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Abstrat

Bootstrap perolation is a lass of ellular automata with random

initial state. Two-dimensional bootstrap perolation models have three

rough universality lasses, the most studied being the �ritial� one.

For this lass the saling of the quantity of greatest interest (the ri-

tial probability) was determined by Bollobás, Duminil-Copin, Morris

and Smith [5℄ in terms of a simply de�ned ombinatorial quantity

alled �di�ulty�, so the subjet seemed losed up to �nding sharper

results. However, the omputation of the di�ulty was never onsi-

dered. In this paper we provide the �rst algorithm to determine this

quantity, whih is, surprisingly, not as easy as the de�nition leads to

thinking. The proof also provides some expliit upper bounds, whih

are of use for bootstrap perolation. On the other hand, we also prove

the negative result that omputing the di�ulty of a ritial model is

NP-hard. This two-dimensional piture ontrasts with an upoming

result of Balister, Bollobás, Morris and Smith [3℄ on unomputabi-

lity in higher dimensions. The proof of NP-hardness is ahieved by a

tehnial redution to the Set Cover problem.
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1 Introdution

1.1 Bakground

Bootstrap perolation is a lass of ellular automata whose �rst representative

was introdued in 1979 by Chalupa, Leath and Reih [7℄ in statistial physis.

Further appliations to several other areas have been onsidered, namely

dynamis of the Ising model, kinetially onstrained models for the glass

transition, abelian sandpiles and others (see a reent review of Morris [18℄

for more information).

We onsider the following iterative disrete-time proess on the elements

(sites) of Z
d
. At eah time t ∈ N every site is either infeted or healthy.

We enode the state of all sites by speifying the set of infeted sites At.

Given a set A ⊆ Z
d
or (Z/nZ)d of initially infeted sites, more sites beome

infeted at eah disrete time step following a deterministi monotone loal

rule invariant in time and spae, while infetions never heal. More preisely,

let us introdue the broadest framework brought forward by Bollobás, Smith

and Uzzell [6℄.

1

A bootstrap perolation model is spei�ed by a �nite set U , alled the

update family, of �nite subsets of Z
d \ {0}, alled rules. For an initial set of

infeted sites A = A0 ⊆ Z
d
we reursively de�ne for all t ∈ N

At+1 = At ∪ {x ∈ Z
d : ∃U ∈ U , x+ U ⊆ At}

and [A] =
⋃

t>0At is the losure of A with respet to this operation.

For onreteness, four examples of suh models with di�erent update fa-

milies U are given in Figure 1. We will use those to also illustrate further

de�nitions. For instane, in the East model (see Figure 1a) one infets sites

whose bottom or left neighbour is infeted, while in the North-East model

(Figure 1d) one only infets sites suh that both their bottom and left neig-

hbours are infeted.

We will only disuss the most studied ase, where A is hosen at random

aording to the produt Bernoulli measure Pp, so that eah site is initially

infeted with probability p ∈ [0, 1]. Equipped with this measure, the model

exhibits a phase transition at

pc = inf{p ∈ [0, 1] : Pp(0 ∈ [A]) = 1}.

The model is de�ned identially on tori (Z/nZ)d by setting

pc(n) = inf{p ∈ [0, 1] : Pp([A] = (Z/nZ)d) > 1/2}.

1

Earlier partly non-rigorous onsiderations of a more restrited lass of models an be

found in the works of Gravner and Gri�eath [10, 11℄ from the 1990s.
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∞

(a) The East model, whih is super-

ritial (with di�ulty 0).

1

1

1

1

(b) The modi�ed 2-neighbour model,

whih is ritial with di�ulty 1.

1

2

∞

() A toy model, whih is ritial with

di�ulty 1.

∞

(d) The North-East model, whih is

subritial (with di�ulty ∞).

Figure 1: Four example bootstrap perolation models. For eah one the

rules are depited on the left with 0 marked by a ross, the sites of eah

rule denoted by dots and the grid lines dashed. The �gure on the right gives

the stable diretions in red with their di�ulties next to them. The isolated

stable diretions are marked by red dots.
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In this bakground setion we onsider n → 0 and use assoiated asymptoti

notation. Namely, given a funtion f(n) we write O(f(n)) for a funtion

bounded in absolute value by Cf(n) for some onstant C not depending on

n (but possibly depending on U). We write Θ(f(n)) for a funtion that is

bounded above by Cf(n) and below by cf(n) for some positive onstants

c and C, neither depending on n. We will use analogous notation in later

setions with respet to other diverging parameters.

Although for some onrete models higher dimensions have been un-

derstood and some general universality onjetures have been put forward

in [2, Conjeture 16℄ and [5, Conjeture 9.2℄, we will restrit our attention

to the 2-dimensional ase. The results of Bollobás, Smith and Uzzell [6℄ and

Balister, Bollobás, Przykuki and Smith [2℄ ombined establish that all boot-

strap perolation models an be partitioned (by a simple proedure) into 3
�rough universality lasses� with qualitatively di�erent saling of pc(n). In

order to de�ne these we need some notation. For a diretion u in the unit

irle S1 = {x ∈ R
2 : ‖x‖2 = 1}, whih we standardly identify with R/2πZ,

we denote by

Hu = {x ∈ Z
2 : 〈x, u〉 < 0}

the open half-plane with normal u and by

lu = {x ∈ Z
2, 〈x, u〉 = 0}

the line passing through 0 perpendiular to u. A diretion u is unstable if

there exists U ∈ U suh that U ⊂ Hu and stable otherwise. It is not di�ult

to show that the unstable diretions form a �nite union of open intervals

in S1
with rational endpoints, that is a diretion u suh that lu ∩ Z

2 6= ∅.

Indeed, eah rule individually indues a (possibly empty) interval of unstable

diretions with endpoints perpendiular to sites in the rule (so in Z
2
), there

are �nitely many rules and, by de�nition, the union of these intervals is the set

of unstable diretions for the full model. Thus, the set of stable diretions is

a �nite union of losed intervals with rational endpoints in S1
, some of whih

may be redued to a single point alled isolated stable diretion.

As an example, let us onsider the modi�ed 2-neighbour model (Figure 1b).

The top-left rule onsisting of (1, 0) ∈ Z
2
and (0,−1) ∈ Z

2
makes all direti-

ons in the open interval (π/2, π) ⊂ S1
unstable. By invariane by rotation by

π/2 there remain only the four isolated stable diretions shown in Figure 1b.

The reader is enouraged to hek the stable diretions of the other examples

in Figure 1.

We are now ready to de�ne the partition into rough universality lasses

onjetured in [6℄ and proved in [2, 6℄ is in terms of these diretions.
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• U is superritial if there exists an open semi-irle of unstable direti-

ons, in whih ase pc(n) = n−Θ(1)
.

• U is ritial if it is not superritial and there exists a semi-irle with

a �nite number of stable diretions, in whih ase pc(n) = (log n)−Θ(1)
.

• U is subritial otherwise (if eah semi-irle ontains in�nitely many

stable diretions), in whih ase pc > 0.

Let us hek that the modi�ed 2-neighbour model (Figure 1b) is ritial. As

observed before, the only stable diretions are the four axis diretions. In

partiular, every open semi-irle ontains either one or two of them. For the

toy model (Figure 1) again every open semi-irle ontains at least one of the

stable diretions, but e.g. the semi-irle (−π/2, π/2) ⊂ S1
only ontains one

stable diretion, so it is also ritial. For the East model the same semi-irle

ontains no stable diretions, making it superritial. Finally, in the North-

East model there is only a single quarter of a irle of unstable diretions. In

partiular, every half-irle ontains in�nitely many unstable diretions, so

the model is subritial.

The behavior of superritial models is dominated by the study of �nite

infeted sets with in�nite losure (a single infeted site in the East model),

while subritial ones are more losely related to perolation (for example,

the North-East model is equivalent to lassial oriented site perolation if one

onsiders healthy sites). The most studied models are ritial ones, to whih

the arhetypal example of bootstrap perolation belongs � the 2-neighbor
model, in whih a site beomes infeted if at least two of its nearest neighbors

are already infeted. Note that the modi�ed 2-neighbour model in Figure 1b

does not infet a site if it only has 2 infeted neighbours whih are on opposite
sides of it, however, from the point of view of stable diretions and di�ulties

to be de�ned later, this modi�ation is of no importane. The 2-neighbour
model is the �rst one for whih the rough universality result above (and

more) was established � by Aizenman and Lebowitz [1℄. They realized that

the dynamis is dominated by a bottlenek � reating an infeted �droplet�

of a ertain �ritial� size, whih an then easily grow out to in�nity, and

proved that for this model pc(n) = Θ(1/ logn). In a substantial breakthrough
Holroyd [16℄ determined the asymptoti loation of the sharp threshold and

sine then muh sharper results have been proved [12, 15℄:

pc =
π2

18 logn
−

Θ(1)

(log n)3/2
.

Suh sharp or sharper bounds have been obtained for a handful of other

spei� models [4,8,9℄, but still remain open in general. However, the level of
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preision of the Aizenman-Lebowitz result was established in full generality

for ritial models by Bollobás, Duminil-Copin, Morris and Smith [5℄. They

introdue the following key notion of di�ulty.

De�nition 1.1 (De�nition 1.2 of [5℄). Let U be a ritial model and u be a

diretion. If u is an isolated stable diretion, we de�ne its di�ulty, α(u), to
be the minimum ardinality of a set Z ⊆ Z

2\Hu suh that Z̄ := [Hu∪Z]\Hu

is in�nite. For unstable diretions u we set α(u) = 0 and for non-isolated

stable ones we set α(u) = ∞. The di�ulty of U is

α = inf
C∈C

sup
u∈C

α(u), (1)

where C is the set of open semi-irles of S1
.

Let us note that the de�nition we give is formally di�erent from the one

in [5℄, but it turns out to be equivalent. Indeed, any unstable diretion u
satis�es [Hu] = Z

2
, sine one an infet 0 by de�nition of unstable diretions

and, by translation invariane one an infet lu, so that a translate of Hu

beomes infeted and one may onlude by indution. Here we used that for

any rational diretion, we an write Z
2 =

⊔

i∈Z(lu + i · xu) for some vetor

xu ∈ Z
2
, where we write A+x for {a+x, a ∈ A} for any set A ⊆ Z

2
and site

x ∈ Z
2
. For stable diretions the equivalene is proved in Lemma 2.7 of [5℄.

For the reader's onveniene, let us determine the di�ulties of the stable

diretions of the toy model of Figure 1. By de�nition unstable diretions

have di�ulty 0 and non-isolated stable ones have di�ulty ∞, so we are

left with the right (0) and top (π/2) isolated stable diretions. Let us start

with the diretion 0. Sine it is stable [H0] = H0, we have α > 1.2 However,

[H0 ∪ {(0, 0)}] = H0 ∪ l0, sine one an infet (0,−1) by the seond rule (see

Figure 1) and, indutively (0,−k) for all k ∈ N; one an also use the �rst

rule to infet (0, 1) and then (0, k) for all k ∈ N one (0, 0) and (0,−1) are
infeted. No further infetions our, as u is stable and Hu ∪ lu is a translate

of Hu. Thus, α(0) = 1, as l0 = {(0, 0)} is in�nite (lu is in�nite for any

rational diretion u). Turning to u = π/2, we have α(u) > 1 as before, and

one an hek as above that [Hu ∪ {(0, 0), (1, 0)}] = Hu ∪ lu using the �rst

and third rules. It remains to see that there does not exists x ∈ Z
2
suh

that {x} is in�nite, in order to onlude that α(u) = 2. Indeed, all rules

ontain at least 2 sites in Z
2 \Hu, so for any x we have [{x}∪Hu] = {x}∪Hu.

Finally, one we know that α(π/2) = 2 and α(0) = 1, we have that the open
half-irle (−π/2, π/2) only ontains one stable diretion and it has di�ulty

2

More generally, for any model and any isolated stable diretion u we have 1 6 α(u) <
∞ (see Lemma 2.7 of [5℄).
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1, so α 6 1, whih is the smallest possible value for a ritial model: by

de�nition, every half-irle ontains a stable diretion and, as we noted, only

unstable diretions have di�ulty 0.
The result of [5℄ states that

3

pc(n) =
(log log n)O(1)

(logn)1/α
.

1.2 Results

So far it has not been investigated how one ould determine the di�ulty α
in pratie, mainly owing to the simple de�nition and to the fat that for

simple models suh as the ones in Figure 1 this is straightforward. In this

paper we onsider α from a omputational perspetive.

Throughout the paper, we assume that U is desribed as a family of sets

of pairs of integer oordinates represented in binary. Therefore the size of

the input is proportional to

‖U‖ := logD ·
∑

U∈U

|U |, (2)

where D is the �diameter� of U :

D = 2 ·max

{

‖x‖∞ : x ∈
⋃

U∈U

U

}

. (3)

A further justi�ation of the need to take D into aount in ‖U‖ is provided

in the Appendix showing that the di�ulty α is not bounded in terms of

∑

U∈U |U | only. Our �rst result is that α is omputable. We prove this by

giving an expliit algorithm and bounding its omplexity.

Theorem 1.2. There exists an algorithm whih, given a ritial bootstrap

perolation update family U , omputes its di�ulty α.4

Remark 1.3. In fat, it is not hard to hek that our algorithm runs in time

at most

|U|2 · 2D
2(1+o(1)) = exp(O(D2)),

whih is in the worst ase at most doubly exponential in ‖U‖. This bound is

as sharp as a bound in terms of D only an be. Indeed, |U| = eO(D2)
and |U|

an be as large as 2D
2
.

3

They atually give mathing bounds up to a onstant fator, whih requires dividing

ritial models into two sublasses with di�erent logarithmi fators.

4

This result is proved independently by Balister, Bollobás, Morris and Smith [3℄.
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Expliit bounds analogous to the ones derived in the proof of Theorem 1.2

are the only missing ingredient ausing the onstants appearing in the main

results of [5, 14℄ to be impliit (f [5, Lemma 6.5℄ and its version in [14℄).

Moreover, a orresponding unomputability result in higher dimensions

based on superritial models in two dimensions has been announed by

Balister, Bollobás, Morris and Smith [3℄ prior to our work. As that ould

lead one to expet, Theorem 1.2 is not at all automati.

On a high level, the main idea behind our proof is that if a half-plane

Hu is infeted, the proess restrited to the line lu is a 1-dimensional boot-

strap perolation proess. Owing to the bounded range of the rules and

translation invariane, the �nal state of this proess is either periodi with

bounded period or �nite, whih two possibilities an be distinguished in a

orrespondingly bounded time.

On the other hand, we also prove the following negative result.

Theorem 1.4. The problem of omputing the di�ulty α of a ritial boot-

strap perolation update family U is NP-hard.

This result is proved by a fairly tehnial redution to the Set Cover

deision problem in Setion 3. Besides the result of [3℄, another reason to

expet that the problem of determining α is hard in a sense made lear in

Theorem 1.4 is a reent parallel notion of di�ulties adapted to subritial

models termed �ritial densities�. Those were introdued by the �rst aut-

hor [13℄ and they are learly far too ompliated for one to expet to be able

to ompute them. From this point of view the result of Theorem 1.4 is not

unexpeted.

2 Deidability: proof of Theorem 1.2

In this setion we provide an algorithm to ompute the di�ulty of a ritial

model. Let us stress that it is not optimized and is only meant to prove

Theorem 1.2.

Proof of Theorem 1.2. Fix an update family U . To start, let us see how to

determine the set of stable diretions in time polynomial in the size of the

input ‖U‖. Indeed, for eah site x in eah rule U we determines its polar

oordinates (rx, θx) = (‖x‖2, x/‖x‖2) ∈ R+ × S1
. On the pratial side, rx

an be represented as the square root of an integer bounded by D2
and θx an

be enoded by its tangent, whih is rational with numerator and denominator

bounded by D, and one boolean indiating whether θx ∈ (−π/2, π/2). Then
for eah rule U we take an arbitrary x0 ∈ U and ompute θx − θx0 for
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all x ∈ U (its tangent is still rational and its numerator and denominator

are bounded by D2
). We determine the largest and smallest suh values,

δ+, δ−, onsidering di�erenes in (−π, π]. Finally, the unstable interval of U
is (θx0 + δ+ + π/2, θx0 − δ− + 3π/2) ⊂ S1

(whih is empty if δ+ − δ− > π).
The set of unstable diretions is then the union of these intervals for all

U ∈ U . In partiular, the isolated stable diretions and, more generally, the

endpoints of the intervals of stable diretions for U are among the endpoints

of the intervals for di�erent U , so there are at most 2|U| of them. In order to

determine this union in pratie it su�es to hek for eah of these endpoints

whether it is stable (not ontained in any of the unstable intervals for other

U ∈ U) and keep the information whether it was a left or right endpoint of the

assoiated interval. Hene, the preliminary step of determining the (isolated)

stable diretions is ompleted in polynomial time in ‖U‖. It is also not hard
to verify for eah of the |U| right-endpoints whether there exists a stable

diretion in the half-irle starting there and whether there are �nitely many

of them (i.e. all are isolated), whih allows one to deide if U is superritial,

ritial or subritial in polynomial time.

Assuming that U is determined to be ritial, we an use (1) to ompute

the di�ulty, α, one we know all α(u) ∈ N for isolated stable diretions.

Indeed, for eah of the open semi-irles with one endpoint among those

onsidered above, we only need to alulate the maximum of α(u) for isolated
stable diretions u (if there are any non-isolated diretions, we do not need

to onsider the semi-irle). As this an also be done in time polynomial in

‖U‖, we will now �x an isolated stable diretion u and provide an algorithm

for determining α(u).
We shall assume that D is su�iently large throughout the proof. Indeed,

given D, all U ∈ U are distint subsets of {−D/2, . . . , D/2}2, so there are

at most 22
(D+1)2

possible U and |U| 6 2(D+1)2
. Therefore, the algorithm's

asymptoti omplexity is only determined by families with large values of

D, as one an diretly list the di�ulties for isolated stable diretions with

�small� values of D in onstant time.

Reall the notation Z̄ from De�nition 1.1, whih we shall use without

speifying u, as it will be lear from the ontext. In order to determine

α(u) we will use the following lemmas to bound the size of the set Z in

De�nition 1.1. The �rst of these is a one-dimensional result whih we shall

redue the problem to.

Lemma 2.1. Let U be an update family, let u ∈ S1
be an isolated stable

diretion and let A be a �nite subset of lu. Then the set Ā is either in�nite

or its maximal distane from A is at most D3 · 2D.
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Proof. Observe that by stability of u we have Ā ⊂ lu. Then the dynamis

started from Hu ∪ A an be viewed as a dynamis on lu only. Note that lu
onsists of integer sites on a line, so it is naturally identi�ed with Z by the

omposition of a homothety and a rotation. Furthermore, we know that u is

an isolated stable diretion and, thereby, lu+π/2 (whih is simply a rotation

of lu) ontains a site x in some U ∈ U with ‖x‖∞ 6 D/2 by (3). Hene, the

homothety ratio is between 1/D and 1.
Notie that the dynamis restrited to lu is simply a 1-dimensional boot-

strap perolation proess, where eah rule U ∈ U is replaed by U ∩ lu if

U ⊂ (Hu ∪ lu) and removed otherwise. It therefore su�es to prove the

following laim, whih onludes the proof.

Claim. For a one-dimensional bootstrap perolation family and a �nite set

A ⊂ Z, we have that Ā is either in�nite or its maximal distane from A is at

most D2 · 2D.

Proof. Denote A = {a1, . . . , an} with a1 < · · · < an. Let us denote by P the

property that the following three onditions hold:

• |[A]| < ∞, d(s, A) 6 D · 2D+1
for all s ∈ [A],

• max[A]− an 6 D · 2D+1 −D,

• a1 −min[A] 6 D · 2D+1 −D.

Let A be minimal with respet to inlusion violating P . We next prove that

|[A]| = ∞.

Base. Assume that |A| = 1, without loss of generality A = {0}. If [A] = A,
we have nothing to prove, as P learly holds. Otherwise, assume that x ∈ Z

beomes infeted on the �rst step. Then, sine {0} is the only infeted site

initially, {x} is a rule in the update family. However, that entails that k.x
beomes infeted on the k-th iteration at the latest and, in partiular, [A] is
in�nite.

Step. Assume that |A| > 1. Assume for a ontradition that there exists

0 < i < n and b ∈ [A] suh that ai+1 > b > ai and min(b − ai, ai+1 − b) >
D · 2D+1

. Then, by minimality of A, both A′ = {a1, . . . , ai} and A′′ = A \A′

satisfy P . Therefore,

min[A′′]−max[A′] > D · 2D+2 − 2(D · 2D+1 −D) > D,
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so that [A] = [A′] ∪ [A′′], whih ontradits the existene of b ∈ [A]. Indeed,
there is no site in Z suh that a rule translated by it intersets both [A′] and
[A′′] and by de�nition of the losure those do not evolve under the dynamis.

Assume next that max([A]) > an +D · 2D+1 −D (the orresponding ase

for min([A]) is treated identially). Then, by the pigeon-hole priniple, there

exist b, c ∈ Z with an +D < b < c−D < max([A])− 2D suh that

∅ 6= [A] ∩ [b, b+D − 1] = ([A] ∩ [c, c+D − 1])− (c− b)

(sine no infetion an ross a region of size D not interseting [A] to reah

max([A])). Therefore, [A] ∩ [b, b + D − 1] infets a translate of itself, sine

the dynamis to the right of b+D is not a�eted by infetions to the left of

b, one we �x the state of b, . . . , b+D− 1. Similarly to the ase |A| = 1, this
is a ontradition with |[A]| < ∞, whih onludes the proof.

The next lemma is an appliation of the overing algorithm of [6℄. For

the sake of ompleteness, we will inlude a sketh of it in the proof.

Lemma 2.2. Let U be a ritial update family and u be an isolated stable

diretion. Let Z ⊂ Hu+π be a set of size at most D. Then for every z ∈ [Z]
we have 〈z, u〉 > −O(D4).

Proof. First, we prove the following laim.

Claim. There exists a set T ⊃ {u} of three or four stable diretions on-

taining the origin in their onvex envelope (if viewed as a subset of R
2
) suh

that for eah v ∈ T there exists x ∈ Z
2 ∩ vR suh that ‖x‖∞ 6 D/2 and

suh that for every v, w ∈ T we have |v − w + π| > 2/D2
.

Proof. First assume that u+π is unstable. Let T onsist of u and the stable

diretions, u+ π + δ+ and u+ π − δ− (δ± ∈ (0, π]), losest to u+ π in both

semi-irles with endpoint u+ π (these exist as the set of stable diretions is

losed). Furthermore, realling that U is not superritial, there is no semi-

irle of unstable diretions, so δ+ + δ− < π. This implies that indeed T
ontains 0 in its onvex envelope.

Assume that, on the ontrary, u + π is stable. Consider the semi-irle

(u, u + π) ⊂ S1
. In it there exists a stable diretion (sine U is not su-

perritial). If there are no unstable diretions, we pik u− = u + π/2,
otherwise, we set u− to be an isolated or semi-isolated stable diretion in

that semi-irle. We de�ne u+ similarly in the opposite semi-irle. We set

T = {u, u+ π, u−, u+}. It is lear that 0 is in the onvex envelope of T .

11



In both ases T onsists of diretions whih are either isolated, semi-

isolated or a rotation by π/2 of suh a diretion. Therefore, as in the proof

of Lemma 2.1, there exists a site x as in the statement of the laim.

Finally, let us bound the di�erene between two diretions v 6= w suh

that there exist x ∈ Z
2∩vR and y ∈ Z

2∩wR with max(‖x‖∞, ‖y‖∞) 6 D/2.
Indeed, det(x, y) ∈ Z \ {0}, so

| sin(v − w)| =
| det(x, y)|

‖x‖2‖y‖2
>

2

D2

and therefore |v − w| > 2/D2
.

We �x a set T as in the laim. We all a T -droplet a polygon with

sides perpendiular to the diretions in T . Sine T ontains 0 in its onvex

envelope there exist T -droplets. Sine the di�erene between onseutive

diretions in T are at most π−2/D2
, we an �nd a T -droplet P with diameter

O(D3) ontaining [−D/2, D/2]2 ⊇
⋃

U∈U U (e.g. a T -droplet irumsribed

around a irle with D).

We an then diretly apply the overing algorithm of [6℄ to onlude the

proof. Let us outline that algorithm in our setting. We start with a set of

translates of P , namely {z + P, z ∈ Z}. At eah step if two of the urrent

droplets P1, P2 satisfy that there exists x ∈ Z
2
suh that (P+x)∩P1 6= ∅ and

(P +x)∩P2 6= ∅, then we replae them by the smallest T -droplet ontaining

their union. We repeat this as long as possible.

By Lemma 4.6 of [6℄ (stating that the diameter of the smallest droplet

ontaining two interseting ones is at most the sum of their respetive diame-

ters) the sum of diameters of droplets inreases by at most diam(P ) = O(D3).
Therefore, in the �nal set of droplets the total diameter is O(D4), as the num-

ber of droplets dereases by 1 at eah step. Moreover, by Lemma 4.5 of [6℄

the union of the �nal droplets ontains [Z], so the proof is omplete, as eah

of the output droplets ontains at least one site of Z ⊂ H−u.

Algorithm. Let us �rst desribe an algorithm to determine α(u) and pos-

tpone its analysis. For eah integer k from 1 to D we suessively perform

the following operations to determine if there exists a set Z of size k as in

De�nition 1.1. We stop as soon as suh a set is found and return the orre-

sponding (minimal) value of k. For eah �xed k we start by hoosing a set

Z0. The �rst site is 0 and eah new one z is piked within distane D11 · 2D

from some of the previous ones and suh that

0 6 〈z′ − z, u〉 = O(D4) (4)

12



for some z′ among the previous ones. There are at most

(

DO(1) · 2D

D

)

= 2D
2+o(D2) = exp(O(D2))

suh hoies. For eah of them we suessively inspet di�erent translations

t ∈ Z
2
, suh that 0 6 〈t, u〉 = O(D5) and

0 6 〈t, (−y, x)〉 < x2 + y2, (5)

where (−y, x) ∈ Z
2
is suh that (x, y) ∈ uR and x and y are o-prime, in the

(total) order given by 〈t, u〉 starting from t = 0. Finally, �x Z = Z0 + t.
For eah Z we run the bootstrap dynamis with initial set of infetions

Z ∪Hu until it either stops infeting new sites or infets a site s with ‖s‖∞ >

D13 ·2D and 〈s, u〉 = O(D5). This an be done by heking at eah step eah

site at distane D13 · 2D +D from the origin for eah rule and repeating this

for 5D time steps. If the dynamis beomes stationary, we ontinue to the

next hoie of Z, while otherwise we return |Z| for the value of α(u).

Corretness. We now turn to proving that the algorithm does return an

output and it is preisely α(u). The �rst assertion is easy. Indeed, as u is an

isolated stable diretion, (by [5, Lemma 2.8℄) there exists a rule U ∈ U with

U ⊂ Hu ∪ {x ∈ lu, 〈x, u+ π/2〉 > 0},

so that adding D onseutive sites on lu to Hu is enough to infet a half-line

of lu, only taking U into aount. Thus, we know that α(u) 6 D and the

algorithm will eventually hek suh a on�guration when k = D, unless it

has returned a smaller value, and infetions will propagate to distaneD13·2D

(and in fat to in�nity). Let us then prove that the output is α(u).
Denote by tj the values of t onsidered by the algorithm, so that t0 = 0.

Note that by (5) there exists a single t ∈ Z
2
with a given value of 〈t, u〉, so

that this salar produt indeed de�nes a total order on the values of t and
we an also extend our notation to j < 0 for onveniene, though those are

not examined by the algorithm. Further de�ne lj := {s ∈ Z
2, 〈s, u〉 = 〈tj, u〉}

and Zj = Z0 + tj for some Z0 onsidered by the algorithm, so that l0 = lu by

abuse of notation.

5

5

Here we view 0 as an element of Z, possible value of j, while u is an element of S1
.

As we will not make referene to lv with v = 0 ∈ S1
, we hope that this will not lead to

onfusion.
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Claim. Assume that a set Zi onsidered by the algorithm is of size k 6

α(u) and suh that Z̄j (reall De�nition 1.1) is �nite for all 0 6 j 6 i.
Then the maximal distane between a site from Z̄i and Zi is at most D5 ·
2D max(0, 〈ti, u〉).

Proof. We prove the statement by indution on i ∈ Z. For i < 0, i.e. 〈ti, u〉 <
0, then Zi ⊂ Hu by (4) and there is nothing to prove, sine Z̄i = ∅ � no

additional infetions take plae. Assume the property to hold for all tj with
j 6 i. We aim prove the same for i+ 1.

Observe that for eah 0 < j 6 i+ 1 we have that

Z̄i+1 ∩ lj ⊆ (Z̄i+1−j ∩ l0) + ti+1 − ti+1−j . (6)

Indeed, Zi+1∪Hu ⊆ (Zi+1−j∪Hu)+ ti+1− ti+1−j , sine Zi+1 = Zi+1−j+ ti+1−
ti+1−j and Hu + ti+1 − ti+1−j ⊃ Hu. Furthermore, by stability of u we have

that Z̄i+1∩ lj = ∅ for j > i+1. Also, by (6) and the indution hypothesis we

have that Z̄i+1 \ l0 is at distane at most D5 · 2D〈ti, u〉 from Zi+1, so we are

left with proving that sites in Z̄i+1∩ l0 are at distane at most D5 ·2D〈ti+1, u〉
from Zi+1.

Consider the set

Z ′ = {z ∈ Z̄i+1 ∩ l0, d(z, Zi+1) 6 D +D5 · 2D〈ti, u〉}.

By the reasoning above we have that Z̄i+1 ∩ l0 = Z ′ ∪ Z̄ ′
. However, by

Lemma 2.1, Z̄ ′
annot be at distane more than 2D ·D3

from Z ′
, as Zi+1 \ l0

is at distane at least D from all sites in Z̄i+1 \Z
′
. Realling the de�nition of

Z ′
, we get that Z̄i+1 is at distane at most D+D3 ·2D+D5 ·2D〈ti, u〉 and we

are done. Indeed, 〈ti+1 − ti, u〉 > 1/D, sine there exists a site x ∈ Z
2 ∩ uR

with ‖x‖∞ 6 D/2 and 〈ti+1 − ti, x〉 > 0 is an integer.

The laim learly implies that the algorithm annot return a value smaller

than α(u). In order to onlude, we need to show that when k = α(u) among

the sets examined by the algorithm there will be a set Z suh that there exists

z ∈ Z̄ with ‖z‖∞ > D13 · 2D and therefore the output will be α(u).
Consider a set Z ⊂ Z

2 \Hu as in De�nition 1.1 of size α(u) (and therefore

minimal). Reall that by Lemma 2.2 every z ∈ Z satis�es 〈z, u〉 = O(D4)
(otherwise Z̄ = [Z] is �nite, as U is not superritial) and, by stability of u,
the same holds for Z̄. Let P = {x ∈ R, ∃z ∈ Z, 〈z, u〉 = x} and de�ne P̄
similarly for Z̄. These are disrete subsets of R. Note that by minimality of

Z and Lemma 2.2, P ⊂ R annot have a gap of length larger than O(D4).
Indeed, there exists x ∈ P̄ suh that in�nitely many points of Z̄ projet to it

and those are all in Z̄ ′
where Z ′

are the sites in Z that projet to x′ ∈ P suh

14



that there exist n and x0 = x, x1, . . . , xn = x′
in P with |xj+1 − xj | = O(D4)

and if Z ′ 6= Z, we obtain a ontradition with the minimality of Z.
Analogously, let P⊥ = {x ∈ R, ∃z ∈ Z, 〈z, (u + π/2)〉 = x} and de�ne

P̄⊥
similarly for Z̄. We laim that its P⊥

annot have a gap of length larger

than O(D10 ·2D). This time P̄⊥
is neessarily in�nite, as only a �nite number

of points z ∈ Z
2
with 〈z, u〉 = O(D4) have the same (u + π/2)-projetion.

Considering a set Z ′ ⊂ Z induing the orresponding distane O(D10 · 2D)-
onneted omponent of P⊥

and using the laim instead of Lemma 2.2 as in

the previous paragraph, we reah a ontradition with the minimality of Z.
Hene, all Z of size α(u) as in De�nition 1.1 are in fat onsidered by the

algorithm. Sine suh a Z with in�nite Z̄ exists, the algorithm does indeed

output α(u).

3 NP-hardness: proof of Theorem 1.4

In this setion we prove Theorem 1.4 by providing a redution from Set

Cover to 2D Critial Bootstrap Diffiulty. For the Set Cover

problem we onsider a universe {1, . . . , N} and a olletion S of subsets of the

universe and assume that |S| > 4 and N > 4. The Set Cover problem asks

for determining the minimum ardinality of a subset of S whih overs the

universe. It is one of the �rst NP-omplete problems desribed by Karp [17℄.

We �x an instane

S = {Si : i ∈ Z, 1 6 i 6 |S|} .

Our goal is to de�ne a ritial bootstrap perolation update family whose

di�ulty α is (up to a simple transformation) the solution to Set Cover.

Let the set of rules assoiated to S be

US = {U0, U1} ∪ {Uk
i,j : 1 6 i 6 |S|, 1 6 k 6 |S|2, i, k ∈ Z, j ∈ Si},

where

U0 =
{

(−k, 0), (0,−k) : 1 6 k 6 N |S|2
}

,

U1 =
{

(+k, 0), (0,−k) : 1 6 k 6 N |S|2
}

and the rules Uk
i,j, de�ned as follows, share a large portion of their struture

(see Figure 2).

T =
{

(0,−y) : 1 6 y 6 N · |S|2
}

,

W ={(x, 0) : 1 6 x 6 |S|2} ∪ {(l · |S|, 1) : 1 6 l 6 |S|},

Uk
i,j =T ∪

(

(W ∪ {(i · |S|, 2)})− (k + (N + j) · |S|2, 0)
)

.
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W ∪ {(i · |S|, 2)} region of j ∈ [1, N]

2

. . . |S| . . . 2|S| . . . i|S| . . . |S|2 . . . k + (N + j)|S|2x = 1

y = 0

1

2

Figure 2: A visualisation of (Uk
i,j \ T ) + (k + (N + j)|S|2, 0); the shaded ell

indiates where the origin is shifted to.

First we laim that the only isolated stable diretion is u = π/2 and

[−π, 0] ontains the rest of the stable diretions. The unstable intervals

orresponding to the rules U0 and U1 are (0, π/2) and (π/2, π), respetively.
The unstable interval of Uk

i,j is ontained in (0, π/2) for all i, j, k. Thus, US

is indeed ritial and α(US) = α(u), so that we an fous on this diretion.

Let M ⊆ {1, . . . , |S|} be an optimal solution to the Set Cover problem

given by S i.e. a set of minimal size suh that

⋃

i∈M

Si = {1, . . . , N}.

We �rst laim that, setting

Z0 = W ∪ {(i · |S|, 2) : i ∈ M}

we have [Z0 ∪Hu] ⊃ lu, so that

α(u) 6 |Z0| = |W |+ |M | = |S|2 + |S| + |M |. (7)

Indeed, using one eah of the rules Uk
i,j for all i ∈ M , j ∈ Si and 1 6 k 6 |S|2,

one infets all sites in

[

1 + (N + 1) · |S|2, (2N + 1) · |S|2
]

× {0},

sine M is a over, and those are enough to infet lu using U0 and U1.

For any Z ⊆ Z
2
reall the notation Z̄ = [Z ∪Hu] \Hu from De�nition 1.1.

To prove that (7) is atually an equality, we suppose that there exists a set

Z ⊂ Z
2 \Hu for whih |Z̄| = ∞ and |Z| < |Z0|. Fix a minimal suh set Z.

First note that |U0 \Hu| = N |S|2 and similarly for U1. Therefore, if there

exists p ∈ Z
2 \Hu suh that one of p+ U0 and p + U1 is a subset of Z ∪Hu,

then |Z| > N |S|2 > |Z0| � a ontradition. However, in order not to have

Z̄ = ∅ some of the rules must be appliable to Z ∪ Hu and therefore there

exists p ∈ Z
2 \Hu suh that p+W ⊆ Z.
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Observation 3.1. For any q ∈ Z
2 \ {0} we have |(q +W ) \W | > |S|.

Although the veri�ation is immediate, alling this fat an observation is

deeptive, sine W is designed to possess this property. It follows that p is

unique, otherwise |Z| > |W |+ |S| > |Z0| (sine any minimal over is smaller

than the universe), a ontradition.

Lemma 3.2. Every point q ∈ Z̄ \ Z has the same y-oordinate as p.

Proof. Suppose that there exists q ∈ Z̄ \ Z ontraditing the statement of

the lemma and onsider suh a q with minimal infetion time for the proess

with initial set of infetions Z ∪Hu. Then Z ontains at least |W | − |S| sites
on the row of q, as all rules ontain at least as many and by minimality of q.
Therefore, |Z| > 2(|W | − |S|) > |Z0|, a ontradition.

By Lemma 3.2 and the fat that (Z ∪Hu)− (0, 1) ⊆ (Z− (0, 1))∪Hu and

(Z∪Hu)+(1, 0) = (Z+(1, 0))∪Hu, we an assume without loss of generality

that p = 0.
By the minimality of Z and Lemma 3.2, the y-oordinate of any site in

Z is 0, 1, or 2. Indeed, in order to infet eah of the sites q ∈ Z̄ ⊆ lu, we use
one of the rules, but those are all ontained in {x ∈ Z

2, 〈x, u〉 6 2}, so one

an remove any other sites from Z without hanging Z̄.

Lemma 3.3. There does not exist q ∈ Z
2 \ {0} suh that q +W ⊆ Z̄.

Proof. Let q be as in the statement of the lemma suh that no other q′ +W
beomes fully infeted before q + W for the proess with initial infetions

Z ∪Hu. By Lemma 3.2 we have that q ∈ lu.
If |x| > |S|2, then by Lemma 3.2 the set Z \W ontains at least |W \ lu| =

|S| elements (with y-oordinate 1), therefore |Z| > |W | + |S| > |Z0|, a
ontradition.

Assume that |x| < |S|2. If lu∩ (q+W ) \W ⊆ Z, then by Observation 3.1

we have |Z| > |W | + |S| � a ontradition. Therefore, some of the sites in

lu ∩ (q +W ) \W ⊆ Z̄ are infeted by the proess. However, by minimality

of q they an only be infeted using U0 or U1. Yet, as soon as one an use

rule U0 or U1 to infet a site in lu, the entire lu an be infeted using those

rules only. Thus, removing from Z every site in Z \W with y-oordinate 1
(and in partiular (q +W ) \ (lu ∪W ) 6= ∅) does not prevent the infetion of

in�nitely many sites, whih ontradits the minimality of Z.

By Lemma 3.3 we have that until a rule U0 or U1 is used the only possible

infetions are of the form �k + (N + j)|S|2 beomes infeted via rule Uk
i,j�.

Therefore, all sites (x, 2) ∈ Z are either redundant (whih ontradits the

minimality of Z) or satisfy x = i · |S| with 1 6 i 6 |S|.
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Finally, set I = {i : (i · |S|, 2) ∈ Z} and

J = {1, . . . , N} \
⋃

i∈I

Si.

Then, in order to have |Z̄| = ∞, it is neessary (and su�ient) to have a

sequene of N |S|2 onseutive sites in

(Z ∩ lu) ∪ {(k + (N + j)|S|2, 0) : i ∈ I, 1 6 k 6 |S|2, j ∈ Si}.

However, suh a sequene is either disjoint from the infetions of the form

(k + (N + j)|S|2, 0), in whih ase |Z| > N |S|2 > |Z0| � a ontradition, or

disjoint from W . In the latter ase the sequene ontains at most

|Z| − |W | − |I|+ (N − |J |) · |S|2 < (|Z0| − |W |) + (N − |J |)|S|2

infeted sites. If |J | 6= N , i.e. I is not a over, the number of sites is at

most |S| + (N − 1)|S|2 < N |S|2 � a ontradition. Otherwise, I is a over

and |Z| > |W | + |I| > |Z0|, as M is a minimal over. This ontradition

ompletes the proof that α(u) is indeed equal to |W |+ |M | = |S|2+ |S|+ |M |
as laimed.

The set US (to whih we redued the Set Cover problem S) ontains
|S|3

∑

Si∈S
|Si| rules, eah of whih has ardinality at most O(N |S|2), thus

the redution is indeed polynomial. This onludes the proof of Theorem 1.4,

beause α(US)− |S|2 − |S| is the size of an optimal set over from S.

4 Open problems

Let us onlude with a few open questions naturally suggested by the present

work. Of ourse, many more omplexity issues arise systematially for hard

problems, but let us mention the foremost ones.

Question 1. Can one �nd a good approximation of α in time polynomial of

the input size ‖U‖ (de�ned in (2))?

Question 2. Are there interesting subfamilies of ritial models for whih

the di�ulty is omputable in polynomial time ‖U‖?

Question 3. In view of Remark 1.3, an one �nd an algorithm whih om-

putes α in eO(‖U‖)
time?

In the appendix we provide an example showing the α itself an be expo-

nentially large in ‖U‖, suggesting that one should not hope for a subexpo-

nential omplexity algorithm to ompute it.

Question 4. Is the 2D Critial Bootstrap Diffiulty problem in NP

(and thus NP-omplete)?

18



Aknowledgments

The authors would like to thank the organizers of ICGT 2018, Lyon, during

whih this projet started. We also thank Rob Morris for helpful omments

regarding [3℄.

A Relevane of the diameter

In this appendix we provide a sequene (Uk)
∞
k=2 of update families suh that

∑

U∈Uk
|U | is onstant and α(Uk) is exponential in ‖Uk‖. This answers a

question raised during the preparation of this paper. The example gives

some relevane to the questions in Setion 4 as well as further justifying the

de�nition of ‖U‖ in equation (2). For any integer k > 2 let Uk = {U1, U2}
with

U1 = {(0,−1), (k, 0), (k − 1, 0)}

U2 = {(0,−1), (−k, 0), (−k + 1, 0)}.

Proposition A.1. For any integer k > 2 the update family Uk is ritial and

α(Uk) = k =
D

2
=

1

2
· e‖Uk‖/6.

Proof. It is not hard to hek as in the examples in Figure 1 that (similarly

to the Duarte model) the set of stable diretions for Uk is [−π, 0]∪{π/2}, so
the model is ritial. Moreover, α := α(Uk) = α(u) where u := π/2 is the

only isolated stable diretion.

It su�es to prove that α = k. Consider Z0 = {(i, 0) : i ∈ {1, . . . , k}}
and observe that [Z0 ∪ Hu] = Hu ∪ lu. Indeed, by stability of u we have

[Z0 ∪Hu] ⊆ Hu ∪ lu, while using U1 one an infet suessively (−i, 0) for all
i 6 0. Similarly, using U2, one an infet (k + i, 0) for i > 0.

We are thus left with proving that for any Z ⊂ Z
2
with |Z| < k we have

|Z̄| < ∞. Consider a minimal set Z ontraditing this statement.

Let p(i, j) = (i, 0) be the projetion onto lu and let p(Z) = {p(z) : z ∈ Z}
be the projetion of Z. We laim that

p(Z) ⊇ p(Z̄). (8)

Let lj = {(i, j) : i ∈ Z} and let m = max{j : Z̄ ∩ lm 6= ∅}. By

stability of u we have that lm ∩ Z 6= ∅. As (0,−1) ∈ U1 ∩ U2, we have that

p((Z̄ \ Z) ∩ lm) ⊆ p(Z̄ ∩ lm−1). Moreover, sine U1 ∪ U2 ⊂ Hu ∪ lu, we have
Z̄ ∩ lm−1 = (Z \ lm) ∩ lm−1. Therefore, if we onsider Z

′ = (Z \ lm) ∪ ((Z ∩
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lm)− (0, 1)), i.e. we derease the y-oordinates of all sites in Z ∩ lm by 1, we

have that

p(Z̄ ′) ⊇ p(Z̄ ∩ lm). (9)

Furthermore, as U1∪U2 ⊂ Hu∪lu and Z ′∩(Hu∪
⋃

j<m lj) ⊇ Z∩(Hu∪
⋃

j<m lj),
we have

Z ′ ∩ (Hu ∪
⋃

j<m

lj) ⊇ Z ∩ (Hu ∪
⋃

j<m

lj).

Combining this with (9), we get that p(Z̄ ′) ⊇ p(Z̄). Repeating this proedure
until m = 0, we obtain (8).

By stability of u we have that Z̄ ⊆
⋃

06j6m lj, so Z̄ is in�nite if and only

if p(Z̄) is. Sine |p(Z)| 6 |Z|, we may replae Z by p(Z) and assume without

loss of generality that Z ⊂ lu. As lu identi�es with Z by (i, 0) 7→ i, the
following lemma onludes the proof.

Lemma A.2. Consider the 1-dimensional update family onsisting of the

rules U1 = {k, k − 1} and U2 = {−k,−k + 1}. There does not exist Z ⊂ Z

with |Z| < k suh that |[Z]| = ∞.

Proof. Notie that if z ∈ [Z] \ Z is used to infet another site using rule U1,

then either z − k or z − (k − 1) gets infeted after z, so z is infeted using

rule U1. Therefore, z + k and z + k − 1 are infeted before z.
Let Z be a ounterexample of the statement of the lemma. Without loss

of generality, we may assume that inf([Z]) = −∞. Neessarily, there exists

z ∈ [Z] with z < minZ−k2
, whih is infeted using rule U1. By the argument

above, z + k and z + k − 1 are infeted via rule U1 (before z gets infeted).

Iterating this argument we obtain that X0 = {z+ k2− k+1, . . . , z+ k2} are

all infeted by rule U1.

Let Xi = X0 + k · i and

Yi = {x− k · i− z − k2 + k : x ∈ Xi, x is infeted using U1},

so that Y0 = {1, . . . , k} ⊇ Yi for all i > 0. As in the proof of Proposition A.1,

one an hek that [X0] = Z, so [Z] = Z. Therefore, by an analogous

reasoning for U2, we have that all sites to the right of Z are infeted using

rule U2. Thus, Yi0 = ∅ for i0 su�iently large. For any y ∈ Yi−1 \ Yi the site

y + k · i+ z + k2 − k is ontained ∈ Z, beause by de�nition, it does not get

infeted by U1, and the �rst argument of this proof shows that it annot be

infeted via U2. Hene, k = |Y0 \ Yi0| 6 |Z|, a ontradition.
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