
zV q to Ω

Ó

u

and the test funtion f : Ω Ñ t0, 1u

f � 1

Ã
.

Then, by De�nition 2.5 we get

Trel ¥
µpÃqp1� µpÃqq

Dpfq
, (11)

where the Dirihlet form Dpfq is de�ned in (4).
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Lemma 6.6 (Bounds on µpÃq).

µpÃq
�

1� µpÃq
	

¥ exp

�

log q

C4qα




.

Proof. By Lemma 6.1 we have

µpÃq ¥ µpΩ
Ó

q ¥ 1� qeff ¥ 1{2.

On the other hand,

1� µpÃq ¥ µpΩ2N
Ò

q ¥ qC1L
¥ exppC1 log q{pC5q

α
qq,

where we used Corollary 6.5 for the �rst inequality as well as the fat that if pω
p0q, . . . , ωpkqq

is a legal path, then pω
pkq, . . . , ωp0qq is one as well, and for the seond inequality we notie

that for the 2N-th arrow to be up it is su�ient to have an empty segment of length C1L in

C2N .

Lemma 6.7 (Estimate of the Dirihlet form). Dpfq ¤ exp p�1{pC3
5q

2α
qq.

Proof. Using the fat that fpωq depends only on the values of ω in V , we get

Dpfq �
¸

xPV

µpcxVarxpfqq � qp1� qq
¸

xPV

µ
�

cx1
tωPÃ, ωx

RÃu
� cx1

tωRÃ, ωx
PÃu

	

¤ |V |µpBpn� 1qq,

(12)

sine, by Lemma 6.3 ||Ipωq| � |Ipωx
q|| ¤ 1 when cx � 1, so the indiators both imply

ω P Bpn � 1q. Indeed, ω P Ã implies the existene of a legal path γ from Ω
Ó

to ω Y pZ2
zV q

with eah on�guration not in Bpnq. Sine cx � 1, the path γ̄ obtained by adding the

transition from ω Y pZ2
zV q to ωx

Y pZ2
zV q is also legal, thus the hypothesis ωx

R Ã is not

satis�ed unless ωx
P Bpnq (and similarly for ω R Ã, ωx

P Ã). Thus, the result follows by using

Corollary 6.2.

Then the lower bound for Trel of Theorem 2.8 follows from (11), Lemma 6.6 and Lemma

6.7.

The above proof, together with the mathing upper bound of Theorem 2(a) of [26℄ indiate

that the bottlenek dominating the time sales is the reation of Θplogp1{qeffqq simultaneous

droplets of probability qeff .

Proof of Theorem 2.8 for Epτ0q The proof of the lower bound for the infetion time

follows a similar route, with some ompliations due to the fat that we have to identify

a (su�iently likely) initial set starting from whih we have to go through the bottlenek

on�gurations before infeting the origin.

By [25, Corollary 3.4℄, to prove the desired lower bound on Epτ0q it su�es to onstrut

a loal funtion φ � φq suh that

(i) µpφ2
q � 1,

(ii)

µpφq4

Dpφq
¥ expp1{pC4

5q
2α
qq,

(iii) φpωq � 0 if ω0 � 0.
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Inspired by [25℄ we let

Ωg � Ω
Ó

X tω P Ω : ωΛ0
� 1u

where Λ0 � tx P Z2 : dpx, 0q ¤ 1{p4qαqu � C2N and

A � tω P Ω: D a legal path γ with γ X Bpnq � ∅ onneting ω Y pZ2
zV q to Ωgu.

Then we set

φp�q � 1Ap�q{µpAq
1{2. (13)

We are now left with proving that this funtion satis�es (i)-(iii) above.

Property (i) follows immediately from (13). In order to verify (ii) we start by establishing

a lower bound on µpAq. By de�nition it holds that

µpAq ¥ µpΩgq ¥ µpωΛ0
� 1qµpΩ

Ó

q ¥ e�Op1q{q2α�1

p1� qeffq � e�Op1q{q2α�1

, (14)

where we used Harris' inequality [18℄ (tωΛ0
� 1u and Ω

Ó

are inreasing events if we onsider

that ω ¤ ω1

when ωx ¤ ω1

x for all x P Z2
), Lemma 6.1 and |Λ0| � Op1{q2αq.

Furthermore, one an repeat the proof of Lemma 6.7 to obtain

Dpφq ¤ e�1{pC3
5
q2αq. (15)

Thus, realling (14), Property (ii) holds.

We are therefore only left with proving the next lemma establishing Property (iii), om-

pleting the proof of Theorem 2.8.

Lemma 6.8. Let ω be suh that ω0 � 0. Then any legal path onneting Ωg to ω intersets

Bpnq.

As in the lower bound on 1 � µpÃq for Trel, the proof relies on Corollary 6.5, but an

additional ompliation arises due to the fat that emptying the origin does not a priori

require reating a ritial droplet nearby.

Proof of Lemma 6.8. Suppose for a ontradition that there exists a on�guration ω with

ω0 � 0, a on�guration ω
p0q P Ωg and a legal path γ � pω

p0q, . . . , ωpkqq with ω
pkq � ω and

ω
pjq R Bpnq for all j P t0, . . . , ku. Assuming without loss of generality that ω

pjq � ω
pj�1q for

all j, let xj be suh that ω
pjq � pω

pj�1qq
xj
. Consider the path γ̃ � pω̃

p0q, . . . , ω̃pkqq obtained by

performing the same updates as for γ exept for �ips in the olumn C2N , whih are performed

only if they orrespond to emptying sites. More preisely, we let ω̃
p0q � ω

p0q and

ω̃
pjq �

#

pω̃
pj�1qq

xj
if xj R C2N or pω̃

pj�1qqxj
� 1,

ω̃
pj�1q otherwise.

It is not di�ult to verify by indution that γ̃ is also a legal path with ω̃
pjq ¤ ω

pjq for all j

(where ω ¤ ω1

when ωx ¤ ω1

x for all x P Z2
) and that ω̃

pjq and ω
pjq oinide outside of C2N .

Then pω̃
pkqq0 ¤ pω

pkqq0 � 0 and by de�nition pω̃
p0qqΛ0

� 1. Therefore, sine inside C2N eah

site that has been emptied in γ is also empty in ω̃
pkq, we onlude that neessarily ω̃

pkqX C2N
ontains a (modi�ed) spanned droplet of size 1{p4C1q

α
q ¡ L with boundary B2N � B̄. Indeed,

there is a path of sites x with steps of size Op1q from Z2
zΛ0 to 0 suh that pω̃

pkqqx � 0. This

means that ω̃
pkq P Ω2N

Ò

. Furthermore, for all j we have Φpω̃
pjqqr1,2N�1s � Φpω

pjqqr1,2N�1s, as

those do not depend on the sites in C2N . Thus, using Corollary 6.5, together with the fats

that ω̃
p0q P Ωg � Ω

Ó

, ω̃
pkq P Ω2N

Ò

and γ̃ X Bpn � 1q � ∅, we reah a ontradition.

30



7 Open problems

With Theorem 2.8 the saling of the infetion time is determined up to a polylogarithmi

fator. The next natural question is to pursue determining this fator in the spirit of the

re�ned universality result of [7℄. For the moment there is only one ritial model with

in�nitely many stable diretions for whih this is known � the Duarte model [25℄. In that

ase the orretive fator is Θpplog qq4q. However, for bootstrap perolation there are already

two di�erent possible behaviours of this fator depending on whether the model is balaned

or unbalaned (see De�nition 2.3). Based on this one ould expet the following.

Conjeture 7.1. Let U be a ritial update family with an in�nite number of stable diretions.

• If U is balaned, then

Epτ0q � exp

�

Θp1q

q2α




.

• If U is unbalaned, then

Epτ0q � exp

�

Θ
�

plog qq
4
�

q2α

�

.

The same asymptotis hold for Trel.

In other words we expet the lower bound of Theorem 2.8 to be sharp for balaned models,

while the upper bound of [26, Theorem 2(a)℄ to be sharp for unbalaned ones. The balaned

ase is not hard and only requires an improvement of the approah of [26℄. It will be treated

in a future work, sine it shares none of the tehniques disussed here. In the unbalaned ase

the plog qq4 should arise as the square of the plog qq2 fator for bootstrap perolation, itself

aused by the one-dimensional geometry and larger size of ritial droplets. This is indeed

what happens for the Duarte model [25℄, an example of unbalaned ritial onstraint.
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