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In the context of ultra-fast quantum communication and random number generation, detection
timing-jitters represent a strong limitation as they can introduce major time-tagging errors and
affect the quality of time-correlated photon counting or quantum state engineering. Despite their
importance in emerging photonic quantum technologies, no detector model including such effects
has been developed so far. We propose here an operational theoretical model based on POVM
density formalism able to explicitly quantify the effect of timing-jitter for a typical class of single
photon detector. We apply our model to some common experimental situations.

I. INTRODUCTION

Quantum communication stands as one of the most
promising applications of quantum optics with an in-
creasing number of encouraging out-of-the-laboratory im-
plementations [1, 2]. The quest for competitive quan-
tum photonic systems, compatible with existing standard
technology, has promoted huge developments concerning
both photonics sources [3, 4] and detectors [5–7]. Never-
theless, a critical point still lies in experiments’ operation
rates. Time multiplexing technics allow in principle to
pump photonic sources at rates on the order of GHz [8–
11]. However, in practical realisations, a strong restraint
to ultra-fast regime comes to timing limitations at the
detection stage. Dead-times after each detection event
restrict the maximum rate at which output signals can
be delivered [6]. At the same time, timing-jitters limit the
experimental temporal resolution by introducing random
fluctuations on the times T at which output signals are
delivered, even in the particular case of a single photon
perfectly temporally localized (see Fig. 1). If not circum-
vented, this effect can be extremely detrimental in high
speed regimes, as it can cause counts relative to different
experiment clock cycles to become temporarily indistin-
guishable [6, 12].

Fast and accurate time-tagging is mandatory in multi-
ple operations, such as quantum teleportation [1], quan-
tum state engineering [10] and quantum random number
generation [13]. In anticipation to further technological
advances, as well as in the perspective of promoting novel
quantum communication protocols, it is thus of the ut-
most importance to correctly describe the effects of de-
tectors’ timing performances. Despite a huge number of
experiments reporting measured time response of differ-
ent photon-counting devices [6, 14, 15], these effects have
never been fully included in a quantum detection model.
In this paper, we address this point with a theoretical
model providing an operational and explicit description
of a standard single photon detectors affected by non
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negligible timing-jitter, in presence of dead-time, and not
restricted to single-photon states. Its impact goes from
quantum technologies to any single-photon based appli-
cation where evaluating the influence of detector timing
uncertainties can allow in principle to amend their effect.

We adopt the formalism of positive operator-valued
measurements (POVM) [16]. This approach has been
vastly exploited to describe different types of measure-
ment apparatus [17–19], together with relevant figures of
merit [20], as well as to experimentally investigate the
characteristics of unknown detectors [21–25]. We will fo-
cus on ON/OFF devices, i.e. single photon detectors with
no photon-number resolving capabilities. These systems
represent the vast majority of available single photon-
counters (including avalanche photodiodes) [5] and our
study can be generalized to multiplexed schemes [17, 26].
Although including it is not complicated, to simplify
our treatment, we chose to disregard the effect of dark-
counts: their action is negligible in current ultra-fast
operations involving state-of-the-art low-noise detectors,
such as superconducting devices [6], as well as in all co-
incidence counting experiments.

II. THEORETICAL MODEL

In standard treatments neglecting timing-jitter effects,
given an arbitrary optical state described by the density
matrix ρ̂ impinging an ON/OFF detector, only two pos-
sible responses can be registered: ON, i.e. “at least one
photon detected”, and OFF, i.e. “no photon detected”.
This situation formally corresponds to two POVM op-
erators, Π̂on and Π̂off = 1̂ − Π̂on [16]. By definition of
POVM, the probability of obtaining the ON result can
be computed as Pon = Tr

[
Π̂onρ̂

]
and analogously for

OFF.
When timing-jitter is taken into account, for an arbi-

trary optical input ρ̂, a richer panel of ON events is a
priori available, corresponding each to a detection signal
delivered at time T . The values of T are, in principle, in-
finite and continuously distributed. The probability that
the detector delivers an output signal at a time between
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FIG. 1. Typical timing parameters and response function in
the ideal case of an ON/OFF detector hit at time t by a
perfectly temporally localized input photon and delivering an
output signal at time T . To describe the timing-jitter effect,
we introduce the random delay, τ = T −t, distributed accord-
ing to ϑ(τ). The shape of π̂on(T ) depends on the combined
effects of ϑ(τ), dead-time, and detection efficiency, η.

T and T + dT (dT being infinitesimal) can be gener-
ally expressed as pon(T, ρ̂) dT , with pon(T, ρ̂) a density
probability function. To describe this effect, we start by
considering, at the detector input, a single photon tem-
porally localized at time t and express the timing-jitter
in terms of the random delay τ = T − t, and associated
density probability function, ϑ(τ) (see Fig. 1). Due to
causality, ϑ(τ < 0) = 0, while its actual shape depends
on the detector and is in principle inferable from experi-
ments [6, 12]. The case of a detector with no timing-jitter
is obtained in the limit of ϑ(τ) converging to a Dirac delta
distribution.

In order to deal with the continuous set of possible
measurement results [27], we describe the detector in
terms of a density of POVM ON operators, π̂on(T ), such
that the function pon(T, ρ̂) can be defined as:

pon(T, ρ̂) = Tr[π̂on(T )ρ̂]. (1)

Standard ON/OFF POVMs, obtained when disregard-
ing the temporal degrees of freedom, can be retrieved as
Π̂on =

∫
π̂on(T ) dT and Π̂off = 1̂ −

∫
π̂on(T ) dT . More-

over, in order to mimic many experimental situations,
the continuous set of temporal outcomes can be conve-
niently discretized by introducing a partition on the val-
ues of T over intervals δ based on the temporal resolu-
tion of the device electronics (Fig. 1). This way, a finite
number of possible outputs is obtained and, correspond-
ingly, a finite set of POVMs, {Π̂on(T ∈ δ), Π̂off(T ∈ δ)},
where, ∀δ, Π̂on(T ∈ δ) =

∫
δ
π̂on(T ) dT , and Π̂off(T ∈

δ) = 1̂− Π̂on(T ∈ δ). We stress that for the definition of
both ON and OFF operators, we use π̂on(T ). Conceptu-
ally, this arises from the fact that as the OFF result is,
by definition, given by the absence of ON events between
T and T + dT , its probability is close to 1 when consid-
ering an arbitrarily short dT and, accordingly, cannot be
described by a finite density function.

The explicit expression of π̂on(T ) can be found by con-

sidering photon-counting devices as phase-insensitive de-
tectors [17]. The POVMs are thus linear combinations of
diagonal projectors over basis states, ρ̂k, and read

π̂on(T ) =
∑
k∈N

pon,k(T ) ρ̂k, (2)

where pon,k(T ) represents the probability density func-
tion that the detector generates a signal ON at a time
T when hit by the state ρ̂k. As the photons impinging
the detector may not be perfectly simultaneous, we ex-
ploit a temporal multimode formalism [28] and take basis
states ρ̂k containing k temporally localized photons, each
hitting the detector at a time tj , j ∈ J1, kK:

ρ̂k = |1t1〉〈1t1 | ⊗ |1t2〉〈1t2 | ⊗ · · · ⊗ |1tk〉〈1tk | , (3)

where the
∣∣1tj〉 are defined from the creation oper-

ators â†(tj) |0〉. Different tj correspond to different
temporal modes, accordingly [â (ti) , â (tj)] = 0 and
[â (ti) , a

† (tj)] = δ (ti − tj) [28]. In the special case of
k perfectly simultaneous photons (tj = t, for all j), ρ̂k
reduces, up to a normalization factor, to |k〉〈k|, i.e. to
projectors over a single temporal mode Fock state. In the
general case, the ket of any pure optical state, including
that of a single photon with extended time-distribution,
can be expressed as a linear combination of the kets cor-
responding to the ρ̂k defined in Eq. (3) [28].

Given the input state ρ̂k, a priori , each of the k in-
put photons can generate a detection signal at a time
Tj = tj + τj , where the τj are scattered according to
the distribution ϑ(τ). However, when a first detection
signal is emitted, the detector remains blind over its
dead-time [6]. Consequently, a detector hit by multi-
ple photons delivers only a single ON signal at a time
T = min(Tj) and all detection signals at times longer
than T and shorter than the dead-time do not contribute
to the detector output. Note that there is no need to
explicitly introduce a dead-time parameter to derive the
POVM operators: we consider that after the dead-time,
the detector is reset and a new detection cycle can start.
By taking into account the combined effect of dead-time
and timing-jitter, pon,k(T ) can be expressed as:

pon,k(T ) =

k∑
i=1

pi(T )
∏
j 6=i

P (tj + τj > T ) . (4)

pi(T ) is the density probability that photon “i”, corre-
sponding to the minimum of possible signal times (i.e.
T ≡ Ti), is actually detected at time T . It can be writ-
ten as a function of the detection efficiency η and of ϑ(τ)
as pi(T ) = η ϑ (T − ti). The sum over “i” states that,
a priori , every photon can be the first detected. The
product over j 6= i gives the probability that all other
photons “j” are detected at times Tj > T , or never de-
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tected. P (tj + τj > T ) can thus be written as

P (tj + τj > T ) = 1− η
T∫

−∞

ϑ(T ′ − tj) dT ′. (5)

By putting together Eqs. (2), (4) and (5), we can derive
the general expression for the π̂on(T ):

π̂on(T ) =
∑
k∈N

k∑
i=1

ηϑ̂i(T )
⊗
j 6=i

1− η T∫
−∞

ϑ̂j(T
′) dT ′

 ,
(6)

with the ϑ̂j(T ) now taking the form of operators:

ϑ̂j(T ) =

∫
ϑ(T − tj)

∣∣1tj〉〈1tj ∣∣dtj . (7)

In the previous expression, we keep different labels for
the ϑ̂j(T ) to explicitly recall to which subspace (i.e. pho-
ton) the operator refers to. However, note that π̂on(T ) is
independent on the photons’ arrival times, tj being only
an integration variable. We emphasize that, under the
assumption of dark-count effects independent on the in-
put state and constant over time, as is the case for most
experimental situations, detection noise can be included
in the model by simply adding to Eq. (6) the identity
operator, 1̂, weighted by the dark-count rate.

The density operator of Eq. (6) refers to the general
case of non simultaneous input photons. The special case
in which all photons, or a part of them, are simultane-
ous is obtained by taking tj = t for j = 1, . . . , k′ with
k′ ≤ k. Interestingly, in this case, the jitter effect de-
pends on the number of simultaneous photons k′. Fig. 2
shows, for different k values, the behavior of pon,k(T )
in the limit case of k′ = k. As an example, we choose
for ϑ(τ) a log-normal distribution, with mean value 1
and standard deviation 1

2 ; similar results are obtained
for different ϑ (τ) shapes. Moreover, in order to focus
on time effects only, we assume η = 1. The case k = 1
corresponds to pon,1(T ) = ϑ (T − t). As can be seen, for
k ≥ 2, i.e. for an increasing number of simultaneous pho-
tons, the shape of pon,k(T ) is modified and shifts towards
lower T values. This confirms an intuitive behavior: the
higher the number of photons simultaneously sent to it,
the higher the probability for the detector to fire early.
As a consequence, the jitter effect is not the same when
the detector is enlightened by few or multiple photons.
We note however that, in standard experimental situa-
tions, low k values ≤ 2 are generally considered.

III. APPLICATIONS

In the following, we discuss some general applications
of the temporal density of POVM operators. We consider
first the direct detection of pure single-photon states of
the shape |ψ〉 =

∫
ψ(t) |1t〉dt [28], with density matrix
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FIG. 2. Firing time probability density function for k = 1, 2, 5
photons arriving simultaneously at time t = 0 on a lossless
detector with η = 1 for a log-normal distribution with mean
value 1 and standard deviation 1

2
.

ρ̂ = |ψ〉〈ψ|, where the width of the temporal distribution
ψ(t) is not negligible compared to the amplitude of the
detection timing-jitter. In this condition, temporal un-
certainties due to the photon’s time delocalization mix
with those due to the detection. This situation corre-
sponds to the case of a photon gun, like for instance an
ideal quantum dot operating at low repetition rate [29],
for which the jitter is much shorter than the time interval
between subsequently emitted photons. From Eq. (6) for
k = 1, the POVM density expression simply reads

π̂on(T ) = η

∫
ϑ(T − t) |1t〉〈1t|dt, (8)

and by applying Eq. (1),

pon(T, |ψ〉〈ψ|) = η

∫
ϑ(T − t)|ψ(t)|2 dt. (9)

The probability density to detect a photon is thus given
by the convolution of the detector temporal response and
the probability density of the photon arrival time.

In many situations, experimentalists investigate time
correlation measurements between spatially separated
photons (see Fig. 3 inset). We denote the photons’ spa-
tial modes as A and B and indicate their joint state as
ρ̂A,B = |ϕA,B〉〈ϕA,B |, with:

|ϕA,B〉 =

∫
ϕ(tA, tB) |tA〉A ⊗ |tB〉B dtA dtB . (10)

The label |..〉A indicated the spatial mode A and analo-
gously for B, and ϕ(tA, tB) is the so-called joint temporal
amplitude [28]. This is, for instance, the situation at the
output of non-degenerate spontaneous parametric down
converter (SPDC) where entangled photons can be spa-
tially separated.

Time correlation is evaluated in terms of the joint prob-
ability density pon(TA, TB) = 〈ϕA,B | π̂on(TA, TB) |ϕA,B〉,
where π̂on(TA, TB) = π̂A(TA)⊗π̂B(TB) is the POVM den-
sity extended to the case of two spatially non-degenerated
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photons. In order to simplify the result interpretation,
we consider only one photon per spatial mode and take
for π̂A(TA) and π̂B(TB) the expression of Eq. (8); multi-
ple photon-pair emissions can be easily included by ap-
plying, for each mode, the POVM density operator of
Eq. (6). We consider two ON/OFF detectors with dif-
ferent timing-jitter functions. In the limit of one photon
per spatial mode,

pon(TA, TB) = η2
∫∫

ϑA(TA − tA)

ϑB(TB − tB)|ϕ(tA, tB)|2 dtA dtB . (11)

The probability density function expressed by Eq. (11) is
a double convolution between the two-detector response
functions and the joint temporal intensity of the two-
photon state. It can be experimentally measured by
means of time-tagging electronics at the output of the
detectors, or by more sophisticated techniques [30]. At
the same time, in many experimental situations involv-
ing pairs of photons, only the measurement of the delay
∆d between “start” and “stop” photons’ detection times
is required [4, 10, 11]. The associated probability density
is given by:

pB−A(∆d) =

∫
pon(T, T + ∆d) dT. (12)

It can be obtained by application of a POVM density
π̂B−A(∆d) directly associated with the delay measure-
ment and defined as:

π̂B−A(∆d) =

∫
π̂A,B(T, T + ∆d) dT. (13)

By identifying TA = tA + τ and tB = tA + t̄, π̂B−A(∆d)
can be conveniently expressed as the convolution of two
correlation functions, where the first only depends on the
detectors and the second on the input state:

π̂B−A(∆d) = η2
∫ ∫

ϑA(τ)ϑB(τ + ∆d − t̄) dτ∫
|tA〉〈tA| ⊗ |tA + t̄〉〈tA + t̄|dtA dt̄. (14)

For quasi-simultaneous photons, such as for SPDC pro-
cesses, the photon’s joint temporal amplitude takes the
form ϕ(tA, tB) = ψ(tA)χ(tB − tA), where ψ is the tem-
poral distribution of the pair emission times and χ the
temporal distribution of the delay in the emission times
of two photons for a given pair [31]. Both functions are
normalized so that the integral of their square modulus
is equal to 1. By applying Eq. (14), we obtain:

pB−A(∆d) = η2
∫
|χ(t̄)|2

∫
ϑA(τ)ϑB(τ + ∆d − t̄) dτ dt̄.

(15)
Here the temporal distribution of the pair emission times
disappears, as, in a delay measurement, only the time de-
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FIG. 3. Delay probability density function for a pair of si-
multaneous photons for different timing-jitters, that refer to
different standard deviations of the log-normal distribution.

lay distribution between paired photons is relevant. In-
terestingly, in the case of perfectly simultaneous photons,
the temporal delay distribution tends to a Dirac’s delta
distribution |χ(t̄)|2 = δ(t̄) and the time delay for a coin-
cidence event only depends on the detectors’ properties.
This can be written as:

pB−A(∆d) = η2
∫
ϑA(τ)ϑB(τ + ∆d) dτ. (16)

As commonly observed in experiments, the shape of the
obtained coincidence peaks (∆d = 0) depends on the
timing-jitter [6, 32]. This behavior is shown in Fig. 3,
where the delay probability density function pB−A(∆d)
for a pair of perfectly simultaneous photons is calculated
for different jitter standard deviations in the case of two
identical detectors with unitary efficiency.

Eventually, we briefly discuss the effect of the heralding
detector timing-jitter in a heralded single photon source
based on an entangled state ρ̂A,B produced by SPDC.
According to the scheme shown in the inset of Fig. 4, a
photon detection at time T on channel B heralds the pres-
ence on channel A of the single photon state described
by the density matrix [22]:

ρ̂A(T ) =
TrB

([
1̂A ⊗ π̂B(T )

]
ρ̂A,B

)
Tr
([
1̂A ⊗ π̂B(T )

]
ρ̂A,B

) , (17)

where TrB is the partial trace with respect to subsys-
tem B. From Eqs. (10) and (8), in case of simultaneous
photons (|χ(t̄)|2 = δ(t̄)), we obtain:

ρ̂A(T ) =

∫
ϑ(T − t)|ψ(t)|2 |1t〉〈1t|dt∫

ϑ(T − t)|ψ(t)|2 dt
, (18)

where, as before, ψ refers to the temporal distribution
of the pair. As shown in Eq. (18), the heralded state
is a mixture represented by a diagonal density operator:
the ensemble of diagonal elements represents the den-
sity probability function for the heralded photon emis-
sion time. Fig. 4 represents them as functions of time t,
for different timing-jitters and for perfectly simultaneous
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photons in channels A and B. We assume that the herald-
ing detector fires at time T = 0 + τ . In the ideal case of
a detector with no jitter, ϑ(τ) → δ(τ − τm), with τm a
constant detection delay. As expected, the heralded state
is perfectly defined and found in the pure state |10〉〈10|:
its density matrix has only one non-zero element. Con-
versely, for infinite jitter (i.e. for an infinitely large ϑ(τ)),
no information is retrieved from the heralding time and
the heralded state is a mixture with a flat density prob-
ability function. We note that in the case of multiple
pair emissions, where more than two simultaneous pho-
tons are present on channels A and B, the purity of the
state is further decreased by the inability of ON/OFF
detectors to resolve the number of photons [22].
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FIG. 4. Density of diagonal elements of the heralded state
ρ̂A as a function of time for different timing-jitter standard
deviations. The source emits pairs of simultaneous photons
having a rectangular temporal distribution ψ(t) centered in 0
and a width equal to 1. Normalization ensures the area under
each curve to be 1.

IV. CONCLUSION

We have presented an operational model, exploiting
the POVM formalism to describe the characteristics of
an ON/OFF single photon detector with non negligible
timing-jitter and in presence of dead-time. Although we
mostly provide simple examples involving one or two pho-
tons impinging on the detectors, our formalism is capable
of describing general experimental situations. We there-
fore believe that these characteristics stand as a valuable
help for a better comprehension of the timing-jitter ef-
fect in the perspective of developing ultra-fast quantum
communication.
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