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Abstract

In this note we provide an alternative proof of the fact that subcritical bootstrap
percolation models have a positive critical probability in any dimension. The proof
relies on a recent extension of the classical framework of Toom. This approach is not
only simpler than the original multi-scale renormalisation proof of the result in two
and more dimensions, but also gives significantly better bounds. As a byproduct,
we improve the best known bounds for the stability threshold of Toom’s North-
East-Center majority rule cellular automaton.
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1 Introduction
Bootstrap percolation is a statistical mechanics model initially introduced to model mag-
netic materials at low temperature [10]. It has proved useful for studying the dynamics
of the Ising and kinetically constrained models (see [19] for a review), but it has also
been used more directly to model e.g. the spread of news on a social network (see [5]
for a survey). Since its introduction many variants of this cellular automaton have been
investigated. This led to the study of the universality classes of bootstrap percolation
models defined by the various possible behaviours with a random i.i.d. initial condition.
This classification was completed in two dimensions [4,7,8] and was recently extended to
higher dimensions by Balister, Bollobás, Morris and Smith [1–3].

An apparently unrelated area of study is the one of random perturbations of monotone
cellular automata. Perhaps the most central result in this domain is due to Toom [24].
Motivated by reliable computing via celullar automata, he proved an efficient necessary
and sufficient condition for a monotone cellular automaton to be resistant to noise.
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Recently, the first author [18] noted that these two domains are closely related. In
particular, he showed the classical [24] to be equivalent to part of the main result of [2],
still in preparation at the time. Around the same time Swart, Toninelli and the second
author [22] extended Toom’s framework further to encompass attractive probabilistic
cellular automata instead of deterministic ones. The goal of the present work is to adapt
their tools to provide an alternative proof of the full universaility result of [2], which is
also quantitatively more efficient and establishes yet a new connection between the two
settings.

1.1 Bootstrap percolation

Fix a dimension d > 2. A bootstrap percolation model on Zd is a monotone cellular
automaton specified by an update family U , that is, a finite family of finite subsets of
Zd \ {o} (o denotes the origin of Zd). We start from an initial configuration x ∈ Ω :=
{0, 1}Zd . At each time step the process evolves according to a local rule. Denoting by Xt

the set of vertices in state 0 at time t > 0, the set Xt+1 is defined by

Xt+1 := Xt ∪
{
i ∈ Zd : ∃U ∈ U such that i+ U ⊂ Xt

}
. (1)

That is, a site i becomes 0 if and only if it was already in state 0 or there exists a finite
U ⊂ Zd \ {o} in the update family U such that all elements of i+ U are in state 0. Note
that randomness is only involved in the state of the configuration at time 0, after that the
evolution of the process is deterministic. For an initial configuration X0 = X we denote
by [X] =

⋃
t>0Xt the closure of X and say that the process percolates if [X] = Zd. Let

Pp denote the law of the process starting from an initial configuration where each site is
in state 0 with probability p and in state 1 with probability 1 − p independently from
each other. We define the critical parameter

pc(U) := inf
{
p ∈ [0, 1] : Pp

(
[X] = Zd

)
= 1
}
.

Note that by ergodicity Pp([X] = Zd) ∈ {0, 1} for all p ∈ [0, 1]. The main question we
would like to address is for which U the above phase transition is non-trivial in the sense
pc(U) > 0. The answer was suggested by Balister, Bollobás, Przykucki and Smith [4] and
requires a few more notions to state.

We denote by Sd−1 the unit sphere and by 〈·, ·〉 the scalar product in Rd. For each
unit vector u ∈ Sd−1 we let Hu := {v ∈ Rd : 〈v, u〉 < 0} denote the open half-space
whose boundary is perpendicular to u. We say that a direction u ∈ Sd−1 is stable, if
[Hu ∩ Zd] = Hu ∩ Zd, and denote by S ⊂ Sd−1 the set of all stable directions. We say
that a direction u is strongly stable, if it is in the interior of S. We say that an update
family is subcritical, if every hemisphere of Sd−1 contains a strongly stable direction.

Our goal is to provide a simple proof of the following result recently established in [2]
(see [1] for the converse).

Theorem 1.1. If U is subcritical, then pc(U) > 0.

Remark 1.2. Following [17, Remark 1.5] (see also [22, Section 2.6]), let us note that
Theorem 1.1 applies equally well to a space-time inhomogeneous version of bootstrap
percolation. Namely, we apply a random update family at each space-time point chosen
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independently among finitely many families U1, . . . ,Un. The model is called subcritical if
the single update family U =

⋃n
j=1 Uj is subcritical. In this case for some fixed p > 0 and

initial state with law Pp, the process does not percolate a.s. w.r.t. the inhomogeneity.

The first instances of Theorem 1.1 were established already by Schonmann [20,21] in
the 1990s. Theorem 1.1 restricted to d = 2, was proved by Balister, Bollobás Przykucki
and Smith [4], using a rather involved multi-scale renormalisation. They conjectured
Theorem 1.1 [4, Conjecture 16] and suggested that modulo further technical difficulties
they expect their approach to work in higher dimensions. This conjecture was reiterated
in [19, Conjecture 1.6] and recently verified by Balister, Bollobás, Morris and Smith [2]
by the same technique. Meanwhile, using Toom’s result [24] (see Section 1.2), the first
author [18] proved Theorem 1.1 for U contained in some half-space Hu, that is, for every
U ∈ U it holds that U ⊂ Hu.

As already noticed by Schonmann [20], oriented site percolation can be viewed as a
subcritical bootstrap percolation model (see [18] for a generalisation of this fact). Quan-
titative rigorous bounds on pc for this model had been obtained much earlier (see [11] for
an overview).

For general models, particularly non-oriented ones, bounds are much more difficult
to obtain. For this reason [4] introduced a benchmark two-dimensional subcritical model
called directed triangular bootstrap percolation (DTBP) given by

UDTBP := {{(1, 0), (0, 1)}, {(−1,−1), (0, 1)}, {(−1,−1), (1, 0)}} (2)

(see Fig. 1). The proof of Theorem 1.1 in [4] gave the lower bound in

10−101 < pc

(
UDTBP

)
< 0.2452, (3)

while the upper bound was proved by the first author [16] also by a general approach.
Naturally, the lower bound in Eq. (3) is more disappointing and [4, Question 17] asks for
improving that. Our proof of Theorem 1.1 provides the following improvement, still far
from the nonrigorous numerical estimate pc

(
UDTBP

)
≈ 0.118 put forward in [4].

Theorem 1.3. For the DTBP update family given in Eq. (2), pc

(
UDTBP

)
> 2.8 · 10−6.

1.2 Perturbed cellular automata

Toom [24] studied random perturbations of monotone cellular automata. More precisely,
we are given some map ϕ : Ω → {0, 1} depending on finitely many coordinates of the
input and such that ϕ(x) 6 ϕ(y) whenever x 6 y for the coordinate-wise order. We
start from the configuration x0 equal to 1 everywhere and let xt+1(i) = ϕ(xt(·+ i)) with
probability 1− p and xt+1(i) = 0 with probability p.1 We then set

pc(ϕ) := sup
{
p ∈ [0, 1], lim inf

t>0
Pp (xt(o) = 1) > 0

}
.

1In fact, Toom studied a more general type of noise, but the monotonicity property allows one to
reduce their study to the simple one we focus on.
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(a) Family U coinciding with {A1, A2, A3}. The
cross marks o, the solid dots mark elements of
As for s ∈ Σ.

(b) Stable directions.

Figure 1: The DTBP example with parameters as in Eq. (8).

One is interested for which ϕ we have pc(ϕ) > 0, which suggests that the corresponding
cellular automaton does not completely lose memory of the initial state when subjected
to noise. In order to answer this, we need one more notion.

We say that ϕ is an eroder if any initial condition with only finitely many sites in state
0 eventually becomes all 1 in the absence of noise (p = 0). Toom [24] famously proved that
ϕ is an eroder if and only if pc(ϕ) > 0. The hard implication (pc(ϕ) > 0 if ϕ is an eroder)
was shown in [18] to follow from Theorem 1.1. Conversely, our proof of Theorem 1.1
relies on an improvement of the method of [24] recently revisited and generalised by
Swart, Toninelli and the second author [22] (see Section 3). Restricted or full versions of
Toom’s result have been proved alternatively in [6, 9, 12–14, 22] (see [22, Section 1.4] for
more detailed background). Most of them rely on a Peierls argument.

An important two-dimensional example is the Toom North-East-Center majority rule:

ϕNEC(x) := 1x(o)+x((1,0))+x((0,1))>2. (4)

It was introduced in [25] and pc

(
ϕNEC

)
> 0 can be recovered from [23]. The best explicit

bound pc

(
ϕNEC

)
> 3−21 ≈ 9.6 · 10−11 was obtained recently [22]. It turns out that

the proof of Theorem 1.3 leads to the following improvement to be compared with the
nonrigorous numerical estimate pc

(
ϕNEC

)
≈ 0.053 [22].

Theorem 1.4. For the Toom rule of (4) we have 2.8 · 10−6 < pc

(
ϕNEC

)
.

Remark 1.5. We are unaware of upper bounds on pc

(
ϕNEC

)
, but the bound 0.3118 fol-

lows from comparison with oriented site percolation and [15]. Applying the first author’s
work [16,18], one can prove pc

(
ϕNEC

)
< 0.2452. A sketch of the argument is provided in

the appendix.

2 Preliminaries
For the rest of the paper we fix a subcritical update family U . While U specifies sets of
0-s sufficient for the origin to become 0, it will be more convenient for us to work with
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an alternative representation of the model. Namely, in terms of sets of 1-s preventing o
to become 0 on the next time step. More precisely, let

A := {{i1, . . . , in} : ∀j ∈ {1, . . . , n}, ij ∈ Uj} ,

where U = {U1, . . . , Un}. We next show that for subcritical models one can find a suitable
set of directions ui and sets Ai ∈ A so that uj ‘points towards’ Aj.

Lemma 2.1. For any subcritical U there exists an integer σ ∈ {2, . . . , d+1}, strongly sta-
ble directions u1, . . . , uσ ∈ Sd−1, real coefficients λ1, . . . , λσ ∈ (0, 1) and sets A1, . . . , Aσ ∈
A such that

σ∑
j=1

λjuj = 0 (5)

and Aj ⊂ H−uj for all j ∈ {1, . . . , σ}.

Proof. Let S̊ be the set of strongly stable directions. Let Ŝ be the set of u ∈ S̊ such that
for all U ∈ U and i ∈ U we have 〈i, u〉 6= 0. Assume that o is not in the interior of the
convex envelope of Ŝ. Then by the finite dimensional Hahn–Banach separation theorem
there exists an open hemisphere H disjoint from Ŝ. Yet, U is subcritical, so S̊ ∩H 6= ∅.
But this is a contradiction, since S̊ \ Ŝ has empty interior in Sd−1.

Thus, there exist directions in Ŝ whose convex combination is o. Moreover, by
Carathéodory’s theorem, we may select at most d + 1 of these directions, so that the
same holds, yielding Eq. (5).

Observe that a direction u ∈ Sd−1 is stable if and only if A∩Hu = ∅ for some A ∈ A.
But if u ∈ Ŝ (and not just u ∈ S̊) this is equivalent to the existence of A ⊂ H−u.

For the rest of the paper we fix σ, us, λs and As for s ∈ Σ := {1, . . . , σ} as in
Lemma 2.1. Their role is that if we perform a walk with steps in As, we end up drifting
away in direction us. Indeed, such long walks will play an important part in our proof.
Eq. (5) guarantees that if we consider these walks for each s ∈ Σ, their endpoints globally
spread out in space linearly, even though some of them may remain together. In order to
formalise and quantify this effect, we need some more notation.

Consider the linear forms Ls : Rd → R

Ls(i) := λs〈i, us〉 (s ∈ Σ). (6)

Further let

ε := min
s∈Σ

min
i∈As

Ls(i) > 0, R := −
∑
s∈Σ

min
i∈A

Ls(i), (7)

where A =
⋃
s∈Σ As ⊂

⋃
U∈U U . Thus, ε is the ‘minimum drift’ and R is a ‘total negative

drift, if one makes a step in the wrong direction’. Note that ε > 0, as As ∈ H−us for all
s ∈ Σ. For our DTBP example (see Fig. 1) we simply set σ = 3 and

A1 := {(1, 0), (0, 1)} u1 :=
1√
2

(1, 1) λ1 :=
√

2,

A2 := {(−1,−1), (0, 1)} u2 :=
1√
5

(−2, 1) λ2 :=
√

5,

A3 := {(−1,−1), (1, 0)} u3 :=
1√
5

(1,−2) λ3 :=
√

5.

(8)
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These do verify Lemma 2.1 and the constants of Eq. (7) are

ε = 1, R = 6. (9)

3 Toom contours
In the present section we closely follow [22] adapted to our bootstrap percolation setting.
We refer to that work for more details, but the main idea is to construct a graph which
explains how 0-s propagate to reach a given space-time point. Roughly speaking, if a
vertex i is in state 0 at time t, then either i ∈ X0, or there is a vertex js ∈ i+As in state
0 at time t− 1 for each s ∈ Σ. We can then choose similar vertices for each js that is not
in X0, and so on. This way, starting from i, for each s ∈ Σ we define a walk with steps
in As ending at a vertex in X0. We use these walks to construct Toom contours.

We define a directed graph as a couple (V, ~E) where V is a set of vertices and ~E is a
set of directed edges that is a subset of V × V . Let

~Ein(v) :=
{

(u, v) ∈ ~E
}
, ~Eout(v) :=

{
(v, w) ∈ ~E

}
denote the sets of directed edges entering and leaving a given vertex v ∈ V , respectively.
We further define an directed graph with σ types of edges to be a couple (V, E), where
E = ( ~E1, . . . , ~Eσ) is a sequence of subsets of V ×V . We interpret ~Es as the set of directed
edges of type s.

Definition 3.1 (Toom graph). A Toom graph with σ > 2 charges is a directed graph
with σ types of edges (V, E) = (V, ( ~E1, . . . , ~Eσ)) such that each vertex v ∈ V satisfies one
of the following four conditions (see the left of Fig. 2):

(i) | ~Es,in(v)| = 0 = | ~Es,out(v)| for all s ∈ Σ,

(ii) | ~Es,in(v)| = 0 and | ~Es,out(v)| = 1 for all s ∈ Σ,

(iii) | ~Es,in(v)| = 1 and | ~Es,out(v)| = 0 for all s ∈ Σ,

(iv) there exists s ∈ Σ such that | ~Es,in(v)| = 1 = | ~Es,out(v)| and | ~El,in(v)| = | ~El,out(v)| =
0 for each l ∈ Σ \ {s}.

We set

V◦ :=
{
v ∈ V : ∀s ∈ Σ, | ~Es,in(v)| = 0

}
,

V? :=
{
v ∈ V : ∀s ∈ Σ, | ~Es,out(v)| = 0

}
,

∀s ∈ Σ Vs :=
{
v ∈ V : | ~Es,in(v)| = 1 = | ~Es,out(v)|

}
.

Vertices in V◦, V?, and Vs are called sources, sinks, and internal vertices with charge s,
respectively. Vertices in V◦ ∩ V? are called isolated vertices. As we can see on the left of
Fig. 2, we can imagine that at each source σ charges emerge, one of each type. Charges
then travel via internal vertices of the corresponding charge through the graph until they
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arrive at a sink, in such a way that at each sink precisely σ charges arrive, one of each
type. It is clear from this description that |V◦| = |V?|, i.e., the number of sources equals
the number of sinks.

Let ~E :=
⋃σ
s=1

~Es denote the directed edges of all types and E := {{v, w} : (v, w) ∈ ~E}
denote the corresponding set of undirected edges. We say that a Toom graph (V, E) is
connected if the associated undirected graph (V,E) is connected.

We call a Toom graph with a distinguished source v◦ ∈ V◦ a rooted Toom graph. For
a rooted Toom graph (V, E , v◦) and s ∈ Σ, we write

~E?
s :=

{
(v, w) ∈ ~Es : v ∈ Vs ∪ {v◦}

}
~E? :=

⋃
s∈Σ

~E?
s ,

~E◦s :=
{

(v, w) ∈ ~Es : v ∈ V◦ \ {v◦}
}

~E◦ :=
⋃
s∈Σ

~E◦s .

I.e. ~E? is the set of directed edges that have an internal vertex or the root as their starting
vertex and ~E◦ are all the other directed edges, starting at a source that is not the root.

Our next aim is to define Toom contours, which are connected Toom graphs that are
embedded in space-time Zd+1 in a special way.

Definition 3.2 (Embedding). An embedding of a Toom graph (V, E) is a map

ψ : V → Zd × Z : v 7→
(
~ψ(v), ψd+1(v)

)
that has the following properties (see Fig. 2):

(v) ψd+1(w) = ψd+1(v)− 1 for all (v, w) ∈ ~E,

(vi) ψ(v1) 6= ψ(v2) for each v1 ∈ V? and v2 ∈ V with v1 6= v2,

(vii) ψ(v1) 6= ψ(v2) for each s ∈ Σ and v1, v2 ∈ Vs with v1 6= v2.

We interpret ~ψ(v) and ψd+1(v) as the space and time coordinates of ψ(v) respectively.
Condition (v) says that directed edges (v, w) of the Toom graph (V, E) point in the
direction of decreasing time. Condition (vi) says that sinks do not overlap with other
vertices and condition (vii) says that internal vertices do not overlap with other internal
vertices of the same charge.

Recall the Pp-random set X0 and the sets As for s ∈ Σ given by Lemma 2.1.

Definition 3.3 (Contour). A Toom contour is a quadruple (V, E , v◦, ψ) with (V, E , v◦) a
connected rooted Toom graph and ψ an embedding of it satisfying the following properties
(see Fig. 2)

(viii) ~ψ(w) = ~ψ(v) for all (v, w) ∈ ~E? such that ~ψ(v) ∈ ~ψ(V?),

(ix) ~ψ(w)− ~ψ(v) ∈ As for all s ∈ Σ and (v, w) ∈ ~E?
s such that ~ψ(v) 6∈ ~ψ(V?),

(x) ~ψ(w)− ~ψ(v) ∈ A =
⋃
s∈Σ As for all (v, w) ∈ ~E◦,

(xi) |{ψ(w) : (v, w) ∈ ~E}| = 2 for all v ∈ V◦ \ {v◦},
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(xii) ψd+1(V?) = {0}.

The Toom contour is present in X0 if ~ψ(V?) ⊂ X0.

For s ∈ Σ, let us call pairs of space-time points of the form
(
(i, t), (i+ j, t− 1)

)
with

j ∈ As type s diagonal segments and pairs of space-time points of the form
(
(i, t), (i, t−1)

)
vertical segments. Condition (viii) says that the segments starting from a vertex with the
same space coordinate as a sink are vertical. Condition (ix) says that edges of charge
s starting at internal vertices or the root map to diagonal segments of type s if their
starting point does not have the same space coordinate as any sink. Condition (x) gives
that edges from sources other than the root map to diagonal segments of arbitrary type.
Condition (xi), which is only needed to improve our quantitative bounds, ensures that
all sources are forks : the embeddings of all their σ edges point to exactly two sites (see
[22, Theorem 32]). Together with condition (viii) it ensures that each source other than
the root has a different space coordinate from any sink. Condition (xii) ensures that all
sinks are embedded with time coordinate 0. Finally, the contour is present if sinks are
mapped to vertices initially in state 0.

As mentioned before, Toom contours explain how 0-s propagate to reach site i at time
t. Informally we can imagine it as follows. The embedding of the root is (i, t). The σ
charges emerging from it correspond to the walks discussed in Section 2, starting at i with
steps in As and going backwards in time. Their embedding consist of diagonal segments
until the walk reaches its endpoint in X0, then the remaining segments up until time 0
are vertical. This ensures that indeed each sink is mapped to a point of X0 at time 0.
As we follow these charges, they spread out in space. Whenever they drift ‘too far’ from
each other, we add new sources with their corresponding charges to ‘bridge the gap’. To
have some control over the direction of these new charges we are allowed to chose the
first step of their embedding in any directions in A, while the rest maps to a similar walk
in As. That is why the other sources behave slightly differently from the root, as seen in
Conditions (ix) and (x).

The following is [22, Theorem 7] in our setting.

Theorem 3.4 (Presence of a Toom contour). For any t > 0 such that o ∈ Xt we have
that a Toom contour rooted at (o, t) is present in X0.

Since the reader may have difficulty reading Theorem 3.4 out of [22], let us explain
how to fit our setting into theirs. We define the map ϕ : Ω→ {0, 1} as

ϕ(x) :=

{
0 ∃U ∈ U such that x(i) = 0 for all i ∈ U,
1 otherwise.

It is not hard to check that ϕ(x) = 1 if and only if there exists A ∈ A such that x(i) = 1
for all i ∈ A. For every space-time point (i, t) ∈ Zd+1, we define φi,t : Ω→ {0, 1} by

φi,t(x) :=


ϕ(x) if i ∈ Zd \X0, t ∈ Z,
0 if i ∈ X0, t = 0,

x(o) if i ∈ X0, t 6= 0.

(10)

For X ⊂ Zd we define x(X) := 1Zd\X ∈ Ω. We then verify from Eq. (1) that for all t > 0
and i ∈ Zd we have i ∈ Xt if and only if φi,t(x(Xt−1 − i)) = 0. Further setting Xt = ∅
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Figure 2: Toom contour for DTBP with A1, A2, A3 as in Eq. (8) and Fig. 1. On the left
is a Toom graph with σ = 3 charges rooted at v◦, each color representing a different type
of edges, in the middle is its embedding in space-time, and on the right is its embedded
root shard. Empty dots correspond to sources, while stars denote sinks. The contour is
present if sinks belong to X0.

for t < 0, [22, Theorem 7] indeed becomes Theorem 3.4. Let us reassure the reader that
this notation will not be used further.

4 Shattering contours
The core of Toom’s Peierls argument is to define contours that we can count efficiently.
This is done in [24] for perturbed cellular automata where each space-time point is either
0 or applies the map ϕ. Even though in [22] the definition of Toom contours is extended
for more general models, including bootstrap percolation, in our setting their number
explodes. Therefore, we need a more precise notion of a contour, which is our main
novelty together with bounding their number (see Lemma 5.3 below). It reflects the
fact that the maps φi,t from Eq. (10) do not depend on t ∈ (0,∞), allowing us to shift
contours in time. Informally, this new contour is defined only by the space coordinates
of the sources and the σ walks emerging from them with steps in As.

Let (V, E , v◦, ψ) be a Toom contour. For any v ∈ V denote by Vv ⊂ V the set of vertices
that can be reached from v in the directed graph (V, E) by edges whose embedding is a
diagonal segment.

Definition 4.1 (Shard). Given a Toom contour (V, E , v◦, ψ) and a source v ∈ V◦ we say
that (Vv, Ev) is a shard rooted at v, if it is the subgraph of (V, E) spanned by Vv. We denote
by (Vv, Ev, ψ�Vv) and (Vv, Ev, ~ψ�Vv) its embedding in space-time and space respectively (see
Fig. 3).

Thus, a shard is a set of σ paths with distinct charges starting at a source. Defini-
tion 3.3 implies that the embedding of any path from a source other than the root to a
sink is a nonempty sequence of diagonal segments followed by a possibly empty sequence
of vertical segments. The same holds for the root, except that the sequence of diagonal
edges might be empty, if the contour has only one sink. Therefore, it is easy to see that
any Toom contour (V, E , v◦, ψ) present in X0 is uniquely determined by v◦ and the set of
its embedded shards {(Vv, Ev, ψ�Vv) : v ∈ V◦}.
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We refer to vertices w in a shard (Vv, Ev) with | ~Eout(w)| = 0 as its endpoints. We
say that two embedded shards are connected, if they have endpoints with identical space
coordinates in their embedding. Note that the set of embedded shards of a Toom contour
is connected.

We say that two embedded shards (V, E , ψ) and (V ′, E ′, ψ′) are equivalent, if there
exists a bijection π : V → V ′ such that it is an isomorphism between (V, ~Es) and (V ′, ~E ′s)

for all s ∈ Σ and ~ψ = ~ψ′ ◦ π. That is, the two embedded shards are the same up to
relabeling and time shift. We then say that two Toom contours are equivalent if there is
a bijection between their respective embedded shards such that each shard and its image
are equivalent and the first contour’s embedded root shard maps to the second one’s. We
will call the equivalence classes defined by this relation shattered contours. See Fig. 3 for
an example of the embedding of the shards of two equivalent Toom contours. We say
that a shattered contour is rooted at o, if the embedding of its root v◦ satisfies ~ψ(v◦) = o.
Definition 4.2 (Presence of a shattered contour). A shattered contour is present in X0,
if at least one Toom contour in the equivalence class is present in X0.

Putting our observations together, we obtain the following corollary of Theorem 3.4.
Corollary 4.3 (Presence of a shattered contour). If o ∈ [X], a shattered contour rooted
at o is present in X0.

Figure 3: Space-time embedding of the set of shards of two Toom contours with three
charges belonging to the same shattered contour as the one in Fig. 2. Empty dots denote
the roots.

Note that by the definition of the equivalence relation and by conditions (i)-(xii) each
shattered contour rooted at o that is present in X0 identifies with the space embedding
of a connected set of shards, one of which is rooted at o, such that

(i)’ exactly one charge of each type arrives at the endpoints with identical ~ψ image,

(ii)’ ~ψ does not map together endpoints with other points,

(iii)’ each charge s edge starting at an internal vertex or the root is a type s diagonal
segment,

(iv)’ every other edge is a diagonal segment with arbitrary type,

(v)’ all non-root shards’ sources are forks.
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5 Peierls bounds
We are now ready to apply a Peierls argument as in [22], taking into account Section 4.
Let Tn,m with m,n > 0 denote the set of shattered contours rooted at o with m+1 shards
and n directed edges in their shards that start at an internal vertex or the root. Apart
from these n edges, there is exactly one edge of each charge starting at each of the m
sources other than the root, hence there is a total of n + σm edges in the shards of the
shattered contours of Tn,m. Corollary 4.3 provides the following starting point:

Pp(o ∈ [X]) 6
∞∑
n=0

∞∑
m=0

∑
T∈Tn,m

Pp (T is present) . (11)

The following result is [22, Lemma 12] that was first stated in [24, Lemma 1]; we include
the proof for completeness.

Lemma 5.1 (Zero sum property). Recall the functions Ls from Eq. (6). If (V, E , v◦, ψ)
is a Toom contour, then∑

s∈Σ

∑
(v,w)∈ ~Es

(
Ls

(
~ψ(w)

)
− Ls

(
~ψ(v)

))
= 0. (12)

Proof. We can rewrite the l.h.s. of Eq. (12) as

∑
v∈V

∑
s∈Σ

∑
(u,v)∈ ~Es,in(v)

Ls

(
~ψ(v)

)
−
∑
s∈Σ

∑
(v,w)∈ ~Es,out(v)

Ls

(
~ψ(v)

) . (13)

At internal vertices, the term inside the brackets is zero because the number of incoming
edges of each charge equals the number of outgoing edges of that charge. At the sources
and sinks, the term inside the brackets is zero by Eq. (5), since there is precisely one
outgoing (resp. incoming) edge of each charge.

The zero sum property is used in [22, Lemma 13] and [24, Lemma 1] to bound the
total number of edges in a Toom contour. Since in our setting vertical segments give
no contribution to Eq. (12), we can instead bound the number of diagonal segments in
terms of the number of sinks, or, equivalently, the number of edges in the shards of the
corresponding shattered contour in terms of the number of shards.

Lemma 5.2 (Bound on the number of edges). Let ε and R be as in Eq. (7). Then each
T ∈ Tn,m satisfies n 6 Rm/ε.

Proof. By the linearity we have Ls
(
~ψ(w)

)
−Ls

(
~ψ(v)

)
= Ls

(
~ψ(w)− ~ψ(v)

)
. Lemma 5.1

and Eq. (3) and conditions (ix) and (x) imply that

0 =
∑
s∈Σ

∑
(v,w)∈ ~Es

(
Ls

(
~ψ(w)

)
− Ls

(
~ψ(v)

))
=
∑
s∈Σ

∑
(v,w)∈ ~Es\ ~E◦

(
Ls

(
~ψ(w)

)
− Ls

(
~ψ(v)

))
+
∑
s∈Σ

∑
(v,w)∈ ~E◦s

(
Ls

(
~ψ(w)

)
− Ls

(
~ψ(v)

))
> εn−Rm.
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By condition (i)’ ~ψ maps the endpoints of the shards of any present T ∈ Tn,m to m+1
disjoint sites in X0. By Lemma 5.2, we can then bound the sum in the r.h.s. of Eq. (11)
from above by

∞∑
m=0

Rm/ε∑
n=0

∑
T∈Tn,m

Pp(T is present) 6
∞∑
m=0

Rm/ε∑
n=0

∑
T∈Tn,m

pm+1 6
∞∑
m=0

pm
Rm/ε∑
n=0

|Tn,m|. (14)

It then remains to bound the number of contours. As we have a more precise notion of
contour, we count them differently from [22, Lemma 13] or [24, Lemma 3], which allows
for better bounds.

Lemma 5.3 (Exponential bound). Recall A =
⋃
s∈Σ As. As m→∞

|Tn,m| 6
(

max
s∈Σ
|As|R/ε(2σ−1 − 1)|A|(|A| − 1)

(R/ε+ σ)R/ε+σ

σσ(R/ε)R/ε

)m+o(m)

. (15)

Before proving Lemma 5.3, let us conclude the proof of our main results Theorems 1.1,
1.3 and 1.4.

Proof of Theorem 1.1. By Lemma 5.3 the r.h.s. of Eq. (14) is finite for

p <

(
max
s∈Σ
|As|R/ε(2σ−1 − 1)|A|(|A| − 1)

(R/ε+ σ)R/ε+σ

σσ(R/ε)R/ε

)−1

. (16)

By the Borel–Cantelli lemma, a.s. finitely many such shattered contours are present.
Therefore, for M large enough there is a positive probability that only contours with
m < M are present. But then, this event still occurs even if we remove from X0 all sites
at sufficiently large distance from the origin. Since this can decrease the probability that
a shattered contour is present by at most some finite factor, we recover Pp(o 6∈ [X0]) > 0.
Hence, pc(U) is at least the r.h.s. of Eq. (16), which is strictly positive.

Proof of Theorem 1.3. Recall from Eqs. (9) and (8) that for DTBP we have σ = 3,
|A| = 3, ε = 1, R = 6 and |As| = 2 for all s ∈ Σ. Thus, the bound from Eq. (16) becomes

pc(UDTBP) >

(
26(22 − 1)3 · (3− 1)

(6 + 3)6+3

33 · 66

)−1

=
1

2 · 311
> 2.8 · 10−6.

Proof of Theorem 1.4. By [18, Proposition 3.1] pc

(
ϕNEC

)
= pc(U) for

U := {{(0, 0,−1), (1, 0,−1)} , {(0, 1,−1), (0, 0,−1)} , {(1, 0,−1), (0, 1,−1)}} .

Upon applying an injective linear endomorphism of Z3, this is the same as

U ′ :=
{
U × {−1} : U ∈ UDTBP

}
. (17)

Thus, we obtain the lower bound of Theorem 1.4 like Theorem 1.3, appending −1 in
Eq. (8) to all sites in A1, A2, A3, appending 0 to u1, u2, u3 and changing nothing else.
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Remark 5.4. At the price of degrading Theorems 1.3 and 1.4 to about 10−7, we could
have used the simpler bound |Tn,m| 6 (2|A|)n+σ(m+1), whose proof is left to the reader,
instead of Lemma 5.3. Inversely, examining [22] carefully, we may further improve the
notion of fork to obtain 4.2 · 10−6, but this is hardly worth the effort. It is likely that one
can make other minor improvements, but reaching, say, 10−3 with the present method
seems hard.

Proof of Lemma 5.3. Recall that counting Tn,m is equivalent to counting the space em-
beddings of m+ 1 connected shards with n+ σm edges, one of which is rooted at o, and
such that they satisfy conditions (i)’-(v)’. Therefore, we may encode a shattered contour
T ∈ Tn,m in the following way. First, we supply a sequence of m entries on the alphabet of
all possible forks up to translation to specify the direction of the σ edges from the sources
(other than the root) subject to conditions (iv)’ and (v)’. Then we give a sequence of
n entries on an alphabet of maxs∈Σ |As| elements called increments, which specifies the
direction of the segments corresponding to the σ edges of the root and the edges starting
at internal vertices, which by condition (iii)’ are elements of A1, . . . , Aσ. Finally, we need
σ(m+ 1)− 1 separators to be inserted in the increment sequence.

Given T rooted at o, we determine this encoding as follows. We will process shards
one by one, starting from the root one. In the case of the root shard, we explore the path
of charge 1 from v◦ in the shard and register the increments ~ψ(w)− ~ψ(v) ∈ A1 for edges
(v, w) in this path. To this purpose we have fixed an injective mapping from A1 to the
increment alphabet. Once we reach the endpoint of the path, we place a separator and
repeat the same with the other σ−1 paths until the shard is exhausted. Up to this point
we have registered σ separators.

During the entire process we keep track of a list of couples composed of the space
coordinate i of an endpoint and a charge s ∈ Σ in the following way. By condition (i)’,
the set of space coordinates of the endpoints contains m + 1 distinct sites. As soon as
we place a separator, we have either just discovered a new site in this set or we have
rediscovered one. In the first case, we add to our list σ − 1 couples corresponding to the
space coordinate we discovered and the remaining charges (other than the one we used
when discovering it). In the second case, we find the entry corresponding to the space
coordinate and charge we used when rediscovering it and delete it from the list.

In order to choose the second shard (and all the remaining ones), when the previous
one is completely encoded, we read the first couple (i, s) from the list. The next shard
to encode is the one whose s-charge path ends at i. Once we know this, we register the
source type of this shard, which is a fork by condition (v)’. We then explore its σ paths
exactly like we did for the root shard. When we reach an endpoint, we place a separator
and either add σ − 1 couples to our list or remove one as before.

As T consists of a connected sets of shards, this procedure ends when we have indeed
encoded the entire shattered contour. It is clear from the construction that, given the
encoding, we can reconstruct the space embedding of the shards, and thus the shattered
contour. Indeed, we have ensured that we always now which charge of which shard we
are reading, so that we can read off the corresponding increment from the encoding.
Moreover, when we discover a new shard, we always know to which already discovered
endpoint it should be connected in the space embedding and by which charge.

It then remains to bound the number of possible encodings. By Lemma 5.2, there are
maxs∈Σ |As|n 6 maxs∈Σ |As|Rm/ε choices for the increment sequence. By (iv)’ the size of
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the alphabet for forks is given by (2σ − 2)|A|(|A| − 1)/2. Finally, the number of different
ways in which we can insert σ(m+ 1)− 1 separators into n increments is(

n+ σ(m+ 1)− 1

σ(m+ 1)− 1

)
6

(
m(R/ε+ σ) + σ − 1

mσ + σ − 1

)
=

(
(R/ε+ σ)R/ε+σ

σσ(R/ε)R/ε

)m+o(m)

by Lemma 5.2, as m→∞. Putting these together, we obtain Eq. (15) as desired.

A Upper bound for the Toom rule
In this appendix we sketch the proof of the upper bound in Remark 1.5, using [16, 18].
Recall U ′ from (17), as well as the fact that pc

(
ϕNEC

)
= pc(U ′) from the proof of Theorem

1.4. Therefore, it suffices to prove that pc(U ′) < 0.2452, for which we closely follow [16].
Fix U ′ ∈ U ′. By the correspondence of [18, Proposition 3.1] the bootstrap percolation

model with update family {U ′} is equivalent to a standard two-dimensional oriented site
percolation (for sites in state 1), but embedded in the plane 〈U ′〉 generated by U ′ in
three-dimensional space.

Now also fix a direction u′ ∈ S2 and consider the same percolation model, but re-
stricted to Z3\Hu′ . Observe that 〈U ′〉\Hu′ is either 〈U ′〉 or a half-plane thereof, depending
on whether u′ ⊥ U ′. Denote by o→ [A]∞ the event that in the model restricted to some
A ⊂ Z3 the oriented percolation cluster of the origin (of sites in state 1) is infinite and
define the critical parameter of this percolation

du′({U ′}) = sup {p ∈ [0, 1] : Pp (o→ [〈U ′〉 \Hu′ ]∞) > 0} ,

which we call the critical density. Note that the critical density only depends on u′ via
〈U ′〉 \ Hu′ , which is constant along all open semicircles of S2 with endpoints U ′⊥ (the
meridians, if U ′⊥ ∩ S2 are the poles). Therefore, it will suffice to consider u′ ∈ R2 × {0}.
But for such u′ we clearly have du′({U ′}) = du′({U × {0}}), where U is the update rule
of DTBP such that U ′ = U × {−1}.

It was proved in [16, Sections 5, 6.1] that

max
u∈S1

min
U∈UDTBP

du({U}) < 0.2452,

so that
sup

u′∈S1×{0}
min
U ′∈U ′

du′({U ′}) < 0.2452. (18)

Furthermore, for u ∈ S1, U ∈ UDTBP and p > du({U}) more is known (see [16, Section
5]) about the oriented percolation cluster (of sites in state 1) starting at o. Namely,
if we consider a wedge-shaped region W = Hu+ε ∩ Hu−ε with ε = ε(p) small enough,
then the radius of {x ∈ Z2 \W : o → [Z2 \W ]x} has an exponentially decaying tail.
This translates to an analogous result for u′ = u × {0}, U ′ = U × {−1} and the set
{x ∈ 〈U ′〉 \Cu′ , o→ [〈U ′〉 \Cu′ ]x}, where Cu′ =

⋂
v∈S2:‖v−u′‖6εHv is a cone-shaped region

approximating Hu′ . Since U ′ is fully contained in the lower half-space each oriented step
we can take from the origin points towards the lower half-space, thus we may further
truncate Cu′ to C ′u′ = Cu′ ∩H(0,0,1).
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Translating this into bootstrap percolation language, for p > du({U}) = du′({U ′})
the time at which the state of o becomes 0 has an exponential tail for {U ′}-bootstrap
percolation with 0 boundary condition in C ′u′ . Thus, the same holds for U ′-bootstrap
percolation. Taking advantage of (18) for each u′ ∈ S1×{0} we can choose a set U ′ ∈ U ′
such that du′({U ′}) < 0.2452. Hence, exponential decay holds for all u′ ∈ S1 × {0} and
p > 0.2452.

We next consider an elongated finite right circular cone with its vertex pointing in
direction (0, 0,−1):

C =
{

(x, y, z) ∈ Z3 : K
√
x2 + y2 6 z +K2, z ∈ [−K2, 0)

}
,

where K > 0 is large enough. If C is entirely in state state 0, it has probability exponen-
tially close to 1 to extend further upwards. Namely, we claim that the sites (x, y, 0) ∈ Z2

such that x2 + y2 6 K2 are likely to turn to state 0 in U ′-bootstrap percolation. Indeed,
far from the boundary of this circle this is automatic, since the direction (0, 0, 1) is not
stable (as defined in Section 1.1). Moreover, even at the site Ku′ at the boundary, up to
distance of order εK from it, we see more sites in state 0 than those in Ku′+C ′u′ . There-
fore, we do a union bound with the exponential decay estimates, in order to obtain that
with probability exponentially close to 1 in εK the entire circle becomes state 0. Repeat-
ing the same procedure for the slightly taller cone we just obtained and noting that the
exponential bounds are summable, we get that the cone has positive probability to grow
indefinitely. By standard renormalisation arguments this yields that pc(U ′) < 0.2452, as
desired. We refer the reader to [16, Section 4] for more details, but let us remark that the
existence of a K such that C contains the relevant parts of the truncated cones uniformly
in the choice of u follows from the continuity of critical densities of oriented percolation
models (see [16, Remark 4.4 and Lemma 5.1]).
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