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Abstract

We consider a generalised oriented site percolation model (GOSP)

on Zd with arbitrary neighbourhood. The key additional difficulties

as compared to standard oriented percolation (OP) are the lack of

symmetry and, in two dimensions, of planarity. We establish that,

despite these deficiencies, in the supercritical regime GOSP behaves

qualitatively like OP.
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1 Introduction

Oriented percolation on Zd is a classical model in probability theory and

statistical physics, whose behaviour is relatively well understood with many
of the main advances on the subject dating back to the 1980s (see [8, 24,
29, 30] for comprehensive expositions). It is also essentially equivalent to

the well-known contact process, but also linked to many other models and
often used as a tool in proofs.
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In this work we study the supercritical phase of a natural generalisa-
tion of oriented site percolation on Zd with arbitrary finite neighbourhood,

which we define next. Our goal is to examine the importance of symmetry
and planarity to the qualitative behaviour of oriented percolation. The ge-
neralisation is further motivated by its relations with probabilistic cellular

automata and bootstrap percolation, as discussed in Section 2.

1.1 Model

Our model of interest is generalised oriented site percolation (GOSP) on Zd

for d > 2. The model is defined by a neighbourhood—a finite set X ⊂
Zd \ {o} (o shall denote the origin of Zd) with |X| > 2 such that

∃u ∈ Rd, ∀x ∈ X : 〈x,u〉 > 0, (1)

which ensures the orientation of the model, and a parameter p ∈ [0, 1]. For

convenience we will always assume that u = ed, where (ei)
d
i=1 denotes the

canonical basis of Rd and that the group generated by X is Zd. This can
be achieved by an invertible linear transformation of Zd and, possibly, a

restriction to a sublattice. We denote by Pp the product Bernoulli measure

of parameter p on Zd. The configuration ω ∈ Ω = {0, 1}Zd

is assumed to

be distributed according to this measure. We endow the vertex set Zd with
the locally finite translation-invariant oriented graph structure with edge
set {(a, a + x) : a ∈ Zd,x ∈ X} generated by X (see Fig. 1). We refer to

this graph as Zd when X is clear from the context and GX otherwise.
One can naturally identify ω ∈ Ω with the set of open sites {x ∈ Zd :

ωx = 1} ⊂ Zd, all other sites being closed. The open sites induce a subgraph

of GX by keeping all edges between open sites. We can then introduce the
following variant of the natural notion of being connected in this graph.

For any a,b ∈ Zd we say that a infects b (there is a path from a to b) and
write a → b for the event that there exists a sequence of open vertices
a1, . . . , am = b such that a1 − a ∈ X and ai − ai−1 ∈ X for all i ∈ [2, m].
Note that we do not require for a to be open in order for a → b to occur.
We make this choice so that a → b and b → c are independent for all

a,b, c ∈ Zd.

For any B ⊂ Zd we further define a
B−→ b as a → b but with ai ∈ B

for i ∈ [1, m]. We write a
B−→ ∞ for the existence of infinitely many b such

that a
B−→ b and similarly for ∞ B−→ b. We further extend the notation by
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defining the event C
B−→ D for B,C,D ⊂ Zd as ∃c ∈ C, ∃d ∈ D such that

c
B−→ d. We say that C percolates in B if C

B−→ ∞. We define the order

parameter

θ(p) = Pp(o → ∞),

the critical probability

pc = pc(X) = inf{p > 0 : θ(p) > 0}

and say that there is percolation at p if θ(p) > 0 (by ergodicity this is equi-

valent to the a.s. existence of an infinite open path). Depending on the
value of p, we may speak of subcritical, critical and supercritical regimes.
We focus on the study of the supercritical phase, where θ(p) > 0.

It is convenient to view the last coordinate of Zd as the time in an inte-
racting particle system. We therefore usually denote points in Zd by (x, t)
with x ∈ Zd−1 and t ∈ Z. Let R = max{t ∈ Z : (x, t) ∈ X} be the range of
X. Consider the slab St = Zd−1 × (Z ∩ [t, t + R)) of width R with normal
vector ed, which we call time slab, and denote S = S0. Given an initial con-

dition A ⊂ S and a domain B ⊂ Zd, which we omit if B = Zd−1 × [R,∞),
the state at time t ∈ N is

Bξ
A
t =

{

b ∈ S : ∃a ∈ A, a
B−→ b+ ted

}

,

so (Zd−1×[R,∞)ξ
A
t )

∞
t=0 = (ξAt )

∞
t=0 is a Markov chain with state space {0, 1}S.

For simplicity if A = {o} ⊂ S, we write simply o instead of A. Finally, in
the supercritical phase it is useful to define

P̄p = Pp(·|∀t > 0, ξot 6= ∅).

1.2 Examples

Standard oriented percolation in 2 dimensions (2dOP) can be defined by
X = {(0, 1), (1, 1)}. However we will more customarily consider X =
{(−1, 1), (1, 1)} instead, which only spans half of Z2, but we will mostly dis-
regard this minor detail. We denote by pOP

c the critical probability of 2dOP.

In higher dimensions the situation is more ambiguous and at least the choi-
ces X = {ei : i ∈ {1, . . . , d}}; X ′ = {ed+εei : i ∈ {1, . . . , d−1}, ε ∈ {−1, 1}}
and X ′′ = X ′ ∪ {ed} for the neighbourhood could be legitimately called
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Figure 1: The graph GX on Z2 for X = {(−1, 1), (0, 1), (2, 1)}. The two
thickened paths cross although there is no common vertex nor an edge

pointing from one to the other. Here S = Z× {0}, since R = 1.

d-dimensional oriented percolation (ddOP). For concreteness, we will use

ddOP to refer to X ′′ and simply OP for generic statements.
As a prototype example of neighbourhood which is not covered by the

classical approach, but handled here, we retain the two-dimensional GOSP
defined by X = {(−1, 1), (0, 1), (2, 1)} (see Fig. 1). It exhibits the two main
additional difficulties of GOSP w.r.t. 2dOP: lack of symmetry w.r.t. the ver-

tical axis and the non-planarity. The latter property is witnessed by the fact
that paths may jump over each other without intersecting (see Fig. 1).

1.3 Results

Denote by tA(x) the hitting time of x ∈ Zd−1 from A:

tA(x) := min
{

t : (x, 0) ∈ ξAt
}

, (2)

and define the following subsets of S:

HA
t :=

{

(x, s) ∈ S : tA(x) 6 t− s
}

, (3)

KA
t :=

{

(x, s) ∈ S : ξAt (x, s) = ξSt (x, s)
}

, (4)

which we refer to as hit and coupled regions with initial condition A re-

spectively. We omit A if it is o. Our main result is the following.

Theorem 1. Consider a GOSP in any dimension d > 2. For any p > pc there

exists a deterministic convex compact set U = U(p) ⊂ Rd−1 with non-empty

interior such that for all ε > 0, P̄p-a.s., for every t large enough it holds that

Ht ∩Kt ⊃ (((1− ε)tU)× [0, R)) ∩ Zd, (5)
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ξot ⊂ (((1 + ε)tU)× [0, R)) ∩ Zd. (6)

The function p 7→ U(p) is continuous on (pc, 1] for the Hausdorff distance on

non-empty compact subsets of Rd−1. Furthermore, for any open set O ⊂ U ,

considering the cone C =
⋃

t>0(tO × {t}), we have

Pp

(

∃x ∈ C,x
C−→ ∞

)

= 1. (7)

Our second result provides more precise information in the near-critical
regime in two dimensions.

Theorem 2. For GOSP in two dimensions there exists v ∈ R such that
⋂

p>pc

◦

U(p) = {v},

where
◦

U(p) is the interior of the limit shape from Theorem 1.

1.4 Organisation

The paper is structured as follows. In Section 2 we provide the background
for our work. In Section 3 we gather some preliminaries and notation.
Sections 4 and 5 contain the proofs of Theorems 1 and 2 respectively.

The proofs are quite long and involve numerous intermediate results of
independent interest. Inevitably, some of the steps are already known or

require little or no new input as compared to existing arguments for OP or
for the contact process. Nevertheless, we choose to also present these steps
(without their proofs), so that the new ingredients we provide can be fitted

into the global strategy and the reader is not obliged to scour the vast and
entangled literature for all the “well-known” ingredients necessary. Moreo-
ver, in order not to disturb the flow of reasoning and to single out the novel

contributions, we gather them in Appendix A. Hence, specialists aware of
classical results in two and more dimensions and of more recent develop-

ments around shape theorems may be able to directly consult Appendix A.

2 Background

We only discuss the supercritical regime, which is the focus of our work.
Let us begin by emphasising that Theorems 1 and 2 are both known for OP
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and so are all intermediate results featuring in their proofs. More precisely,
in the case of ddOP Eqs. (5) and (6) are due to [9–11]; the continuity in

Theorem 1 was only recently established in [19], based on [17,18]; Eq. (7)
was proved in [5, Chapter 5]. Correspondingly, Theorem 2 for 2dOP was
established in [11] (see also [8,30]).

Following progress on OP, natural generalisations similar to GOSP have
often been considered. For the sake of comparability, in the present dis-

cussion, we focus on the most restrictive interesting case: GOSP with X ⊂
{(a, 1) : a ∈ Zd−1}, like the example of Fig. 1. These models exhibit the
main difficulties inherent to GOSP and are known as percolation probabi-

listic cellular automata (PPCA), 2dOP being called Stavskaya’s PCA in this
context [39,41–45].

Bezuidenhout and Gray [2] adapted the well-known renormalisation
scheme of Bezuidenhout and Grimmett [3] to show that in any dimension
PPCA (and more general models) do not percolate at criticality. Their re-

normalisation will be the starting point of the proof of Theorem 1. In two
dimensions an attempt at proving Theorem 2 and related results for PPCA
(and more general models) was made by Durrett and Schonmann [13],

themselves building on [11]. Unfortunately, they imposed a restrictive
technical assumption amounting to assuming that X consists of consecu-

tive sites. These neighbourhoods precisely lack the two main obstacles of
GOSP—asymmetry and paths jumping over each other (see Fig. 1). Furt-
hermore, unaware of their work, Taggi [41,42] claimed results for PPCA in

two dimensions based on [11], as outlined in [8]. Owing to non-planarity,
his proof is only correct for neighbourhoods of consecutive sites. As we
will see, [41, Theorem 2.2] does indeed hold for all PPCA (and, more ge-

nerally, GOSP), but requires a different treatment either based on higher
dimensional techniques or on our enhancement of the approach of Durrett–

Schonmann used to prove Theorems 1 and 2 respectively.
Let us note that GOSP are a particular case of boostrap percolation

[22, 33, 37]. As established in [22] (see particularly Remark 5.7 there),

Theorems 1 and 2 on GOSP can be used to obtain results for more general
bootstrap percolation models, particularly in conjunction with quantitative

bounds on the limit shape U , as discussed in the first arXiv version of the
present work [23, Section 5.7]. Other related models and generalisations
of OP, to which much of the present approach applies can be found in

[2,7,10,46] (also see [6]).
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3 Preliminaries

3.1 Duality

An important property of GOSP is that it is “nearly” self-dual (see [30, 40]

for background on duality). The dual of GOSP with neighbourhood X can
be thought of as a GOSP with paths moving “backwards” in time. More

precisely, write a  b if there exist m > 0 and (ai)
m
i=0 with a0 = a and

am = b such that for all 0 6 i < m we have ai ∈ ω and ai − ai+1 ∈ X.
In other words, a → b iff b  a. Note that there are two differences with

b → a. Firstly, the steps are reversed: ai+1 − ai ∈ −X. Secondly, for the
dual connections we require that the initial site is open instead of the final

one. Based on this notion we define the dual process (ξ̃At ) again with state
space S but time coordinate −ed. We draw the reader’s attention to the fact
that this process does not have the same law as the primal process (ξAt ), for

instance
θ̃(p) = Pp(o ∞) = pPp(o → ∞) = pθ(p).

However, up to such minor amendments all our results apply equally well

to the dual process and we will use them as needed without systematically
stating them.

3.2 The contact process

OP is closely related to the contact process (CP) [21, 29, 30]. The latter is
often used to model epidemics on a graph: vertices are individuals, which

can be healthy or infected. In this continuous time Markov dynamics in-
fected individuals recover with rate 1 and transmit the infection to each

neighbour with rate λ > 0 (infection rate). The CP admits a well-known
graphical construction that is a space-time representation [30]. We assign
to each vertex v and ordered pair (u,v) of neighbours independent Pois-

son point processes Dv with rate 1 and D(u,v) with rate λ respectively. For
each atom t of Dv we place a “recovery mark” at (v, t) and for each atom

of D(u,v) we draw an “infection arrow” from (u, t) to (v, t). An infection

path is a connected path moving in the increasing time direction without
crossing recovery marks, but possibly jumping along infection arrows in the

direction of the arrow. Starting from a set of initially infected vertices A,
the set of infected vertices at time t is the set of vertices v such that (v, t)
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can be reached by an infection path from some (u, 0) with u ∈ A.
This representation can be thought of as a continuous time version of

OP with infection paths in CP corresponding to paths in OP. Several of the
results presented below are originally stated for CP but their proofs transfer
to discrete models with the following very minor adaptations.

Firstly, setting γ = max(‖x‖/t : (x, t) ∈ X), we clearly have that o →
(x, t) implies ‖x‖ 6 γt, so, just like for CP, influence can spread at most

linearly in time.
Secondly, since the group generated by X is Zd, for all n > 0 there exist

a time t and v ∈ Zd−1 such that

Pp (ξ
o

t ⊃ v +Bn) > 0, (8)

where Bn = ([−n, n)d−1 × [0, R)) ∩ Zd. This is the analogue of the fact that

with positive probability the CP infects an arbitrarily large box in unit time.
Finally, for the CP one often needs to control the time an infection path

spends at a vertex: either to ensure that it does not stay long at a vertex
before jumping or that the path spends at least δt time at a vertex during
a time interval of length t. The first assertion is trivial in discrete time as a

path “jumps immediately” to the next vertex, and the discrete-analogue of
the second assertion is visiting a vertex at least ⌈δt⌉ times in a time interval
of length t.

4 Proof of Theorem 1

Throughout Sections 4 and 5, proofs will usually be omitted altogether

when they only require minor changes (including the ones outlined in
Section 3.2). Nevertheless, we provide a sketch or at least a vague idea,

whenever possible. The proofs requiring new ideas are gathered in Appen-
dix A.

The present section is structured as follows. In Section 4.1 we recall the

Bezuidenhout–Grimmett renormalisation and its extension. We next derive
several exponential bounds in Section 4.2 obtained based on restart argu-

ments for later use. Section 4.3 then completes the proof of the asymptotic
shape result and its continuity from Theorem 1. Finally, Section 4.4 puts
together all of the above with some further large deviation results to prove

the percolation in restricted regions of Theorem 1. New ingredients needed
in Sections 4.2 to 4.4 are deferred to Appendices A.1 to A.3.
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4.1 Bezuidenhout–Grimmett renormalisation

We begin the study of the supercritical phase by briefly describing the well-

known Bezuidenhout–Grimmett (BG) renormalisation. It was first introdu-
ced in [3] for the CP on Zd (see also [29, Sec. I.2]) and later generalised

for translation-invariant finite-range attractive1 spin systems on Zd by Be-
zuidenhout and Gray [2], the latter reference being the most relevant for
us. It is a construction that allows us to compare GOSP and 2dOP. The

main idea is to show that GOSP when restricted to a sufficiently thick two-
dimensional space-time slab dominates a supercritical 2dOP, which in turn
implies that if there is percolation in 2dOP, then there is percolation in this

restricted region. As all the results below are already known for 2dOP, this
will entail numerous consequences for GOSP.

Before proceeding to the renormalisation we will need a few geometric
definitions. Our basic box is Bn = [−n, n)d−1× [0, R) for natural n, recalling
R from Section 1.1 (although many of our regions will be defined as subsets

of Rd, we systematically refer to the integer points in them). For w ∈ Zd−1,
h ∈ Z and v ∈ Rd−1 we further introduce the block (see Fig. 2)

B(w, h,v) = [0, h)(v, 1) +

d−1
∏

i=1

[−wi, wi)× {0} ⊂ Rd, (9)

so that Bn = B({n}d−1, R, 0). Note that if the model is symmetric we can
always assume v = 0. Here and below we write wi for the ith coordinate of

w and similarly for other vectors.
The key theorem allowing comparison between the two models is as

follows.

Theorem 4.1. If p is such that θ(p) > 0, then for all ε > 0 there exist positive

integers n, h and vectors w ∈ Zd−1,v ∈ Rd−1 with n < wi for all i and h > R
such that if (x, t) ∈ B(w, h,v), then

Pp

(

∃(y, s) ∈ B(w, h,v) + 7h(v, 1)± 2wd−1ed−1 such that

(x, t) +Bn infects (y, s) +Bn in B(4w, 8h,v)
)

> 1− ε. (10)

1A spin system is attractive if adding extra sites in the initial condition only makes more
sites infected by it at any later time (see e.g. [29, Sec. I.1.]), as in the case of GOSP.
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4w−4w w−w

hv
B(w, h, v)

B(4w, 8h, v)

(x, t) + Bn

Figure 2: The event described in Theorem 4.1 for d = 2. Note that in this

case w and v are one-dimensional.

In other words we can choose parameters such that when considering

the truncated process in B(4w, 8h,v) with high probability a box Bn cente-
red at some (x, t) inside the block B(w, h,v) infects a copy of itself centered

at either of the target blocks that are translates of B(w, h,v) (see Fig. 2).
The proof of this theorem being quite long and technical, we direct the inte-
rested reader to [2], where it is established in a setting essentially including

GOSP.
Recall that 2dOP is defined by X = {(−1, 1), (1, 1)}. We denote by ζAk

the set of (even) sites in Z2 with second coordinate k infected by 2dOP with
initial condition A. We are now ready for the 2dOP comparison of [3].

Theorem 4.2 (BG renormalisation). Fix q < 1 and assume that p is such

that Eq. (10) holds for ε > 0 sufficiently small depending on q and some

n, h,w,v as in Theorem 4.1. Then the following holds for some n, h,w,v. For

any initial condition A ⊂ S we denote

A′ = {j ∈ 2Z : ∃(x, s) ∈ B(w, h,v) + 2wd−1jed−1, (x, s) +Bn ⊂ A} .

Then there exists a coupling of 2dOP ζA
′

of parameter q and GOSP ξA such

that for all j ∈ Z and k

j ∈ ζA
′

k implies that (x, 0) +Bn ⊂ ξAt
for some (x, t) ∈ B(w, h,v) + 7hk(v, 1) + 2wd−1jed−1.
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In particular, θ(p) > 0.

Informally, each site of 2dOP corresponds to a translate of the block
B(w, h,v) in GOSP. We can couple the two processes so that if a site in

2dOP is in the cluster of a vertex in ζA, then there is a box infected by A in
the block corresponding to that site in the GOSP.

The proof of Theorem 4.2 is as in [29, Theorem I.2.23] (also see [3]).

Indeed, one may construct the coupling by induction as follows. If j ∈ ζk,
then there is an infected copy of the box Bn in the block corresponding to

j, k, so we may apply the result of Theorem 4.1 to get that with probability
1 − ε there will also be such infected boxes in the blocks corresponding to
j+1, k+1 and j−1, k+1. It is easily seen (as the GOSP configuration is com-

posed of independent variables) that the resulting process is a 1-dependent
2dOP with parameter at least 1 − ε, so by a standard comparison between
1-dependent and independent percolation [31] we obtain Theorem 4.2 as

desired.
It is useful to note that the BG renormalisation concerns only certain

translates of the block B(w, h,v). However, we may tile Zd with disjoint
blocks so that each tilted space-time slab of the form

⋃

j,k∈Z

B(w, h,v) + wd−1jed−1 + kh(v, 1)

is formed by 14 disjoint 2dOP lattices of blocks. We may perform the cou-
plings of all the corresponding 2dOP processes with the same GOSP si-

multaneously as above so that sites in different 2dOP have a finite range
dependence, hence they may be made independent by [31]. In total, for
A ⊂ S we can couple ξA with independent 2dOP processes naturally in-

dexed by Zd−2 × {1, . . . , 14} with initial conditions corresponding to the
parts of A in each of the 2dOP lattices.

4.2 Restart arguments

Recall that ξAt is the set of sites infected by A at time t. The extinction time

of A is the absorption time of the chain started at A, that is

τA = min
{

t > 0 : ξAt = ∅
}

∈ {0, 1, . . . } ∪ {∞}. (11)

We say that the process started from A dies out if τA < ∞ and survives

otherwise.
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The BG renormalisation allows us to use a so-called restart argument

that can be described as follows. We let GOSP (ξAt ) evolve until we find an

infected translate of the box Bn (which by Eq. (8) has a strictly positive pro-
bability, thus it happens after at most a geometrically distributed number
of steps) or the process dies out. If we infect a box, we start the 2dOP pro-

cess (ζk) of Theorem 4.2 (with appropriate initial condition) from the cor-
responding block coupled with (ξAt ). If (ζk) percolates, then (ξAt ) percolates

as well. If (ζk) dies out and (ξAt ) still survives, we restart the procedure.
We repeat this until either the GOSP dies out or the renormalisation yields
a percolating 2dOP (since the parameter q of (ζk) is supercritical, q > pOP

c ,

this will happen after at most a geometric number of trials).
We will use this technique to transfer properties from 2dOP to GOSP.

The exponential bounds we prove next in this section (like all other results)
are already established for 2dOP [11] and the d-dimensional CP [9]. Recall
that τA is the extinction time of the set A.

Theorem 4.3 (Exponential death bounds). For every p > pc there exists a

constant ε = ε(p) > 0 such that for all A ⊂ S and t > R it holds that

Pp

(

t 6 τA < ∞
)

6 e−εt, (12)

Pp

(

τA < ∞
)

6 e−ε|A|. (13)

The proof of Theorem 4.3 goes along the same lines as the proof of

[29, Theorem I.2.30], using the restart argument. For Eq. (12), on {τA <
∞}, we can bound τA by the sum of the number of steps until we find an

infected box and the survival time of the coupled 2dOP in each round. As
2dOP satisfies Eq. (12) and the required quantities of the restart argument
are bounded by geometric random variables, we get the desired exponen-

tial decay.
For Eq. (13) first tile Zd with the disjoint translates of the space-time

slab

T =
⋃

j,k∈Z

B(4w, 7h,v) + 4wd−1jed−1 + 7hk(v, 1)

and consider the processes restricted to these slabs with initial conditions

corresponding to the parts of A in each slab. Observe that these proces-
ses are independent and τA can be bounded from below by the maximum
of their extinction times. Therefore, it is enough to show the analogue

of Eq. (13) for A ⊂ T . As in Eq. (8) we can show that there exists a t
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depending on w and h, but not on A, such that with strictly positive proba-
bility every vertex in A ⊂ T can infect a box Bn in

t(v, 1) +
⋃

j∈Z

B(w, h,v) + wd−1jed−1.

Thus, (save for an exponentially unlikely event) for some δ > 0 at least δ|A|
disjoint blocks at the same time contain an infected box. We start the 2dOP
process of Theorem 4.2 from all these blocks. Observe that {τA < ∞} can

only happen if all the coupled 2dOP process dies, but since Eq. (13) holds
for 2dOP, this has exponentially small probability in the size of A.

Remark 4.4. Equation (12) implies that the law of ξSt converges to the

upper invariant measure of the process (corresponding to the distribution
of sites x ∈ S such that x ∞) exponentially fast in t.

The next result is the analogue of condition (a) of Lemma 5.1 in [9].

Theorem 4.5. Let ξ and ξ̃ be independent primal and dual GOSP. Then for

every p > pc there exist constants ε, c, C > 0 and a vector v ∈ Rd−1 depending

on p such that for all integer t > 0 and A,B ⊂ S satisfying maxa∈A,b∈B ‖a−
b‖ < ct we have

Pp

(

ξAt ∩ ξ̃
B+(2tv+zt,0)
t = ∅, ξAt 6= ∅, ξ̃

B+(2tv+zt ,0)
t 6= ∅

)

6 Ce−εt, (14)

where zt ∈ Rd−1 × {0} is such that 2tv + zt ∈ Zd−1 and ‖zt‖2 6 (d− 1)/4.

It is important to note that due to the lack of symmetry this result is
more technical for GOSP than for ddOP. We leave the proof to Appendix A.1

and only indicate that it relies mainly on the BG renormalisation, restart
argument, Eq. (12) and several properties known for 2dOP, which will be
established below for GOSP.

Remark 4.6. We can use Theorem 4.5 to prove that the infinite cluster is
unique. Together with θ(pc) = 0 following from Theorems 4.1 and 4.2, this

customarily yields that θ : p 7→ θ(p) is continuous on [0, 1]. This was first
established for ddOP in [20].

Recall the hit and coupled regions of Eqs. (3) and (4).
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Theorem 4.7 (At least linear growth). For every p > pc there exist con-

stants ε, c > 0 and a vector v ∈ Rd−1 depending on p such that for all t > 0
and x ∈ Zd−1 such that ‖x− tv‖ < ct it holds that

Pp ((x, 0) 6∈ Ht, τ
o = ∞) 6 e−εt, (15)

Pp ((x, 0) 6∈ Kt, τ
o = ∞) 6 e−εt. (16)

This result is also a consequence of Theorem 4.5. The proof is an
adaptation of the proof of conditions (c) and (d) of Theorem 5.2 in [9]
for the CP (see also [10]). For Eq. (15) recall the definition of the dual

process ξ̃ from Section 3.1 and note that for any 0 6 s 6 t the event
{∃y ∈ S, o → y + sed, (x, t)  y + sed} is equivalent to o → (x, t). By a

restart argument we can find a time r such that (x, r)  ∞ and up to an
exponentially unlikely event we can take 0 6 t − r < ct. Then the conclu-
sion follows from Eq. (14) with A = {o}, B = {(x − 2rv, 0)} and t in the

theorem equal to r/2.
For Eq. (16) observe that for ω ⊂ Zd−1 × {R,R + 1, . . . }

{(x, 0) 6∈ K2t, τ
o = ∞} = {o 6→(x, 2t), (x, 2t) S, o → ∞} .

The conclusion then follows again from Eq. (14) with A = {o} and B =
{(x− 4tv, 0)}.

Finally, for completeness let us mention a consequence of the restart ar-
guments concerning GOSP on tori. Recall that we assume that the direction
u = ed, and let Td−1

n = (Z/nZ)d−1 denote the (d − 1)-dimensional discrete

torus of side n. Consider GOSP on the graph with vertex set Td−1
n × Z

obtained as the quotient of GX . The extinction time is defined as

τT = sup
{

t > 0 : Td−1
n × {0,−1,−2, . . . } → Td−1

n × {t}
}

.

Corollary 4.8. For all p < pc there exists c(p) such that

τT

log n

Pp−−−→
n→∞

d− 1

c(p)
, (17)

and for all p > pc there exist c, C ∈ (0,∞) such that

τT

Ep[τT]

(d)−−−→
n→∞

E , (18)

ecn
d−1

< Ep

[

τT
]

< eCnd−1

, (19)

for n large enough, where E is the standard exponential distribution.
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Equation (17) follows as in [12] (see also [29, Theorem I.3.3]) from
the subcritical result established in [1, 32]: for all p < pc there exists c(p)
such that

− lim
t→∞

1

t
logPp(τ

o
> t) = c(p) > 0. (20)

Equation (18) was proved for the CP in two dimensions in [36] (see also
[14]), while in d dimensions this was done in [34] (also see [38] for sub-

sequent development). Equation (19) was proved in [12] for the two-
dimensional CP and in [4] in d dimensions. The proofs rely on Theo-
rems 4.2, 4.3 and 4.7 (see [23, App. A.4] for a sketch following [34]).

Let us note that for the CP on a finite box (in our setting this corresponds
to cutting the bonds crossing the boundary of a fundamental domain of the

torus) in [14,35] it was established that in fact logEp[τ ]/n
d−1 converges as

n → ∞. However, for GOSP considering a box is either inappropriate or
requires tilting the lattice first, making the result somewhat unnatural and

unhandy due to the implicit definition of the tilting direction, which may
even depend on p as p → pc. It would appear that proving the existence of
the above limit on the torus is unknown even for OP and CP.

4.3 Asymptotic shape

With the results of Section 4.2 at hand we are ready to prove the asymp-

totic shape theorem and the continuity of the limit shape, that is Eqs. (5)
and (6) and the continuity result of Theorem 1. These results are known
for the CP. However, certain issues arise due to the possibility that the mo-

del may have a “drift,” e.g. if the convex envelope of the neighbourhood X
does not intersect the line Red. This problem is absent if we can take v = 0
in Theorem 4.7. For simplicity, in Section 4.3 we only briefly recall the ar-
guments used to prove the desired results under this additional assumption,
leaving out the minor changes described in Section 3.2. Thus, we leave the

new input needed for removing the assumption v = 0 to Appendix A.2.
It was proved in [10] for permanent one-site growth procesess (trans-

lation invariant, attractive processes with local rules, with ∅ absorbing
state and positive probability of survival) that the exponential estimates
from Eqs. (12), (15) and (16) with v = 0 imply the shape theorem: Eqs. (5)

and (6). The idea is that, given these estimates, the hitting times are sub-
additive, stationary and integrable. Then, using subadditive ergodic the-
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ory [25], one can prove that for x ∈ Zd−1

t(nx)

n
→ µ(x) P̄p-a.s. (21)

The time constant µ(x) can be extended into a norm on Rd−1 with unit ball

U , yielding the result for the hit region. Then we can argue that there are
a lot of vertices around the boundary of the cone defined by U that are
reached from the origin and by Eq. (12) survive. Using Eq. (16) we can

conclude that the union of the coupled regions of these vertices eventually
covers (1− ε)tU .

Our next goal is to prove that the limit shape U is continuous in p.
For this, we will require a quantity called essential hitting time. It was
first introduced by Garet and Marchand in [17], inspired by [26], to prove

shape theorems in a more difficult setting. Using this notion, they later
proved large deviation inequalities [18] and continuity of the asymptotic
shape [19]. We next discuss these results still under the assumption that

v = 0 in Theorem 4.7.
Roughly speaking (see [17] for the correct definition), under P̄p the

essential hitting time σ(x) of x ∈ Zd−1 is a time such that o → (x, σ(x)) →
∞. Crucially, the essential hitting time is nearly subadditive [17, Theorem
2]. Using this property, one can show that P̄p-a.s., as n → ∞, σ(nx)/n
converges. Controlling the discrepancy between the essential hitting time
and the hitting time [17, Proposition 17], we can conclude that the limit
is also the one of t(nx)/n. This control of σ(x) − t(x) further allows us to

bound the moments of σ(x) under P̄p and to get exponential estimates for
the essentially hit region analogous to Eq. (15) with v = 0 [17, Corollary 20

and 21].
Relying on the almost subadditivity of σ(x), one may establish large

deviation results corresponding to [18, Theorems 1.1 and 1.4], still under

the assumption v = 0 to be removed in Appendix A.2.

Theorem 4.9. For every p > pc and every ε > 0 there exist constants c, C > 0
such that for any x ∈ Zd−1 and t > 1

P̄p

(

Kt ∩Ht ⊃ (((1− ε)tU)× [0, R)) ∩ Zd
)

> 1− Ce−ct,

Pp

(

ξot ⊂ (((1 + ε)tU)× [0, R)) ∩ Zd
)

> 1− Ce−ct,

where U is as in Theorem 1.

Finally, one can show the continuity of the limit shape in Theorem 1 as
in [19, Theorem 1], recycling much of the proof of Theorem 4.9.
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4.4 Percolation in restricted regions

Relying on the results of Section 4.2, we next establish large deviations for

the infinite cluster density, which we then use to prove Eq. (7) of Theo-
rem 1.

Theorem 4.10. Let

Yn := |{(x, t) ∈ Bn : (x, t) ∞}| /|Bn|. (22)

For all p > pc there exists a convex function ϕ : [0, 1] → [0,∞) such that

ϕ(a) = 0 if and only if a = pθ(p) = θ̃(p) and for all a < b in [0, 1],

lim
n→∞

logPp(Yn ∈ [a, b])

nd−1
= − inf

x∈[a,b]
ϕ(x).

Most of this result is very general and holds for any translation invariant
attractive spin system, as established in [28]. Roughly speaking, the exis-
tence of the limit follows from the fact that if several boxes have Yn > a,

then so does their union; the convexity follows similarly, asking for one box
with Yn > x and one with Yn > y and considering their union. The rele-

vance of θ̃(p) comes from cutting a large box into smaller ones and using
attractiveness to replace boundary conditions by maximal ones, in order to
enable the use of large deviations results for i.i.d. random variables. In-

deed, the invariant measure of GOSP in a large box with infected boundary
condition still infects sites “far from the boundary” with probability close
to θ̃(p). This follows from the fact that the upper invariant measure of the

infinite volume attractive process must dominate the (decreasing) limit of
these invariant measures as the size of the box diverges (see [30, Theorem

III.2.7]).
The only somewhat model-specific property is the fact that for any a <

θ̃(p) there exists c > 0 such that for all n we have

Pp(Yn 6 a) 6 e−cnd−1

. (23)

This was established for 2dOP in [15]. Unfortunately, the argument is

2-dimensional, so we provide a proof for GOSP in any dimension (and
in particular ddOP), which appears to be novel. This is done via a new
renormalisation in Appendix A.3, relying on Theorems 4.3 and 4.7.
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Remark 4.11. One can further study fluctuations of the density. For trans-
lation invariant attractive spin systems on Zd [27] examined when, star-

ting from the upper invariant measure, we reach a value of Yn smaller than
θ̃(p). Later this result was extended to upper fluctuations in [16] for the CP.
These proofs rely on Theorem 4.10 and can be adapted to GOSP. We also

direct the reader to [5, Chapter 5] for information regarding the properties
and shape of large finite clusters and more large deviations.

Now we are ready to prove a more geometric property of the infinite
cluster, Eq. (7) of Theorem 1, establishing that percolation occurs in re-
stricted regions. This result was proved for ddOP in [5, Theorem 1.3 of

Chapter 5], but given the results available to us, we may directly retrieve it
(for GOSP) from Theorems 4.3, 4.9 and 4.10 as follows. Fixing some u ∈ O
and δ > 0 small, for a site (x, t) at distance at most δ2t from (tu, t) surviving
for time δt, by Eq. (12) and Theorem 4.9 it is likely that its coupled region
contains a box of side δ2t centered at ((1+ δ)tu, (1+ δ)t). By Theorem 4.10,

it is likely that at least δ2dtd−1 sites in that box are infected by (x, t) and,
since δ is small and (x, t) is at distance of order t from the boundary of
C, this has to happen inside C. Finally, by Eq. (13), some of those sites

is likely to survive. Repeating this procedure to infinity and recalling that
the probability of failing at each step is exponentially small in t, we obtain

Eq. (7) of Theorem 1, as desired.

5 Proof of Theorem 2

In this section we assume d = 2. In this case one can say more about

GOSP based on techniques for 2dOP, for which [30, Chapter VI] and [8]
are excellent references. In Section 5.1 we gather some standard prelimina-
ries. In Section 5.2 we introduce an alternative renormalisation technique,

whose refinement enables us to prove Theorem 2.

5.1 Edge speed

Define the right edge of the process as

rt = max
{

x ∈ Z : ∃y ∈ {0, . . . , R− 1}, (x, y) ∈ ξS
−

t

}

,
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where S− = ((−∞, 0]× [0, R))∩Z2 is the left half of S. Similarly define the
left edge lt as the minimum of x above with S+ = ([0,∞)×[0, R))∩Z2 instead

of S−. It is important to note that, as discussed in Section 1.2, although the
model is two-dimensional, it is not planar and paths may jump over each
other without crossing (recall Fig. 1). Nevertheless, the right and left edges

do retain some of their properties from the 2dOP case.

Theorem 5.1 (Edge speed). For any p ∈ [0, 1] there exists

α = lim
t→∞

Ep[rt]

t
= inf

t>1

Ep[rt]

t
∈ [−∞,∞).

Moreover, rt/t
t→∞−−−→ α a.s. and if α > −∞, then Ep

[
∣

∣

rt
t
− α

∣

∣

] t→∞−−−→ 0. Similar

statements hold for β = limEp[lt]/t.

The proof (and statement) is identical to [30, Theorem VI.2.19] and is
a consequence of a subadditive ergodic theorem due to Durrett [7] (see

particularly Theorem 6.1 thereof). The idea is to introduce a version of the
right edge between time s and t which, contrary to rt, is subadditive in an

appropriate sense.
We next show that the two-dimensional approach coincides with the

more general one from the previous section.

Theorem 5.2. For any p > pc the limit shape U from Theorem 1 and the edge

speeds α, β from Theorem 5.1 satisfy U = [β, α].

To see this, note that by Theorem 4.7 with positive probability o → ∞
and at all times the coupled region is large enough to ensure that the right
and left edges are infected by o. We can then conclude, since Theorem 1

and Theorem 5.1 are almost sure statements.
A notable advantage of having the edge representation of the limit

shape is the following result.

Theorem 5.3. The right edge speed α is strictly increasing on (pc, 1).

The proof is very similar to [8, Eq. (12)] and was reiterated in [13] in

a setting including PPCA. It proceeds in two steps. Firstly, one shows by a
clever but simple algebraic manipulation that adding a vertical column of
sites to any initial condition entirely on its right increases Ep[rt] by at least 1
for all t. This property only relies on the fact that the process is additive in

19



the sense that ξA∪B
t = ξAt ∪ξBt for all A,B, t. Secondly, one observes that if p

is increased by a small amount δ, it may happen that the additional vertices

opened by increasing it lead precisely to adding such a vertical column in
ξt to the right of rt (corresponding to parameter p).

5.2 Alternative renormalisation

In two dimensions it is possible to study the supercritical phase via a more
elementary renormalisation scheme than the BG one. For 2dOP this ap-
proach due to Durrett and Griffeath [11] is used classically to derive most

of the results stated above in that setting. However, applying this renor-
malisation to GOSP (in two dimensions) turns out to be quite tricky. Let

us first give the rough lines of the renormalisation before explaining what
goes wrong for GOSP and how to address it.

For 2dOP, let us assume that p satisfies α(p) > β(p). By Theorem 5.1 we

have that rt/t → α a.s. Moreover, one can show (see [8, 11]) that for all
ε > 0 there exists c > 0 such that for all t > 0

Pp(rt > (α + ε)t) 6 e−ct. (24)

We may then establish (see Fig. 5) that for L large enough depending on
ε > 0, the box B(εL, L, α) is crossed from bottom to top by an open path

with high probability, namely for ε > 0

lim
L→∞

Pp

(

B(εL,L,α)ξ
S−

L = ∅

)

= 0. (25)

Indeed, by Eq. (24), it is forbidden for the right edge to leave the box on

one side; by Theorem 5.1 the right edge at time L is likely to be in the
middle of the top side of the box; while if the path reaching the right edge

at time L leaves the box on the other side, that would imply that the path
necessarily went faster than allowed by Eq. (24), in order to make up for
the delay (the last idea is due to Gray [13]).

Hence, we have that with probability close to 1 long thin boxes with til-
ting α (and similarly for β) are crossed. This reasoning is perfectly valid for

GOSP. In order use such boxes to construct a renormalisation, one places
around each renormalised vertex two of them directed by α and β and says
the vertex is open if they are crossed by paths (see [8, Fig. 7] or [11, Fig.

1]). For 2dOP it is then clear that if the resulting renormalised 2dOP perco-
lates, then so does the original one. Indeed, one can switch from the path
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in one box to another as soon as they intersect, which is necessarily the
case for planar graphs such as the one associated to 2dOP.

It is not hard to see that the argument remains valid for PPCA with neig-
hbourhood consisting of consecutive sites of the form (x, 1). However, for
GOSP with arbitrary neighbourhood X it is no longer true that two paths

which “cross” have to intersect in an open point. An attempt to remedy this
was made by Durrett and Schonmann [13], whose approach will be of use

to us. Yet, when restricted to PPCA, their result only applies to the ones
with neighbourhood of consecutive sites as above, making it trivial (their
main idea is not needed for those models). As their work is somewhat in-

formal, we indicate that this follows from the restrictive hypothesis (H3)
located at the end of Sec. 4 of [13].

Improving on the approach of [13] and using Theorem 5.3, in Appen-
dix A.4 we outline how to obtain the following result.

Theorem 5.4. If for some p ∈ [0, 1] we have α(p) > β(p), then θ(p) > 0 and

lim
p′→p−

α(p′) = α(p) lim
p′→p−

β(p′) = β(p).

In particular, this implies α(pc) 6 β(pc). On the other hand, Theo-
rem 5.1 readily implies that α(p) > β(p) for p > pc. The final ingredient for
proving Theorem 2 is the continuity to the right of α (and β), which also

follows from Theorem 5.1, since α is the decreasing limit of the continuous
non-decreasing functions Ep[rt].

2 Combining these properties, we get

lim
p→pc+

α(p)− β(p) = 0,

which, together with Theorems 5.2 and 5.3, implies Theorem 2. We note

that in higher dimensions it is unknown whether
⋂

p>pc

◦

U(p) is empty, a
singleton or a larger set.

A Proofs

In this appendix we gather the proofs of the novel steps in the proof of

the main results. The following basic result for 2dOP proved by contour

2Indeed, Ep[rt] is the limit of the polynomials Ep[max(rt,−M)] as M → ∞. The limit
is uniform for p ∈ [p′, 1] for p′ > 0, since the negative tail of rt is bounded by a geome-
tric variable with success rate (p′)t. Recalling Eq. (20) and pc > 0 (by comparison with
branching), we further have α(p) = −∞ and β(p) = ∞ for p < pc.
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arguments (see [8,15]) will be used several times.

Proposition A.1. For every ε > 0 there exist c, δ > 0 such that for 2dOP with

parameter p > 1− δ it holds that for all finite A ⊂ Z and integer t

Pp(|{a ∈ A, a → ∞}|/|A| 6 1− ε) < e−c|A|

P̄p(|ξot |/t 6 1− ε) < e−ct.

A.1 Primal-dual intersection—proof of Theorem 4.5

Recall the notation of Theorem 4.5 and Section 4.2.
Observe that the BG renormalisation restricts the process to a space-

time slab in which all but one space dimension are suppressed. Throug-
hout the paper we assumed this to be the d − 1st dimension, but we can
replace ed−1 by any ei in Theorem 4.1 for i ∈ {1, . . . , d− 1}. If the model is

symmetric, the parameters n, h,w,v can be chosen to be the same in all di-
rections, however this is not necessarily the case in general, so we will need

to make our notation accordingly more precise. Let us fix ε and denote the
parameters in Theorem 4.1 corresponding to ei by n(i), h(i) ∈ Z, w(i) ∈ Zd−1

and v(i) ∈ Rd−1. We then set v =
∑d−1

i=1 v
(i)/(d − 1). For simplicity we will

disregard the offset zt.
We start by noticing that by Eq. (12) we may assume that τA = ∞ in ω

and τ̃B+(2tv,0) = ∞ in ω translated by −2ted. We can then choose (x, s) ∈ A
and (x̃, s̃) ∈ B + 2t(v, 1) such that τ {(x,s)} = τ̃ {(x̃,s̃−2t)} = ∞.

We can perform a restart argument starting from (x, s) and (x̃, s̃) until

they simultaneously infect a (translate of the) box Bn(d−1) each and that the
two boxes give rise to a percolating 2dOP in their respective ed−1-space-
time slabs. As in Section 4.2 the restart argument is exponentially unlikely

to require more than δt steps for some small δ > 0, the positions of the two
boxes differ by 2t(v, 1)+∆ with ‖∆‖ = O(c+δ)t (here asymptotic notation

is w.r.t. t → ∞).
Informally, the rest of the argument is as follows (see Fig. 3). We let the

primal and dual processes evolve in their respective ed−1-space-time slabs

for t/(d − 1) time steps. The comparison with the percolating 2dOP and
Proposition A.1 then ensure that both processes reach many infected copies
of the box Bn(d−1) at times t/(d − 1) and 2t − t/(d − 1) respectively. As the

space-time slab is in the ed−1 direction, we can find a lot of “well-aligned”
pairs of infected primal and dual boxes. Namely, we require their d − 1st
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t

2t

(x, s)

(x̃, s̃)

Figure 3: The argument for d = 3. The bottom and top tilted boxes cor-
respond to the e2 space-time slabs, while the middle two correspond to e1
space-time slabs. Dots represent infected translates of the boxes Bn(2) and
Bn(1) respectively.
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coordinates to differ exactly by the amount of tilting we will have in the

rest of the procedure: 2t
d−1

∑d−2
i=1 v

(i)
d−1. Roughly speaking, at this point we

have managed to cancel the d− 1st coordinate of ∆. With high probability,

at least one such pair infects a (translate of the) box Bn(d−2) each, that give
rise to a percolating 2dOP in their respective e(d−2)-space-time slabs. We
then repeat the same reasoning for each direction. Eventually, at time t, we

find many infected pairs of primal and dual boxes sufficiently close to each
other, so that with high probability there will be an open path between at

least one pair.
More precisely, fix a large integer K so that Eq. (8) holds for n =

n(d−2) and t = ⌊Kh(d−1)/2⌋. Then by Proposition A.1 we get that at time

t/(7h(d−1)(d − 1)) −K both in ζ and ζ̃ (the renormalised 2dOP correspon-
ding to ξ and ξ̃) infect at least 2/3 of the (renormalised) sites that can be
reached from the sites corresponding to the initial two boxes Bn(d−1) close

to (x, s) and (x̃, s̃). By the pigeonhole principle, as c and δ are sufficiently
small, there are at least t/(22h(d−1)(d − 1)) sites (z, t/(7h(d−1)(d − 1)) −K)
which are infected in ζ and such that (z̃, t/(7h(d−1)(d−1))−K) is infected in

ζ̃ with z̃−z = −⌊∆d−1/w
(d−1)
d−1 ⌋. It then follows from Eq. (8), Proposition A.1

and the pigeonhole principle that up to an exponentially unlikely event at
least one such couple z, z̃ gives rise to two boxes Bn(d−2) + (y, t/(d − 1))
and Bn(d−2) + (ỹ, t(2− 1/(d− 1))) infected in ξ and ξ̃ respectively such that
ỹ − y = 2tv − 2tv(d−1)/(d− 1) +

∑d−2
i=1 ∆iei and such that the 2dOP renor-

malisations in direction ed−2 of each of the boxes percolate.

Repeating the same reasoning for each direction and recalling the defi-
nition of v, we obtain the desired conclusion.

A.2 Tilting

Recall the setting of Section 4.3. In this section we show how to remove the
additional assumption v = 0 used there in the proofs of Eqs. (5) and (6)

and the continuity of U in Theorem 1, as well as Theorem 4.9. The rea-
soning for Theorem 4.9 and the continuity being identical to the one for

Eqs. (5) and (6), we only address the latter.
Indeed, we can assume w.l.o.g. that the vector v in Theorem 4.7 is in

Qd−1 and then apply the linear map (x, t) 7→ (x − tv, t) to the lattice. We

will refer to the resulting lattice Ẑd as the tilted lattice and define its period

R̂ := min{t ∈ Z : tv ∈ Zd−1, t > R} and base B̂ = (Rd−1 × [0, R̂)) ∩ Ẑd. For
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A ⊂ S we define the tilted process, hitting time, hit and coupled regions

ξ̂At :=
{

(x, s) ∈ B̂ : (x+ (t+ s)v, 0) ∈ ξAt+s

}

,

K̂A
t :=

{

(x, s) ∈ B̂ : ξ̂At (x, s) = ξ̂St (x, s)
}

,

t̂A(x, s) := min
{

t ∈ s+ R̂Z : t > 0, (x+ tv, 0) ∈ ξAt

}

(x, s) ∈ B̂,

ĤA
t :=

{

(x, s) ∈ B̂ : t̂A(x, s) 6 t
}

The proof of Section 4.3 applies to GOSP in the tilted setting, yielding

Eqs. (5) and (6) in Ẑd for some convex compact limit shape Û ⊂ Rd−1

containing o in its interior. We then need to transfer the result back to the

original lattice with U = Û + v. By the definition of ξ̂t and K̂t, Eq. (6) and
the inclusion in the coupled region in Eq. (5) are immediate. It remains
to show that for every ε > 0, P̄p-a.s. for every t large enough Ht ⊃ (((1 −
ε)tU) × [0, R)) ∩ Zd. Our strategy, somewhat similar to [10], is as follows.
Fixing x ∈ Zd−1 such that (x, 0) should belong to Ht, we trace the line of
slope v from (x, t) and determine when it intersects the boundary of the

cone
⋃

t′>0(t
′U)× {t′} (see Fig. 4). Someone close to the intersection point

should be infected around time t′ by the result available in Ẑd. But then at

a time t′− εt some site close to the intersection has survived for time εt, so,
applying Eq. (12) and Theorem 4.7 to this site we manage to reach (x, t)
as desired. With this in mind, let us spell out the details.

Equations (5) and (6) of Theorem 1 on Ẑd imply that for every ε > 0
P̄p-a.s. there exists a constant C such that for every (x, s) ∈ B̂ with ‖x‖ > C

(

x, t̂(x, s)
)

∈
⋃

t>0

(

t∂Û
)

× {t}, (26)

setting ∂Û := ((1+ε)Û)\ ((1−ε)Û). Observe that this event implies that in

the original lattice there is at least one vertex infected by the origin in the
intersection of ∆ :=

⋃

t>0(t∂Û1 + tv)× {t} and the ray (x + tv, t)t>s for all

(x, s) ∈ B̂ such that ‖x‖ > C (see Fig. 4b).

Fix c and ε so that Theorems 4.3 and 4.7 hold for the original lattice.
We now argue that for any t > C/c and for any x ∈ ((1 − 2ε)tÛ + vt) ∩
Zd−1, we have (x, 0) ∈ Ht except with probability exponentially small in t.
If ‖x − vt‖ 6 ct (see Fig. 4a), then Theorem 4.7 directly gives the desired
result.
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(x, t)

(x− vt, 0)

⋃

t>0

(

(1 − 2ε)tÛ + vt
)

× {t}

−ct ct

(a) Case ‖x− vt‖ 6 ct.

(x, t)

(y, s)

(y′, s′)

(x− vt, 0)

(b) Case ‖x− vt‖ > ct.

Figure 4: The original lattice for d = 2. Shaded areas represent the cone
⋃

t>0[t(v− c), t(v+ c)]×{t} rooted at o and (y′, s′) respectively. The hatched

region is ∆.

Assuming ‖x − tv‖ > ct, let δ > 0 be small enough depending on
X, c, Û,v, ε, but not t,x, C. Equation (26) implies that P̄p-a.s. there is a ver-
tex (y, s) in the intersection of ∆ and the segment from (x− tv, 0) to (x, t),
such that (y, 0) ∈ ξos . As s > δt, we can take a site along an associated in-
fection path at time closest to s− δt, and denote it by (y′, s′) (see Fig. 4b).

We then have that (y′, 0) ∈ ξos′ and (y′, s′) survives for time at least δt/2,
so we use Eq. (12) to conclude that (y′, s′) survives with probability expo-
nentially high in t. Once we have survival, we can use Theorem 4.7 to show

that x is in the hit region of (y′, s′) at time t with high probability, thus it is
also in the hit region of the origin. Indeed,

‖x− y′ − (t− s′)v‖ = ‖y − y′ − (s− s′)v‖ 6 t
√
δ < c(t− s′),

since (x, t) is at distance at least κt from ∆ (and thus from (y, s)) for some
κ > 0 depending only on Û,v, ε.

This completes the proof of Eqs. (5) and (6) of Theorem 1 as stated for

the original lattice.

A.3 Density large deviations—proof of Eq. (23)

Recall the notation of Theorem 4.10 and Section 4.4. We will use a similar
argument to [15] but based on a completely different renormalisation.

Let us fix p > pc and a < θ̃(p), let C be large enough depending on p, let
L be large enough depending on p, a, C and define w = (L, . . . , L) ∈ Zd−1
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and s = CL + L/C. Recalling Eq. (9), let B = B(w, CL,v) with v as in
Theorem 4.7. We say that B is good if the following events all occur.

1. For each site (x, t) ∈ B ∩ S = B(w, R,v) we have either τ (x,t) < L/C
or τ (x,t) > s, where τ (x,t) is defined as τ {(x,R−1)} for the configuration
ω translated by −(t− R + 1)ed.

2. For each site (x, t) ∈ B ∩ S such that τ (x,t) > L/C we have K
(x,t)
s ⊃

B(3w, R,v) + sv and K
(x,t)
CL ⊃ B(3w, R,v) + CLv with K

(x,t)
u defined

as K
{(x,R−1)}
u−t+R−1 for the configuration ω translated by −(t− R + 1)ed.

3. ξSs ∩ (B(w/C,R,v) + s(v, 0) + Led−1) 6= ∅,

ξSs ∩ (B(w/C,R,v) + s(v, 0)− Led−1) 6= ∅.

In words, each site which does not die quickly survives well beyond the

top of B and infects the same set of sites at the top of B ± Led−1, at least
one of which does not die quickly. Indeed, the neighbourhood X being
finite, the only way to reach B(w/C,R,v)+s(v, 1)±Led−1 is to go through

B(w, R,v) +CL(v, 1)±Led−1. Therefore, considering a renormalised two-
dimensional lattice with sites corresponding to disjoint translates of B, the

resulting 2dOP is C2-dependent, as B being good only depends on the
configuration in B(C2w, 2CL,v).

We next show that the parameter of the 2dOP is close to 1 when L is

large enough, so that by [31] it stochastically dominates an independent
2dOP with parameter close to 1. Indeed, Event 1 fails with exponentially

small (in L) probability by Eq. (12); Event 2 fails with exponentially small
probability by Theorem 4.7 and Eq. (12); Event 3 fails with stretched ex-
ponentially small probability by Eq. (13) applied to the dual process.

It is easily checked that if a renormalised site B percolates in 2dOP,
then each site in B ∩ S either dies in time at most L/C or also percolates.
Recalling Proposition A.1, the rest of the proof is essentially as in [15].

Taking n much larger than L, we may cut a box Bn into (n/(2L))d−2 strips
each giving rise to a different renormalised 2dOP. It is then standard to

show that the total proportion of percolating renormalised sites is not close
to 1 with probability at most exp(−εnd−1) for some ε > 0 depending on
L but not on n. Moreover, by standard large deviations for independent

random variables, the proportion of sites, which survive at least L/C steps
in Bn is smaller than θ(p) with probability at most exp(−ε′nd−1) for some
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Figure 5: The shaded boxes are likely to contain paths crossing them. In
order to transition from one path to another, we use additional infections
as illustrated in Fig. 6.

ε′ > 0 depending on L but not on n. We may then conclude by discarding

the renormalised sites which do not percolate. Finally, performing the same
reasoning for the dual process rather than the primal one, we obtain the
desired conclusion (with θ̃(p) instead of θ(p)).

A.4 Enhanced 2d renormalisation—proof of Theorem 5.4

Recall the notation of Theorem 5.4 and Section 5.

The idea of [13] is to introduce several translates of the original long
boxes from Eq. (25) and hope that their paths have positive probability
of intersecting and do so independently (see Fig. 5). More precisely, in-

creasing p by a small amount ǫ, they require that the additional infections
suffice to transition with positive probability from one path to the other at

the place where they cross. As we shall see, although it is not possible to
do this, as intended, in one step at the crossing point, it is possible to find
a place where to do it in several steps.

More precisely, using Eq. (25), fix ε > 0 and δ > 0 small and L large
enough so that

Pp

(

S
B−→ S + (0, L)

)

> 1− δ

with B = B(εL, L, α)−2εLe1 and similarly for B′ = B(εL, L, β)+2εLe1 (see
Fig. 6). Fix two open paths γ = (a0, a1, . . . , am) and γ′ = (a′

0, a
′
1, . . . , a

′
m′)
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B′

B

γ̂ γ
γ′

x

Figure 6: The paths γ and γ′. The shifted and thickened version γ̂ is the

union of the shaded boxes. Due to its thickness it necessarily intersects γ′

and does so close to the intersection of the boxes B and B′. The only x

yielding the intersection in the example is indicated by a dot.

crossing B and B′ respectively. Fix v and large n and t as in Eq. (8) inde-

pendent of all other constants. Let η be a set of additional infections, with
each site at distance at most O(t) from B ∩B′ infected independently with
probability ǫ > 0. Then we claim that

Pp+ǫ

(

a0
γ∪γ′∪η−−−−→ a′

m′

)

> ǫO(t2).

To see this, simply consider the region

γ̂ =
⋃

a∈γ

(a+Bn + (v, t)),

which is a shifted and thickened version of γ (see Fig. 6). It is clear that
γ̂ ∩ γ′ 6= ∅, so it suffices for one a ∈ γ such that (a + Bn + (v, t)) ∩ γ′ 6= ∅

to infect all possible sites for a time interval t in η. Since there are O(t2) of
them, we obtain the desired result.

Hence, with positive probability we can go from a0 to a′
m′ and, similarly,

from a′
0 to am, which is just as good as having γ ∩ γ′ 6= ∅ for our purposes

(except that the latter cannot be achieved by sprinkling). With this at hand,
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the approach of [13] works without the annoying hypothesis (H3) to renor-
malise GOSP to 2dOP with parameter close to 1. Consequently, α(p) > β(p)
does imply θ(p) > 0, but also, since the probability of a renormalised site
being open is continuous in p and arbitrarily close to 1, Theorem 5.4 follows
(see [8] for more details).
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