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Motivated by kinetically constrained interacting particle systems
(KCM), we consider a reversible coalescing and branching simple ex-
clusion process on a general finite graph G = (V,E) dual to the bi-
ased voter model on G. Our main goal are tight bounds on its log-
arithmic Sobolev constant and relaxation time, with particular focus
on the delicate slightly supercritical regime in which the equilibrium
density of particles tends to zero as |V | →∞. Our results allow us to
recover very directly and improve to `p-mixing, p > 2, and to more
general graphs, the mixing time results of Pillai and Smith for the
Fredrickson-Andersen one spin facilitated (FA-1f) KCM on the discrete
d-dimensional torus. In view of applications to the more complex FA-jf
KCM, j > 1, we also extend part of the analysis to an analogous process
with a more general product state space.

1. Introduction. In this work we study a coalescing and branching simple sym-
metric exclusion process (CBSEP) on a general finite graph G = (V,E). The model
was first introduced by Schwartz [35] in 1977 (also see Harris [19]) as follows. Con-
sider a system of particles performing independent continuous time random walks
on the vertex set of a (finite or infinite) graph G by jumping along each edge with
rate 1, which coalesce when they meet (a particle jumping on top of another one
is destroyed) and which branch with rate β > 0 by creating an additional particle
at a empty neighbouring vertex. The process is readily seen to be reversible w.r.t.
the Bernoulli(p)-product measure with p= β

(1+β) . Initially the model was introduced
in order to study the biased voter model [35] (also known as Williams-Bjerknes tu-
mour growth model [42]), which turns out to be its dual additive interacting particle
system [18].1 A further duality in between the two processes in the Sudbury–Lloyd
sense [37] has been established since then, which shows that the law of CBSEP at
a fixed time can be obtained as a p-thinning of the biased voter model (see [39, Ex-
ercise 3.6]). When β = 0 this model reduces to coalescing random walks, additive
dual to the standard voter model, which have both been extensively studied (see e.g.
[25,26]).

When the graph is the d-dimensional hypercubic lattice, the first results were ob-
tained by Bramson and Griffeath [6,7]. In particular, they showed that the law of CB-
SEP converges weakly to its unique invariant measure starting from any non-empty
set of particles and for any dimension d. Moreover, building on their work, Durrett
and Griffeath [13] proved a shape theorem for this process, which easily implies that
CBSEP on the discrete torus of side length L→∞ exhibits mixing time cutoff (but
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without any control on the critical window). In the case of the regular tree a com-
plete convergence result is due to Louidor, Tessler, and Vandenberg-Rodes [27]. In the
particular setting of Z a key observation is that the rightmost (or leftmost) particle
performs a biased random walk with explicit constant drift (see Griffeath [18]). For
more advanced results see e.g. the work by Sun and Swart [38].

While the main focus of the above-mentioned works was the long-time behavior
of the process on infinite graphs, our interest will concentrate instead on the mixing
time for finite graphs. We determine the logarithmic Sobolev constant and relaxation
time of the model quite precisely on a wide spectrum of relatively sparse finite graphs
and for values of the branching rate β which are o(1) as |V | → ∞ (see Theorem 1
and Corollary 3.1). For instance, our results imply that for transitive bounded degree
graphs the inverse of the logarithmic Sobolev constant and relaxation time when
β = 1/|V | are, up to a logarithmic correction, equal to the cover time of the graph. We
will then use these results to strengthen and extend the findings of Pillai and Smith
[31, 32] on the mixing time for the FA-1f kinetically constrained model in the same
regime (see Corollary 3.2). Motivated by a different application to the kinetically
constrained models FA-jf with j > 1 (see [20]), we then investigate a version of the
model in which the single vertex state space {0,1} is replaced by an arbitrary finite
set and we bound its mixing time (see Theorem 2).

1.1. The CBSEP and g-CBSEP models. Let G= (V,E) be a finite connected graph
with n vertices. The degree of x ∈ V is denoted by dx. Minimum, maximum, and
average degrees in G are denoted by dmin, dmax and davg, respectively. For any ω ∈
Ω = {0,1}V and any vertex x ∈ V we say that x is filled/empty, or that there is a
particle/hole at x, if ωx = 1/0. We define Ω+ = Ω\{0} to be the event that there exists
at least one particle. Similarly, for any edge e = {x, y} ∈ E we refer to (ωx, ωy) ∈
{0,1}{x,y} as the state of e in ω and write Ee = {ω ∈Ω |ωx+ωy 6= 0} for the event that
e is not empty.

Given p ∈ (0,1), let π =
⊗

x∈V πx be the product Bernoulli measure, in which each
vertex is filled with probability p, and let µ(·) := π(· |Ω+). Given an edge e = {x, y}
we write πe := πx ⊗ πy and λ(p) := π(Ee) = p(2 − p). In the sequel we will always
assume for simplicity that p is bounded away from 1 (e.g. p6 1/2).

The CBSEP, the main object of this work, is a continuous-time Markov chain on Ω+

for which the state of any edge e ∈E such that Ee occurs is resampled with rate one
w.r.t. πe(· |Ee). Thus, any edge containing exactly one particle with rate (1−p)/(2−p)
moves the particle to the opposite endpoint (the SEP move) and with rate p/(2− p)
creates an extra particle at its empty endpoint (the branching move). Moreover, any
edge containing two particles with rate 2(1− p)/(2− p) kills one of the two particles
chosen uniformly (the coalescing move). The chain is readily seen to be reversible
w.r.t. µ and ergodic on Ω+, because it can reach the configuration with a particle at
each vertex. If c(ω,ω′) denotes the jump rate from ω to ω′, the Dirichlet form D(f) of
the chain has the expression

(1) D(f) =
1

2

∑
ω,ω′

µ(ω)c(ω,ω′)
(
f(ω′)− f(ω)

)2
=
∑
e∈E

µ(1Ee Vare(f |Ee)).

It is also not hard to check that CBSEP is equivalent to the coalescing and branching
random walks described in the introduction up to a global time-rescaling.

We will also consider a generalised version of CBSEP, in the sequel g-CBSEP, de-
fined as follows. We are given a graph G as above together with a probability space
(S,ρ), where S is a finite set and ρ a probability measure on S. We still write
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ρ =
⊗

x∈V ρx for the product probability on Ω(g) := SV . In the state space S, we are
given a bipartition S1 t S0 = S, and we write p := ρ(S1) ∈ (0,1). We define the pro-
jection ϕ : Ω(g) → Ω = {0,1}V by ϕ(ω) = (1{ωx∈S1})x∈V and we let Ω

(g)
+ = {ω ∈ Ω :∑

x(ϕ(ω))x > 1}= ϕ−1(Ω+). For any edge e= {x, y} ∈E we also let E(g)
e be the event

that there exists a particle at x or at y for ϕ(ω). In g-CBSEP every edge e= {x, y} such
that E(g)

e is satisfied is resampled with rate 1 w.r.t. ρx ⊗ ρy(· |E(g)
e ). A key property is

that its projection chain onto the variables ϕ(ω) coincides with CBSEP on G with pa-
rameter p. As with CBSEP, the g-CBSEP is reversible w.r.t. ρ+ = ρ(· |Ω(g)

+ ) and ergodic
on Ω

(g)
+ . For the main motivation behind g-CBSEP we refer the reader to Section 1.2.2.

1.2. The FA-jf KCM. We next define another class of models of interest—the
j-neighbour or the Fredrickson-Andersen j-facilitated kinetically constrained spin
model (FA-jf KCM for short). In the setting of Section 1.1 for CBSEP, these chains
evolve as follows. With rate one and independently w.r.t. the other vertices, the state
of each vertex x ∈ V with at least j neighbouring particles is resampled w.r.t. πx. In
this paper we will focus on the simplest case j = 1, the case j = 0 being trivial. As for
CBSEP it is immediate to check that, on Ω+, the chain is ergodic with µ as the unique
reversible measure, and that its Dirichlet form is

DFA(f) =
∑
x

µ
(
1{∑{x,y}∈E ωy>1}p(1− p)(f(ωx)− f(ω))2

)
,

where ωx denotes the configuration ω flipped at x.
The FA-1f KCM has been extensively studied (see e.g. [5,9,10,14,15]). Of particu-

lar relevance for us are the beautiful works of Pillai and Smith [31,32] that we present
next. For any positive integers d and L, set n= Ld, and let ZL = {0,1, . . . ,L− 1} be
the set of remainders modulo L. The d-dimensional discrete torus with n vertices, Tdn
in the sequel, is the set ZdL endowed with the graph structure inherited from Zd. For
the discrete time version of FA-1f on Tdn with p= c/n [31,32] provide a rather precise
bound for the (total variation) mixing time TFA

mix. Translated into the continuous time
setting described above, their results read

(2)
C−1n2 6 TFA

mix 6Cn2 log14(n) d= 2

C−1n2 6 TFA
mix 6Cn2 log(n) d> 3,

where C > 0 may depend on d but not on n.

REMARK 1.1. In [31, Section 2] it was argued that TFA
mix should be lower bounded

by the time necessary to get two well-separated particles starting from one. By re-
versibility, and since to move an isolated particle by one step, we should first create
a particle at a neighbouring site at rate p, this time should correspond p−1T rw

meet,
where T rw

meet is the meeting time of two independent continuous time random walks
on T2

n with independent uniformly distributed starting points. In particular, since
in two dimensions T rw

meet = Θ(n log(n)), in [32, Remark 1.1] it was conjectured that
TFA

mix = Ω(p−1n log(n)) = Ω(n2 log(n)) in the regime p= Θ(1/n) and this was recently
confirmed by Shapira [36, Theorem 1.2]. As it will be apparent in the proof of The-
orem 1(d), this heuristics together with the attractiveness of CBSEP will allow us
to prove a lower bound on the logarithmic Sobolev constant and relaxation time of
CBSEP on a general graph.
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1.2.1. Relationship between CBSEP and FA-1f. Notice that the branching and coa-
lescing moves of CBSEP are exactly the moves allowed in FA-1f. Moreover, the SEP
move for the edge {x, y} from (1,0) to (0,1) can be reconstructed using two consec-
utive FA-1f moves, the first one filling the hole at y and the second one emptying x.
If we also take into account the rate for each move, we easily get the following com-
parison between the respective Dirichlet forms (see e.g. [24, Ch. 13.4]): there exists
an absolute constant c > 0 such that for all f : Ω+→R it holds that

(3) c−1DFA(f) 6D(f) 6 cdmaxp
−1DFA(f).

In our application of the main results for CBSEP to the estimate of the mixing time of
the FA-1f chain (see Corollary 3.2) for p� 1 only the upper bound, which we believe
to be sharper, will count.

Although the two models are clearly closely related, we would like to emphasise
that CBSEP has many advantages over FA-1f, making its study simpler. Most notably,
CBSEP is attractive in the sense that there exists a grand-coupling (see e.g [24]) which
preserves the partial order on Ω given by ω ≺ ω′ iff ωx 6 ω′x for all x ∈ V (as it can be
readily verified via the construction of Section 5.1). Furthermore, it is also natural to
embed in CBSEP a continuous time random walk (Wt)t>0 on G such that CBSEP has
a particle at Wt for all t> 0. The latter is a particularly fruitful feature, which we will
use in Section 5, and which is challenging to reproduce for FA-1f [5].

1.2.2. Motivations for g-CBSEP: the FA-2f KCM. The generalisation of CBSEP cov-
ering the case of general (finite) single vertex state space S was introduced in
[20, Sections 1.5, 5.1] in order to model the effective random evolution of the mobile
droplets of the FA-2f KCM (see Section 1.2 for j = 2). Modelling the dynamics of mo-
bile droplets as a suitable g-CBSEP combined with precise bounds on the relaxation
time and probability of occurrence of the latter, proved to be a key tool to determine
with very high precision the infection time τ0 of the FA-2f KCM, i.e. the first time the
state of the origin is 0, as the density p of the infection vanishes. In particular our
Theorems 1 and 2 play a key role in [20] for proving that, for the FA-2f model in Z2

at density p, w.h.p.

τ0 = exp

(
π2 + o(1)

9p

)
, as p→ 0.

2. Preliminaries. In order to state our results we need first to recall some clas-
sical material on mixing times for finite Markov chains (see e.g. [21, 34]) and on the
resistance distance on finite graphs (see [11,40], [24, Ch. 9] and [28, Ch.2]).

2.1. Mixing times and logarithmic Sobolev constant. Given a finite state space Ω
and a uniformly positive probability measure µ on Ω, let (ω(t))t>0 be a continu-
ous time ergodic Markov chain on Ω reversible w.r.t. µ, and write P tω(ω′) = P(ω(t) =
ω′ |ω(0) = ω). Let also htω(·) = P tω(·)/µ(·) be the relative density of the law P tω(·) w.r.t.
µ. The total variation mixing time of the chain, Tmix, is defined as

Tmix = inf

{
t > 0 : max

ω∈Ω+

‖P tω(·)− µ(·)‖TV 6 1/(2e)

}
,

where ‖ · ‖TV denotes the total variation distance defined as

‖P tω(·)− µ(·)‖TV =
1

2
‖htω(·)− 1‖1,
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where ‖g‖αα = µ(|g|α), α> 1. The `2-mixing time T2 or, more generally, the `q-mixing
times Tq, q > 1, are defined by

Tq = inf

{
t > 0 : max

ω∈Ω+

‖htω(·)− 1‖q 6 1/e

}
.

Clearly Tmix 6 Tq for q > 1 and it is known that for all 1< q 6∞ the `q-convergence
profile is determined entirely by that for q = 2 (see e.g. [34, Lemma 2.4.6]). Moreover,
(see e.g. [34, Corollary 2.2.7],

(4)
1

2
α−1 6 T2 6 α−1(1 +

1

4
log log(1/µ∗)),

where µ∗ = minω∈Ω+
µ(ω) and α is the logarithmic Sobolev constant defined as the

inverse of the best constant C in the logarithmic Sobolev inequality valid for any
f : Ω+→R

(5) Ent(f2) := µ(f2 log(f2/µ(f2))) 6CD(f).

Finally, the relaxation time Trel is then defined as the best constant C in the Poincaré
inequality

(6) Var(f) 6CD(f).

It is not difficult to prove that Trel 6 Tmix and that (see e.g. [12, Corollary 2.11])

(7) 2Trel 6 α−1 6 (2 + log(1/µ∗))× Trel.

Notation warning. In the sequel, unless otherwise indicated, all the quantities in-
troduced above will not carry any additional label when referring to CBSEP. On the
contrary, the same quantities referring to other chains, e.g. the FA-1f KCM or g-CBSEP,
will always carry an appropriate superscript.

2.2. Resistance distance. Given a finite connected simple graph G= (V,E), let ~E
denote the set of ordered pairs of vertices forming an edge of E. For ~e = (u, v) ∈ ~E

we set −~e= (v,u). Given an anti-symmetric function θ on ~E (that is θ(~e) =−θ(−~e))
and two vertices x, y we say that θ is a unit flow from x to y iff

∑
v:(u,v)∈ ~E θ((u, v)) = 0

for all u /∈ {x, y} and
∑

v:(x,v)∈ ~E θ((x, v)) = 1. The energy of the flow θ is the quantity
E(θ) = 1

2

∑
~e∈ ~E θ(~e)

2 and we set

(8) Rx,y = inf{E(θ) : θ is a unit flow from x to y}.

The Thomson principle [41] states that the infimum in (8) is actually attained at a
unique unit flow.

The quantity Rx,y can be interpreted as the effective resistance in the electrical
network obtained by replacing the vertices of G with nodes and the edges with unit
resistances. In graph theory it is sometimes referred to as the resistance distance.
It is also connected to the behaviour of the simple random walk on G via the for-
mula 2|E|Rx,y = Cx,y, where Cx,y is the expected commute time between x and y.
Furthermore, if we let T rw

rel be the relaxation time of the random walk, the bound
maxx,yRx,y 6 c

√
T rw

rel /dmin holds [30, Corollary 1.1] where c > 0 is a universal con-
stant (see also [1, Corollary 6.21] for regular graphs). Finally, by taking the shortest
path between x, y and the flow θ which assigns unit flow to each edge of the path,
Rx,y 6 d(x, y), where d(·, ·) is the graph distance, with equality iff x, y are linked by
a unique path. In the sequel and for notation convenience we shall write R̄y for the
spatial average 1

n

∑
xRx,y.
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REMARK 2.1. For later use we present bounds on maxy R̄y for certain special
graphs. If G is the d-hypercube (n := |V | = 2d) it follows from [33] that R̄y =
Θ(1/ logn) for all y ∈ V . If instead G is the regular b-ary tree with b > 2 then
maxy R̄y = Θ(logn). If G is a uniform random d-regular graph with n→∞, and d
independent of n, then w.h.p. T rw

rel =O(1) [8,16], and therefore w.h.p. R̄y = Θ(1) for
all y ∈ V . Finally, if G is the discrete d-dimensional torus Tdn ⊂ Zd with n vertices,
then, as n→∞ and d is fixed, it follows from [28, Proposition 2.15] that

max
y
R̄y = Θ(1)×


n if d= 1,

log(n) if d= 2,

1 if d> 3.

3. Main results. Our first theorem establishes upper and lower bounds for the
inverse of the logarithmic Sobolev constant, α−1, and relaxation time, Trel, of CBSEP
in the general setting described in the introduction.

Let T rw
meet denote the expected meeting time for two continuous time random walks

jumping along each edge at rate 1 and started from two uniformly chosen vertices of
G. We refer the reader to [1, 22] for the close connections between T rw

meet and Rx,y.
Let also T rw

mix denote the mixing time of the discrete time lazy simple random walk on
G (i.e. staying at its position with probability 1/2).

THEOREM 1. Let pn ∈ (0,1) and consider CBSEP with parameter pn on a sequence of
graphs G = Gn = (Vn,En) with |Vn| = n, maximum degree dmax = dmax(n), minimum
degree dmin = dmin(n), and average degree davg = davg(n).

(a) If pn = Ω(1), then

α−1 6O(n)(9)

Trel 6O(1).(10)

(b) If pn→ 0, then for some absolute constant c > 0

α−1 6 cmax

(
davgd

2
max

d2
min

T rw
mix log(n),

(
max
y
R̄y
)
n| log(pn)|

)
(11)

Trel 6 cnmax
y
R̄y.(12)

(c) There exists an absolute constant c > 0 such that for all pn ∈ (0,1)

α−1 >
cn

davg
(13)

Trel >
1− µ(

∑
xωx = 1)

pdavg
.(14)

(d) If pn =O(1/n), then we have the stronger bound

α−1 > T rw
meetΩ(1 + | log(npn)|)(15)

Trel > T rw
meetΩ(1).(16)

For the reader’s convenience, and in view of our application to the FA-1f KCM, we
detail the above bounds for the graphs discussed in Remark 2.1 when pn = Θ(1/n).

COROLLARY 3.1. In the setting of Theorem 1 assume that pn = Θ(1/n). Then:
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(1) hypercube:

Θ

(
n

logn

)
= 2Trel 6 α−1 6O(n),

(2) regular b-ary tree, b> 2 independent of n:

Θ(n log(n)) = 2Trel 6 α−1 6O(n log2(n)),

(3) uniform random d-regular graph, d independent of n: w.h.p.

Θ(n) = 2Trel 6 α−1 6O(n log(n)),

(4) discrete torus Tdn with d independent of n:

α−1 6O(1)×


n2 log(n) d= 1,

n log2(n) d= 2,

n log(n) d> 3,

and

α−1 > 2Trel = Θ(1)×


n2 d= 1,

n log(n) d= 2,

n d> 3.

The corollary follows immediately from Theorem 1(b) and (d) together with Re-
mark 2.1, the well-known results on T rw

mix for each graph and the fact that (see
[2,11,22]) for the graphs in Remark 2.1 it holds that

T rw
meet = Θ(n) max

y
R̄y.

Indeed, the upper bounds on T rw
mix are only needed to see that for these graphs the

maximum in the r.h.s. of (11) is achieved by the second term. Using Corollary 3.1
together with (4) and (3), we immediately get the following consequences for the
FA-1f KCM to be compared with the r.h.s. of (2).

COROLLARY 3.2. Consider the FA-1f KCM on G= Tdn with parameter pn = Θ(1/n)
and let TFA

mix and TFA
2 be its mixing time and `2-mixing time respectively. Then

TFA
mix 6 TFA

2 6
(
αFA

)−1
log(n) 6 cn log(n)α−1 6O(1)×


n3 log2(n) d= 1

n2 log3(n) d= 2

n2 log2(n) d> 3.

(17)

REMARK 3.3. Our results in d > 2, besides being more directly proved than in
[31,32], hold in the stronger logarithmic Sobolev sense, and extend to other graphs,
e.g. all the graphs discussed in Corollary 3.1. Furthermore, contrary to the approach
followed in [31, 32], our methods can be easily adapted to cover other regimes of
pn. For d = 1 the above upper bound on TFA

mix can be proved to also be sharp up to
logarithmic corrections, using the technique discussed in [9, Section 6.2].

Our second theorem concerns the total variation mixing time of the generalised
model, g-CBSEP.

Let τcov denote the cover time of the simple random walk on G (see e.g. [24, Chap.
11] and also [11] for a close connection between the average cover time and the
resistance distance), and let

T rw
cov = inf

{
t > 0 : max

x∈V
Px(τcov > t) 6 1/e

}
.
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THEOREM 2. Consider g-CBSEP on a finite connected graph G of minimum degree
dmin with parameter p = ρ(S1) and let Tmix be the mixing time of CBSEP on G with
parameter p. Then there exists a universal constant c > 0 such that

Tmix 6 T g-CBSEP
mix 6 c(Tmix + T rw

cov/dmin).

The main reason to bound the total variation mixing time of g-CBSEP, instead of
the `q-mixing times as for CBSEP, is that the scaling of the logarithmic Sobolev con-
stant for g-CBSEP is very different from that of the CBSEP, as the following example
shows.

EXAMPLE 3.4. Let G = T2
n, pn = 1/n, S = {0,1,2}, and ρ(1) = p, ρ(0) = ρ(2) =

(1− p)/2. Then,

(18)
(
αg-CBSEP)−1

= n3/2+o(1).

In the same setting Corollary 3.1 gives α−1 =O(n log2(n)). To prove (18) it is enough
to take as test function in the logarithmic Sobolev inequality for g-CBSEP the indicator
that a vertical strip of width b

√
n/2c of the torus is in state 0.

4. CBSEP—Proof of Theorem 1. For this section we work with CBSEP in the
setting of Theorem 1 and abbreviate p= pn. In the sequel c shall denote an absolute
constant whose value may change from line to line.

4.1. Upper bounds—Proof of Theorem 1(a) and 1(b) . Let us first prove the easy
upper bound Theorem 1(a), assuming that p = Ω(1). We know from [10, Theorem
6.4] that TFA

rel =O(1). Recalling (3) and the definition of the relaxation time, we get
that for CBSEP Trel =O(1), yielding (10). By (7) this gives α−1 =O(n) and concludes
the proof of Theorem 1(a).

The rest of this section is dedicated to the proof of the main upper bound—
Theorem 1(b). The starting point is the following decomposition of the entropy of
any f : Ω+→R
(19) Ent(f2) = µ

(
Ent(f2 |N)

)
+ Ent

(
µ(f2 |N)

)
,

where N(ω) =
∑

x∈V ωx is the number of particles and Ent(f2 |N) is the entropy of
f2 w.r.t. the conditional measure µ(· |N) (see (5)). The first term in the r.h.s. above
is bounded from above using the logarithmic Sobolev constant of the SEP on G with
a fixed number of particles.

PROPOSITION 4.1. There exists an absolute constant c > 0 such that

µ
(
Ent(f2 |N)

)
6 c log(n)

davgd
2
max

d2
min

T rw
mixD(f),

PROOF. Let

DSEP
G (f) =

1

2

∑
e∈E

µ
(

(f(ωe)− f(ω))2
)
,

where ωe is the configuration obtained from ω by swapping the states at the endpoints
of the edge e, denote the Dirichlet form of the symmetric simple exclusion process on
G. Similarly let

DBL
Kn(f) =

1

2n

∑
e∈E(Kn)

µ
(

(f(ωe)− f(ω))2
)
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be the Dirichlet form of the Bernoulli-Laplace process on the complete graph Kn. The
main result of [3, Theorem 1] implies that2

DBL
Kn(f) 6 c

2|E|
n

d2
max

d2
min

T rw
mixDSEP

G (f).

Using 2|E|=
∑

x dx we get, in particular, that

DBL
Kn(f) 6 c

davgd
2
max

d2
min

T rw
mixDSEP

G (f).

On other hand, the logarithmic Sobolev constant of the Bernoulli-Laplace process on
Kn with k ∈ {1, . . . , n−1} particles is bounded by c logn uniformly in k [23, Theorem
5]. Hence,

µ
(
Ent(f2 |N)

)
6 c log(n)DBL

Kn(f) 6 c log(n)
davgd

2
max

d2
min

T rw
mixDSEP

G (f).

The proposition then follows using p6 1/2 and

DSEP
G (f) 6

(2− p)
(1− p)

D(f).

We now examine the second term Ent(µ(f2 |N)) in the r.h.s. of (19). Let

g(k) := µ
(
f2 |N = k

)1/2
for k > 1, so that Ent(µ(f2 |N)) = Entγ(g2), where γ is the probability law of N on
{1, . . . , n}. Clearly, γ is Bin(n,p) conditioned to be positive, so that for any 2 6 k 6 n
we have

(20) γ(k)(1− p)k = γ(k− 1)p(n− k+ 1).

PROPOSITION 4.2. There exists an absolute constant c > 0 such that

Entγ(g2) 6 c log(1/p)× p
∑
y∈V

µ
(

[f(ωy)− f(ω)]2 (1− ωy)
)
.

where we recall that ωy denotes the configuration ω flipped at y.

PROOF. The proof starts with a logarithmic Sobolev inequality for γ w.r.t. a suitably
chosen reversible death and birth process on {1, . . . , n}.

LEMMA 4.3. There exists an absolute constant c > 0 such that for any non-negative
function g : {1, . . . , n}→R

Entγ(g2) 6 c log(1/p)×
n∑
k=2

γ(k)k[g(k)− g(k− 1)]2.

Leaving the tedious proof to the Appendix, we move on to bounding the r.h.s. above
for the special choice g = µ(f2 |N)1/2.

2Actually the comparison result proved in [3] is much stronger, since it concerns weighted exchange
processes on G and on Kn.
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CLAIM 4.4. For any 2 6 k 6 n we have

(g(k)− g(k− 1))2 6
A2
k

g2(k− 1) + g2(k)
,

where

Ak =
1

n− k+ 1

∑
y∈V

µ
(
(1− ωy)

[
f2(ω)− f2(ωy)

]
|N = k− 1

)
.

PROOF. We first observe that

(21) [g(k)− g(k− 1)]2 =
[g2(k)− g2(k− 1)]2

[g(k) + g(k− 1)]2
6

[g2(k)− g2(k− 1)]2

g2(k) + g2(k− 1)
.

Next we write

g2(k− 1) =
∑

ω: N(ω)=k−1

µ(ω)

γ(k− 1)
f2(ω)

=
1

n− k+ 1

1

γ(k− 1)

∑
y∈V

∑
ω: N(ω)=k−1

µ(ω)(1− ωy)f2(ω).

With the change of variable η = ωy we get that the r.h.s. above is equal to

1

n− k+ 1

1

γ(k− 1)

∑
y∈V

∑
ω: N(ω)=k−1

µ(ω)(1− ωy)
[
f2(ω)− f2(ωy)

]
+

γ(k)(1− p)
p(n− k+ 1)γ(k− 1)

∑
y∈V

∑
η: N(η)=k

µ(η)

γ(k)
ηyf

2(η),

the second line being equal to g2(k) by (20). In conclusion g2(k−1) = g2(k) +Ak and
the claim follows from (21).

CLAIM 4.5. For any 2 6 k 6 n we have

A2
k 6

2
(
g2(k− 1) + g2(k)

)
n− k+ 1

∑
y∈V

µ
(

[f(ω)− f(ωy)]2 (1− ωy) |N = k− 1
)
.

PROOF. Using f2(ω) − f2(ωy) = (f(ω) − f(ωy))(f(ω) + f(ωy) and the Cauchy-
Schwarz inequality w.r.t. µ (· |N = k− 1, ωy = 0), we get

Ak 6 Av
(
µ([f(ω)− f(ωy)]2 |N = k− 1, ωy = 0)1/2×

µ([f(ω) + f(ωy)]2 |N = k− 1, ωy = 0)1/2
)
,

where for any h : V →R

Av(h) :=
1

n− k+ 1

∑
y∈V

µ ((1− ωy) |N = k− 1)h(y).
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Another application of the Cauchy-Schwarz inequality, this time w.r.t. Av(·), gives

A2
k 6

1

n− k+ 1

∑
y∈V

µ
(

[f(ω)− f(ωy)]2 (1− ωy) |N = k− 1
)
×

2

n− k+ 1

∑
z∈V

µ
([
f2(ω) + f2(ωz)

]
(1− ωz) |N = k− 1

)
.

Inside the second factor in the above r.h.s. the term containing f2(ω) is equal to
2µ(f2 |N = k−1) = 2g2(k−1). Similarly, the term containing f2(ωy), after the change
of variable η = ωy and recalling (20), equals

2

n− k+ 1

γ(k)k(1− p)
pγ(k− 1)

µ
(
f2(η) |N = k

)
= 2g2(k).

Combining Claims 4.4 and 4.5, we get that

(22)

(g(k)− g(k− 1))2 6
A2
k

g2(k− 1) + g2(k)

6
2

n− k+ 1

∑
y∈V

µ
(

[f(ω)− f(ωy)]2 (1− ωy) |N = k− 1
)
.

Using (22) together with (20), we get

n∑
k=2

γ(k)k[g(k)− g(k− 1)]2

6
n∑
k=2

2kγ(k)

n− k+ 1

∑
y∈V

µ
(

[f(ω)− f(ωy)]2 (1− ωy) |N = k− 1
)

=
2

1− p
p
∑
y∈V

µ
(

[f(ω)− f(ωy)]2 (1− ωy)
)
.

Using the above bound together with Lemma 4.3 we get the statement of Proposition
4.2.

The final step in the proof of (11) is the following comparison between the quan-
tity p

∑
y∈V µ

(
[f(ω)− f(ωy)]2 (1− ωy)

)
and the Dirichlet form D(f) using electrical

networks. Recall the definition of the resistance distance and of maxy R̄y given in
Section 2.2.

PROPOSITION 4.6.

p
∑
x∈V

µ((f(ωx)− f(ω))2(1− ωx)) 6 4nmax
y∈V
R̄y ×D(f).

PROOF. We will identify ω ∈ {0,1}V with its set of particles {x ∈ V : ωx = 1} and
we set Fω(u) := f(ω ∪ {u}), u ∈ V. For each ~e = (u, v) ∈ ~E we also write ∇~eFω :=
Fω(v)− Fω(u). Given x ∈ V and ω ∈ Ω+, let yω ∈ V be an arbitrarily chosen vertex
such that ωyω = 1, and let θ∗ be the optimal (i.e. with the smallest energy) unit flow
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from x to yω. By applying [28, Lemma 2.9] to the function Fω and using the Cauchy-
Schwarz inequality, we get that for any ω ∈Ω+ and x ∈ V such that ωx = 0

(f(ωx)− f(ω))2 = (Fω(x)− Fω(yω))2

=

1

2

∑
~e∈ ~E

θ∗(~e)∇~eFω

2

6 Ex,yω ×
1

2

∑
~e∈ ~E

(∇~eFω)2.

Hence, ∑
x∈V

(f(ωx)− f(ω))2 (1− ωx) 6 n

(
max
y∈V
R̄y
)
× 1

2

∑
~e

(∇~eFω)2.

We next transform the generic term in the sum above into a Dirichlet form term for
CBSEP. For any ~e= (u, v) ∈ ~E we have

pµ(ω)(∇~eFω)2

= µ(ω ∪ {u})×


0 {u, v} ⊂ ω
p(f(ω ∪ {v})− f(ω))2 u ∈ ω 63 v
(1− p)(f(ω ∪ {v})− f(ω ∪ {u}))2 {u, v} ∩ ω = ∅.

Comparing with the expression of D(f), (1), we get immediately that

1

2

∑
ω∈Ω+

pµ(ω)
∑
~e∈ ~E

(∇~eFω)2 6 4D(f).

We are now ready to prove (11). Using Proposition 4.1 the first term in the r.h.s. of
(19) is bounded from above by

c log(n)
davgd

2
max

d2
min

T rw
mixD(f).

In turn, Proposition 4.2 combined with Proposition 4.6 gives that the second term in
the r.h.s. of (19) is bounded from above by

c log(1/p)× 4nmax
y∈V
R̄y ×D(f).

In conclusion,

Ent(f2) 6 cmax

(
log(n)

davgd
2
max

d2
min

T rw
mix, log(1/p)× 4nmax

y∈V
R̄y
)
×D(f),

so that the best constant in the logarithmic Sobolev inequality (5) satisfies (11).
Turning to (12), Proposition 4.6 alone is enough to conclude. Indeed, using the

two-block argument of [5, Lemma 6.6] (see also Lemma 6.5 and Proposition 6.2
therein) and the well-known fact that the variance w.r.t. a product measure is at most
the average of the sum of variances over single spins (see e.g. [4, Chapter 1]), we get

Var(f) 6 cp
∑
x∈V

µ((f(ωx)− f(ω))2(1− ωx)).

The desired bound (12) then follows from (3), (6) and Proposition 4.6.
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4.2. Lower bounds—Proof of Theorem 1(c) and 1(d). Inject f = 1{N=1}, the indi-
cator of having exactly one particle, in the logarithmic Sobolev inequality (5). For
c > 0 small enough we have

Ent(f2)

D(f)
=
µ(N = 1)| log(µ(N = 1))|

2|E|µ(N=1)
n · p

2−p

>
| logµ(N = 1)|

pdavg
> c

n

davg
,

since µ(N = 1) = np(1− p)n−1/(1− (1− p)n). To check the last inequality, one may
distinguish the cases np sufficiently large/of order 1/sufficiently small. This proves
(13). Using the same function, so that Var(f) = µ(N = 1)(1− µ(N = 1)), we obtain
(14) in the same way. This concludes the proof of Theorem 1(c).

The rest of this subsection is dedicated to the proof of the main lower bound—
Theorem 1(d), so we assume that pn =O(1/n). Let λ0 > 0 be the smallest eigenvalue,
restricted to the event {N > 2} that there are at least two particles, of −L, where L
is the generator of CBSEP. By [17, Lemma 4.2, Equation (1.4)] we have that

α−1 > λ−1
0 | log(µ(N > 2))|,

Trel > λ−1
0 (1− µ(N > 2)),

the second inequality being easy to check from the definition. It is well known (see
e.g. [21, Section 3.4]) that

λ−1
0 > Eµ(· |N>2)(τ),

where τ is the first time when N = 1. Putting these together and recalling that pn =
O(1/n), we obtain

α−1 > Eµ(· |N>2)(τ)| log(µ(N > 2))|> Eµ(· |N>2)(τ)Ω(1 + | log(npn)|),

Trel > Eµ(· |N>2)(τ)µ(N = 1) > Eµ(· |N>2)(τ)Ω(1).

In turn, again using that pn =O(1/n), we get

Eµ(· |N>2)(τ) > µ(N = 2|N > 2)Eµ(· |N=2)(τ) > Ω(1)Eµ(· |N=2)(τ).

It is not hard to see (e.g. via a graphical construction—see Section 5.1) that CB-
SEP stochastically dominates a process of coalescing random walks with birth rate 0,
which we will call CSEP. Therefore, Eω(τ) > ECSEP

ω (τ) for any ω ∈ Ω+. Furthermore,
CSEP started with two particles has the law of two independent continuous time ran-
dom walks which jump along each edge with rate (1− p)/(2− p) and coalesce when
they meet. Hence, we obtain (15) and (16), concluding the proof of Theorem 1(d).

5. g-CBSEP—Proof of Theorem 2.

5.1. Graphical construction. We start by introducing a graphical construction of
g-CBSEP for all initial conditions. The graphical construction of CBSEP can then be
immediately deduced by considering the special case S1 := {1} and S0 := {0}.

To each edge e ∈E we associate a Poisson process of rate p/(2− p) of arrival times
(ten)∞n=1. Similarly, to each oriented edge ~e ∈ ~E we associate a Poisson process of rate
(1−p)/(2−p) of arrival times (t~en)∞n=1. All the above processes are independent as e,~e
vary in E, ~E respectively. Furthermore, for e ∈E, ~e ∈ ~E and n> 1, we define Xe

n and
X~e
n to be mutually independent random variables taking values in S2. We assume

that for all n and (u, v) ∈ ~E, the law of X(u,v)
n is ρu(· |S1) ⊗ ρv(· |S0). Similarly, for

{u, v} ∈ E, the law of X{u,v}n is ρu(· |S1) ⊗ ρv(· |S1). Given an initial configuration
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ω(0) ∈ Ω(g) and a realization of the above variables, we define the realization of g-
CBSEP ω(t) as follows.

Fix t > 0, let t∗ be the first arrival time after t, and let {x, y} be the endpoints of
the edge where it occurs. We set ωz(t∗) = ωz(t) for all z ∈ V \{x, y}. If E(g)

{x,y} does not
occur, that is ωx(t) ∈ S0 and ωy(t) ∈ S0, we set ω(t∗) = ω(t). Otherwise, we set

(ωx(t∗), ωy(t
∗)) =

{
X
{x,y}
n if t∗ = t

{x,y}
n ,

X
(x,y)
n if t∗ = t

(x,y)
n .

OBSERVATION 5.1. Let ω(t) and ω′(t) be two g-CBSEP processes constructed using
the same Poisson processes (ten)∞n=1, (t~en)∞n=1 and variables Xe

n, X~e
n above, but with

different initial conditions ω,ω′ ∈ Ω(g) satisfying ϕ(ω) = ϕ(ω′) = η ∈ Ω. Fix t> 0 and
let Ft be the sigma-algebra generated by the arrival times smaller than or equal to t
(but not the Xe

n and X~e
n variables). Then ϕ(ω(t)) = ϕ(ω′(t)) =: η(t) is Ft-measurable

and only depends on ω through its projection η.
We say that a vertex v ∈ V is updated if v ∈ e ∈ E so that there exists 0 6 t∗ 6 t

and n such that t∗ ∈ {ten, t~en, t−~en } and the event E(g)
e occurs for ω(t∗), i.e. a successful

update occurs at v. Denoting the set of updated vertices by Ξt, we have

• Ξt is Ft-measurable and only depends on ω through its projection η,
• if x ∈ Ξt, then ωx(t) = ω′x(t) and, conditionally on Ft, the law of ωx(t) is
ρ(· |Sηx(t)),

• if x ∈ V \Ξt, then ωx(t) = ωx(0) and, in particular, ηx(t) = ηx.

In particular, for all x ∈ V such that there exists tx 6 t satisfying (ϕ(ω(tx)))x 6=
(ϕ(ω(0)))x, we have ωx(t) = ω′x(t) (since x ∈ Ξt).

5.2. Proof of Theorem 2. We are now ready to prove Theorem 2. The lower bound
is an immediate consequence of the fact that the projection chain on the variables
ϕ(ω) coincides with CBSEP.

For the upper bound, let µηt be the law of the CBSEP ηt at time t with parameter
p= ρ(S1) and starting point η ∈Ω+. Further denote νη = ρ(· |ϕ(ω) = η), the measure
ρ conditioned on whether or not a particle is present at each site. Since ρ is itself
product, we have

(23) νη =
⊗
x∈V

ρx(· |Sηx) =
⊗
x:ηx=1

ρx(· |S1)⊗
⊗
x:ηx=0

ρx(· |S0).

CLAIM 5.2. The law ρν
η

t of g-CBSEP with initial law νη at time t takes the form

(24) ρν
η

t (·) = µηt
(
νηt(·)

)
,

i.e. it is the average of νη
′

over η′ distributed as the CBSEP configuration ηt started from
η at time t.

PROOF. Fix ω satisfying ϕ(ω) = η. Denote by Pω the probability w.r.t. the graphical
construction of g-CBSEP of Section 5.1 with initial condition ω, by Ft the sigma-
algebra generated by the arrival times up to time t, as in Observation 5.1, and by EFt
the corresponding expectation. Then for any ω′ ∈Ω(g)

(25) ρωt (ω′) = EFt
[
Pω(ω(t) = ω′ |Ft)

]
= EFt

∏
x 6∈Ξt

1ω′x=ωx

∏
x∈Ξt

ρx(ω′x |S(ϕ(ω(t)))x)

 ,
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the last equality reflecting that by Observation 5.1 Ξt and ϕ(ω(t)) are Ft-measurable.
Again by Observation 5.1, Ξt and ϕ(ω(t)) are the same for all ω in the support of νη,
so we denote the latter by η(t). If we now average (25) over the initial condition ω
w.r.t. νη and use (23), we obtain ρν

η

(ω′) = EFt [νη(t)(ω′)], which is exactly (24), since
η(t) has the law µηt of CBSEP with initial state η, as it is the projection of g-CBSEP
with initial condition ω such that ϕ(ω) = η

Next we write

max
ω∈Ω

(g)
+

‖ρωt − ρ+‖TV 6 max
η∈Ω+

(
max

ω:ϕ(ω)=η

∥∥ρωt − ρνηt ∥∥TV
+
∥∥ρνηt − ρ+

∥∥
TV

)
,(26)

where ρ+ was defined in Section 1.1. Using Claim 5.2, it follows that

(27) max
η∈Ω+

∥∥ρνηt − ρ+

∥∥
TV

= max
η∈Ω+

‖µηt − µ‖TV,

where µ is the reversible measure of CBSEP with parameter p.
To bound the first term in the r.h.s. of (26) the key ingredient is to use the graphical

construction to embed into g-CBSEP of a suitable continuous time simple random
walk (Wt)t>0 on G with the property that g-CBSEP at time t has a "particle" at the
location of Wt.

Given ω ∈ Ω
(g)
+ , let v ∈ V be such that ϕ(ωv) = 1, and let t∗ = min{t(u,v)

n > 0} be
the first time an edge of the form (u, v) is resampled to produce a configuration ω′

with ω′u ∈ S1 and ω′v ∈ S0. We then set Ws = v for s < t∗ and Wt∗ = u. By iterating
the construction we construct (Wt)t>0 with W0 = v. It is clear that ϕ(ωWt(ω)(t)) = 1
for all t and that the law Pv(·) of (Wt)t>0 is that of a continuous-time random walk
started at v and jumping to a uniformly chosen neighbour at rate dWt

(1− p)/(2− p).
We denote by σcov the cover time of (Wt)t>0.3

Observation 5.1 then implies

(28) max
η∈Ω+

max
ω:ϕ(ω)=η

∥∥ρωt − ρνηt ∥∥TV
6 max

ω,ω′∈Ω
(g)
+

ϕ(ω)=ϕ(ω′)

‖ρωt − ρω
′

t ‖TV 6 max
v∈V

Pv(σcov > t).

The upper bound given in the theorem now follows immediately from (26), (27),
and (28) together with a standard comparison between σcov and the cover time of
the discrete time simple random walk on G.

APPENDIX: PROOF OF LEMMA 4.3

Recall that

γ(k) =

(
n

k

)
pk

(1− p)k
(1− p)n

1− (1− p)n

and consider the birth and death process on {1, . . . , n} reversible w.r.t. γ with Dirichlet
form

Dγ(g) =

n∑
k=2

γ(k)k[g(k)− g(k− 1)]2,

3We use σcov to distinguish it from the cover time τcov of the discrete time simple random walk on G.
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corresponding to the jump rates c(1,0) = 0 and

c(k, k− 1) = k k = 2, . . . , n

c(k, k+ 1) = (n− k)
p

1− p
k = 1, . . . , n− 1,

Let m= dpne and i= max(2,m). Using [29, Proposition 4] (see also [43]) the loga-
rithmic Sobolev constant of the above chain is bounded from above, up to an absolute
multiplicative constant, by the number C∗ =C− ∨C+, where

C+ = max
j>i+1

(
j∑

k=i+1

1

γ(k)c(k, k− 1)

)
γ(N > j)| log (γ(N > j)) |,

C− = max
j6i−1

 i−1∑
k=j

1

γ(k)c(k, k+ 1)

γ(N 6 j)| log (γ(N 6 j)) |.(29)

Assume first that i=m and let us start with C+. For `> 1 write a` = 1
(m+`)γ(m+`) and

Sk =
∑k

`=1 a`. We have

a`+1

a`
=

1− p
p

m+ `

n−m− `
> 1,

from which it follows that for 0< δ < 1 we have
a`+1

a`
= 1 + Θ(`/m) = eΘ(`/m) `6m,

a`+1

a`
>

(1− p)(m+ δm)

p(n−m)
> 1 + δ `> δm.(30)

In particular, for any two integers s6 t6m such that t− s> min(
√
m,m/s), it holds

that for some absolute constant β > 1

(31)
at
as

=

t−1∏
`=s

a`+1

a`
= eΘ((t−s)t/m) > β.

We first analyse the behaviour of Skγ(N > m + k)| log(γ(N > m + k))| for k 6 δm
where δ > 0 is a sufficiently small constant depending on β.

LEMMA A.3. There exists a constant c > 0 such that for δ > 0 small enough and
k 6 δm we have

Skγ(N >m+ k)| log(γ(N >m+ k))|6 c

PROOF. Let 0< δ < 1. Define recursively

k0 = 1, k1 = d
√
m e, kt+1 = kt + dm/kte,

and let T be the first index such that kT > δm. Using (31) together with a`+1 > a`,
kt+1 − kt 6 kt − kt−1, and kt/m6 δ, we claim that for any 2 6 t6 T − 1

(32)

(Skt+1
− Skt)

(Skt − Skt−1
)

=

∑kt+1

`=kt+1 a`∑kt
`=kt−1+1 a`

> β
kt+1 − kt
kt − kt−1

> β

(
kt
kt−1

+
kt
m

)−1

> β

(
kt
kt−1

+ δ

)−1

.
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To prove the first inequality in (32), observe that for any positive non-decreasing
sequence (aj)

∞
j=1 and positive integers m6 n,

an+1 + · · ·+ an+m

a1 + · · ·+ an
> min

j

(
aj+m
aj

)(
an−m+1 + · · ·+ an
a1 + · · ·+ an

)

> min
j

(
aj+m
aj

)( ∑n
j=n−m+1 aj

(n−m)an−m +
∑n

j=n−m+1 aj

)

> min
j

(
aj+m
aj

)
m

n
,

because
∑n

j=n−m+1 aj > an−mm.
If now δ, t are chosen small enough and large enough, respectively, depending on

the constant β above, the r.h.s. of (32) is greater than e.g. β1/2 > 1. In other words,
fixing δ small enough and t0 large enough, the sequence

((
Skt+1

− Skt
))T
t=t0

, t0� 1,

is exponentially increasing.
Now fix k 6 δm and t such that kt 6 k < kt+1. Assume first that t0 6 t < T . Then,

for some positive constant c allowed to depend on β and t0 and to change from line
to line, we have

Sk 6
t+1∑
s=t0

(
Sks − Sks−1

)
+ St0 6 c

(
Skt+1

− Skt
)

+ St0

6 c
kt+1 − kt

mγ(m+ kt+1)
6 c

kt+1 − kt
mγ(m+ k)

.

If instead 0 6 t < t0, we directly have that

Sk 6 kak 6 c
kt+1 − kt
mγ(m+ k)

.

Using the bounds

γ(N >m+ k) 6 c
m+ k

k
γ(m+ k), | log (γ(N >m+ k)) |6 ck2/m,

we finally get that kt 6 k < kt+1, t < T,

Skγ(N >m+ k)| log(γ(N >m+ k))|6 c
(kt+1 − kt)kt+1

m
6 c.

Let δ be as in Lemma A.3. We next consider the easier case, k > δm. By (30), for c
large enough depending on δ and allowed to change from line to line, we have that
Sk 6 SkT + cak 6 cak and γ(N >m+ k) 6 cγ(m+ k). Thus, for k > δm, we have that

Skγ(N >m+ k)| log(γ(N >m+ k))|6 c

m+ k
| log(γ(N >m+ k))|6 c log(1/p),

since for all k we trivially have γ(m+ k) > pm+k. In conclusion, we have proved that
C+ 6 O(log(1/p)) if m > 2. If instead m = 1, then the very same computations still
give C+ 6O(log(1/p)), Lemma A.3 being void.

The bound of C− follows the same pattern. If m = O(1), the reader may readily
check that C− = O(1) because all terms in (29) are O(1). If instead m� 1, we still
obtain C− =O(1), concluding the proof of Lemma 4.3.
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