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Abstract

We study the full class of kinetically constrained models in arbi-
trary dimension and out of equilibrium, in the regime where the density
q of facilitating sites in the equilibrium measure (but not necessarily
in the initial measure) is close to 1. For these models, we establish
exponential convergence to equilibrium in infinite volume and linear
time precutoff in finite volume with appropriate boundary condition.
Our results are the first out-of-equilibrium results that hold for any
model in the so-called critical class, which is covered in its entirety by
our treatment. It includes e.g. the Fredrickson–Andersen 2-spin facili-
tated model, in which a site is updated only when at least two neigh-
bouring sites are in the facilitating state. In addition, these results
generalise, unify and sometimes simplify several previous works in the
field. As byproduct, we recover and generalise exponential tails for the
connected component of the origin in the upper invariant trajectory
of perturbed cellular automata and in the set of eventually infected
sites in subcritical bootstrap percolation models. Our approach goes
through the study of cooperative contact processes, last passage perco-
lation, Toom contours, as well as a very convenient coupling between
contact processes and kinetically constrained models.
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1 Introduction

Kinetically constrained models (KCM) were introduced in order to study the
liquid-glass transition [23] (see [13,25,47] for reviews). They are Markov pro-
cesses featuring a parameter q ∈ [0, 1] tuning the density of facilitating sites.
Purposefully, KCM are reversible w.r.t. the product Bernoulli measure with
parameter q. Indeed, it has been proposed that the real-world liquid-glass
transition has a purely dynamical origin, that is not reflected in the equilib-
rium measure. KCM were introduced precisely with the purpose of testing
whether glassy behaviour could be explained purely in dynamical terms.
Despite having a trivial stationary measure, the degenerate rates of KCM
make them very hard to tackle mathematically, by making their dynam-
ics non-attractive, cooperative, heterogeneous, admitting multiple invariant
measures, not satisfying coercive inequalities and sometimes featuring er-
godicity breaking phase transitions.

In recent years a detailed understanding of KCM at equilibrium has been
achieved, especially in two dimensions (see [31, Chapter 1] for an overview).
However, from the physical perspective it is essential to understand their
behaviour out of equilibrium, typically after a quench from one temperature
to a different one. Rigorous results in this direction are rather limited and
will be the subject of a detailed account in Section 4. Suffice it to say that
with the exception of [18], all out-of-equilibrium results pertain to the class
of so-called supercritical modes, for which a finite patch of facilitating sites
can trigger relaxation. On the other hand, [18] treats subcritical models with
an orientation. The main goal of the present work is to deal with critical
models. However, our methods work in the greatest possible generality, so we
will also cover the other universality classes. Our main results are: the proof
that the mixing time of the process in a box of side n and boundary condition
entirely composed of facilitating sites is of order n (see Theorem 3.1) and
the proof of exponential convergence to equilibrium for the infinite-volume
dynamics started from a Bernoulli initial condition in the ergodic regime
(see Theorem 3.3). A comparison with earlier results is given in Section 4.

The main novelties of the present work are as follows. Firstly, we set
up a general scheme for proving exponential decay for the size of connected
clusters of objects in dependent settings (see Section 9) and showcase two
applications of independent interest going far beyond the needs of our main
results. We further devise a simple and very robust technique for coupling
interacting particle systems, even in the absence of attractiveness (see Sec-
tion 7). Moreover, as opposed to previous studies, we develop tools to tackle
cooperative models (such that no finite set of facilitating sites is able to prop-
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agate), including several useful renormalisation techniques (see Sections 6,
8 and 11). In particular, we provide the first out-of-equilibrium results for
any kinetically constrained model in the critical universality class.

A major limitation for the study of KCM out of equilibrium is that,
like ours, most results work in the perturbative regime of high density of
facilitating sites for the equilibrium measure and not necessarily the initial
one. Exceptions to this are [18], heavily relying on orientation, and results
on the East model [7, 15, 15, 17, 19, 21, 22, 24, 40], where a model-specific
miracle greatly simplifies the problem.1 Our study will also be restricted
to the perturbative regime for the equilibrium measure, but not the initial
one. Nevertheless, it is our hope that, once a robust renormalisation scheme
is found for controlling KCM in the non-perturbative regime in terms of
the perturbative one, our tools will enable the treatment of the full class of
KCM out-of-equilibrium.

2 Models

In this section we define our models of interest, KCM, along with several
other models, which will play an auxiliary role in the proofs. The reader
eager to see the statements of the results in Section 3 will only need Sec-
tions 2.1 and 2.2.

2.1 Update families

Let ∥ · ∥, ⟨·, ·⟩ and d(·, ·) denote the Euclidean norm, scalar product and
distance respectively. An update family U is a finite non-empty family of
finite non-empty subsets of Zd \ {0} called update rules. We refer to unit
vectors

u ∈ Sd−1 =
{
v ∈ Rd : ∥v∥ = 1

}
as directions. We denote by Hu = {x ∈ Zd : ⟨x, u⟩ < 0}. A direction u is
unstable for an update family U , if there exists U ∈ U such that U ⊂ Hu,
and stable otherwise. An update family is not trivial subcritical if it has an
unstable direction and trivial subcritical otherwise.

While we will not need to distinguish between the other universality
classes, it is useful to introduce them for the sake of discussing previous
results. We say that an update family is supercritical, if there is an open

1Some of the perturbative results on the Fredrickson–Andersen 1-spin facilitated model
in one dimension [8,9,20] concern a neighbourhood of q = 1 with noticeable length. When
applied to this model, our treatment also yields reasonable quantitative bounds.
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hemisphere consisting only of unstable directions. We say that it is subcriti-
cal (trivial or non trivial), if every hemisphere contains an open set of stable
directions. Finally, the update family is critical if it is neither supercritical
nor subcritical. We call update families such that there exists u ∈ Sd−1 such
that U ⊂ Hu for all U ∈ U oriented.

Let us introduce an illustrative example corresponding to the classical
Fredrickson-Andersen j-spin facilitated model (FA-jf). Its update family
U = {X ⊂ {e1, . . . , ed,−e1, . . . ,−ed}, |X| = j} is given by all j-element
subsets of the 2d nearest neighbours of the origin. One can check that for
j = 1 this family is supercritical, for j ∈ {2, . . . , d} it is critical, while for
j > d it is trivial subcritical. The reader may keep in mind the case j = d,
which is also the most interesting one, throughout the paper. Indeed, all
difficulties we face are present for this model.

In the rest of the work, adopting the language of bootstrap percolation
and of the contact process, we say that site x ∈ Zd is “infected” in the
configuration η, if its state at x, ηx, is 1.

2.2 Kinetically constrained models

The U-KCM is a continuous time Markov process with state space Ω =
{0, 1}Zd

defined by the following graphical construction (see e.g. [38, Section
III.6] for background). To each x ∈ Zd we attach an independent Poisson
point process Px on [0,∞) of intensity 1 and uniform random variables
(Υx(t))t∈Px on [0, 1], which are independent and independent of those for
other sites. The model has a further parameter q ∈ [0, 1], which we call
the equilibrium density. We denote by ηx(t) the state of site x ∈ Zd in the
configuration at time t ∈ [0,∞). Define the constraint at x ∈ Zd for a
configuration η ∈ Ω by

cx(η) = 1∃U∈U ,∀u∈U,ηx+u=1. (2.1)

We have

ηx(t) =

{
1Υx(t)≤q t ∈ Px and cx(η(t−)) = 1,

ηx(t−) otherwise.
(2.2)

Before moving on, let us also give an informal but more intuitive descrip-
tion of the U-KCM with parameter q. Each site x ∈ Zd is equipped with
a clock which rings at exponentially distributed intervals of time of mean
1 (Px is the set of clock ring times). When it rings, we verify whether the
constraint is satisfied, that is, if there is a completely infected update rule
around x. If this is the case, we replace the state of x in the configuration
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by an independent Bernoulli random variable with parameter q. Note that
in the above definition, we have coupled U-KCM for all values of q and
all initial conditions using the same clock rings and defining the Bernoulli
random variables, using the uniform ones, Υx(t).

We remark, that cx(η) of Eq. (2.1) does not depend on ηx, so cx(η(t−)) =
cx(η(t)) for all t ∈ Px and x ∈ Zd. It is easy to see that this implies that the

U-KCM is reversible w.r.t. the product Bernoulli measure µq = Ber(q)⊗Zd

(see e.g. [38, Section IV.2] for background). We emphasise that U-KCM
are not attractive, i.e. the natural stochastic order is not preserved by the
dynamics (see [38, Section III.2] for background). We refer to sites in state
1 as infected and sites in state 0 as healthy. Hence, the constraint asks for
the presence of suitably arranged infections around the site we are trying to
update.

One defines qKCM
c as the infimum of all q ∈ [0, 1] such that 0 is a simple

eigenvalue of the generator of the U-KCM with parameter q. That is, qKCM
c

is the critical parameter for ergodicity. It is known by [12, Proposition 2.5]
and [2, Corollary 1.6 and Theorem 7.1] that qKCM

c > 0 if and only if U is
subcritical and qKCM

c = 1 if and only if U is trivial subcritical. We will also
need the critical parameter of the spectral gap of the generator of the U-
KCM (see [12, Section 2] for background, but understanding this definition
is not essential to the present work):

q̃KCM
c = inf {q > 0 : gap > 0} .

It is believed that q̃KCM
c = qKCM

c for all update families, but this has only
been shown in some cases (see Remark 3.4).

Fix Λ ⊂ Zd. For any ω ∈ Ω we denote by ωΛ ∈ ΩΛ = {0, 1}Λ the
restriction of ω to Λ. We define the U-KCM η on Λ with boundary condition
τ ∈ ΩZd\Λ by setting the configuration equal to τ outside Λ at all times. We
denote the fully infected (resp. healthy) configuration by 1 (resp. 0).

We next introduce the mixing time of the U-KCM on a finite set Λ
with some boundary condition τ ∈ ΩZd\Λ (see [36] for background). Given
δ ∈ (0, 1), we define

tmix(δ) = inf

{
t ≥ 0 : max

ρ∈ΩΛ

dTV (P (ηρ(t) ∈ ·) , µq) ≤ δ

}
∈ (0,∞], (2.3)

where dTV(µ, ν) = supA(µ(A) − ν(A)) with the supremum running over
all events A for the arbitrary probability measures µ and ν and ηρ is the
U-KCM with initial condition ρ.
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2.3 Contact processes

The U-contact process (CP) is defined by the same graphical construction
as the U-KCM and the same constraint as in Eq. (2.1). However, we set

ζx(t) =


1 t ∈ Px, cx(ζ(t−)) = 1,Υx(t) ≤ q,

0 t ∈ Px,Υx(t) > q,

ζx(t−) otherwise,

(2.4)

instead of Eq. (2.2). That is, the constraint cx(ζ(t−)) = 1 is no longer
required to be satisfied in order to update the configuration at site x to
the value 0. We define the U-CP in finite volume with a boundary condi-
tion analogously to what was done for KCM in Section 2.2. We emphasise,
that we use the same Poisson processes (clock rings) and uniform random
variables, so that now U-KCM and U-CP for all initial conditions and pa-
rameters q ∈ [0, 1] are coupled on the same probability space.

Contrary to KCM, CP are attractive (see [38, Section III.2] for back-
ground), we may therefore define its upper invariant measure ν̄ as the t → ∞
limit in law of ζ1(t), the U-CP with initial condition 1. We then define the
critical point

qCP
c = inf {q > 0 : ν̄ ̸= δ0} . (2.5)

In other words, qCP
c is the critical parameter, above which U-CP has multiple

invariant measures.

Remark 2.1. It is known that qCP
c < 1 if and only if U is not trivial

subcritical [27, Corollary 18.3.2] (the easier “only if” direction is contained
in the proof of [27], but also follows from [2, Lemma 7.3]). On the other
hand, a classical comparison with a branching process shows that qCP

c > 0
for any U (see e.g. [37, Section I.1]).

We also extend Eq. (2.3) to U-CP without change.

2.4 Cellular automata with death

A cellular automaton (CA or ϕ-CA when we want to emphasise the depen-
dence on the map ϕ) is specified by a map ϕ : Ω → {0, 1} depending only
on finitely many sites. Given an initial condition ω(0) ∈ Ω, we inductively
define for all t ≥ 1, x ∈ Zd

ωx(t) = ϕ (ω·−x(t− 1)) .
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In other words, the map ϕ is applied at each site simultaneously in a trans-
lation invariant way. The CA is said to be an eroder, if for all finite A ⊂ Zd

there exists T (A) < ∞ such that ω(0) = 1Zd\A implies ω(T (A)) = 1, that
is, finite sets of 0s become extinct after a finite time. The CA is attractive, if
ϕ is non-decreasing for the pointwise partial order on Ω. That is, if ωx ≥ ω′

x

for some ω, ω′ ∈ Ω and all x ∈ Zd, then ϕ(ω) ≥ ϕ(ω′).
Given a cellular automaton ϕ, we further consider its version with death

as follows. For x ∈ Zd and t ∈ N, let ξx,t be i.i.d. Bernoulli variables with
parameter δ ∈ [0, 1]. Then the automaton with map ϕ and δ death is defined
by

ωx(t) =

{
ϕ(ω·−x(t− 1)) ξx,t = 0,

0 ξx,t = 1,
(2.6)

for all t ≥ 1 starting from a given initial condition ω(0) ∈ Ω. That is, at
each space-time point, we apply the map ϕ, as in the ϕ-CA, with probability
1− δ and we change the state to healthy with probability δ.

For attractive ϕ, we further denote by ν̄ the upper invariant measure—
the limit of the law of the cellular automaton with δ death and initial con-
dition 1, ω1(t), as t → ∞. One then defines its stability threshold

δc = sup {δ ∈ [0, 1] : ν̄ ̸= δ0} ,

where δ0 is the Dirac measure on 0. This threshold captures the point up
to which death is not strong enough to extinguish infection, if we start from
the completely infected state. It is a classical result of Toom [50] that δc > 0
if and only if the ϕ-CA is an eroder.

2.5 Bootstrap percolation

The U-bootstrap percolation (BP) is the particular CA whose map ϕ is
defined via

ϕ(ω) = max(ω0, cx(ω)) (2.7)

for any ω ∈ Ω with cx from Eq. (2.1). In other words, infected sites remain
infected, while healthy ones become infected once their constraint is satisfied
(i.e. there are enough infections around in the sense of U). One commonly
considers

qBP
c = inf

{
q ∈ [0, 1] : lim

t→∞
P
(
ω
µq

0 (t) = 0
)
= 0
}
,

where ωµq is the U-BP with initial condition distributed according to µq

(there is no other randomness involved). This threshold reflects at which
point initial infections with density q are sufficient to almost surely infect
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the entire lattice. It is known [12, Proposition 2.5] that in fact for the same
update family U we have qKCM

c = qBP
c .

Since U-BP is a CA, one may consider its version with death. That is, for
δ ≥ 0, U-BP with δ death is the ϕ-CA with δ death with ϕ from Eq. (2.7).
Recalling Section 2.4, this means that at each time step infected vertices
become healthy with probability δ and stay infected with probability 1− δ;
healthy vertices whose constraint is satisfied become infected with probabil-
ity 1− δ; healthy sites whose constraint is not satisfied remain healthy with
probability 1.

2.6 Last passage percolation

Given an update rule U ⊂ Hu for some u ∈ Sd−1, we define the U -last
passage percolation (LPP) on Λ = {1, . . . , n}d as follows. Endow each x ∈ Λ
with an i.i.d. exponentially distributed random variable T (x) with mean 1.
For each x ̸∈ Λ set sx = 0. For every x ∈ Λ inductively define the U -LPP
time of x by

sx = T (x) + max
y∈U

sx+y. (2.8)

Indeed, this is possible, because U is contained in an open half-plane. An-
other way to view U -LPP is the following. Sites in Λ are initially healthy
and those in Zd \Λ are infected. When all neighbours of a site (in the sense
of U) are infected, it becomes infected at rate 1 and never heals afterwards.

With this representation in mind, it is not hard to check that the set of
vertices x ∈ Zd where sx ≤ t for the U -LPP coincides with the set of infected
vertices at time t in the configuration of the {U}-KCM in the box Λ, with en-
tirely infected boundary condition, healthy initial condition and parameter
q = 1. Note also that if U = {0,−1}d \ {0}, the U -LPP on Λ coincides with
the standard {−e1, . . . ,−ed}-LPP on Λ. Indeed, e.g. sx−e1−e2 ≤ sx−e1 ≤ sx
for any x ∈ Λ for {−e1, . . . ,−ed}-LPP, so the maximum over U in Eq. (2.8)
coincides with the maximum over {−e1, . . . ,−ed} ⊂ U .

3 Results

We are now ready to state our main results. The first one concerns the
mixing time of KCM or CP in finite volume with infected boundary.

Theorem 3.1 (Linear mixing). Let U be an update family, which is not
trivial subcritical. There exists ε = ε(U) > 0 such that for all q ∈ [1−ε, 1] the
U-KCM on {1, . . . , n}d with infected boundary condition exhibits precutoff in
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linear time: there exists C = C(U) > 0 such that for all δ ∈ (0, 1) and n
large enough depending on δ,

n/C ≤ tmix(δ) ≤ Cn. (3.1)

The same holds for the U-CP.

Remark 3.2. Let us note that all the conditions above are essential. Indeed,
trivial subcritical models are simply not ergodic, as they admit finite healthy
regions which cannot change [2, Lemma 7.3]. Moreover, there exist non-
trivial subcritical models with qKCM

c arbitrarily close to 1 [30, Proposition
7.1], so one cannot hope ε to be independent of U . Finally, one cannot change
the boundary condition to healthy or periodic (restricting to the ergodic
component), since it is known that even 2-neighbour bootstrap percolation
with these boundary conditions may have quadratic infection time [5], and
the U-BP infection time is a lower bound on the U-KCM one (see [42, Lemma
4.3]).

Our second main result establishes that, in infinite volume, U-KCM con-
verge exponentially fast to their equilibrium measure.

Theorem 3.3 (Exponential convergence). Let U be any update family and
α > 0. Then, there exist ε ∈ (0, 1) and c > 0, such that for any p ∈
[q̃KCM
c +α, 1] and q ∈ [1 − ε, 1] the following holds. Let (ηµp(t))t≥0 be the

infinite volume U-KCM with initial distribution2 µp and parameter q. Then
for all local functions f : Ω → R and t ≥ 0

|E [f(ηµp(t))]− µq(f)| ≤ e−ct∥f∥∞ · | supp f |/c, (3.2)

where supp f is the set of sites on whose state the value of f depends.

As in Remark 3.2, one cannot hope for ε independent of U . However,
one should expect both Theorems 3.1 and 3.3 to hold for any q > qKCM

c +α.

Remark 3.4. Since q̃KCM
c appears directly in Theorem 3.3, let us mention

that for supercritical and critical models it is known that q̃KCM
c = qKCM

c = 0
[3, 30].3 For trivial subcritical update families we have q̃KCM

c = qKCM
c = 1

2The initial condition is assumed to be product mostly for simplicity. It will be clear
from the proof that e.g. any initial condition stochastically dominating µp would do.

3 For supercritical and critical models [3] gives a stretched exponential decay of the tail
of the infection time of the origin for any q > 0, so q̃KCM

c = 0 for non-subcritical update
families by [30, Theorem 3.7]. Note that, while [30] is formulated in two dimensions, the
parts we will use do generalise rather straightforwardly to higher dimensions.
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[2, 12], so that Theorem 3.3 is empty, as it should. For subcritical non-
trivial families it is known that 0 < qKCM

c ≤ q̃KCM
c < 1 [2, 12, 30] and the

second inequality is believed to be an equality, but this is an important open
problem. Equality has been shown for oriented update families [32] and the
general case was reduced to a related question involving only U-BP in [30].
Furthermore, Theorem 3.3 cannot hold for p < qKCM

c = qBP
c , since then

a.s. there are sites whose state remains 0 forever. Hence, if the conjecture
qKCM
c = q̃KCM

c holds, the range of values for p in the theorem is the best
possible.

Finally, let us mention that in the course of the proof of our main re-
sults we will derive consequences on exponential decay in space-time for
eroder attractive cellular automata with death, and on space exponential
decay for the set of sites eventually reaching state 1 in U-BP for subcritical
U with initial condition µq. The reader interested in these developments
(Corollaries 9.5 and 9.7) can directly refer to Section 9, which can be read
independently of the remainder of the paper.

4 Background

Before turning to the proof of Theorems 3.1 and 3.3, let us discuss previous
work on KCM out of equilibrium. We start by mentioning that results of
a different kind, concerning graphs whose size diverges jointly with the pa-
rameter q tending to 0, can be found in [15,33,44,45], while large deviations
in trajectory space have been studied in [10].

Along the lines of our work, much more has been done, mostly for su-
percritical models, especially the {{−e1}, . . . , {−ed}}-KCM called the East
model and FA-1f, that is, the {{−e1}, . . . , {−ed}, {e1}, . . . , {ed}}-KCM. In
all cases roughly the same route has been followed, to the extent possible,
along the following steps in that order, each one relying on the previous one.

Step 1. Theorem 3.3, possibly with a weaker stretched exponential decay.

Step 2. Positive speed of the infection front and the corresponding precutoff,
that is, Theorem 3.1.

Step 3. Ergodicity of the process seen from the front and law of large numbers
for the front position.

Step 4. CLT for the front position and cutoff.
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Step 1 was performed first for the East model in d = 1 in [14]. Like all results
on this model, that relies on orientation and further favourable properties,
allowing the results to hold for all q > 0. Certain qualitative convergence re-
sults for a model closely related to FA-1f were obtained in [48] (also see there
references therein). For FA-1f, Step 1 was done with stretched exponential
decay for FA-1f for q > 1/2 in [8] (pure exponential in d = 1). For the East
model in d > 1 stretched exponential decay was proved in [16]. Convergence
for FA-1f was improved to pure exponential in [43] for q large enough. For
the East model in d > 1 the same was done in [40]. The exponential decay
was then generalised to all supercritical models in any dimension for q large
enough in [41], thus including the ones of [8, 43], as well as [14, 16, 40] up
to the restriction on q. The most general of the above results, [41], is con-
tained in Theorem 3.3. In summary, before the present work, Theorem 3.3
was known only for supercritical KCM.

Turning to Step 2, Theorem 3.1 was proved for the East model for any
q > 0 in [16]. We believe that even for FA-1f in dimension d > 1 Theo-
rem 3.1 is new. However, there is another important work in the direction
of Theorem 3.1. Namely, in [18] this result was proved with a weaker up-
per bound of order n log n, assuming that the update family is oriented. It
should be noted that orientation rules out the possibility for the model to
be critical and is a very convenient feature for the analysis, as we will see.
On the other hand, the approach of [18] has the major advantage of working
for any q > qKCM

c owing to [32, Theorem 1.6] and [30, Theorem 3.7].
Moving on to Step 3, in d = 1 it has been established that the front

has a well-defined speed and that the law of the configuration behind the
front converges to a limit for large times. This is done for the East model
in [7] for any q > 0 and in [9] for FA-1f for q large enough. In [17, 19] the
East model was studied in d > 1 with the aim to examine the limit shape of
the set of updated sites starting from a single infection. Results are still far
from establishing that such a limit shape actually exists, but some control
on the speed of the front in different directions is obtained.

Finally, Step 4 was achieved in d = 1 for the East model in [24] (see
[21, 22] for further results about the d = 1 East process out of equilibrium)
and for FA-1f at q close to 1 in [20]. This was also obtained for the East model
in higher dimensions for a particular domain and boundary condition in [19].
We should also mention that in [35, Theorem 2.4] Step 4 was performed for
FA-2f in d = 2 in the somewhat degenerate case q = 1, which also coincides
with the zero-temperature Ising model with appropriate external field. This
can also be viewed as a continuous time version of 2-neighbour BP or a
non-oriented LPP.
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While it would be extremely interesting to see Step 3 and Step 4 estab-
lished for general update families, this seems rather remote, given that even
the d-dimensional East model for d > 1 has not been handled at that level
yet. As it is the case for the 1-dimensional East model and FA-1f, we expect
that our Theorems 3.1 and 3.3 and the tools developed to prove them will
play an important role in attacking these questions.

5 Outline of the proof

Let us start by sketching the proof of Theorem 3.3, which is slightly sim-
pler than the one of Theorem 3.1. The proof is composed of several steps
corresponding to Sections 6 to 9, which are put together in Section 10.

The first step (see Section 6) consists in “warming up” the initial con-
dition. That is, we improve our initial condition µp with p > q̃KCM

c to one
with high density of infections. This is achieved via a renormalisation draw-
ing on [30]. It roughly says that, since p > q̃KCM

c , the probability that a
site does not become infected within time t in the U-BP dynamics with the
same initial condition decays exponentially with t. Since the parameter q of
our U-KCM is close to 1, the same holds for it up to a large enough time,
since the U-KCM essentially reduces to the U-BP in the absence of recovery
events. Hence, looking at a renormalised lattice, we may assume that the
initial condition of our dynamics is product with high density of infections.

The second step (see Section 7) is to reduce the study of the U-KCM to
the CP with update family consisting of a single rule U0 that is oriented.
While there is a standard monotone comparison (see Claim 7.2) that guar-
antees that all infections of the {U0}-CP are infections in the U-KCM, we
need to go further. Namely, we establish that studying a certain set that
depends not only on the configuration, but also on the history of the CP,
we are able to deduce that the U-KCM not only has lots of infections, but
has actually coupled for all initial conditions larger than the one of the CP.

Hence, we have reduced our problem to one about the {U0}-CP with
parameter q0 close to 1 and initial condition close to 1. In doing so, we have
lost the reversibility and the product invariant measure of the KCM, but we
have gained attractiveness and orientation for the CP. Nevertheless, we are
not done yet, because the {U0}-CP is by far not as simple as the classical
CP, as its dynamics is still cooperative, because U0 may contain more than
one vertex.

The third step (see Section 8) is a further renormalisation generalis-
ing and somewhat simplifying the one of [41], itself stemming from [43].
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It transforms the {U0}-CP into a U0-BP with (little) death, where U0 =
{{0,−1}d \ {0}}. To achieve this, we tessellate space-time into large boxes
of carefully chosen geometry. Roughly speaking, we ensure that if all neigh-
bours of a box in the directions given by U0 are fully infected, then infection
propagates with high probability to the box of interest. Moreover, an in-
fected box remains such at the next time step with high probability. If
either of these high probability events fails, we view that as a death in the
renormalised BP process. We have thus made our process even simpler, as
it now evolves in discrete time and no longer depends on the original update
family U , while remaining cooperative.

The fourth step (see Section 9) is to show that the U0-BP is exponentially
unlikely to have large space-time clusters of healthy sites. This can be
traced back through the previous steps to the CP and then the KCM to
yield Theorem 3.3 (see Section 10). In fact, we prove this in general for
any CA with death which is an eroder (recall Section 2.4), by developing
a novel and very general scheme for leveraging exponential bounds on the
probability of occurrence of objects rooted at a given point to exponential
bounds on clusters of such objects and applying this to Toom contours [50],
as recently revisited in [49]. Alternatively, one could employ a multi-scale
renormalisation argument, as in [2] transported to the setting of CA with
death via [32], but this would degrade Theorem 3.3 to stretched exponential
convergence at best.

Finally, we turn to the proof of Theorem 3.1, which still relies on all of
the above, but requires a substitute for the initial “warming up” step above,
since we need to deal with arbitrary initial conditions, including 0. This
alternative first step (see Section 11) consists in yet another renormalisation,
this time from the {U0}-CP to the standard LPP. We show that after the
LPP time at a renormalised site, the corresponding box is coupled for the
CP. To do this, somewhat surprisingly, we look at times when sites become
healthy in the CP. Using the orientation of the {U0}-CP, we have that,
once all sites on whose state the constraint at a given site v depends on are
coupled, it remains to wait for a single update at v to the state 0, in order
to couple the state at v, too. Although these updates are rare (q is close to
1), it still takes a time of order 1 to couple the entire box corresponding to
a renormalised site, given that the ones it depends on (in the LPP sense)
are already coupled. Thus, to ensure the CP is coupled on a box Λ of size
n, it suffices to wait until the LPP on a (renormalised) box of size of order
n reaches all sites. The latter is known to be linear from [28].

Hence, after a linear time the CP has reached its equilibrium distribu-
tion in the box with 1 boundary condition. By attractiveness of CP, this
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distribution stochastically dominates the restriction to the box Λ of the in-
finite volume upper stationary measure. Moreover, the CP lower bounds
the KCM with any initial condition, so, after this burn-in time, we may
perform the same procedure as for the proof of Theorem 3.3. Namely, we
exploit the relation between {U0}-CP and U-KCM, renormalise the former
to U0-BP with death and, finally, use that the latter has exponentially small
probability to have large healthy space-time clusters. Using this exponen-
tial bound, we get that it suffices to wait for a time of order log n to ensure
that the U-KCM has coupled with high probability, once we have waited for
the initial linear burn-in time needed for the LPP to reach all sites in the
renormalised version of Λ.

6 Warming up the initial condition

In this section we start by showing that if the initial condition is µp, with
1− p < 1− q̃KCM

c possibly much larger than the equilibrium density 1− q of
healthy sites, after a sufficiently large but finite time the law of the process
dominates a renormalised Bernoulli measure with large infection density,
but still not the equilibrium one.

Let us note that the vectors v′i in the next lemma are arbitrary at this
point. The reader is encouraged to think of them as the canonical basis of
Rd, while a more convenient choice will appear in Section 8.

Lemma 6.1. Let U be an update family, α > 0, ε0 > 0 and let v′1, . . . , v
′
d ∈

Zd be linearly independent. There exists R0 ∈ {1, 2, . . . } such that for any
R ≥ R0 there exists T0 such that for any T ≥ T0 there exists ε1 > 0 such
that for any q ∈ [1− ε1, 1] the following holds. Set

B̂ =
d∑

i=1

(v′i[0, R)) =

{
d∑

i=1

aiv
′
i : (ai)

d
i=1 ∈ [0, R)d

}
⊂ Rd

and B̂x = B̂+
∑d

i=1Rxiv
′
i for every x ∈ Zd. We can couple all U-KCM ηµp′

with parameter q and initial conditions µp′ for p′ ≥ q̃KCM
c + α together with

ξ ∼ µ1−ε0 so that for every x ∈ Zd,

ξx = 1 ⇒ ∀p′ ≥ q̃KCM
c + α, η

µp′

B̂x
(T ) = 1B̂x

.

Proof. Fix α > 0 and set p = q̃KCM
c + α. From [30, Theorems 3.5 and 3.7]

we have that there exists c = c(α) ∈ (0,∞) such that the U-BP (without
death) ω satisfies P(ωµp

0 (t) = 0) ≤ e−ct for every integer t ≥ 0. Hence, for
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any fixed ε′ > 0, we can choose R > 0 large enough depending on c and ε′

such that
√
R ∈ N and

P
(
ω
µp

B̂

(√
R
)
= 1B̂

)
≥ 1− ε′.

Since R is large enough, the above event only depends on ωµp(0) restricted
to
⋃

z∈{−1,0,1}d B̂z.
Recall that Px is the Poisson process of clock ring times associated to

x ∈ Zd from Section 2.2 used to couple the U-KCM with all initial conditions.
We further assume initial conditions distributed according to µp′ for p

′ ≥ p
to be coupled in a monotone way. Let us now choose T > 0 large enough
depending on R in such a way that with probability at least 1− ε′ for each
i ∈ {0, . . . ,

√
R − 1} and x ∈

⋃
z∈{−1,0,1}d B̂z we have Px ∩ (iT/

√
R, (i +

1)T/
√
R) ̸= ∅. That is, in each of these

√
R intervals of time the clock of

each site rings. Finally, if q is close enough to 1 depending also on T , we get
that with probability at least 1− ε′, we have Υx(t) ≤ q for all t ∈ Px∩ [0, T )
and x ∈

⋃
z∈{−1,0,1}d B̂z. That is, at each clock ring, we attempt to infect

the corresponding site.
We claim that if all three events above occur for some x ∈ Zd, that is,

ω
µp

B̂x
(
√
R) = 1B̂x

, Py ∩ (iT/
√
R, (i + 1)T/

√
R) ̸= ∅ and Υy(t) ≤ q, for all

y ∈
⋃

z∈x+{−1,0,1}d B̂z, i ∈ {0, . . . ,
√
R− 1} and t ∈ Py ∩ [0, T ), then

η
µp′

B̂x
(T ) = 1B̂x

for any p′ ≥ p. (6.1)

Since ω
µp

B̂x
(
√
R) = 1B̂x

and R is large (hence much larger than
√
R), there

exists X with B̂x ⊂ X ⊂
⋃

z∈{−1,0,1}d B̂x+z such that the U-BP process

ωµp,X on X with boundary condition 0Zd\X and initial state ω
µp

X (0) satisfies

ωµp,X(
√
R) = 1X . 4 Then we can prove by induction on i ∈ {0, . . . ,

√
R}

that for all y ∈ X we have η
µp′
y (iT/

√
R) ≥ ω

µp,X
y (i).

The base is the monotone coupling of the initial conditions. For the
induction step, observe that by assumption, for the KCM, no attempt is
made to change any state to 0, but at least one attempt is made to change
each site to 1. Since the constraint cy is non-decreasing in the configu-

ration and the η
µp′
X process is non-decreasing in time, if for some y ∈ X

and i ∈ {0, . . . ,
√
R − 1} we have cy(ω

µp,X(i)) = 1, then for any t ∈
4To see this, one may remove the infections at distance more than C

√
R from B̂x for

some large constant C > 0, since they do not reach X by time
√
R, and take X to be the

set of all sites infected by the remaining ones up to time
√
R.
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(iT/
√
R, (i + 1)T/

√
R) we have cy(η

µp′ (t)) = 1. Applying this to some
t ∈ Py ∩ (iT/

√
R, (i+ 1)T/

√
R) ̸= ∅, we obtain the induction step:

η
µp′
y

(
(i+ 1)T/

√
R
)
≥ η

µp′
y (t) = cy (η

µp′ (t)) ∨ η
µp′
y (t−)

≥ cy
(
ωµp,X(i)

)
∨ η

µp′
y

(
iT/

√
R
)

≥ cy
(
ωµp,X(i)

)
∨ ω

µp,X
y (i) = ωµp,X(i+ 1).

Hence, the claimed Eq. (6.1) follows by taking i =
√
R.

Thus, for every x ∈ Zd, on an event Ex of probability at least 1 − 3ε′,
the U-KCM with initial condition µp′ coupled in a monotone way satisfy
Eq. (6.1). Moreover, by construction the events Ex are 1-dependent in
terms of x, so by the Liggett–Schonmann–Stacey Theorem [39], the set of x
such that Ex is realised stochastically dominates an i.i.d. configuration with
parameter at least 1− ε0 such that ε0 → 0 if ε′ → 0.

7 Coupling KCM and CP

In this section we examine the coupling between KCM and CP. Let U be an
update family which is not trivial subcritical and let

∥U∥ = max
U∈U ,x∈U

∥x∥. (7.1)

Fix U0 ∈ U such that U0 ⊂ Hu for some u ∈ Sd−1 (this is possible since the
update family U is assumed not to be a trivial subcritical one). Let us fix
a domain Λ ⊂ Zd and boundary condition τ ∈ ΩZd\Λ. Fix two parameters
0 ≤ q0 ≤ q ≤ 1. Fix an initial condition ξ ∈ ΩΛ and denote by ζ the {U0}-
CP on Λ with boundary condition τ , initial condition ξ and parameter q0.
Recall from Sections 2.2 and 2.3 that KCM and CP for all update families,
initial conditions, domains, boundary conditions and parameters are coupled
on the same probability space using the same clock rings (Px) and the same
unifrom random variables (Υx(t))t∈Px .

We next consider a set which will contain the discrepancies between U-
KCM with different initial conditions, based on the the trajectory of the
{U0}-CP. It can be seen as an analogue of second class particles for the
exclusion process [37, Section III.1], the envelope probabilistic cellular au-
tomaton [11, Section 4.2] and is similar to the idea of [26, Section 1.3]. We
define the set Ot ⊂ {x ∈ Λ : ζx(t) = 0} of orange healthy sites to be the
càdlàg process with jumps at clock ring times

⋃
x∈Λ Px defined as follows.
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We first set O0 = {x ∈ Λ : ξx = 0}, so that all healthy sites are initially
orange. Then, for each x ∈ Λ and t ∈ Px, we set

Ot =


Ot− \ {x} ζx(t) = 1,

Ot− ∪ {x} ζx(t) = 0,∃y ∈ Ot−, d(x, y) ≤ ∥U∥,
Ot− ζx(t) = 0,∀y ∈ Ot−, d(x, y) > ∥U∥.

(7.2)

In words, orange sites appear when a site becomes healthy close to an orange
site, but they disappear whenever a site becomes infected.

It is clear that x ∈ Ot implies ζx(t) = 0, so that Ot is indeed a subset of
the healthy sites in the {U0}-CP ζ. Indeed, by construction,

⋃
x∈Λ Px are

the only times when the {U0}-CP ζ may change.

Lemma 7.1. Consider the {U0}-CP ζ on Λ with boundary condition τ ,
initial condition ξ ∈ ΩΛ and parameter q0. Also consider the U-KCM η1

and ηξ
′
with parameter q ≥ q0 on Λ with boundary condition τ and initial

conditions 1 and ξ′ ∈ ΩΛ respectively, for some ξ′ ≥ ξ. Then almost surely,
we have that {

x ∈ Λ : η1x(t) ̸= ηξ
′

x (t)
}
⊂ Ot (7.3)

for any t ≥ 0. In particular, if Ot = ∅, then η1(t′) = ηξ
′
(t′) for all t′ ≥ t

and ξ′ ≥ ξ. The same holds, if we replace the U-KCM by the U-CP.

Before proving the lemma, let us prove the following standard fact.

Claim 7.2. Consider the U-KCM ηξ
′
and {U0}-CP ζ as in Lemma 7.1.

Then almost surely, for all t ≥ 0 we have

ζx(t) ≤ ηξ
′

x (t) for all x ∈ Λ. (7.4)

Proof. We first consider the case Λ finite, so that we can proceed by induc-
tion on the clock rings

⋃
x∈Λ Px. Equation (7.4) holds at t = 0 since ξ′ ≥ ξ.

Assume Eq. (7.4) holds for all t′ < t ∈ Px for some x ∈ Λ. If Υx(t) > q0,
Eq. (7.4) clearly remains true, since ζx(t) = 0. On the other hand, if
Υx(t) ≤ q0 ≤ q and ζx(t) = 1, we have two possibilities. If ζx(t−) = 1,
we are done by using Eq. (7.4) for t−. Instead, if ζx(t−) = 0, then necessar-
ily ζx+U0(t−) = ζx+U0(t) = 1 (recall Eq. (2.4)). But then Eq. (7.4) for t−
implies that the constraint cx (recall Eq. (2.1)) is satisfied in ηξ

′
(t), so that

ηξ
′

x (t) = 1 (recall Eq. (2.2)), concluding the proof of the claim for finite Λ.
Next assume Λ is infinite. It follows from the fact that interactions have

finite range, that for any x ∈ Zd and t ≥ 0, the states ζx(t
′) and ηξ

′
x (t′) for all
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ξ′ ∈ ΩΛ and t′ ∈ [0, t] coincide with those obtained by the same clock rings
and uniform random variables on a finite domain Λ′ with boundary condition
1Zd\Λ′ with Λ′ depending on x, t and the clock rings. This standard fact can
be traced back to [29] (also see e.g. [37, Section I.1]). Thus, we can apply
the result for finite Λ′ to obtain the one for infinite Λ.

Proof of Lemma 7.1. As in the proof of Claim 9.12, we may assume that
Λ is finite and proceed by induction on the clock rings. Since ξ′ ≥ ξ and
initially all healthy sites in ξ are orange, Eq. (7.3) holds at t = 0. Fix x ∈ Λ
and t ∈ Px and assume that Eq. (7.3) holds for any t′ < t. Further assume

for a contradiction that η1x(t) ̸= ηξ
′

x (t), but x ̸∈ Ot. We consider several
cases.
Case 1. Assume ζx(t) = 1. Then by Claim 7.2 η1x(t) = ηξ

′
x (t) = 1, so

Eq. (7.3) holds, since it holds for t′ < t and the only possible change in the
left and right hand sides of Eq. (7.3) is at x. For the U-CP instead of the
U-KCM, Claim 7.2 is a direct consequence of attractiveness, so the same
reasoning applies.
Case 2. Assume ζx(t) = 0 and there exists y ∈ Ot− such that d(x, y) ≤ ∥U∥.
Then by definition x ∈ Ot. Moreover, Ot \ {x} = Ot− \ {x} and{

z ∈ Λ \ {x} : η1z (t) ̸= ηξ
′

x (t)
}
=
{
z ∈ Λ \ {x} : η1z (t−) ̸= ηξ

′
x (t−)

}
,

so Eq. (7.3) at t− concludes the proof.
Case 3. Assume ζx(t) = 0 and there does not exist y ∈ Ot− such that
d(x, y) ≤ ∥U∥. Then from Eq. (7.3) at t− the η1 and ηξ

′
processes coincide

in the neighbourhood of x, so they also coincide after the attempted update
at x, regardless whether it is successful or not.

8 Space-time renormalisation of CP to BP with
death

Recall from Section 7 that U0 ∈ U is such that U0 ⊂ Hu for some u ∈ Sd−1.
In this section we perform a simple renormalisation of the {U0}-CP to the
U0-BP with death (recall from Sections 2.4 and 2.5 that BP is a CA, so we
may consider its version with death), where

U0 =
{
{0,−1}d \ {0}

}
. (8.1)

The renormalisation is similar to the ones used in [40, 41, 43], where one
obtains oriented percolation as a result of the renormalisation. We start by
fixing the relevant geometry.
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u2 u1Rλ2v2

Rλ1v1

Ted+1

(a) The box B defined
in Eq. (8.2) with its base
B̂, containing the vectors
u1, . . . , ud, shaded.

u2 u1u

(b) The 2d box bases B̂x+y for y ∈ {0,−1}d. The
Poisson process points pz occur in the hatched
base B̂x in the order of increasing ⟨z, u⟩, as in-
dicated by the hatching direction.

Bx−(1,1),τ−1
Bx−(0,1),τ−1

Bx−(1,0),τ−1

Bx,τ

(c) If the shaded box Bx,τ is good, we are able to propagate the infection from the
three hatched boxes to Bx,τ .

Figure 1: Illustration of the renormalisation of Section 8 in the case d = 2.
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Fix linearly independent directions (ui)
d
i=1 such that:

• for all i ∈ {1, . . . , d}, λ′
iui ∈ Zd for some λ′

i > 0;

• the ui are sufficiently close to u so that U0 ⊂ Hui .

The latter condition can be guaranteed thanks to the fact that the Hu is
defined as the open half-space (recall Section 2.1). For each i let us decom-
pose, via the Gram–Schmidt algorithm, ui = vi + u′i with ⟨vi, uj⟩ = 0 for all
j ̸= i and u′i ∈ span({uj : j ̸= i}), that is, the linear span of the remaining
vectors. Note that each vi can be computed via its own Gram–Schmidt
process, rather than the entire family, and these vectors are not necessarily
orthogonal (see Fig. 1a). By examining the Gram–Schmidt algorithm, one
can check that there also exist λi > 0 such that λivi ∈ Zd. In what fol-
lows we consider time as the d + 1-th coordinate and we abusively identify
ui ∈ Sd−1 with (ui, 0) ∈ Sd for all i to lighten notation and similarly we
identify vi with (vi, 0).

Define the space-time box (see Fig. 1a)

B =

d∑
i=1

(λivi[0, R)) + [0, T )ed+1

=

{
a ∈ Rd : ∀i ∈ {1, . . . , d}, ⟨a, ui⟩

λi∥vi∥2R
∈ [0, 1)

}
× [0, T ) ⊂ Rd+1 (8.2)

for an integer constant R > 0 chosen sufficiently large depending on U0

and all ui, vi and another constant T > 0 chosen also sufficiently large
depending on R. We refer to B̂ =

∑d
i=1(λivi[0, R)) ⊂ Rd as the base of

B and to Ĥ = [0, T ) as its height. For any (x, τ) = (x1, . . . , xd, τ) ∈ Zd+1 we
set Bx,τ = B +

∑d
i=1Rλixivi + Tτed+1, which we view as our renormalised

space-time points. We similarly define B̂x and Ĥτ as the corresponding space
and time projections. This notation is consistent with that of Section 6 for
v′i = λivi.

For each (x, τ) ∈ Zd+1 we define the event Ex,τ that the point (x, τ) is
good if the following two conditions are satisfied:

• Υz(t) ≤ q0 for all z ∈
⋃

y∈{0,−1}d B̂x+y and t ∈ (Ĥτ ∪Ĥτ−1)∩Pz, where
we recall from Section 2.2 that Pz is the Poisson process associated to
vertex z;

• For each z ∈ B̂x there exists pz ∈ Pz∩Ĥτ−1 and ⟨z, u⟩ > ⟨z′, u⟩ implies
pz > pz′ .

20



The box is called bad if it is not good. In words, a good space-time box
has a suitable sequence of clock rings and all updates in the box and its
U0-neighbours attempt to infect the corresponding sites. Notice that Ex,τ

only depends on the Poisson process points Pz∩{t} and the uniform random
variables Υz(t) with (z, t) ∈

⋃
y∈{0,−1}d Bx+y,τ ∪Bx+y,τ−1,

The following lemma provides the desired coupling between the {U0}-
CP with parameter q0, denoted ζ, and a U0-BP with death, denoted ω̃. In
fact, the ω̃ process will not quite be a U0-BP with death, but is defined
in the same way, given the Bernoulli variables ξx,t from Eq. (2.6), which
will however not be i.i.d. (the tilde is there to remind us of this difference).
Nevertheless, we will somewhat abusively refer to it as a U0-BP with death
despite this.

Lemma 8.1. Consider the U0-BP ω̃ with death on Zd with death marks
ξx,τ = 1 at points (x, τ) ∈ Zd×N such that Bx,τ is bad. Further let its initial
condition be given by the configuration where infected sites x are exactly the
sites x ∈ Zd such that:

• B̂x is fully in state 1 in the initial condition ζ(0) of the {U0}-CP with
parameter q0;

• Υz(t) ≤ q0 for all z ∈ B̂x and t ∈ Ĥ0 ∩ Pz.

Then for all (x, τ) ∈ Zd × N and (y, t) ∈ Bx,τ , if ζy(t) = 0, then ω̃x(τ) = 0.

Proof. We prove the statement by induction on τ ≥ 0. The base case follows
from the definition of the initial condition of ω̃. Therefore, let τ ≥ 1 and
assume for a contradiction that ζy(t) = 0, ω̃x(τ) = 1 for some (y, t) ∈ Bx,τ .
If ω̃x(τ−1) = 1, then by induction ζy((τ−1)T ) = 1 and by the first condition
for Bx,τ being good (which holds, because otherwise ω̃x(τ) = 0, since bad
boxes are deaths) this remains true until time t, leading to a contradiction.
Thus, we may assume that ω̃x(τ−1) = 0, so that (by the definition Eq. (2.7)
of BP) ω̃x+z(τ − 1) = 1 for all z ∈ {0,−1}d \ {0} and ζw((τ − 1)T ) = 1 for
all w ∈ B̂x+z by induction hypothesis. Since the box Bx,τ is good, there has
been no attempt to put 0 at y after time τT in the contact process, so it
suffices to show that ζy(τT ) = 1 to reach a contradiction.

We claim that by our choice of geometry (see Fig. 1),

U0 + B̂x ⊂
⋃

z∈{0,−1}d
B̂x+z. (8.3)
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To see this, notice that

B̂x =

{
a ∈ Rd : ∀i ∈ {1, . . . , d}, ⟨a, ui⟩

λi∥vi∥2R
∈ [xi, xi + 1)

}
,⋃

z∈{0,−1}d
B̂x+z =

{
a ∈ Rd : ∀i ∈ {1, . . . , d}, ⟨a, ui⟩

λi∥vi∥2R
∈ [xi − 1, xi + 1)

}
.

Therefore, for any a ∈ B̂x, b ∈ a+ U0 and i ∈ {1, . . . , d} we have

λi∥vi∥2R(xi − 1) ≤ ⟨a, ui⟩ − ∥U∥ ≤ ⟨b, ui⟩ < ⟨a, ui⟩ < λi∥vi∥2R(xi + 1),

if we choose R large enough so that λi∥vi∥2R > ∥U∥ for every i. Hence,
b ∈

⋃
z∈{0,−1}d B̂x+z as claimed.

Finally, observe that by the second condition for Bx,τ being good, there
has been a sequence of attempts at times pa ∈ Ĥτ−1 to put 1 at each site
a ∈ B̂x. Since the sequence is in the order of increasing scalar product with
u and a + U0 is contained in (a + Hu) ∩

⋃
z∈{0,−1}d B̂x+z (again, provided

that R is large enough), the constraint ca(ζ(pa)) is fulfilled for each of them,
so we are done.

The following corollary will be more convenient for our purposes.

Corollary 8.2. Fix U0 as above and δ > 0. There exist ε0 > 0 and R1 > 0
such that for any R ≥ R1 there exists T1 such that for any T ≥ T1 there
exists ε2 > 0 such that for any q0 ∈ [1− ε2, 1] the following holds. Consider
the {U0}-CP ζ with parameter q0 and initial condition given by ζy(0) = ξx
for all y ∈ B̂x and x ∈ Zd, where ξ ∼ µ1−ε0. Then the trajectory at times
τ ≥ 1 of the U0-BP with δ death and initial condition 1 is stochastically
dominated by the process given by

ω̂x(τ) = 1∀(y,t)∈Bx,τ−1,ζy(t)=1.

Proof. Fix ε0 > 0 small enough depending on δ. Taking T large after R and
then ε2 > 0 small, it is clear that the probability of a box being good can
be made larger than 1− ε0. Moreover, good boxes together with the initial
condition ω̃(0) from Lemma 8.1 form a percolation with bounded range of
dependence. Therefore, by the Liggett–Schonmann–Stacey Theorem [39]
it stochastically dominates an independent Bernoulli field with parameter
1−δ, provided ε0 is small enough. By attractiveness of U0-BP, this together
with Lemma 8.1 completes the proof. Indeed, we simply observed that the
first step of U0-BP with δ death and initial condition 1 has distribution
µ1−δ.
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9 Exponential decay

In this section we establish several exponential decay properties. It can
be viewed independently of the rest of the paper and will entail results
of independent interest. We therefore adopt a rather abstract and general
framework, to keep the approach as flexible as possible. It will be convenient
to work in ZD with D ≥ 1, which will play the role of d+ 1 in our original
setting.

9.1 Decorated set systems

Definition 9.1 (k-connectivity). Fix a positive real k. We say that a set
X ⊂ RD is k-connected, if for every x, y ∈ X there exists a sequence x0 =
x, x1, . . . , xm = y of distinct elements of X such that d(xi, xi+1) ≤ k for all
i ≤ m − 1. We call such a sequence a k-connected path with endpoints x
and y.

Definition 9.2 (Decorated set system). For any set Z ⊂ Zd we fix an
arbitrary set ΓZ of possible decorations. We allow some ΓZ to be empty,
making the corresponding sets Z impossible to decorate. A decorated set
is a pair (Z, γ) with Z ⊂ ZD nonempty and bounded and γ ∈ ΓZ . Two
decorated sets (Z1, γ1) and (Z2, γ2) are called disjoint, if Z1 ∩ Z2 = ∅.
A decorated set system is a probability measure P and a function E that
associates to each decorated set (Z, γ) an event E(Z, γ) in such a way that
for any finite set of disjoint decorated sets (Zi, γi)i∈I we have

P

(⋂
i∈I

E(Zi, γi)

)
≤
∏
i∈I

P (E(Zi, γi)) . (9.1)

For x ∈ ZD, we denote by

E(x) =
⋃

(Z,γ):x∈Z⊂ZD,γ∈ΓZ

E(Z, γ)

the event that there exists a decorated set containing x whose event occurs.

In all applications of this construction below, we will actually have equal-
ity in Eq. (9.1) but we work under this more general condition, as the proof
of Proposition 9.3 works exactly the same with inequality or with equality.
In what follows for any X ⊂ RD we denote diam(X) = supx,y∈X(d(x, y))
with the convention diam(∅) = −∞.
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Proposition 9.3. Consider a decorated set system. Assume that for some
C > 1 and ϵ > 0 small enough depending on C the following hold:

1. For all decorated sets (Z, γ) we have diam(Z) ≤ C|Z|.

2. For every z ∈ ZD the number of decorated sets (Z, γ) such that |Z| = m
and z ∈ Z is at most Cm.

3. For all decorated sets (Z, γ) we have P(E(Z, γ)) ≤ ϵ|Z|/C .

Fix n, k ≥ 1 and x ∈ ZD. Let E(x, n, k) denote the event that there exist
y ∈ ZD with d(x, y) ≥ n and a k-connected path P with endpoints x and y
such that E(p) occurs for each p ∈ P . Then

P(E(x, n, k)) ≤ ϵn/(7C+7k)2 .

Note that the second condition implies that ΓZ is finite for every finite
Z. Proposition 9.3 will be proved in Section 9.3, but before that, let us
provide a few applications to make the abstract setting more concrete.

9.2 Applications

While it is not hard to imagine examples of decorated set systems satisfying
the conditions of Proposition 9.3, let us give a more explicit toy example to
get used to the notion before turning to more interesting applications based
on Toom contours and variants thereof.

Example 9.4. Consider a field of i.i.d. Bernoulli random variables ξx for x ∈
ZD. For each finite non-empty Z ⊂ ZD the set of decorations ΓZ is empty
if Z is not a 1-connected path and a singleton otherwise. The event E(Z, γ)
corresponds to

⋂
x∈Z{ξx = 1}. Then Eq. (9.1) is satisfied by independence.

Condition 1 of Proposition 9.3 follows by 1-connectedness. Condition 2
holds, because one can encode a 1-connected path by the sequence of its
increments, so the number of paths containing z ∈ ZD of cardinality n is
at most n(2D)n. Condition 3 is also verified, since P(E(Z, γ)) = (P(ξ0 =
1))|Z|. Hence, if the Bernoulli variables have a sufficiently small parameter,
Proposition 9.3 yields an exponentially small bound on the probability that
one can find a k-connected path starting at 0 such that each of its points
belongs to a 1-connected path with all Bernoulli variables equal to 1. Thus,
in this case this degenerates into looking for a k-connected path in the set of
sites with Bernoulli variable equal to 1, so the conclusion of the proposition
is a classical fact.
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The next corollary will be used to control the U0-BP with death we recov-
ered in Corollary 8.2. We formulate it more generally for cellular automata
with death.

Corollary 9.5. Let k be a positive real number and let the map ϕ define a
CA which is attractive and an eroder, as defined in Section 2.4. Then there
exist c > 0 and δ0 > 0 such that for all δ ∈ (0, δ0] the ϕ-CA ων̄ with death
parameter δ and with initial condition given by its upper invariant measure
ν̄ satisfies the following. Denote by Ax,t the maximal k-connected component
containing (x, t) ∈ Zd+1 with ων̄

a(s) = 0 for all (a, s) ∈ Ax,t. It holds that

P (diam(Ax,t) ≥ ℓ) ≤ δc(ℓ+1).

Remark 9.6. Let us note that Corollary 9.5 provides a much more straight-
forward and general proof of several of the main results of [46] (see Theorems
5, 6 and 7 there).

Proof of Corollary 9.5. Corollary 9.5 follows directly from Proposition 9.3,
applied to the decorated set system given by Toom contours [49, 50] and
their presence. Since these notions are rather technical to define, while the
details of the definition are irrelevant, let us instead highlight the high level
viewpoint, referring to [49] for more details (the facts we will need were
actually already known since [50]).

A Toom contour rooted at z ∈ Zd+1 consists of a finite set Z ⊂ Zd+1

(with z ∈ Z) equipped with a complicated decoration taking the form of
a connected coloured oriented multigraph with vertex set Z, such that the
endpoints of each edge are at most at some bounded mutual distance (de-
pending on the support of ϕ). Connectedness readily implies condition 1.

In each Toom contour one can identify a set Z∗ ⊂ Z of sinks. A contour
is said to be present if ξx,t = 1 (recall Section 2.4) for each sink (x, t), so that
disjoint decorated sets occur independently. In particular, Toom contours
form a decorated set system and their probability of occurrence is δ|Z∗|. A
key and highly non-trivial fact [49, Theorem 7] is that if ων̄

x(t) = 0, then
some non-empty finite Toom contour rooted at (x, t) occurs. Moreover, [49,
Lemma 13] ensures that the number of edges (and, therefore, the number of
vertices by connectedness) of a Toom contour is at most a constant multiple
of |Z∗|, thus proving condition 3 . Finally, [49, Lemma 14] shows that the
number of Toom contours containing a given point and with N edges is
at most exponential in N and, therefore, in the number of vertices by the
previous result, so condition 2 is also satisfied.
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The next corollary will not be used in the proof of our main results, but
we include it, since it is of independent interest and follows analogously.

Corollary 9.7. Consider U ′-BP ω with subcritical U ′. Fix p > 0 and
let C0 be the k-connected component containing the origin in {x ∈ Zd :
limt→∞ ω

µp
x (t) = 1}. Then there exists c = c(U ′, k) > 0 such that for all

p > 0 small enough and ℓ ≥ 0 we have

P(diam(C0) ≥ ℓ) ≤ pc(ℓ+1).

We recall that non-subcritical models are exactly those with qBP
c = 0

[2, 3], so C0 = Zd almost surely for all p > 0 and it is meaningless to
consider them in the above sense.

Remark 9.8. Corollary 9.7 provides a positive answer to [4, Question 12]
in the perturbative regime. As pointed out in [30, Section 7.1.2], the stated
exponential decay cannot hold for all p < qBP

c in general. Nevertheless, in
the spirit of [1] one could expect that it does hold up to a different critical
threshold pc(k) ≤ qBP

c , past which the diameter is a.s. infinite. On a different
note, Corollary 9.7 was proved by more classical means in [6, Theorem 4.2]
for trivial subcritical update families in two dimensions for k = 1. Thus,
Corollary 9.7 vastly generalises this result and solves [6, Problem 6.1].

Proof of Corollary 9.7. Corollary 9.7 follows from Proposition 9.3 essen-
tially along the same lines as Corollary 9.5 follows from Proposition 9.3,
but using a different decorated set system. Namely, we consider the space
embeddings of shattered contours, which are the central object of study
in [34]5, similarly to Toom contours in [49]. Again, the definition of these
objects, which are projections of equivalence classes of Toom contours, is
rather technical and unimportant for us, so we refer to [34] for those details.
Instead, let us indicate that the presence of a finite non-empty shattered
contour rooted at x ∈ Zd is implied by limt→∞ ω

µp
x (t) = 1 [34, Corollary

4.3]; their numbers of edges and vertices are bounded by a constant multi-
ple of the number of sinks [34, Lemma 5.2]; the number of shattered Toom
contours rooted at a given point is at most exponentially large in the number
of sinks [34, Lemma 5.3].

Thus, our only remaining task in this section is to prove Proposition 9.3.
Before doing so, let us mention a natural question closely related to Corol-
lary 9.5.

5Note that in [34] the roles of 0 and 1 are exchanged with respect to the present work.
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Question 9.9. Fix ε > 0. Is it true that for the U0-BP with δ death, with
δ > 0 small enough, the upper invariant measure stochastically dominates
µ1−ε? More generally, is this true for any attractive eroder?

9.3 Proof of Proposition 9.3

We fix a decorated set system and C, ϵ, n, k, and x as in Proposition 9.3.
Since our sets can be quite fuzzy we begin by regularising them.

Definition 9.10. Given a finite non-empty Z ⊂ Zd, we set

Z̄ :=
{
x ∈ Zd : d(x, Z) ≤ 3(1 + diam(Z))

}
.

Let us fix a k-connected path P = (p0 = x, p1, . . . , pl = y) with d(x, y) ≥
n. We further fix decorated sets (Zp, γp) with p ∈ Zp for each p ∈ P . We
next run the following algorithm.

Algorithm 9.11. Define i0 = 0, I0 = {0} and X0 = Z̄p0 and initialise
t = 0. While P ̸⊂ Xt, repeat the following, then return (It, Xt, t). Increment
t by setting t := t+ 1. Set it = min{j ≤ l : pj ̸∈ Xt−1}. Let Jt = {j ∈ It−1 :
Zpj ∩ Zpit

̸= ∅}. Set It = {it} ∪ (It−1 \ Jt). Set Xt =
⋃

j∈It Z̄pj .

By definition, if the algorithm terminates and outputs (It, Xt, t), then
P ⊂ Xt. Moreover, by induction we have that for all t′ ≤ t and a, b ∈ It′

with a ̸= b, it holds that
Zpa ∩ Zpb = ∅, (9.2)

using the definition of Jt′ . To see that Algorithm 9.11 terminates, it suffices
to see that Xt′ ∩ P is strictly increasing in t′, since P is finite (on the other
hand, we note that It′ is not necessarily monotone in t′). In order to prove
this, we first show that Xt′∩P is non-decreasing and then exhibit an element
which is in Xt′ ∩ P , but not in Xt′−1 ∩ P .

Claim 9.12. For any t′ ∈ {1, . . . , t} we have Xt′ ∩ P ⊃ Xt′−1 ∩ P .

Proof. By the definitions of Xt′ and It′ , we have that

Xt′−1 \Xt′ ⊂
⋃

j∈Jt′

Z̄pj \ Z̄pit′
. (9.3)

Thus, it remains to show that Z̄pit′
⊃ Z̄pj for all j ∈ Jt′ .

Fix j ∈ Jt′ ⊂ It′−1, so Zpj ∩ Zpit′
̸= ∅ by the definition of Jt′ . Then

diam
(
Zpit′

)
≥ d

(
pit′ , pj

)
− diam

(
Zpj

)
≥ d

(
pit′ , pj

)
/3 + 2 + diam

(
Zpj

)
,
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where we first used the triangle inequality, then the fact that pit′ ̸∈ Z̄pj by
definition of it′ and Xt′−1. But then Z̄pit′

⊃ Z̄pj by the triangle inequality
and we are done.

We next claim that for any t′ ∈ {1, . . . , t} we have

pit′ ∈ Xt′ \Xt′−1 = Z̄pit′
\
⋃

j∈It′−1

Z̄pj . (9.4)

Indeed, if pit′ ∈ Z̄pj for some j ∈ It′−1, that would imply pit′ ∈ Xt′−1 by the
definition of Xt′−1, but this contradicts the definition of it′ .

Combining Claim 9.12 and Eq. (9.4), we get that Algorithm 9.11 does
terminate, so It, Xt, t are well defined.

Claim 9.13. Xt is k-connected.

Proof. We prove by induction that Xt′ is k-connected for all t′ ∈ {0, . . . , t}.
The base follows since X0 = Z̄p0 is k-connected, by Definitions 9.1 and 9.10
and k ≥ 1. By Eq. (9.4), Xt′ \ Xt′−1 ⊂ Z̄pit′

⊂ Xt′ , the last inclusion
using the definition of Xt′ and It′ . Moreover, by the proof of Claim 9.12
Xt′ ⊃ Xt′−1. Thus, since Z̄pit′

is k-connected, it remains to show that

d(Xt′−1, Z̄pit′
) ≤ k. In fact, the stronger statement d(pit′ , Xt′−1) ≤ k holds,

because the definition of it′ gives pit′−1 ∈ Xt′−1, and it′ ̸= 0 for t′ > 0, since
Xt′−1 ⊃ X0 = Z̄p0 ∋ p0 and because consecutive pj are at distance at most
k.

Definition 9.14 (Chain). A chain starting at x of length at least n is a
sequence of disjoint decorated sets (Vj , γj)

m
j=1 such that d(V̄j , V̄j+1) ≤ k for

all j ≤ m− 1, x ∈ V̄1 and there exists y ∈ V̄m, such that d(x, y) ≥ n.

By Claim 9.13 and Eq. (9.2) we can extract from It a sequence i′1, . . . , i
′
m

such that (Vj , γj)
m
j=1 is a chain starting at x of length at least n, where

Vj = Zpi′
j
and γj = γpi′

j
for j ∈ {1, . . . ,m}. Thus, recalling E(x, n, k) from

Proposition 9.3, we have proved the following.

Lemma 9.15. If E(x, n, k) occurs, then there exists a chain (Vj , γj)
m
j=1 start-

ing at x of length at least n such that
⋂m

j=1E(Vj , γj) occurs.

We are now ready to conclude the proof of Proposition 9.3 by a union
bound over all such chains, since their decorated sets are disjoint, so the
events involved are negatively correlated.
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Proof of Proposition 9.3. By Lemma 9.15 and Definitions 9.2 and 9.14,

P (E(x, n, k)) ≤
∑

(Vj ,γj)mj=1

m∏
j=1

ϵ|Vj |/C , (9.5)

where the sum is over all chains starting at x of length at least n. Observe
that by condition 1 of Proposition 9.3, we have

n ≤
m∑
i=1

(
k + diam

(
V̄i

))
≤ mk + 6m+ 7

m∑
i=1

diam (Vi) ≤ 7(C + k)
m∑
i=1

|Vi|.

(9.6)
Further note that for any i ∈ {1, . . . ,m − 1} the distance between an

arbitrarily chosen point in Vi and one in Vi+1 is at most

k + diam
(
V̄i

)
+ diam

(
V̄i+1

)
≤ k + 12 + 14Cmax(|Vi|, |Vi+1|).

Therefore, the number of ways to fix the positions of one distinguished point
πi in each Vi with π1 = x is at most

m−1∏
i=1

(1 + 2(k + 12 + 14Cmax(|Vi|, |Vi+1|)))d ≤
m∏
i=1

30(k + C|Vi|)2d. (9.7)

Combining Eqs. (9.5) to (9.7) with condition 2 of Proposition 9.3, the
probability we seek to bound in Proposition 9.3 is at most

∑
m,n1,...,nm≥1∑m

i=1 ni≥n/(7(C+k))

m∏
i=1

Cni30(k + Cni)
2dϵni/C

≤ 30
∞∑

N=⌈n/(7C+7k)⌉

2NCN (C + k)2dN ϵN/C ≤ 30ϵn/(2C(7C+7k)). (9.8)

For ϵ small enough Eq. (9.8) is clearly at most ϵn/(7C+7k)2 as desired, com-
pleting the proof of Proposition 9.3.

10 Assembling Theorem 3.3

In this section we assemble the results of Sections 6 to 9 in order to prove
Theorem 3.3. Therefore, let us fix an update family U which is not trivial
subcritical (otherwise q̃KCM

c = 1 and there is nothing to prove) and U0 ∈ U
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such that U0 ⊂ Hu for some u ∈ Sd−1. Let v′i = viλi for all i ∈ {1, . . . , d},
where vi, λi are chosen as in Section 8. Let δ0 be as in Corollary 9.5 for
k =

√
d+ 1 and ϕ be the map corresponding to U0-BP (recall Eq. (8.1)),

which is clearly an eroder attractive cellular automaton. Then let ε0 be as in
Corollary 8.2, setting δ = δ0. Fix α ∈ (0, 1− q̃KCM

c ). Let R = max(R0, R1),
where R0 is as in Lemma 6.1 and R1 is as in Corollary 8.2. Let T =
max(T0, T1), where T0 is as in Lemma 6.1 and T1 is as in Corollary 8.2. Let
ε1 be as in Lemma 6.1. Finally, let p ∈ [q̃KCM

c +α, 1] and ε = min(ε1, ε2, 1−
q̃KCM
c − α), with ε2 from Corollary 8.2, and q ∈ [1− ε, 1].

Let ηµp denote the U-KCM on Zd with parameter q and initial condition
with law µp and ηµq be the stationary U-KCM with the same parameter.
The initial conditions are coupled so that η

µq
x (0) ≤ η

µp
x (0) for all x ∈ Zd, if

q ≤ p and η
µq
x (0) ≥ η

µp
x (0) for all x ∈ Zd, if p ≤ q. Note, however, that, due

to the non-attractiveness of KCM, this inequality need not be preserved by
the dynamics.

Since ηµq is stationary, we get that

|E [f(ηµp(t))− µq(f)]| ≤ 2∥f∥∞ · P
(
η
µp

S (t) ̸= η
µq

S (t)
)
, (10.1)

where S denotes the support of the local function f . By a union bound over
the sites of S and translation invariance, for all t ≥ 0

P
(
η
µp

S (t) ̸= η
µq

S (t)
)
≤ |S| · P

(
η
µp

0 (t) ̸= η
µq

0 (t)
)
. (10.2)

We start by running the two KCM up to time T . Then Lemma 6.1 gives
that min(η

µp
y (T ), η

µq
y (T )) ≥ ξx for all x ∈ Zd, y ∈ B̂x, where ξ ∼ µ1−ε0 is

suitably coupled with the two KCM.
Let ζ be the {U0}-CP on Zd starting at time T with parameter q0 =

1−ε2 ≤ q and initial condition given by ζy(T ) = ξx for all y ∈ B̂x and
x ∈ Zd. Further recall its orange healthy sites Ot from Section 7, which we
now define w.r.t. the initial time T instead of 0. By the Markov property
and Lemma 7.1 applied once to ξ′ = ηµp(T ) and once to ξ′ = ηµq(T ) gives
that for all t ≥ T

P
(
η
µp

0 (t) ̸= η
µq

0 (t)
)
≤ P(0∈Ot). (10.3)

Recall Eqs. (7.1) and (7.2) and Definition 9.1. Observe that by con-
struction 0 ∈ Ot implies not only that ζ0(t) = 0, but also that there exists
a ∥U∥-connected set K ⊂ Zd × [T,∞) in space-time which contains (0, t),
intersects the hyperplane Zd×{T} and satisfies ζx(θ) = 0 for all (x, θ) ∈ K.
Indeed, whenever a site is added to Ot, it has to be at distance at most ∥U∥
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from an orange site. Let us call Et the event that (0, t) belongs to a ∥U∥-
connected component of space-time points (x, θ) ∈ Zd× [0, t] with ζx(θ) = 0,
that intersects Zd × {T}. Then we just showed that

P(0∈Ot) ≤ P(Et). (10.4)

We are then ready to apply Corollary 8.2. To that end, let ω be the
U0-BP with δ0-death and initial condition 1 (recall Eq. (8.1)). Corollary 8.2
gives that we can couple ω and ζ in such a way that for all x ∈ Zd and
τ ≥ 1, ωx(τ) = 1 implies that ζy(t) = 1 for all (y, t) ∈ Bx,τ .

Then for t ≥ T the event Et implies that there is a
√
d+ 1-connected

component of space-time points (x, τ) ∈ Zd+1 such that ωx(τ) = 0 containing
both (0, ⌊t/T ⌋) and a point in Zd×{1}. Let us denote this event by F⌊t/T ⌋−1,
so that that for any τ ≥ 0

P(Et) ≤ P
(
F⌊t/T ⌋−1

)
. (10.5)

Since the U0-BP with δ0 death is attractive and 1 is the maximal initial
condition, denoting by F ν̄

τ the event Fτ with ω replaced by the process ων̄

with initial condition distributed according to its upper invariant measure,
we get that for some c > 0 and any τ ≥ 0

P(Fτ ) ≤ P
(
F ν̄
τ

)
≤ δ

c(τ+1)
0 , (10.6)

where we applied Corollary 9.5. Note that c is now an absolute constant, as
it no longer depends on U , but only on U0, which is fixed by Eq. (8.1).

Putting Eqs. (10.4) to (10.6) together, we get that for all t ≥ T

P(0 ∈ Ot) ≤ δ
c⌊t/T ⌋
0 . (10.7)

Further recalling Eqs. (10.1) to (10.3), this yields

|E [f(ηµp(t))− µq(f)]| ≤ 2∥f∥∞|S|δc⌊t/T ⌋
0 ,

completing the proof of Theorem 3.3.

11 Renormalisation of CP to LPP

In this section we perform a renormalisation somewhat similar to the one
from Section 8. Recall U0 from Eq. (8.1) and U0 from Section 7 and set
Û0 = {0,−1}d \ {0}, so that U0 = {Û0}. We seek to control the {U0}-CP on
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the box Λ = {1, . . . , n}d with parameter q0 ∈ [0, 1) in terms of the Û0-LPP
slowed down by some factor. As noted in Section 2.6, the Û0-LPP coincides
with the usual {−e1, . . . ,−ed}-LPP, so we will be able to exploit the fact
that this model is known to propagate ballistically.

Recall the boxes B̂x from Section 8 (also recall Fig. 1) and the direction
u ∈ Sd−1 such that U0 ⊂ Hu. For each x ∈ Zd we will define its passage
time tx ∈ [0,∞). Let

Λ̂ =
{
x ∈ Zd : B̂x ∩ Λ ̸= ∅

}
(11.1)

denote the renormalised version of Λ. We start by recalling a result of [28].

Proposition 11.1. Denote by (sx)x∈Zd the passage times of the standard
{−e1, . . . ,−ed}-LPP in the set Λ̂ defined in Eq. (11.1), with sx = 0 if x ̸∈ Λ̂.
Then, there exists C = C(U0) < ∞ such that for every δ > 0, for n large
enough (depending on δ) we have

P
(
max
x∈Zd

sx ≥ nC

)
≤ δ. (11.2)

Remark 11.2. The proposition is, essentially, a byproduct of the main
result of [28]. In that paper, the authors upper bound the mixing time of a
discrete-time Markov chain on d−dimensional discrete monotone sets. That
dynamics depends on a bias parameter λ, that is assumed to be sufficiently
large, depending only on the dimension d. In the limit λ → ∞, the dynamics
reduces to (a discrete-time version of) standard d−dimensional LPP. For the
reader’s convenience, we give a streamlined proof of Proposition 11.1 in the
context of (continuous-time) LPP and along the way we slightly improve
the main statement of [28] (which, translated into our language, would give
Eq. (11.2) with nC replaced by nC log(1/δ).)

Proof of Proposition 11.1. First of all, using monotonicity of LPP, we can
replace the set Λ̂ by a cube {1, . . . , ℓ}d that contains it. Using the fact that
Λ̂ has diameter upper bounded by n times a U0-dependent constant, we
assume henceforth that Λ̂ is a cube with ℓ = O(n).

We say that a subset σ ⊂ Λ̂ is amonotone set if the conditions that x ∈ σ
and y ⪯ x (that is, y ≤ x componentwise) imply that y ∈ σ. We define a
continuous-time Markov chain on the collection Σ of monotone sets; the state
of the chain at time t is denoted σ(t), and we let σ(0) := ∅. Each x ∈ Λ̂
has an independent Poisson clock of rate 1. When the clock at x rings, if
x ̸∈ σ(t−) and if σ(t−)∪{x} ∈ Σ, then we let σ(t) = σ(t−)∪{x}. Otherwise,
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nothing happens. It is easy to check that this dynamics is equivalent to
standard {−e1, . . . ,−ed}-LPP in the sense that the process (σ(t))t≥0 has
the same law as the process ({x ∈ Λ̂ : sx ≤ t})t≥0. In particular, Eq. (11.2)
is equivalent to proving that

P
(
σ(nC) = Λ̂

)
> 1− δ. (11.3)

The trivial measure concentrated on the absorbing state σ = Λ̂ is sta-
tionary for the monotone set dynamics, because σ(t) ⊃ σ(s) for t > s. For
this reason, Eq. (11.3) is equivalent to the fact that the mixing time of the
monotone set dynamics satisfies tmix(δ) ≤ Cn, for n large enough. The
idea of [28] is to use path coupling with an exponential metric. That is, fix
γ > 0 and let 1 = (1, . . . , 1) ∈ Zd. Given σ, σ′ ∈ Σ that differ by a single
vertex, say, σ = σ′ ∪ {x}, define dγ(σ, σ

′) = e−γ⟨x,1⟩, and extend dγ to be a
distance on the whole state space Σ. The path coupling method (see [28]
and [36, Ch. 14] in the discrete time setting, but the method is analogous
in continuous time) consists in proving that there exists some α > 0 such
that for each pair (σ, σ′) differing by a single vertex there exists a coupling
of the processes (σ(t), σ′(t)) with initial conditions σ, σ′ such that

d

dt
E
[
dγ(σ(t), σ

′(t))
]∣∣∣∣

t=0

≤ −αdγ(σ, σ
′). (11.4)

If this is the case, then

tmix(δ) ≤
1

α
log(diamγ(Σ)/δ), (11.5)

with diamγ(Σ) the diameter of Σ with respect to the metric dγ . In the
case of the exponential metric above, log diamγ(Σ) = O(ℓ) and, recalling
that ℓ = O(n), Eq. (11.5) implies that tmix(δ) ≤ Cn, for n large enough,
as desired. The computation of the time derivative in Eq. (11.4) is very
similar to the computation of the discrete-time derivative in [28, Sec. 4], so
we do not repeat it: one finds that there is exactly one update (the one at x)
that decreases the distance by dγ(σ, σ

′), and at most d updates (at vertices
neighbouring x) that increase the distance by e−γdγ(σ, σ

′). Altogether,

d

dt
E
[
dγ
(
σ(t), σ′(t)

)]∣∣∣∣
t=0

≤ −
(
1− de−γ

)
dγ(σ, σ

′), (11.6)

which gives Eq. (11.4) with α > 0 for γ large enough. This concludes the
proof.
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Recall the clock rings (Px)x∈Zd and uniform random variables (Υx(t))t∈Px

from Section 2.2. We set tx = 0 for all x ∈ Zd \ Λ̂. For x ∈ Λ̂, we define
tx ≥ 0 by induction as follows, assuming that tx+y is already defined for all
y ∈ Û0. The stopping time tx is the first time t > t̃x := maxy∈Û0

tx+y such

that for every z ∈ B̂x ∩ Λ there exists pz ∈ Pz ∩ [t̃x, t] such that:

• Υz(pz) > q0,

• the collection (pz)z∈B̂x
satisfies that ⟨z, u⟩ > ⟨z′, u⟩ implies pz > pz′ .

In words, once the boxes B̂x+y for y ∈ Û0 have been treated, we require
the occurrence of a sequence of clock rings corresponding to healing in the
{U0}-CP and occurring in the order of increasing scalar product with the
direction u.

The use of these passage times is clear in the following lemma, where,
as usual, ζ denotes the {U0}-CP on Λ with parameter q0 and boundary
condition 1Zd\Λ.

Lemma 11.3. For any x ∈ Zd, z ∈ B̂x and t ≥ tx we have ζ1z (t) = ζ0z (t).

Proof. If z ∈ B̂x \ Λ, the claim is trivial because ζ1z (t) = ζ0z (t) = 1 for all t.
Otherwise, we proceed by induction and we assume that the claim has been
proven for all z′ ∈ B̂y, y ∈ x+ Û0, and we want to prove it for z ∈ B̂x. By
the induction hypothesis, the two processes are perfectly coupled for t ≥ t̃x
in the boxes B̂y for y ∈ x+ Û0.

For z, z′ ∈ Zd we write z ≺ z′ if ⟨z, u⟩ < ⟨z′, u⟩. Within the box B̂x,
we proceed by induction with respect to this partial order to show that
ζ1z (t) = ζ0z (t) for all t ≥ pz, where (pz)z∈B̂x

are provided by the definition of

tx. Assume that this is proved for all z′≺z ∈ B̂x. Then ζ1z (pz) = ζ0z (pz) = 0,
since Υz(pz) > q0 (recall Eq. (2.4)). Moreover, using Eq. (8.3) and the fact
that U0⊂Hu, we obtain

z + U0 ⊂
⋃

y∈{0,−1}d
B̂x+y ∩

{
z′ ∈ Zd : z′ ≺ z

}
.

Since the r.h.s. above is coupled at all times t ≥ pz by induction hypothesis,
the definition of the {U0}-CP (see Eqs. (2.1) and (2.4)) gives that ζ1z (t) =
ζ0z (t) for all t ≥ pz, as desired.

Combining Proposition 11.1 and Lemma 11.3, we can now prove the
following.
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Proposition 11.4. Let q0 ∈ [0, 1). There exists c0 = c0(U0, q0) < ∞ such
that for every δ > 0 and n large enough (depending on δ), the mixing time
of the {U0}-CP with parameter q0 (in the box Λ, with 1 boundary condition)
satisfies

tmix(δ) ≤ c0n. (11.7)

Note that in Proposition 11.4 we do not need q0 to be large. However,
for small q0 the CP in infinite volume has trivial upper invariant measure
and the mixing time in the box should be logarithmic in n.

Proof. It is not hard to check that tx− t̃x is stochastically dominated by the
sum of |B̂| independent exponential random variables of parameter 1 − q0.
On the other hand, the size of B̂ depends only on the set U0. Since the sum
of N exponential random variables is stochastically dominated by a single
exponential random variable with suitably large (N -dependent) expectation,
we have that tx − t̃x is stochastically dominated by an exponential random
variable of parameter depending on q0 and U0. Since LPP is monotone in
the quantities tx − t̃x, which are clearly independent for different x, we get
that tx is smaller than the passage time of a Û0-LPP slowed down by a
factor θ(q0, U0) ∈ [1,∞), which we noted in Section 2.6 to coincide with the
standard {−e1, . . . ,−ed}-LPP slowed down by the same factor.

By Lemma 11.3 and attractiveness of CP we have that maxx∈Zd tx is
an upper bound on the coupling time of the {U0}-CP on Λ with boundary
condition 1. The proof is concluded by Proposition 11.1 and Eq. (2.3), as
in Eq. (10.1).

12 Assembling Theorem 3.1

Proof of the lower bound in Eq. (3.1). Let

Λℓ = {⌊n/2⌋ − ℓ, . . . , ⌊n/2⌋+ ℓ}d .

One can choose ℓ large enough (depending on δ and q, but not on n) so that
the probability, under the stationary measure for the process in the box
Λ = {1, . . . , n}d with boundary condition 1, that Λℓ is in state 0 is smaller
than δ/2. For the U−KCM, this is obvious, since the stationary measure
is a Bernoulli product measure with parameter q > 0. For the U−CP, this
follows from the fact that the stationary measure is stochastically larger
than the restriction to Λ of the upper invariant measure ν̄ on Zd (recall
Section 2.3). The latter is ergodic (see [38, Theorem III.2.3.(f)]) and non-
trivial under the assumption that q> qCP

c (recall Eq. (2.5)). But q > qCP
c ,
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since q is sufficiently close to 1 and qCP
c < 1 for U which is not trivial

subcritical (recall Remark 2.1).
On the other hand, starting the dynamics (either KCM or CP) from the

0 configuration in Λ with 1 boundary condition, with high probability it
takes a time at least cn (with c independent of δ) before the state in Λℓ

changes. This follows from the definition of the dynamics, the fact that the
box Λℓ is at distance at least n/4 from the boundary of Λ and from standard
estimates on first passage percolation (see e.g. [37, Section I.1]).

Proof of the upper bound in Eq. (3.1). We need to show that, for every δ >
0 and n large enough (depending on δ), the U-KCM in Λ with parameter
q and boundary condition 1, started from the initial state 1 has coupled at
time cn with the one started from an arbitrary configuration ξ′ ∈ ΩΛ, with
probability at least 1− δ. The proof for the U-CP is identical and therefore
omitted.

From Proposition 11.4 we know that (up to a total variation error δ/2)
for any t ≥ T0 := c0n the {U0}-CP with parameter q0 ≤ q large enough, in Λ
with boundary condition 1 and any initial condition, has coupled. Namely,
denoting these processes by ζξ

′′,Λ for initial conditions ξ′′ ∈ ΩΛ, we get

P
(
∀t ≥ T0, ζ

0,Λ(t) = ζ1,Λ(t)
)
≥ 1− δ/2.

By attractiveness we have that at any time ζ1,Λ dominates the restriction to
Λ of the infinite volume {U0}-CP ζ1 with initial condition 1 and parameter
q0. Thus,

P
(
∀t ≥ T0,∀x ∈ Λ, ζ1x (t) ≤ ζ0,Λx (t)

)
≥ 1− δ/2. (12.1)

For all t ≥ T0, let O1
t denote the set of orange healthy sites for ζ1 and

let O0,Λ
t denote the one of ζ0,Λ, where both are initialised at time T0 to be

equal to the set of all healthy sites and then defined via Eq. (7.2). Using
Eq. (7.2), is not hard to check by induction on the number of clock rings
in Λ in the time interval [T0, t], that, if the event in the left hand side of
Eq. (12.1) occurs, then for any t ≥ T0 we have O1

t ∩ Λ ⊃ O0,Λ
t . Hence,

P
(
∀t ≥ T0, O

1
t ∩ Λ ⊃ O0,Λ

t

)
≥ 1− δ/2.

Moreover, applying Lemma 7.1 (and Claim 7.2 up to time T0), a union
bound and translation invariance, we have that for t ≥ T0

P
(
η1(t) ̸= ηξ

′
(t)
)
≤ P

(
O0,Λ

t ̸= ∅
)
≤ δ/2 + |Λ| · P

(
0 ∈ O1

t

)
. (12.2)
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The proof of Theorem 3.1 is therefore concluded, using monotonicity once
again together with Eq. (10.7), taking e.g. t = T0 +

√
n, since none of

the other quantities depend on n. Indeed, in Section 10, Eq. (10.7) was
valid for the {U0}-CP starting from an initial configuration renormalising
to ξ ∼ µ1−ε0 with ε0 small enough, while here we simply have ε0 = 0.
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