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Abstra
t

Bootstrap per
olation is a 
lass of 
ellular automata with random

initial state. Two-dimensional bootstrap per
olation models have three

rough universality 
lasses, the most studied being the �
riti
al� one.

For this 
lass the s
aling of the quantity of greatest interest (the 
ri-

ti
al probability) was determined by Bollobás, Duminil-Copin, Morris

and Smith [5℄ in terms of a simply de�ned 
ombinatorial quantity


alled �di�
ulty�, so the subje
t seemed 
losed up to �nding sharper

results. However, the 
omputation of the di�
ulty was never 
onsi-

dered. In this paper we provide the �rst algorithm to determine this

quantity, whi
h is, surprisingly, not as easy as the de�nition leads to

thinking. The proof also provides some expli
it upper bounds, whi
h

are of use for bootstrap per
olation. On the other hand, we also prove

the negative result that 
omputing the di�
ulty of a 
riti
al model is

NP-hard. This two-dimensional pi
ture 
ontrasts with an up
oming

result of Balister, Bollobás, Morris and Smith [3℄ on un
omputabi-

lity in higher dimensions. The proof of NP-hardness is a
hieved by a

te
hni
al redu
tion to the Set Cover problem.
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1 Introdu
tion

1.1 Ba
kground

Bootstrap per
olation is a 
lass of 
ellular automata whose �rst representative

was introdu
ed in 1979 by Chalupa, Leath and Rei
h [7℄ in statisti
al physi
s.

Further appli
ations to several other areas have been 
onsidered, namely

dynami
s of the Ising model, kineti
ally 
onstrained models for the glass

transition, abelian sandpiles and others (see a re
ent review of Morris [18℄

for more information).

We 
onsider the following iterative dis
rete-time pro
ess on the elements

(sites) of Z
d
. At ea
h time t ∈ N every site is either infe
ted or healthy.

We en
ode the state of all sites by spe
ifying the set of infe
ted sites At.

Given a set A ⊆ Z
d
or (Z/nZ)d of initially infe
ted sites, more sites be
ome

infe
ted at ea
h dis
rete time step following a deterministi
 monotone lo
al

rule invariant in time and spa
e, while infe
tions never heal. More pre
isely,

let us introdu
e the broadest framework brought forward by Bollobás, Smith

and Uzzell [6℄.

1

A bootstrap per
olation model is spe
i�ed by a �nite set U , 
alled the

update family, of �nite subsets of Z
d \ {0}, 
alled rules. For an initial set of

infe
ted sites A = A0 ⊆ Z
d
we re
ursively de�ne for all t ∈ N

At+1 = At ∪ {x ∈ Z
d : ∃U ∈ U , x+ U ⊆ At}

and [A] =
⋃

t>0At is the 
losure of A with respe
t to this operation.

For 
on
reteness, four examples of su
h models with di�erent update fa-

milies U are given in Figure 1. We will use those to also illustrate further

de�nitions. For instan
e, in the East model (see Figure 1a) one infe
ts sites

whose bottom or left neighbour is infe
ted, while in the North-East model

(Figure 1d) one only infe
ts sites su
h that both their bottom and left neig-

hbours are infe
ted.

We will only dis
uss the most studied 
ase, where A is 
hosen at random

a

ording to the produ
t Bernoulli measure Pp, so that ea
h site is initially

infe
ted with probability p ∈ [0, 1]. Equipped with this measure, the model

exhibits a phase transition at

pc = inf{p ∈ [0, 1] : Pp(0 ∈ [A]) = 1}.

The model is de�ned identi
ally on tori (Z/nZ)d by setting

pc(n) = inf{p ∈ [0, 1] : Pp([A] = (Z/nZ)d) > 1/2}.

1

Earlier partly non-rigorous 
onsiderations of a more restri
ted 
lass of models 
an be

found in the works of Gravner and Gri�eath [10, 11℄ from the 1990s.
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∞

(a) The East model, whi
h is super-


riti
al (with di�
ulty 0).

1

1

1

1

(b) The modi�ed 2-neighbour model,

whi
h is 
riti
al with di�
ulty 1.

1

2

∞

(
) A toy model, whi
h is 
riti
al with

di�
ulty 1.

∞

(d) The North-East model, whi
h is

sub
riti
al (with di�
ulty ∞).

Figure 1: Four example bootstrap per
olation models. For ea
h one the

rules are depi
ted on the left with 0 marked by a 
ross, the sites of ea
h

rule denoted by dots and the grid lines dashed. The �gure on the right gives

the stable dire
tions in red with their di�
ulties next to them. The isolated

stable dire
tions are marked by red dots.

3



In this ba
kground se
tion we 
onsider n → 0 and use asso
iated asymptoti


notation. Namely, given a fun
tion f(n) we write O(f(n)) for a fun
tion

bounded in absolute value by Cf(n) for some 
onstant C not depending on

n (but possibly depending on U). We write Θ(f(n)) for a fun
tion that is

bounded above by Cf(n) and below by cf(n) for some positive 
onstants

c and C, neither depending on n. We will use analogous notation in later

se
tions with respe
t to other diverging parameters.

Although for some 
on
rete models higher dimensions have been un-

derstood and some general universality 
onje
tures have been put forward

in [2, Conje
ture 16℄ and [5, Conje
ture 9.2℄, we will restri
t our attention

to the 2-dimensional 
ase. The results of Bollobás, Smith and Uzzell [6℄ and

Balister, Bollobás, Przyku
ki and Smith [2℄ 
ombined establish that all boot-

strap per
olation models 
an be partitioned (by a simple pro
edure) into 3
�rough universality 
lasses� with qualitatively di�erent s
aling of pc(n). In

order to de�ne these we need some notation. For a dire
tion u in the unit


ir
le S1 = {x ∈ R
2 : ‖x‖2 = 1}, whi
h we standardly identify with R/2πZ,

we denote by

Hu = {x ∈ Z
2 : 〈x, u〉 < 0}

the open half-plane with normal u and by

lu = {x ∈ Z
2, 〈x, u〉 = 0}

the line passing through 0 perpendi
ular to u. A dire
tion u is unstable if

there exists U ∈ U su
h that U ⊂ Hu and stable otherwise. It is not di�
ult

to show that the unstable dire
tions form a �nite union of open intervals

in S1
with rational endpoints, that is a dire
tion u su
h that lu ∩ Z

2 6= ∅.

Indeed, ea
h rule individually indu
es a (possibly empty) interval of unstable

dire
tions with endpoints perpendi
ular to sites in the rule (so in Z
2
), there

are �nitely many rules and, by de�nition, the union of these intervals is the set

of unstable dire
tions for the full model. Thus, the set of stable dire
tions is

a �nite union of 
losed intervals with rational endpoints in S1
, some of whi
h

may be redu
ed to a single point 
alled isolated stable dire
tion.

As an example, let us 
onsider the modi�ed 2-neighbour model (Figure 1b).

The top-left rule 
onsisting of (1, 0) ∈ Z
2
and (0,−1) ∈ Z

2
makes all dire
ti-

ons in the open interval (π/2, π) ⊂ S1
unstable. By invarian
e by rotation by

π/2 there remain only the four isolated stable dire
tions shown in Figure 1b.

The reader is en
ouraged to 
he
k the stable dire
tions of the other examples

in Figure 1.

We are now ready to de�ne the partition into rough universality 
lasses


onje
tured in [6℄ and proved in [2, 6℄ is in terms of these dire
tions.
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• U is super
riti
al if there exists an open semi-
ir
le of unstable dire
ti-

ons, in whi
h 
ase pc(n) = n−Θ(1)
.

• U is 
riti
al if it is not super
riti
al and there exists a semi-
ir
le with

a �nite number of stable dire
tions, in whi
h 
ase pc(n) = (log n)−Θ(1)
.

• U is sub
riti
al otherwise (if ea
h semi-
ir
le 
ontains in�nitely many

stable dire
tions), in whi
h 
ase pc > 0.

Let us 
he
k that the modi�ed 2-neighbour model (Figure 1b) is 
riti
al. As

observed before, the only stable dire
tions are the four axis dire
tions. In

parti
ular, every open semi-
ir
le 
ontains either one or two of them. For the

toy model (Figure 1
) again every open semi-
ir
le 
ontains at least one of the

stable dire
tions, but e.g. the semi-
ir
le (−π/2, π/2) ⊂ S1
only 
ontains one

stable dire
tion, so it is also 
riti
al. For the East model the same semi-
ir
le


ontains no stable dire
tions, making it super
riti
al. Finally, in the North-

East model there is only a single quarter of a 
ir
le of unstable dire
tions. In

parti
ular, every half-
ir
le 
ontains in�nitely many unstable dire
tions, so

the model is sub
riti
al.

The behavior of super
riti
al models is dominated by the study of �nite

infe
ted sets with in�nite 
losure (a single infe
ted site in the East model),

while sub
riti
al ones are more 
losely related to per
olation (for example,

the North-East model is equivalent to 
lassi
al oriented site per
olation if one


onsiders healthy sites). The most studied models are 
riti
al ones, to whi
h

the ar
hetypal example of bootstrap per
olation belongs � the 2-neighbor
model, in whi
h a site be
omes infe
ted if at least two of its nearest neighbors

are already infe
ted. Note that the modi�ed 2-neighbour model in Figure 1b

does not infe
t a site if it only has 2 infe
ted neighbours whi
h are on opposite
sides of it, however, from the point of view of stable dire
tions and di�
ulties

to be de�ned later, this modi�
ation is of no importan
e. The 2-neighbour
model is the �rst one for whi
h the rough universality result above (and

more) was established � by Aizenman and Lebowitz [1℄. They realized that

the dynami
s is dominated by a bottlene
k � 
reating an infe
ted �droplet�

of a 
ertain �
riti
al� size, whi
h 
an then easily grow out to in�nity, and

proved that for this model pc(n) = Θ(1/ logn). In a substantial breakthrough
Holroyd [16℄ determined the asymptoti
 lo
ation of the sharp threshold and

sin
e then mu
h sharper results have been proved [12, 15℄:

pc =
π2

18 logn
−

Θ(1)

(log n)3/2
.

Su
h sharp or sharper bounds have been obtained for a handful of other

spe
i�
 models [4,8,9℄, but still remain open in general. However, the level of
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pre
ision of the Aizenman-Lebowitz result was established in full generality

for 
riti
al models by Bollobás, Duminil-Copin, Morris and Smith [5℄. They

introdu
e the following key notion of di�
ulty.

De�nition 1.1 (De�nition 1.2 of [5℄). Let U be a 
riti
al model and u be a

dire
tion. If u is an isolated stable dire
tion, we de�ne its di�
ulty, α(u), to
be the minimum 
ardinality of a set Z ⊆ Z

2\Hu su
h that Z̄ := [Hu∪Z]\Hu

is in�nite. For unstable dire
tions u we set α(u) = 0 and for non-isolated

stable ones we set α(u) = ∞. The di�
ulty of U is

α = inf
C∈C

sup
u∈C

α(u), (1)

where C is the set of open semi-
ir
les of S1
.

Let us note that the de�nition we give is formally di�erent from the one

in [5℄, but it turns out to be equivalent. Indeed, any unstable dire
tion u
satis�es [Hu] = Z

2
, sin
e one 
an infe
t 0 by de�nition of unstable dire
tions

and, by translation invarian
e one 
an infe
t lu, so that a translate of Hu

be
omes infe
ted and one may 
on
lude by indu
tion. Here we used that for

any rational dire
tion, we 
an write Z
2 =

⊔

i∈Z(lu + i · xu) for some ve
tor

xu ∈ Z
2
, where we write A+x for {a+x, a ∈ A} for any set A ⊆ Z

2
and site

x ∈ Z
2
. For stable dire
tions the equivalen
e is proved in Lemma 2.7 of [5℄.

For the reader's 
onvenien
e, let us determine the di�
ulties of the stable

dire
tions of the toy model of Figure 1
. By de�nition unstable dire
tions

have di�
ulty 0 and non-isolated stable ones have di�
ulty ∞, so we are

left with the right (0) and top (π/2) isolated stable dire
tions. Let us start

with the dire
tion 0. Sin
e it is stable [H0] = H0, we have α > 1.2 However,

[H0 ∪ {(0, 0)}] = H0 ∪ l0, sin
e one 
an infe
t (0,−1) by the se
ond rule (see

Figure 1
) and, indu
tively (0,−k) for all k ∈ N; one 
an also use the �rst

rule to infe
t (0, 1) and then (0, k) for all k ∈ N on
e (0, 0) and (0,−1) are
infe
ted. No further infe
tions o

ur, as u is stable and Hu ∪ lu is a translate

of Hu. Thus, α(0) = 1, as l0 = {(0, 0)} is in�nite (lu is in�nite for any

rational dire
tion u). Turning to u = π/2, we have α(u) > 1 as before, and

one 
an 
he
k as above that [Hu ∪ {(0, 0), (1, 0)}] = Hu ∪ lu using the �rst

and third rules. It remains to see that there does not exists x ∈ Z
2
su
h

that {x} is in�nite, in order to 
on
lude that α(u) = 2. Indeed, all rules


ontain at least 2 sites in Z
2 \Hu, so for any x we have [{x}∪Hu] = {x}∪Hu.

Finally, on
e we know that α(π/2) = 2 and α(0) = 1, we have that the open
half-
ir
le (−π/2, π/2) only 
ontains one stable dire
tion and it has di�
ulty

2

More generally, for any model and any isolated stable dire
tion u we have 1 6 α(u) <
∞ (see Lemma 2.7 of [5℄).
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1, so α 6 1, whi
h is the smallest possible value for a 
riti
al model: by

de�nition, every half-
ir
le 
ontains a stable dire
tion and, as we noted, only

unstable dire
tions have di�
ulty 0.
The result of [5℄ states that

3

pc(n) =
(log log n)O(1)

(logn)1/α
.

1.2 Results

So far it has not been investigated how one 
ould determine the di�
ulty α
in pra
ti
e, mainly owing to the simple de�nition and to the fa
t that for

simple models su
h as the ones in Figure 1 this is straightforward. In this

paper we 
onsider α from a 
omputational perspe
tive.

Throughout the paper, we assume that U is des
ribed as a family of sets

of pairs of integer 
oordinates represented in binary. Therefore the size of

the input is proportional to

‖U‖ := logD ·
∑

U∈U

|U |, (2)

where D is the �diameter� of U :

D = 2 ·max

{

‖x‖∞ : x ∈
⋃

U∈U

U

}

. (3)

A further justi�
ation of the need to take D into a

ount in ‖U‖ is provided

in the Appendix showing that the di�
ulty α is not bounded in terms of

∑

U∈U |U | only. Our �rst result is that α is 
omputable. We prove this by

giving an expli
it algorithm and bounding its 
omplexity.

Theorem 1.2. There exists an algorithm whi
h, given a 
riti
al bootstrap

per
olation update family U , 
omputes its di�
ulty α.4

Remark 1.3. In fa
t, it is not hard to 
he
k that our algorithm runs in time

at most

|U|2 · 2D
2(1+o(1)) = exp(O(D2)),

whi
h is in the worst 
ase at most doubly exponential in ‖U‖. This bound is

as sharp as a bound in terms of D only 
an be. Indeed, |U| = eO(D2)
and |U|


an be as large as 2D
2
.

3

They a
tually give mat
hing bounds up to a 
onstant fa
tor, whi
h requires dividing


riti
al models into two sub
lasses with di�erent logarithmi
 fa
tors.

4

This result is proved independently by Balister, Bollobás, Morris and Smith [3℄.

7



Expli
it bounds analogous to the ones derived in the proof of Theorem 1.2

are the only missing ingredient 
ausing the 
onstants appearing in the main

results of [5, 14℄ to be impli
it (
f [5, Lemma 6.5℄ and its version in [14℄).

Moreover, a 
orresponding un
omputability result in higher dimensions

based on super
riti
al models in two dimensions has been announ
ed by

Balister, Bollobás, Morris and Smith [3℄ prior to our work. As that 
ould

lead one to expe
t, Theorem 1.2 is not at all automati
.

On a high level, the main idea behind our proof is that if a half-plane

Hu is infe
ted, the pro
ess restri
ted to the line lu is a 1-dimensional boot-

strap per
olation pro
ess. Owing to the bounded range of the rules and

translation invarian
e, the �nal state of this pro
ess is either periodi
 with

bounded period or �nite, whi
h two possibilities 
an be distinguished in a


orrespondingly bounded time.

On the other hand, we also prove the following negative result.

Theorem 1.4. The problem of 
omputing the di�
ulty α of a 
riti
al boot-

strap per
olation update family U is NP-hard.

This result is proved by a fairly te
hni
al redu
tion to the Set Cover

de
ision problem in Se
tion 3. Besides the result of [3℄, another reason to

expe
t that the problem of determining α is hard in a sense made 
lear in

Theorem 1.4 is a re
ent parallel notion of di�
ulties adapted to sub
riti
al

models termed �
riti
al densities�. Those were introdu
ed by the �rst aut-

hor [13℄ and they are 
learly far too 
ompli
ated for one to expe
t to be able

to 
ompute them. From this point of view the result of Theorem 1.4 is not

unexpe
ted.

2 De
idability: proof of Theorem 1.2

In this se
tion we provide an algorithm to 
ompute the di�
ulty of a 
riti
al

model. Let us stress that it is not optimized and is only meant to prove

Theorem 1.2.

Proof of Theorem 1.2. Fix an update family U . To start, let us see how to

determine the set of stable dire
tions in time polynomial in the size of the

input ‖U‖. Indeed, for ea
h site x in ea
h rule U we determines its polar


oordinates (rx, θx) = (‖x‖2, x/‖x‖2) ∈ R+ × S1
. On the pra
ti
al side, rx


an be represented as the square root of an integer bounded by D2
and θx 
an

be en
oded by its tangent, whi
h is rational with numerator and denominator

bounded by D, and one boolean indi
ating whether θx ∈ (−π/2, π/2). Then
for ea
h rule U we take an arbitrary x0 ∈ U and 
ompute θx − θx0 for

8



all x ∈ U (its tangent is still rational and its numerator and denominator

are bounded by D2
). We determine the largest and smallest su
h values,

δ+, δ−, 
onsidering di�eren
es in (−π, π]. Finally, the unstable interval of U
is (θx0 + δ+ + π/2, θx0 − δ− + 3π/2) ⊂ S1

(whi
h is empty if δ+ − δ− > π).
The set of unstable dire
tions is then the union of these intervals for all

U ∈ U . In parti
ular, the isolated stable dire
tions and, more generally, the

endpoints of the intervals of stable dire
tions for U are among the endpoints

of the intervals for di�erent U , so there are at most 2|U| of them. In order to

determine this union in pra
ti
e it su�
es to 
he
k for ea
h of these endpoints

whether it is stable (not 
ontained in any of the unstable intervals for other

U ∈ U) and keep the information whether it was a left or right endpoint of the

asso
iated interval. Hen
e, the preliminary step of determining the (isolated)

stable dire
tions is 
ompleted in polynomial time in ‖U‖. It is also not hard
to verify for ea
h of the |U| right-endpoints whether there exists a stable

dire
tion in the half-
ir
le starting there and whether there are �nitely many

of them (i.e. all are isolated), whi
h allows one to de
ide if U is super
riti
al,


riti
al or sub
riti
al in polynomial time.

Assuming that U is determined to be 
riti
al, we 
an use (1) to 
ompute

the di�
ulty, α, on
e we know all α(u) ∈ N for isolated stable dire
tions.

Indeed, for ea
h of the open semi-
ir
les with one endpoint among those


onsidered above, we only need to 
al
ulate the maximum of α(u) for isolated
stable dire
tions u (if there are any non-isolated dire
tions, we do not need

to 
onsider the semi-
ir
le). As this 
an also be done in time polynomial in

‖U‖, we will now �x an isolated stable dire
tion u and provide an algorithm

for determining α(u).
We shall assume that D is su�
iently large throughout the proof. Indeed,

given D, all U ∈ U are distin
t subsets of {−D/2, . . . , D/2}2, so there are

at most 22
(D+1)2

possible U and |U| 6 2(D+1)2
. Therefore, the algorithm's

asymptoti
 
omplexity is only determined by families with large values of

D, as one 
an dire
tly list the di�
ulties for isolated stable dire
tions with

�small� values of D in 
onstant time.

Re
all the notation Z̄ from De�nition 1.1, whi
h we shall use without

spe
ifying u, as it will be 
lear from the 
ontext. In order to determine

α(u) we will use the following lemmas to bound the size of the set Z in

De�nition 1.1. The �rst of these is a one-dimensional result whi
h we shall

redu
e the problem to.

Lemma 2.1. Let U be an update family, let u ∈ S1
be an isolated stable

dire
tion and let A be a �nite subset of lu. Then the set Ā is either in�nite

or its maximal distan
e from A is at most D3 · 2D.
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Proof. Observe that by stability of u we have Ā ⊂ lu. Then the dynami
s

started from Hu ∪ A 
an be viewed as a dynami
s on lu only. Note that lu

onsists of integer sites on a line, so it is naturally identi�ed with Z by the


omposition of a homothety and a rotation. Furthermore, we know that u is

an isolated stable dire
tion and, thereby, lu+π/2 (whi
h is simply a rotation

of lu) 
ontains a site x in some U ∈ U with ‖x‖∞ 6 D/2 by (3). Hen
e, the

homothety ratio is between 1/D and 1.
Noti
e that the dynami
s restri
ted to lu is simply a 1-dimensional boot-

strap per
olation pro
ess, where ea
h rule U ∈ U is repla
ed by U ∩ lu if

U ⊂ (Hu ∪ lu) and removed otherwise. It therefore su�
es to prove the

following 
laim, whi
h 
on
ludes the proof.

Claim. For a one-dimensional bootstrap per
olation family and a �nite set

A ⊂ Z, we have that Ā is either in�nite or its maximal distan
e from A is at

most D2 · 2D.

Proof. Denote A = {a1, . . . , an} with a1 < · · · < an. Let us denote by P the

property that the following three 
onditions hold:

• |[A]| < ∞, d(s, A) 6 D · 2D+1
for all s ∈ [A],

• max[A]− an 6 D · 2D+1 −D,

• a1 −min[A] 6 D · 2D+1 −D.

Let A be minimal with respe
t to in
lusion violating P . We next prove that

|[A]| = ∞.

Base. Assume that |A| = 1, without loss of generality A = {0}. If [A] = A,
we have nothing to prove, as P 
learly holds. Otherwise, assume that x ∈ Z

be
omes infe
ted on the �rst step. Then, sin
e {0} is the only infe
ted site

initially, {x} is a rule in the update family. However, that entails that k.x
be
omes infe
ted on the k-th iteration at the latest and, in parti
ular, [A] is
in�nite.

Step. Assume that |A| > 1. Assume for a 
ontradi
tion that there exists

0 < i < n and b ∈ [A] su
h that ai+1 > b > ai and min(b − ai, ai+1 − b) >
D · 2D+1

. Then, by minimality of A, both A′ = {a1, . . . , ai} and A′′ = A \A′

satisfy P . Therefore,

min[A′′]−max[A′] > D · 2D+2 − 2(D · 2D+1 −D) > D,

10



so that [A] = [A′] ∪ [A′′], whi
h 
ontradi
ts the existen
e of b ∈ [A]. Indeed,
there is no site in Z su
h that a rule translated by it interse
ts both [A′] and
[A′′] and by de�nition of the 
losure those do not evolve under the dynami
s.

Assume next that max([A]) > an +D · 2D+1 −D (the 
orresponding 
ase

for min([A]) is treated identi
ally). Then, by the pigeon-hole prin
iple, there

exist b, c ∈ Z with an +D < b < c−D < max([A])− 2D su
h that

∅ 6= [A] ∩ [b, b+D − 1] = ([A] ∩ [c, c+D − 1])− (c− b)

(sin
e no infe
tion 
an 
ross a region of size D not interse
ting [A] to rea
h

max([A])). Therefore, [A] ∩ [b, b + D − 1] infe
ts a translate of itself, sin
e

the dynami
s to the right of b+D is not a�e
ted by infe
tions to the left of

b, on
e we �x the state of b, . . . , b+D− 1. Similarly to the 
ase |A| = 1, this
is a 
ontradi
tion with |[A]| < ∞, whi
h 
on
ludes the proof.

The next lemma is an appli
ation of the 
overing algorithm of [6℄. For

the sake of 
ompleteness, we will in
lude a sket
h of it in the proof.

Lemma 2.2. Let U be a 
riti
al update family and u be an isolated stable

dire
tion. Let Z ⊂ Hu+π be a set of size at most D. Then for every z ∈ [Z]
we have 〈z, u〉 > −O(D4).

Proof. First, we prove the following 
laim.

Claim. There exists a set T ⊃ {u} of three or four stable dire
tions 
on-

taining the origin in their 
onvex envelope (if viewed as a subset of R
2
) su
h

that for ea
h v ∈ T there exists x ∈ Z
2 ∩ vR su
h that ‖x‖∞ 6 D/2 and

su
h that for every v, w ∈ T we have |v − w + π| > 2/D2
.

Proof. First assume that u+π is unstable. Let T 
onsist of u and the stable

dire
tions, u+ π + δ+ and u+ π − δ− (δ± ∈ (0, π]), 
losest to u+ π in both

semi-
ir
les with endpoint u+ π (these exist as the set of stable dire
tions is


losed). Furthermore, re
alling that U is not super
riti
al, there is no semi-


ir
le of unstable dire
tions, so δ+ + δ− < π. This implies that indeed T

ontains 0 in its 
onvex envelope.

Assume that, on the 
ontrary, u + π is stable. Consider the semi-
ir
le

(u, u + π) ⊂ S1
. In it there exists a stable dire
tion (sin
e U is not su-

per
riti
al). If there are no unstable dire
tions, we pi
k u− = u + π/2,
otherwise, we set u− to be an isolated or semi-isolated stable dire
tion in

that semi-
ir
le. We de�ne u+ similarly in the opposite semi-
ir
le. We set

T = {u, u+ π, u−, u+}. It is 
lear that 0 is in the 
onvex envelope of T .

11



In both 
ases T 
onsists of dire
tions whi
h are either isolated, semi-

isolated or a rotation by π/2 of su
h a dire
tion. Therefore, as in the proof

of Lemma 2.1, there exists a site x as in the statement of the 
laim.

Finally, let us bound the di�eren
e between two dire
tions v 6= w su
h

that there exist x ∈ Z
2∩vR and y ∈ Z

2∩wR with max(‖x‖∞, ‖y‖∞) 6 D/2.
Indeed, det(x, y) ∈ Z \ {0}, so

| sin(v − w)| =
| det(x, y)|

‖x‖2‖y‖2
>

2

D2

and therefore |v − w| > 2/D2
.

We �x a set T as in the 
laim. We 
all a T -droplet a polygon with

sides perpendi
ular to the dire
tions in T . Sin
e T 
ontains 0 in its 
onvex

envelope there exist T -droplets. Sin
e the di�eren
e between 
onse
utive

dire
tions in T are at most π−2/D2
, we 
an �nd a T -droplet P with diameter

O(D3) 
ontaining [−D/2, D/2]2 ⊇
⋃

U∈U U (e.g. a T -droplet 
ir
ums
ribed

around a 
ir
le with D).

We 
an then dire
tly apply the 
overing algorithm of [6℄ to 
on
lude the

proof. Let us outline that algorithm in our setting. We start with a set of

translates of P , namely {z + P, z ∈ Z}. At ea
h step if two of the 
urrent

droplets P1, P2 satisfy that there exists x ∈ Z
2
su
h that (P+x)∩P1 6= ∅ and

(P +x)∩P2 6= ∅, then we repla
e them by the smallest T -droplet 
ontaining

their union. We repeat this as long as possible.

By Lemma 4.6 of [6℄ (stating that the diameter of the smallest droplet


ontaining two interse
ting ones is at most the sum of their respe
tive diame-

ters) the sum of diameters of droplets in
reases by at most diam(P ) = O(D3).
Therefore, in the �nal set of droplets the total diameter is O(D4), as the num-

ber of droplets de
reases by 1 at ea
h step. Moreover, by Lemma 4.5 of [6℄

the union of the �nal droplets 
ontains [Z], so the proof is 
omplete, as ea
h

of the output droplets 
ontains at least one site of Z ⊂ H−u.

Algorithm. Let us �rst des
ribe an algorithm to determine α(u) and pos-

tpone its analysis. For ea
h integer k from 1 to D we su

essively perform

the following operations to determine if there exists a set Z of size k as in

De�nition 1.1. We stop as soon as su
h a set is found and return the 
orre-

sponding (minimal) value of k. For ea
h �xed k we start by 
hoosing a set

Z0. The �rst site is 0 and ea
h new one z is pi
ked within distan
e D11 · 2D

from some of the previous ones and su
h that

0 6 〈z′ − z, u〉 = O(D4) (4)
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for some z′ among the previous ones. There are at most

(

DO(1) · 2D

D

)

= 2D
2+o(D2) = exp(O(D2))

su
h 
hoi
es. For ea
h of them we su

essively inspe
t di�erent translations

t ∈ Z
2
, su
h that 0 6 〈t, u〉 = O(D5) and

0 6 〈t, (−y, x)〉 < x2 + y2, (5)

where (−y, x) ∈ Z
2
is su
h that (x, y) ∈ uR and x and y are 
o-prime, in the

(total) order given by 〈t, u〉 starting from t = 0. Finally, �x Z = Z0 + t.
For ea
h Z we run the bootstrap dynami
s with initial set of infe
tions

Z ∪Hu until it either stops infe
ting new sites or infe
ts a site s with ‖s‖∞ >

D13 ·2D and 〈s, u〉 = O(D5). This 
an be done by 
he
king at ea
h step ea
h

site at distan
e D13 · 2D +D from the origin for ea
h rule and repeating this

for 5D time steps. If the dynami
s be
omes stationary, we 
ontinue to the

next 
hoi
e of Z, while otherwise we return |Z| for the value of α(u).

Corre
tness. We now turn to proving that the algorithm does return an

output and it is pre
isely α(u). The �rst assertion is easy. Indeed, as u is an

isolated stable dire
tion, (by [5, Lemma 2.8℄) there exists a rule U ∈ U with

U ⊂ Hu ∪ {x ∈ lu, 〈x, u+ π/2〉 > 0},

so that adding D 
onse
utive sites on lu to Hu is enough to infe
t a half-line

of lu, only taking U into a

ount. Thus, we know that α(u) 6 D and the

algorithm will eventually 
he
k su
h a 
on�guration when k = D, unless it

has returned a smaller value, and infe
tions will propagate to distan
eD13·2D

(and in fa
t to in�nity). Let us then prove that the output is α(u).
Denote by tj the values of t 
onsidered by the algorithm, so that t0 = 0.

Note that by (5) there exists a single t ∈ Z
2
with a given value of 〈t, u〉, so

that this s
alar produ
t indeed de�nes a total order on the values of t and
we 
an also extend our notation to j < 0 for 
onvenien
e, though those are

not examined by the algorithm. Further de�ne lj := {s ∈ Z
2, 〈s, u〉 = 〈tj, u〉}

and Zj = Z0 + tj for some Z0 
onsidered by the algorithm, so that l0 = lu by

abuse of notation.

5

5

Here we view 0 as an element of Z, possible value of j, while u is an element of S1
.

As we will not make referen
e to lv with v = 0 ∈ S1
, we hope that this will not lead to


onfusion.
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Claim. Assume that a set Zi 
onsidered by the algorithm is of size k 6

α(u) and su
h that Z̄j (re
all De�nition 1.1) is �nite for all 0 6 j 6 i.
Then the maximal distan
e between a site from Z̄i and Zi is at most D5 ·
2D max(0, 〈ti, u〉).

Proof. We prove the statement by indu
tion on i ∈ Z. For i < 0, i.e. 〈ti, u〉 <
0, then Zi ⊂ Hu by (4) and there is nothing to prove, sin
e Z̄i = ∅ � no

additional infe
tions take pla
e. Assume the property to hold for all tj with
j 6 i. We aim prove the same for i+ 1.

Observe that for ea
h 0 < j 6 i+ 1 we have that

Z̄i+1 ∩ lj ⊆ (Z̄i+1−j ∩ l0) + ti+1 − ti+1−j . (6)

Indeed, Zi+1∪Hu ⊆ (Zi+1−j∪Hu)+ ti+1− ti+1−j , sin
e Zi+1 = Zi+1−j+ ti+1−
ti+1−j and Hu + ti+1 − ti+1−j ⊃ Hu. Furthermore, by stability of u we have

that Z̄i+1∩ lj = ∅ for j > i+1. Also, by (6) and the indu
tion hypothesis we

have that Z̄i+1 \ l0 is at distan
e at most D5 · 2D〈ti, u〉 from Zi+1, so we are

left with proving that sites in Z̄i+1∩ l0 are at distan
e at most D5 ·2D〈ti+1, u〉
from Zi+1.

Consider the set

Z ′ = {z ∈ Z̄i+1 ∩ l0, d(z, Zi+1) 6 D +D5 · 2D〈ti, u〉}.

By the reasoning above we have that Z̄i+1 ∩ l0 = Z ′ ∪ Z̄ ′
. However, by

Lemma 2.1, Z̄ ′

annot be at distan
e more than 2D ·D3

from Z ′
, as Zi+1 \ l0

is at distan
e at least D from all sites in Z̄i+1 \Z
′
. Re
alling the de�nition of

Z ′
, we get that Z̄i+1 is at distan
e at most D+D3 ·2D+D5 ·2D〈ti, u〉 and we

are done. Indeed, 〈ti+1 − ti, u〉 > 1/D, sin
e there exists a site x ∈ Z
2 ∩ uR

with ‖x‖∞ 6 D/2 and 〈ti+1 − ti, x〉 > 0 is an integer.

The 
laim 
learly implies that the algorithm 
annot return a value smaller

than α(u). In order to 
on
lude, we need to show that when k = α(u) among

the sets examined by the algorithm there will be a set Z su
h that there exists

z ∈ Z̄ with ‖z‖∞ > D13 · 2D and therefore the output will be α(u).
Consider a set Z ⊂ Z

2 \Hu as in De�nition 1.1 of size α(u) (and therefore

minimal). Re
all that by Lemma 2.2 every z ∈ Z satis�es 〈z, u〉 = O(D4)
(otherwise Z̄ = [Z] is �nite, as U is not super
riti
al) and, by stability of u,
the same holds for Z̄. Let P = {x ∈ R, ∃z ∈ Z, 〈z, u〉 = x} and de�ne P̄
similarly for Z̄. These are dis
rete subsets of R. Note that by minimality of

Z and Lemma 2.2, P ⊂ R 
annot have a gap of length larger than O(D4).
Indeed, there exists x ∈ P̄ su
h that in�nitely many points of Z̄ proje
t to it

and those are all in Z̄ ′
where Z ′

are the sites in Z that proje
t to x′ ∈ P su
h
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that there exist n and x0 = x, x1, . . . , xn = x′
in P with |xj+1 − xj | = O(D4)

and if Z ′ 6= Z, we obtain a 
ontradi
tion with the minimality of Z.
Analogously, let P⊥ = {x ∈ R, ∃z ∈ Z, 〈z, (u + π/2)〉 = x} and de�ne

P̄⊥
similarly for Z̄. We 
laim that its P⊥


annot have a gap of length larger

than O(D10 ·2D). This time P̄⊥
is ne
essarily in�nite, as only a �nite number

of points z ∈ Z
2
with 〈z, u〉 = O(D4) have the same (u + π/2)-proje
tion.

Considering a set Z ′ ⊂ Z indu
ing the 
orresponding distan
e O(D10 · 2D)-

onne
ted 
omponent of P⊥

and using the 
laim instead of Lemma 2.2 as in

the previous paragraph, we rea
h a 
ontradi
tion with the minimality of Z.
Hen
e, all Z of size α(u) as in De�nition 1.1 are in fa
t 
onsidered by the

algorithm. Sin
e su
h a Z with in�nite Z̄ exists, the algorithm does indeed

output α(u).

3 NP-hardness: proof of Theorem 1.4

In this se
tion we prove Theorem 1.4 by providing a redu
tion from Set

Cover to 2D Criti
al Bootstrap Diffi
ulty. For the Set Cover

problem we 
onsider a universe {1, . . . , N} and a 
olle
tion S of subsets of the

universe and assume that |S| > 4 and N > 4. The Set Cover problem asks

for determining the minimum 
ardinality of a subset of S whi
h 
overs the

universe. It is one of the �rst NP-
omplete problems des
ribed by Karp [17℄.

We �x an instan
e

S = {Si : i ∈ Z, 1 6 i 6 |S|} .

Our goal is to de�ne a 
riti
al bootstrap per
olation update family whose

di�
ulty α is (up to a simple transformation) the solution to Set Cover.

Let the set of rules asso
iated to S be

US = {U0, U1} ∪ {Uk
i,j : 1 6 i 6 |S|, 1 6 k 6 |S|2, i, k ∈ Z, j ∈ Si},

where

U0 =
{

(−k, 0), (0,−k) : 1 6 k 6 N |S|2
}

,

U1 =
{

(+k, 0), (0,−k) : 1 6 k 6 N |S|2
}

and the rules Uk
i,j, de�ned as follows, share a large portion of their stru
ture

(see Figure 2).

T =
{

(0,−y) : 1 6 y 6 N · |S|2
}

,

W ={(x, 0) : 1 6 x 6 |S|2} ∪ {(l · |S|, 1) : 1 6 l 6 |S|},

Uk
i,j =T ∪

(

(W ∪ {(i · |S|, 2)})− (k + (N + j) · |S|2, 0)
)

.
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W ∪ {(i · |S|, 2)} region of j ∈ [1, N]

2

. . . |S| . . . 2|S| . . . i|S| . . . |S|2 . . . k + (N + j)|S|2x = 1

y = 0

1

2

Figure 2: A visualisation of (Uk
i,j \ T ) + (k + (N + j)|S|2, 0); the shaded 
ell

indi
ates where the origin is shifted to.

First we 
laim that the only isolated stable dire
tion is u = π/2 and

[−π, 0] 
ontains the rest of the stable dire
tions. The unstable intervals


orresponding to the rules U0 and U1 are (0, π/2) and (π/2, π), respe
tively.
The unstable interval of Uk

i,j is 
ontained in (0, π/2) for all i, j, k. Thus, US

is indeed 
riti
al and α(US) = α(u), so that we 
an fo
us on this dire
tion.

Let M ⊆ {1, . . . , |S|} be an optimal solution to the Set Cover problem

given by S i.e. a set of minimal size su
h that

⋃

i∈M

Si = {1, . . . , N}.

We �rst 
laim that, setting

Z0 = W ∪ {(i · |S|, 2) : i ∈ M}

we have [Z0 ∪Hu] ⊃ lu, so that

α(u) 6 |Z0| = |W |+ |M | = |S|2 + |S| + |M |. (7)

Indeed, using on
e ea
h of the rules Uk
i,j for all i ∈ M , j ∈ Si and 1 6 k 6 |S|2,

one infe
ts all sites in

[

1 + (N + 1) · |S|2, (2N + 1) · |S|2
]

× {0},

sin
e M is a 
over, and those are enough to infe
t lu using U0 and U1.

For any Z ⊆ Z
2
re
all the notation Z̄ = [Z ∪Hu] \Hu from De�nition 1.1.

To prove that (7) is a
tually an equality, we suppose that there exists a set

Z ⊂ Z
2 \Hu for whi
h |Z̄| = ∞ and |Z| < |Z0|. Fix a minimal su
h set Z.

First note that |U0 \Hu| = N |S|2 and similarly for U1. Therefore, if there

exists p ∈ Z
2 \Hu su
h that one of p+ U0 and p + U1 is a subset of Z ∪Hu,

then |Z| > N |S|2 > |Z0| � a 
ontradi
tion. However, in order not to have

Z̄ = ∅ some of the rules must be appli
able to Z ∪ Hu and therefore there

exists p ∈ Z
2 \Hu su
h that p+W ⊆ Z.
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Observation 3.1. For any q ∈ Z
2 \ {0} we have |(q +W ) \W | > |S|.

Although the veri�
ation is immediate, 
alling this fa
t an observation is

de
eptive, sin
e W is designed to possess this property. It follows that p is

unique, otherwise |Z| > |W |+ |S| > |Z0| (sin
e any minimal 
over is smaller

than the universe), a 
ontradi
tion.

Lemma 3.2. Every point q ∈ Z̄ \ Z has the same y-
oordinate as p.

Proof. Suppose that there exists q ∈ Z̄ \ Z 
ontradi
ting the statement of

the lemma and 
onsider su
h a q with minimal infe
tion time for the pro
ess

with initial set of infe
tions Z ∪Hu. Then Z 
ontains at least |W | − |S| sites
on the row of q, as all rules 
ontain at least as many and by minimality of q.
Therefore, |Z| > 2(|W | − |S|) > |Z0|, a 
ontradi
tion.

By Lemma 3.2 and the fa
t that (Z ∪Hu)− (0, 1) ⊆ (Z− (0, 1))∪Hu and

(Z∪Hu)+(1, 0) = (Z+(1, 0))∪Hu, we 
an assume without loss of generality

that p = 0.
By the minimality of Z and Lemma 3.2, the y-
oordinate of any site in

Z is 0, 1, or 2. Indeed, in order to infe
t ea
h of the sites q ∈ Z̄ ⊆ lu, we use
one of the rules, but those are all 
ontained in {x ∈ Z

2, 〈x, u〉 6 2}, so one


an remove any other sites from Z without 
hanging Z̄.

Lemma 3.3. There does not exist q ∈ Z
2 \ {0} su
h that q +W ⊆ Z̄.

Proof. Let q be as in the statement of the lemma su
h that no other q′ +W
be
omes fully infe
ted before q + W for the pro
ess with initial infe
tions

Z ∪Hu. By Lemma 3.2 we have that q ∈ lu.
If |x| > |S|2, then by Lemma 3.2 the set Z \W 
ontains at least |W \ lu| =

|S| elements (with y-
oordinate 1), therefore |Z| > |W | + |S| > |Z0|, a

ontradi
tion.

Assume that |x| < |S|2. If lu∩ (q+W ) \W ⊆ Z, then by Observation 3.1

we have |Z| > |W | + |S| � a 
ontradi
tion. Therefore, some of the sites in

lu ∩ (q +W ) \W ⊆ Z̄ are infe
ted by the pro
ess. However, by minimality

of q they 
an only be infe
ted using U0 or U1. Yet, as soon as one 
an use

rule U0 or U1 to infe
t a site in lu, the entire lu 
an be infe
ted using those

rules only. Thus, removing from Z every site in Z \W with y-
oordinate 1
(and in parti
ular (q +W ) \ (lu ∪W ) 6= ∅) does not prevent the infe
tion of

in�nitely many sites, whi
h 
ontradi
ts the minimality of Z.

By Lemma 3.3 we have that until a rule U0 or U1 is used the only possible

infe
tions are of the form �k + (N + j)|S|2 be
omes infe
ted via rule Uk
i,j�.

Therefore, all sites (x, 2) ∈ Z are either redundant (whi
h 
ontradi
ts the

minimality of Z) or satisfy x = i · |S| with 1 6 i 6 |S|.

17



Finally, set I = {i : (i · |S|, 2) ∈ Z} and

J = {1, . . . , N} \
⋃

i∈I

Si.

Then, in order to have |Z̄| = ∞, it is ne
essary (and su�
ient) to have a

sequen
e of N |S|2 
onse
utive sites in

(Z ∩ lu) ∪ {(k + (N + j)|S|2, 0) : i ∈ I, 1 6 k 6 |S|2, j ∈ Si}.

However, su
h a sequen
e is either disjoint from the infe
tions of the form

(k + (N + j)|S|2, 0), in whi
h 
ase |Z| > N |S|2 > |Z0| � a 
ontradi
tion, or

disjoint from W . In the latter 
ase the sequen
e 
ontains at most

|Z| − |W | − |I|+ (N − |J |) · |S|2 < (|Z0| − |W |) + (N − |J |)|S|2

infe
ted sites. If |J | 6= N , i.e. I is not a 
over, the number of sites is at

most |S| + (N − 1)|S|2 < N |S|2 � a 
ontradi
tion. Otherwise, I is a 
over

and |Z| > |W | + |I| > |Z0|, as M is a minimal 
over. This 
ontradi
tion


ompletes the proof that α(u) is indeed equal to |W |+ |M | = |S|2+ |S|+ |M |
as 
laimed.

The set US (to whi
h we redu
ed the Set Cover problem S) 
ontains
|S|3

∑

Si∈S
|Si| rules, ea
h of whi
h has 
ardinality at most O(N |S|2), thus

the redu
tion is indeed polynomial. This 
on
ludes the proof of Theorem 1.4,

be
ause α(US)− |S|2 − |S| is the size of an optimal set 
over from S.

4 Open problems

Let us 
on
lude with a few open questions naturally suggested by the present

work. Of 
ourse, many more 
omplexity issues arise systemati
ally for hard

problems, but let us mention the foremost ones.

Question 1. Can one �nd a good approximation of α in time polynomial of

the input size ‖U‖ (de�ned in (2))?

Question 2. Are there interesting subfamilies of 
riti
al models for whi
h

the di�
ulty is 
omputable in polynomial time ‖U‖?

Question 3. In view of Remark 1.3, 
an one �nd an algorithm whi
h 
om-

putes α in eO(‖U‖)
time?

In the appendix we provide an example showing the α itself 
an be expo-

nentially large in ‖U‖, suggesting that one should not hope for a subexpo-

nential 
omplexity algorithm to 
ompute it.

Question 4. Is the 2D Criti
al Bootstrap Diffi
ulty problem in NP

(and thus NP-
omplete)?
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A Relevan
e of the diameter

In this appendix we provide a sequen
e (Uk)
∞
k=2 of update families su
h that

∑

U∈Uk
|U | is 
onstant and α(Uk) is exponential in ‖Uk‖. This answers a

question raised during the preparation of this paper. The example gives

some relevan
e to the questions in Se
tion 4 as well as further justifying the

de�nition of ‖U‖ in equation (2). For any integer k > 2 let Uk = {U1, U2}
with

U1 = {(0,−1), (k, 0), (k − 1, 0)}

U2 = {(0,−1), (−k, 0), (−k + 1, 0)}.

Proposition A.1. For any integer k > 2 the update family Uk is 
riti
al and

α(Uk) = k =
D

2
=

1

2
· e‖Uk‖/6.

Proof. It is not hard to 
he
k as in the examples in Figure 1 that (similarly

to the Duarte model) the set of stable dire
tions for Uk is [−π, 0]∪{π/2}, so
the model is 
riti
al. Moreover, α := α(Uk) = α(u) where u := π/2 is the

only isolated stable dire
tion.

It su�
es to prove that α = k. Consider Z0 = {(i, 0) : i ∈ {1, . . . , k}}
and observe that [Z0 ∪ Hu] = Hu ∪ lu. Indeed, by stability of u we have

[Z0 ∪Hu] ⊆ Hu ∪ lu, while using U1 one 
an infe
t su

essively (−i, 0) for all
i 6 0. Similarly, using U2, one 
an infe
t (k + i, 0) for i > 0.

We are thus left with proving that for any Z ⊂ Z
2
with |Z| < k we have

|Z̄| < ∞. Consider a minimal set Z 
ontradi
ting this statement.

Let p(i, j) = (i, 0) be the proje
tion onto lu and let p(Z) = {p(z) : z ∈ Z}
be the proje
tion of Z. We 
laim that

p(Z) ⊇ p(Z̄). (8)

Let lj = {(i, j) : i ∈ Z} and let m = max{j : Z̄ ∩ lm 6= ∅}. By

stability of u we have that lm ∩ Z 6= ∅. As (0,−1) ∈ U1 ∩ U2, we have that

p((Z̄ \ Z) ∩ lm) ⊆ p(Z̄ ∩ lm−1). Moreover, sin
e U1 ∪ U2 ⊂ Hu ∪ lu, we have
Z̄ ∩ lm−1 = (Z \ lm) ∩ lm−1. Therefore, if we 
onsider Z

′ = (Z \ lm) ∪ ((Z ∩
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lm)− (0, 1)), i.e. we de
rease the y-
oordinates of all sites in Z ∩ lm by 1, we

have that

p(Z̄ ′) ⊇ p(Z̄ ∩ lm). (9)

Furthermore, as U1∪U2 ⊂ Hu∪lu and Z ′∩(Hu∪
⋃

j<m lj) ⊇ Z∩(Hu∪
⋃

j<m lj),
we have

Z ′ ∩ (Hu ∪
⋃

j<m

lj) ⊇ Z ∩ (Hu ∪
⋃

j<m

lj).

Combining this with (9), we get that p(Z̄ ′) ⊇ p(Z̄). Repeating this pro
edure
until m = 0, we obtain (8).

By stability of u we have that Z̄ ⊆
⋃

06j6m lj, so Z̄ is in�nite if and only

if p(Z̄) is. Sin
e |p(Z)| 6 |Z|, we may repla
e Z by p(Z) and assume without

loss of generality that Z ⊂ lu. As lu identi�es with Z by (i, 0) 7→ i, the
following lemma 
on
ludes the proof.

Lemma A.2. Consider the 1-dimensional update family 
onsisting of the

rules U1 = {k, k − 1} and U2 = {−k,−k + 1}. There does not exist Z ⊂ Z

with |Z| < k su
h that |[Z]| = ∞.

Proof. Noti
e that if z ∈ [Z] \ Z is used to infe
t another site using rule U1,

then either z − k or z − (k − 1) gets infe
ted after z, so z is infe
ted using

rule U1. Therefore, z + k and z + k − 1 are infe
ted before z.
Let Z be a 
ounterexample of the statement of the lemma. Without loss

of generality, we may assume that inf([Z]) = −∞. Ne
essarily, there exists

z ∈ [Z] with z < minZ−k2
, whi
h is infe
ted using rule U1. By the argument

above, z + k and z + k − 1 are infe
ted via rule U1 (before z gets infe
ted).

Iterating this argument we obtain that X0 = {z+ k2− k+1, . . . , z+ k2} are

all infe
ted by rule U1.

Let Xi = X0 + k · i and

Yi = {x− k · i− z − k2 + k : x ∈ Xi, x is infe
ted using U1},

so that Y0 = {1, . . . , k} ⊇ Yi for all i > 0. As in the proof of Proposition A.1,

one 
an 
he
k that [X0] = Z, so [Z] = Z. Therefore, by an analogous

reasoning for U2, we have that all sites to the right of Z are infe
ted using

rule U2. Thus, Yi0 = ∅ for i0 su�
iently large. For any y ∈ Yi−1 \ Yi the site

y + k · i+ z + k2 − k is 
ontained ∈ Z, be
ause by de�nition, it does not get

infe
ted by U1, and the �rst argument of this proof shows that it 
annot be

infe
ted via U2. Hen
e, k = |Y0 \ Yi0| 6 |Z|, a 
ontradi
tion.
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