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PROOF THAT S(ω) IS ω-SYMPLECTIC

For any ω we have

S(ω) =
√

2Γ (iω I + Γ −M)
−1√

2Γ − I. (1)

We note that, for general mode-dependent dumping coefficients, the matricesM and Γ do not commute. In order to
prove that S(ω) is ω-symplectic (see expression (7) in the main text) we have to evaluate

S(ω) Ω ST(−ω) =
[√

2Γ (iω I + Γ −M)
−1√

2Γ − I
]
Ω
[√

2Γ (−iω I + Γ −M)
−1√

2Γ − I
]T

(2)

and prove that it is equal to Ω, with Ω the symplectic form introduced in the main text. To this purpose we use
the property of M and Γ of being a Hamiltonian matrix (ΩM)

T
= ΩM and skew-Hamiltonian (Ω Γ )

T
= −Ω Γ ,

respectively. This allows to writeMT = Ω−1MΩ−1 and ΓT = −Ω−1ΓΩ−1 in the third term on the right-hand side.
Then by replacing I = −Ω−1IΩ−1, this term can be simplified as following[√

2Γ (−iω I + Γ −M)
−1√

2Γ − I
]T

=
√

2ΓΩ(iω I− Γ −M)
−1
Ω
√

2Γ − I. (3)

We use this result in (2) together with the fact that Γ and Ω commute and that ΩΩ = −I:

S(ω) Ω ST(−ω)

=
[√

2Γ (iω I + Γ −M)
−1√

2Γ − I
]
Ω
[
Ω
√

2Γ (iω I− Γ −M)
−1√

2ΓΩ − I
]

= −
√

2Γ (iω I + Γ −M)
−1

(2Γ ) (iω I− Γ −M)
−1√

2ΓΩ

−
√

2Γ (iω I + Γ −M)
−1√

2ΓΩ +
√

2Γ (iω I− Γ −M)
−1√

2ΓΩ +Ω

=
√

2Γ (iω I + Γ −M)
−1
[
− (2Γ )− (iω I− Γ −M) + (iω I + Γ −M)

]
︸ ︷︷ ︸

=0

(iω I− Γ −M)
−1√

2ΓΩ +Ω

= Ω (4)

which proves that S(ω) is a conjugate-symplectic matrix for every ω.

BOGOLIUBOV-DE GENNES HAMILTONIANS AND THEIR CANONICAL TRANSFORMATIONS

In this section we would like to explicit some of the connections that can be established between our approach
and the Bogoliubov canonical transformation adopted in quantum field theory. In the mean field approximation, the
system dynamics is driven by a Hamiltonian that is quadratic in the field operators and looks like (1) in the main
text. This expression is usually recast into the following

H =
~
2

(ξ†)
THξ, (5)

where ξ = (a1, . . . , aN |a†1, . . . , a
†
N )

T
, ξ† = (a†1, . . . , a

†
N |a1, . . . , aN )

T
and

H =

(
G F

F ∗ G∗

)
(6)
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is an Hermitian matrix best known as bosonic Bogoliubov-de Gennes (BdG) Hamiltonian. The BdG Hamiltonian H
has, then, a simple connection with the Hamiltonian matrix M we introduced in the main text

M = L (−iKH)L−1. (7)

In this expression L is the unitary matrix, performing a change of basis from complex field amplitudes ξ to quadratures
representation R = Lξ, given by

L =
1√
2

(
I I

−iI iI

)
(8)

and

K =

(
I 0

0 −I

)
. (9)

We notice that the BdG Hamiltonian is not a Hamiltonian matrix by itself, but this is the case for the term −iKH
(this amounts to the verification of the following property (Ω(−iKH))

T
= Ω(−iKH)). This property guarantees that

−iKH generates a symplectic transformation via the exponential map or, in other terms, that the time evolution
driven by exp(−iKHt) preserves the structure of the commutators algebra.

The Hamiltonian (6) can be diagonalized by a canonical Bogoliubov transformation B [1] when H ≥ 0 (in this case
the system is said to be thermodynamically stable) such that [2]

KH = BΛB−1 (10)

where Λ = diag{λ1, . . . , λN |−λ1, . . . ,−λN} and B ∈ C2N×2N is a symplectic matrix that has following the block-form

B =

(
α β

β∗ α∗

)
. (11)

As an element of the real symplectic group in the complex representation (see ref [38] in the main text) this matrix
is symplectic in the sense BKB† = K or, equivalently, when its blocks satisfy the following conditions

αα† − ββ† = I, (12)

αβT − βαT = 0. (13)

We note that, since H ≥ 0 is equivalent to −ΩM ≥ 0, this result is nothing else that the application of the
Williamson theorem to the real positive definite matrix −ΩM. The Bogoliubov transformation allows to define new

modes ζ = B−1ξ = (b1, . . . , bN |b†1, . . . , b
†
N )

T
for which the Hamiltonian (6) results to be H =

∑
m ~λmb†mbm + const.

Applying the Bogoliubov transformation to our case means writing (7) asM = (LB)(−iΛ)(LB)
−1

. This expression
can, then, be injected into (1) in order to give

S(ω) = LB
(γ − iω)I− iΛ

(γ + iω)I + iΛ
B−1 L−1 (14)

under the assumption of equal damping coefficients Γ = γI. In the representation of complex field amplitudes ξ we
have that ξout(ω) = (L−1S(ω)L) ξin(ω), where L−1S(ω)L is ω-symplectic, the output field amplitudes of Bogoliubov
modes read

ζout(ω) =
(γ − iω)I− iΛ

(γ + iω)I + iΛ
ζin(ω) (15)

and present a squeezed (antisqueezed) noise spectrum. In particular, since Λ is real (this comes from the assumption
that H ≥ 0) the transformation from ζin(ω) to ζout(ω) is unitary and does not produce squeezing (antisqueezing). As a
consequence the input and output spectral covariance matrices are unitarily similar. Since a Bogoliubov transformation
is not necessarily unitary, B corresponds to an active transformation so that the input Bogoliubov modes ζin = B−1ξin
are squeezed (antisqueezed) with respect to ξin that are in the vacuum state. This amount of squeezing (antisqueezing)

can be, then, quantified by applying a Bloch-Messiah decomposition to B = L−1(OΛBO
′T)L. Here the ω-independent
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squeezing (antisqueezing) part is in the diagonal matrix ΛB , and O and O′ are real symplectic orthogonal matrices.
At the output, the Bogoliubov modes present the same amount of squeezing (antisqueezing) as the input because of
the unitary transformation. However, since this transformation is ω-dependent, the output Bogoliubov modes are
squeezed (antisqueezed) on different quadratures for different frequencies. We conclude then that it is not possible to
find physical observables that are both statistically independent and ω-independent.

Two more important points have to be considered when comparing the approach of morphing supermodes to
Bogoliubov transformation: first, the detection, characterization and manipulation of the Bogoliubov modes would
require the use of active interferometers, while in the case of the morphing supermodes the passive transformations
generated by symplectic unitary matrices can be easily implemented by means of passive interferometers. Additionally,
we note that requiring B to be unitary would need β = 0 in (13). In this case the diagonalization (10) would be
possible only for F = 0 in (6). This corresponds to the paradoxal situation for which our system does not present
parametric down-conversion-like processes responsible for the generation of squeezing (in other terms, for creating
squeezing we need F 6= 0). The second point is that in the Bogoliubov approach, the diagonal form (10) exists only
when H ≥ 0 a condition that is often not met in a driven quantum system such as those we are interested in. On
the contrary, in the case of morphing supermodes, the existence of the analytical Bloch-Messiah decomposition of an
ω-symplectic transformation is always guaranteed.

PROOF OF THE EXISTENCE OF ANALYTICAL BLOCH-MESSIAH DECOMPOSITION

In [3–5], constructive methods for finding the analytic singular value decomposition of a matrix smoothly depending
on a real parameter are given, while in [6] the analytic singular value decomposition on the real symplectic group
has been considered. In the case with no degenerate singular values, at each ω the Bloch-Messiah decomposition is
unique up to the order of the singular values and vectors, and up to a phase for each singular vector. Those vectors
form a conjugate-symplectic base. Let x(ω) and y(ω) be two normed eigenvectors given by the application of smooth
decomposition without taking into account symplecticity. By quasi-unicity of the singular value decomposition, up
to a phase they are part of a conjugate-symplectic base,

∣∣x†Ωy∣∣ can only take one of the values 0 or 1. As ω 7→ x(ω)

and ω 7→ y(ω) are continuous, f : ω 7→
∣∣x†(ω)Ωy(ω)

∣∣ is also continuous. Assuming a connected domain for ω implies

that f is constant. Phase can be continuously corrected when needed by replacing y with
y

x†Ωy
. This being true for

all possible pairs of x and y, we conclude that if for a given ω the change-of-basis matrix is conjugate-symplectic, it
keeps this property for all ω. We call it an analytical Bloch-Messiah decomposition. In this section we show how to
constructively express the decomposition for a given S(ω) ∈ Sω of the form

S(ω) = U(ω)D(ω)V †(ω) (16)

where U and V are 2N × 2N unitary and conjugate-symplectic matrix-valued functions and D is a 2N × 2N diagonal
matrix-valued function

D(ω) =

(
D1(ω) 0

0 D2(ω)

)
(17)

were D1(ω) = diag{d1(ω), . . . , dN (ω)} and D2(ω) = diag{d−11 (ω), . . . , d−1N (ω)} with dk(ω) > 0 and 1 ≤ dk(0) ≤
dk+1(0) (we note that for ω > 0 the order of the singular values can change with respect to the initial one for an
analytical decomposition [3]). It is easy to prove that as elements of the intersection between the conjugate-complex
symplectic and the unitary groups the matrices U and V have the following block-form

U(ω) =

(
U1(ω) U2(ω)

−U2(ω) U1(ω)

)
and V (ω) =

(
V1(ω) V2(ω)

−V2(ω) V1(ω)

)
(18)

By differentiating (16) with respect to ω (we designate the symbol ′ for derivation with respect to ω and temporary
drop the dependence on ω for space-saving),

S′ = U ′DV † + UD′V † + UDV ′†. (19)

After multiplying (19) by U† from the left and by V from the right

D′ = U†S′V − U†U ′D −DV ′†V (20)
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Now we define H = U†U ′ and K = V †V ′ and, then, we multiply from the left these definitions by U and V and we
get

U ′ = UH, (21)

V ′ = V K. (22)

Since U and V are unitary, then

U†U = I, (23)

V †V = I. (24)

After differentiating (23) and (24), we find that H† = −H and K† = −K are skew Hermitian. Moreover, by
construction, H and K have the block-structure

H =

(
H1 H2

−H2 H1

)
and K =

(
K1 K2

−K2 K1

)
. (25)

These properties guarantee that the matrices H and K are Hamiltonian matrices in the sense ΩH = (ΩH)
†

and

ΩK = (ΩK)
†

and, as a consequence, that the solutions U and V of (21) and (22) are conjugate-symplectic and
unitary matrices.

On the other side, we define Q = U†S′V , then re-write (20) as

D′ = Q−HD +DK (26)

Eqs. (21), (22) and (26) define a system of differential equations for the elements of U(ω), V (ω) and D(ω) that we
endow with the initial conditions U(0), V (0) and D(0) obtained from the Bloch-Messiah decomposition at ω = 0

S(0) = U(0)D(0)V †(0). (27)

We now re-write Eq. (26) in the block structure(
D′1 0

0 D′2

)
=

(
Q1 Q2

Q3 Q4

)
−

(
H1 H2

−H2 H1

)(
D1 0

0 D2

)
+

(
D1 0

0 D2

)(
K1 K2

−K2 K1

)
(28)

This expression give rise to two sets of differential equations for the singular values

D′1 = Q1 −H1D1 +D1K1, (29)

D′2 = Q4 −H1D2 +D2K1 (30)

and two sets of algebraic equations

H2D2 −D1K2 = Q2, (31)

H2D1 −D2K2 = −Q3. (32)

First we solve Eqs. (31) and (32) in H2 and K2. For i, j = 1, . . . , N

(H2)ijd
−1
j − (K2)ijdi = (Q2)ij , (33)

(H2)ijdj − (K2)ijd
−1
i = −(Q3)ij . (34)

For i = j and di 6= 1 the solutions are

(H2)ii =
(Q3)iid

3
i + (Q2)ijdi

1− d4i
, (35)

(K2)ii =
(Q2)iid

3
i + (Q3)iidi

1− d4i
. (36)
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In the case where di = 1 it must be (Q3)ii = −(Q2)ii. As a consequence the system is underdetermined, and we have
the freedom to choose (K2)ii = 0. Hence (H2)ii = (Q2)ii. For i 6= j, di 6= 1 and dj 6= 1 (remember 1 ≤ di), the
solutions are

(H2)ij =
(Q3)ijd

2
i dj + (Q2)ijdj

1− d2i d2j
, (37)

(K2)ij =
(Q2)ijd

2
i dj + (Q3)ijdj

1− d2i d2j
. (38)

Otherwise, if di = dj = 1, it must be (Q3)ij = −(Q2)ij and the underdetermined system allows us to choose (K2)ij = 0
and (H2)ij = (Q2)ij .

From Eqs. (29) and its Hermitian conjugate we consider first the case i = j, for i = 1, . . . , N :

d′i = (Q1)ii − (H1 −K1)iidi, (39)

d′i = (Q1)
∗
ii + (H1 −K1)iidi. (40)

By summing Eqs. (39) and (40) we get a set of differential equation for the singular values

d′i =
(Q1)ii + (Q1)

∗
ii

2
. (41)

By subtracting Eqs. (39) and (40) we get an algebraic equation that allows to obtain the diagonal elements of H1 and
K1,

(H1 −K1)ii =
(Q1)ii − (Q1)

∗
ii

2di
. (42)

We can choose, then, (K1)ii = 0 and determine (H1)ii. Notice that this result is consistent with the fact that H and
K are skew Hermitian so that their diagonal must be purely imaginary. Now we consider Eq. (29) and its Hermitian
conjugate for i 6= j, for i, j = 1, . . . , N . In this case, after using the fact that H and K are skew Hermitian, we get

(Q1)ij − (H1)ijdj + (K1)ijdi = 0, (43)

(Q1)
∗
ji + (H1)ijdi − (K1)ijdj = 0. (44)

We can solve Eqs. (43) and (44) with respect to (H1)ij and (K1)ij . This system of algebraic equation is solvable if
di 6= dj , which means that the spectrum of singular values is not degenerate. In this case we obtain

(H1)ij =
(Q1)ijdj − (Q1)

∗
ijdi

d2j − d2i
, (45)

(K1)ij =
(Q1)ijdi − (Q1)

∗
ijdj

d2j − d2i
. (46)

The case where the path of two or more singular values collide thus giving rise to degeneracies can also be treated by
adapting to our case the strategy developed in [4, 5] for the case of the analytic singular value decomposition.

We notice also that in the case of transformations like (1), some of the degeneracies in the spectrum of S(ω) can
derive from degeneracies in the spectrum of the eigenvalues of M. In this case if a degeneracy is present at ω = 0 it
will persist at any other ω 6= 0.

Finally, the algorithm that allows to find the analytical Bloch-Messiah decomposition of S(ω) is the following. We
start at ω0 = 0 and we find the standard Bloch-Messiah decomposition S(0) = U(0)D(0)V †(0). From U(0), V (0) and
D(0), we evaluate Q(0) = U†(0)S′(0)V (0) as well as H1(0) and K1(0) from Eqs. (42), (45) and (46), and H2(0) and
K2(0) from the solutions of the system (31) and (32). Then we can find, from Euler approximation of Eq. (41) the
matrix D(ω1). On the other side, for solving Eqs. (21) and (22), we use the Magnus perturbative approach that has
the advantage of preserving the symplectic structure at any order of approximation. The solutions U(ω1) and V (ω1),
with ω1 = ω0 + dω (with dω � 1), are thus evaluated at the first Magnus order as

U(ω1) ≈ U(ω0) exp
(
H(ω0) dω

)
. (47)
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These results are used for obtaining the values of H(ω1) and K(ω1), then the procedure can be iterated for ωm =
ω0 +mdω with m > 1.
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