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In this Letter we present a universal approach enabling the full characterization of the quantum
properties of a multimode optical system in terms of squeezing and morphing supermodes. These
are modes undergoing a continuous evolution that allow uncoupling the system dynamics in terms
of statistically independent physical observables. This dynamical feature, never considered so far,
enables the description and investigation of an extremely broad variety of key resources for ex-
perimental quantum optics, ranging from optical parametric oscillators to silicon-based microring
resonators, as well as optomechanical systems.

Multimode quantum optics in a continuous variables
(CVs) regime is at the heart of a multitude of quan-
tum applications, encompassing quantum communica-
tion [1, 2] and quantum metrology [3], as well as quantum
computation [4] via cluster states [5–7].

Commonly, the treatment of multimode optical sys-
tems is based on the identification of the so-called super-
modes [8–10]. These are coherent superpositions of the
original modes that diagonalize the system dynamics and
permit one to rewrite multimode CV entangled states
as a collection of independent squeezed states [11]. The
knowledge of supermodes allows us to optimize the detec-
tion of the nonclassical information on the state [8, 9, 12],
generating and exploiting CV cluster states in optical
frequency combs [13–15] or in multimode spatial sys-
tems [16], as well as engineering complex multimode
quantum states [17, 18]. In experiments, as they are sta-
tistically independent, supermodes can be measured with
a single homodyne detector, thus considerably reducing
the experimental overhead [15].

The ongoing development of new devices and platforms
for quantum optics is enlarging the range of situations
requiring a multimode dynamics-decoupling treatment.
Traditional theoretical methods, however, are not always
adequate and leave uncovered a large set of situations
that are relevant for quantum technologies. This is, for
instance, the case of the third order nonlinear interac-
tions at the heart of integrated quantum photonics plat-
forms in silicon and silicon nitride [19, 20]. Our work
develops a universal approach able to deal with this in-
creasing variety of multimode optical systems. The en-
abling key concept is the observation that supermodes
must be, in general, considered as dynamic function of
a continuous parameter connected to the space or the
time and frequency degrees of freedom. The image of a
continuous transformation of supermode shape suggests
us to call them “morphing supermodes”. This theoretical
work explores and characterize the temporal and spectral
properties as well as the quantum properties of these new
powerful objects. We observe that the notion of contin-

uously evolving supermodes is unexplored by traditional
theoretical approaches, which are, in general, applied to
systems under stringent a priori hypotheses, such as the
absence of linear and/or nonlinear dispersion phenomena,
preventing observation of these features [10].

We focus here on a generic below-threshold resonant
system that can present linear and nonlinear dispersion.
Nevertheless, our approach covers any multimode system
evolving under the most general quadratic Hamiltonian,
including when obtained from a perturbative develop-
ment. It can treat also single pass configurations [21, 22]
for which, in general, the supermode structure is studied
at the output end of the nonlinear crystal and no atten-
tion is payed to spatial propagation effects. Our approach
sheds light on the problem of adequate detection choices
in the experimental measurement of multimode quantum
features. Moreover, in general, it has a major impact on
the investigation of multiple scenarios: these encompass
low-dimensional systems, such as single- or double-mode
squeezing in detuned devices [23–25] and in optomechan-
ical cavities [26, 27] or spatial entanglement in waveguide
arrays [16], and highly multimode devices, such as those
used for the generation of squeezed light via four-wave
mixing in integrated systems on silicon photonics [19, 28],
as well as problems related to condensed matter [29, 30].
Multimode Langevin equations.— We consider the

most general time-independent quadratic Hamiltonian
describing the dynamics of N boson modes ân in the
interaction picture:

H = ~
∑
m,n

Gm,na
†
man +

~
2

∑
m,n

[
Fm,na

†
ma
†
n + H.c.

]
. (1)

In this expression, the matrix F is a complex symmetric
matrix, F = FT, while G is a Hermitian complex ma-
trix, verifying G = G† [31]. Boson operators an and a†n
satisfy the commutation relations [an, a

†
m] = δn,m and

[an, am] = 0. In practical situations, the matrix F is of
the same kind as the one describing spontaneous para-
metric down-conversion in χ(2) or χ(3) interactions, un-
der the approximation of undepleted pumps [10, 32]. The
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very general shape of the matrix G allows taking into ac-
count frequency conversion processes [21], self- and cross-
phase-modulation in χ(3) media [32], and, in resonant
systems, it can also include the mode detunings from
perfect resonance and linear dispersion effects.

For a cavity-based system, boson operators ân and â†n
label the intracavity modes. In the Heisenberg repre-
sentation, the Hamiltonian operator H permits one to
derive a set of linear coupled quantum Langevin equa-
tions describing the dynamics of the system observ-
ables below the oscillation threshold. In terms of am-
plitude and phase quadratures, xn = 1√

2
(a†n + an) and

yn = i√
2
(a†n − an), Langevin equations read, in a com-

pact matrix form

dR(t)

dt
= (−Γ +M)R(t) +

√
2Γ Rin(t). (2)

In the previous expression, R(t) =

(x1(t), . . . xN (t)|y1(t), . . . yN (t))
T

is a column vector of
quadrature operators, Γ = diag{γ1, . . . , γN |γ1, . . . , γN}
is a diagonal matrix containing the mode-dependent
cavity dampings. Rin(t) is the quadrature vector of
input modes entering the system via losses. We stress
that the quadratures of the cavity output fields Rout(t)
can be straightforwardly obtained with the input-output
relations Rin(t) + Rout(t) =

√
2Γ R(t) [33]. The mode

interaction matrix M ∈ R2N×2N explicitly depends on
the matrices F and G that appear in the Hamiltonian
operator (1) via the relation

M =

(
Im[G+ F ] Re[G− F ]

−Re[G+ F ] −Im[G+ F ]
T

)
, (3)

where matrices Re[G− F ] and Re[G+ F ] are both sym-
metric. We note that the system threshold is defined by
the eigenvalue λ0 ofM−Γ with the highest real part for
which Re[λ0] = 0.

Finding the system supermodes corresponds to iden-
tifying the linear combinations of the original an and
a†n that permit one to diagonalize M, so as to uncouple
the evolution equations, while preserving the symplectic
structure of the problem [9, 10]. However, in general,M
cannot be diagonalized by symplectic unitary transfor-
mations apart from special cases for which the matrix G
is null [34]. As a consequence, the system does not admit,
in general, a set of supermodes in the traditional sense
that do not change their shape during the system evolu-
tion. We show that the problem of the characterization
of its quantum properties in terms of statistically inde-
pendent physical observables can be achieved in terms
of morphing supermodes, provided we adopt a novel ap-
proach. As a matter of fact, besides low-dimension sys-
tems whose equations can be solved directly [35], the tra-
ditional analysis of resonant systems is confined to those
presenting χ(2) nonlinearities and mode-independent de-
tuning [36]. These limitations arise from the fact that

standard symplectic diagonalization methods, such as
Bloch-Messiah decomposition (BMD) [37, 38], limit their
analysis to problems for which dynamic evolution can be
disregarded. Conversely, in a general situation, as we are
analyzing, pertinent transformations are matrix-valued
functions of space or frequency and time and demand an
adequate extension of symplectic approach.
Generalized symplectic approach.— As a first step,

we show that, even in the most general case considered
here, the transformation associated with Eqs. (2) and
connecting the input and output modes is indeed sym-
plectic in a more general sense. By doing so, we can then
apply to it a generalized version of BMD.

Steady-state solutions of Eqs. (2) can be obtained in
the frequency domain by application of the Fourier trans-
form to the slowly varying envelopes [33]

R(ω) =
1√
2π

∫ +∞

−∞
e−iωtR(t) dt . (4)

The quadratures of the output modes read as

Rout(ω) = S(ω)Rin(ω), (5)

where S(ω) is the transfer function of the linear sys-
tem (2)

S(ω) =
√

2Γ (iω I + Γ −M)
−1√

2Γ − I (6)

where I is the identity matrix of R2N×2N . This is a com-
plex matrix-valued function, verifying S(−ω) = S∗(ω),
which assures the reality of S in the time domain. In ma-
trix form, the commutators of input mode quadratures
can be written as

[
Rin(ω),RT

in(ω′)
]

= Ω δ(ω+ω′) where

Ω =

(
0 I

−I 0

)
, is the N -mode “symplectic form” and I

is the identity matrix of RN×N [38]. In order to guaran-
tee that the commutators are preserved for Rout(ω), the
transformation S(ω) must verify

∀ ω ∈ R : S(ω)Ω ST(−ω) = Ω. (7)

In the case we are dealing with, this condition is easily
verified (see the Supplemental Material [39]) by noticing
that the matrix M of Eq. (3) is a Hamiltonian matrix,

i.e., it verifies the relation (ΩM)
T

= ΩM and that

the matrix Γ is skew Hamiltonian (Ω Γ )
T

= −Ω Γ . Ex-
pression (7) extends the standard symplecticity condition
known in the literature [38]. More precisely, it defines a
set of transformations that depend on a real continuous
parameter —the frequency ω— and such that every ma-
trix obtained from S(ω) with ω assigned belongs to the
“conjugate symplectic group” Sp∗(2N,C) [40],

Sω =
{
S(ω) ∈ Cω

∣∣ ∀ω ∈ R, S(ω) ∈ Sp∗(2N,C)
}
, (8)

where Cω is the set of matrix-valued functions in C2N×2N

that are smooth with respect to ω. For the sake of sim-
plicity, we will refer to transformations belonging to Sω
as “ω−symplectic”.
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In a general way, ω-symplectic transformations admit
a decomposition that is a smooth function of the real
parameter, as expected to describe the mode continuous
evolution in time and frequency. In other words, for any
element of Sω, there exists an analytical Bloch-Messiah
decomposition (ABMD) (see Supplemental Material [39])

S(ω) = U(ω)D(ω)V †(ω), (9)

where U(ω), D(ω), and V (ω) are smooth matrix-
valued functions such that, for any assigned
value of ω, U(ω), V (ω) ∈ Sp∗(2N,C) ∩ U(2N),
with U(2N) the unitary group. The matrix
D(ω) = diag{d1(ω), . . . , dN (ω)| d−11 (ω), . . . , d−1N (ω)}
with dm(ω) ≥ 1 for m = {1, . . . , N}, for all ω ∈ R. We
note that these matrix-valued functions can be chosen,
after conjugating Eq. (9), so to verify the same property
as S∗(ω) = S(−ω).

Expression (9) shows that a BMD for S(ω), in the
case of a generic quadratic Hamiltonian, exists and de-
pends on a continuous parameter. From it, the quadra-
ture of supermodes of system (2) can be obtained as
R′out(ω) = U†(ω)Rout(ω), where we have assumed input
vacuum state. We remark that the shape of the super-
modes themselves depends on the continuous parameter:
this result shows that, in practical situations, the optimal
detection modes change with the analysis frequency ω.
The connection with Bogoliubov transformations [41, 42]
is discussed in the Supplemental Material [39].

To conclude, we note that Eqs. (7) and (9) have
counterparts in the time domain. The matrix-valued
Green’s function S(t) of (2), corresponding to the inverse
Fourier transform of S(ω), is symplectic in the sense that
∀ t, t′ ∈ R,∫ +∞

−∞
S(t− τ)Ω ST(t′ − τ) dτ = Ω δ(t− t′), (10)

and its ABMD reads

S(t) =

∫ +∞

−∞
U(τ)D(t− τ + τ ′)V (τ ′) dτ dτ ′ , (11)

where U(t) and V (t) are real matrix-valued Green’s
functions. They are symplectic in the sense of (10)
and orthogonal in the sense (U ? UT)(t) = I δ(t) and
(V ?V T)(t) = I δ(t), with ? as the cross-correlation prod-
uct. The Green’s function D(t) is the diagonal matrix-
valued obtained as the inverse Fourier transform of D(ω).
It is real and even, since D(ω) is real and even.
Spectrum of quantum noise.— We now characterize

the quantum statistical properties of the output steady
states Rout and of their supermodes R′out. To this pur-
pose, we consider a generic linear combination Zθ ofRout

specified by the normalized line vector Q(θ) consisting of
real coefficients

Zθ = Q(θ) Rout, (12)

where θ are the 2N − 1 angles parametrizing Q(θ).

The spectrum of quantum noise can be expressed by
means of the Wiener-Khinchin theorem in terms of the
self-correlation of Zθ as

Σθ(ω) =

∫ +∞

−∞
e−iωτ 〈Zθ(t+ τ)Zθ(t)〉 dτ . (13)

By making use of expression (12) in the frequency do-
main, Eq. (13) can be written as

Σθ(ω) = Q(θ)σout(ω)QT(θ), (14)

where

σout(ω) =
1

2
√

2π
S(ω)ST(−ω) (15)

is the Fourier transform of the covariance matrix
of the output state σout(τ) = 1

2 〈Rout(0)RT
out(τ) +(

Rout(τ)RT
out(0)

)T〉, which depends only on time differ-
ences τ , as we are considering a stationary regime [43].
In Eq. (15), we used (5) and the fact that for vacuum
input state σin(τ) = I

2δ(τ).

Equation (15) can be rewritten by making use of the
ABMD in Eq. (9). We obtain

σout(ω) =
1

2
√

2π
U(ω)D2(ω)U†(ω). (16)

By replacing (16) into (14) it is clear that, in general,
optimal squeezing (respectively antisqueezing) cannot be
reached by any linear combinationQ(θ) apart from those
cases in which U(ω) is real. In this case, optimality could
be reached only at a given value of ω, by choosing Q(θ)
equal to one column of U†(ω), as we will show in the
next section. In experiments, the supermodes properties,
and in turn their squeezing features, can be obtained by
replacing Q(θ) by a complex line vector-valued function
Q (θ(ω)) equal to the ith column of U†(ω). With this
choice,

Σθ(ω) =
1

2
√

2π
d2i (ω). (17)

Based on this expression, the elements of the diago-
nal matrix D2(ω) give directly the variances of super-
modes quadratures and they can be interpreted as their
antisqueezing {d1(ω), . . . , dN (ω)} and squeezing levels
{d−11 (ω), . . . , d−1N (ω)}. We note that assigning Q (θ(ω))
corresponds to designate a particular shape of the local
oscillator (LO) of a homodyne detection scheme. As a
consequence, in order to retrieve the optimal information
on supermodes, the LO itself must depend on ω and be
chosen according to the analyzing frequency. The shap-
ing of the LO could be implemented, for example, by a
passive interferometer with memory effect.
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Single mode squeezing in detuned optical cavity.—
The case of a single-mode squeezed state generated in
a detuned optical parametric oscillator (OPO) is already
illustrative of the relevance of a continuous-parameter
symplectic approach. In this case, the vector of field
quadratures is R = (x, y)

T
and the matrixM associated

with this system is

M =

(
g ∆

−∆ −g

)
, (18)

where g accounts for the parametric gain and ∆ is the
detuning from cavity resonance of the squeezed mode.

The system has two singular values d1(ω) and d−11 (ω)
and, associated with these, two supermodes. As the
supermode quadratures are found to have real coeffi-
cients, we can write them as R′out,i = cos[θi(ω)]xout +
sin[θi(ω)] yout with i = 1, 2. The quadrature angles are
frequency dependent and verify θ2(ω) = θ1(ω) + π/2. At
ω = 0, θ1(0) = arctan

[
(g1 +

√
g2g3)/2∆γ

]
, where g1 =

g2−∆2+γ2, g2 = (g −∆)
2
+γ2, and g3 = (g +∆)

2
+γ2.

In Fig. 1 (top), we trace d21(ω) (solid) and d−21 (ω)
(dashed), as functions of the analysis frequency ω and we
compare them to the standard quantum limit (SQL). The
figure also shows (in gray) normalized-to-SQL spectra Σθ
of field quadratures, Zθ = cos θ xout + sin θ yout, calcu-
lated for several values of the angle θ, with θ frequency
independent. These quadratures are obtained by impos-
ing in Eq. (12) a real and constant Q(θ). Regardless the
choice of θ, the curves Σθ exhibit a (local or asymptotic)
minimum but do not reach the optimal squeezing for all
values of ω. Conversely, the function d−21 (ω) corresponds
the envelope of Σθ minima, thus confirming that the op-
timal squeezing spectrum is the one computed for the
morphing supermodes. A similar observation holds for
the antisqueezing, d21(ω).

Figure 1 (bottom) shows the angles θ1(ω) and θ2(ω)
that give the supermode coefficients. The color code indi-
cates quadrature noise levels normalized to SQL as func-
tions of ω and of the quadrature angle θ. As expected,
when ω changes, the frequency dependent angles, θ1(ω)
and θ2(ω) associated with supermodes, correctly give the
superpositions of xout and yout that lead to optimal an-
tisqueezing and squeezing levels. We note that the de-
pendence of the optimal quadrature angle with respect
to analysis frequency is in agreement with the result ob-
tained by directly solving the one-dimension Langevin
equations, either in detuned OPO [23–25] or optome-
chanical cavities [26, 27].

Four-mode system.— To conclude, we discuss a case
that is complex enough to demonstrate the efficacy of
the generalized symplectic approach and the ABMD. We
chose a multimode system with N = 4 in the case of both
F and G non-null. The structure of these two matrices
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FIG. 1. Top: frequency-dependent singular values d21(ω) and
d−2
1 (ω). They quantify the degree of antisqueezing (dashed

black) and squeezing (solid black), respectively. Solid gray
curves represent the normalized-to-SQL spectrum of quan-
tum noise Σθ of quadratures Zθ for several values of θ, in
agreement with the existing literature on detuned single-
mode OPO [23–25]. Bottom: color density plot represents
Σθ with respect to analysis frequency ω and quadrature an-
gle θ. Dashed and solid black lines represent the frequency-
dependent angles θi(ω) associated with supermodes R′out,i.
They represent the set of points in the space (ω, θ) for which
Σθ is minimum (squeezing) or maximum (antisqueezing).

is chosen as

F =

(
F̃ 2F̃

2F̃ F̃

)
, G =

(
2G̃ G̃

G̃ 2G̃

)
, (19)

with F̃ =

(
0 a

a 0

)
and G̃ =

(
b 0

0 b

)
. This scenario is, for

instance, the one of a χ(3) process driven by two strong
pumps that give origin to both parametric and frequency
conversions, including self- and cross-phase-modulation
of signal and idler waves. For this system, the ABMD
gives eight singular values and eight supermodes that are
smooth with respect to ω. In Fig. 2 (top) we trace the
frequency-dependent singular values that, for this specific
case, are two by two degenerate. The solid lines represent
the square of di(ω) [respectively, d−1i (ω)] for i = 1, . . . , 4
and they are compared to SQL. They correctly provide
the minimum [respectively, maximum] degree of squeez-
ing [respectively anti-squeezing] produced by the system
at a given value of the analysis frequency ω. In Fig. 2
(bottom), we represent the eight frequency-dependent co-
efficients of one of the supermodes (i = 3).
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FIG. 2. Top: frequency-dependent singular values di(ω) and
d−2
i (ω), for i = 1, . . . , 4, quantifying the degree of antisqueez-

ing (dashed) and squeezing (solid) of corresponding super-
mode. Level of noise equal to one corresponds to SQL. Bot-
tom: frequency-dependent (real) coefficients U3,j(ω) of one
(i = 3) of the eight supermodes obtained from ABMD.

Conclusions.— In this Letter, we illustrated that
morphing supermodes naturally emerge from the dynam-
ics of multimode systems in the most general case of
quadratic Hamiltonians without a priori hypotheses. In
order to fully characterize their dynamical and quantum
properties we developed a universal symplectic approach.
The presented strategy allows for covering the analysis
of many optical systems that are relevant for quantum
technologies but that cannot be easily analyzed by stan-
dard symplectic diagonalizations. We introduced the an-
alytical Bloch-Messiah decomposition that allows treat-
ing symplectic transformations that depend on a contin-
uous parameter, such as the frequency ω. As a result of
the decomposition, supermodes and their associated sin-
gular values are, in the most general case, dependent on
the continuous parameter. Our approach will allow treat-
ing easily systems with a very large number of degrees of
freedom, hence enabling a better harvesting and control
of their quantum properties. This feature is of crucial im-
portance for application in the domain of quantum tech-
nologies with a major impact in the development of bulk
and integrated quantum optics.
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