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Atomic physics is usually limited by the temperature of the atoms and the quality of the lasers.
It’s not easy within a sophisticated experiment to know what should be improved first. I’ve worked
on a technique to characterize the frequency properties of a laser light: a low finesse cavity is used to
convert frequency into intensity fluctuation. Then it’s converted into an electrical signal by a photo-
diode. This signal is analysed by a spectrum analyser. This measurement also provides information
about the opportunities of improving the control system of the lasers.

I. INTRODUCTION

As building universal quantum computers doesn’t
seem absolutely impossible nowadays, huge work is be-
ing done to slowly get closer from this goal. In fact
such a machine is expected to be completely different
from classical computers. A 2 bits classical memory can
only be found in 4 different states: (00), (01), (10) and
(11) whereas a quantum 2 bits memory can be in any
normalised linear superposition of those same 4 states.
On the other hand you can always read the state of a
classical computer whereas for quantum computers, you
have to choose an orthogonal base. In our example, once
this choice is done you can have only 4 different results.
As usual the complexity also gives more possibilities and
quantum computers are supposed to be very efficient for
some task. For instance Shor Algorithm[1] can find a
number’s prime factors in polynomial time whereas no
polynomial time classical algorithm is known.

But from a physicist point of view, the main benefit of
a quantum computer could be to simulate quantum sys-
tems. In fact classical computers are very inefficient in
representing quantum systems. In classical physics when
you study two separate vectorial spaces, the total space
is described by a vectorial structure whose dimension is
the sum of the dimensions of its components. In quan-
tum physics if you want to describe a general state of the
total system, you need to consider the tensorial product
of the sub-spaces; the dimension is now the product of
the dimensions of its components. Capacities of quan-
tum computers grow with the number of bits as fast as
the complexity of the problems with the number of parti-
cles. That’s why quantum computers are expected to be
more efficient than classical ones for simulating quantum
physics.

To implement quantum computers, the main diffi-
culty is to overcome decoherence. Photons can be good
candidates for quantum information: the coherence time
can be as long as few milliseconds (to be compared with
nanoseconds in condensed matter). But two photons in
vacuum don’t interact together. As atoms can interact
together and a photons be coupled with an atom, it is

possible to make (indirectly) interactions between pho-
tons. That’s what creates optical non-linearities in some
crystals. But those non-linearities are usually very weak
and appear at very high intensity; it is to say not at the
level of the photon as needed for quantum information
processing. Some research groups managed to amplify
significantly the coupling between atoms and photos by
using some high finesse cavity[2].

The experiment on which I worked shows that it is
possible to have in free space (without optical cavity)
non-linear effects at the level of photons. A cold atom
gas is prepared so that the medium induces significant
two-photon attenuation while it remains transparent for
a single photon.

This is achieved by using three levels of the atoms:
a fundamental (stable), an excited state (unstable) and
a stable higher level (Rydberg state). A laser shining
the cloud of cold atoms is tuned to drive the transition
between the excited state and the Rydberg state. The
probe laser is tuned to drive the transition between the
fundamental to the excited state.
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FIG. 1. Principle of the photon-photon interactions in the
main experiment of the lab in which I worked

When a single photon comes from the probe laser,
the control laser prevent the excited atom from spon-
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taneous emission (in a random direction: the photon is
lost if it happens) and the photon can travel through
the medium as a coupled excitation of light and mat-
ter (EIT[3]). When two photons come together, the two
Rydberg atoms interact (Rydberg atoms really look like
a classical electric dipole and can interact at very long
range). The interaction shifts the internal level so that
the control laser is now detuned from the transition from
the excited state to the Rydberg. At least one photon is
scattered. This phenomenon is known in the literature
as ”Rydberg excitation blockade”[4].

In practical the lasers are not monochromatic and the
difference of frequency between the two stable states is
broadened by Doppler Effect. As the blockade happens
when the Rydberg state frequency moves out of reso-
nance with the laser, the broader the lasers spectra will
be, the stronger the Rydberg atoms will need to interact
before running out of the transparency window. That’s
why the atoms need to be cooled and the lasers want
narrow spectra. Therefore the easier to improve interac-
tions between photons is to identify the broadest spec-
trum. Once you have identified a guilty laser it is very
interesting to know whether it will be useful to improve
the electronic control of the laser or not. My work for
the internship was to characterise the control and probe
lasers.

II. MEASUREMENT PRINCIPLE

The most important characteristic of the light we want
to measure is the linewidth – because it impacts directly
the intensity of the photon-photon interaction. As we
want a very narrow laser spectrum, the measurement will
be difficult. Using a grating or a prism will obviously not
have enough precision here. Other techniques are using
a high finesse Fabry–Pérot interferometer or beating the
light with a known laser and then measure the radio fre-
quency signals. An alternative to all those sophisticated
techniques starts from the idea that we want to measure
frequency fluctuations.

The concept will be to convert the fluctuations of fre-
quency into fluctuations of intensity with a Fabry-Pérot
cavity used at half resonance and then convert those fluc-
tuations of luminous power into fluctuations of voltage
with a photo-diode. Those can then be analysed by
a spectrum analyser. From the spectrum analyser, we
should be able to recover the linewidth of the laser and
even more: by knowing the frequencies of the frequency
shifts, we should be able to know whether we will be able
to cancel them with an electronic control of the laser (low
frequency) or not (high frequency).

Before going further with the experimental part, let’s
define the words like ”spectrum” that we use without
having a good definition and find the link between what
is going to be read on the spectrum analyser and the
spectrum of the laser.
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FIG. 2. Idea of the measurement: the laser is at half the
resonance of the cavity so that the frequency fluctuations are
converted into intensity fluctuation that we can detect with
a photo-diode.

III. THEORY OF THE MEASUREMENT

A. Definitions

What is a spectrum? The intuitive answer would be:
”The Fourier transform of what we study”. But just talk-
ing about Fourier transform is not precise enough: There
is a lot of different conventions, and depending on the
properties of the function one studies, the Fourier trans-
form will be different. That’s why saying ”the Fourier
transform” is not sufficient. As you don’t expect noise to
be periodic, Fourier series will not work. Noise is not sup-
posed to be square-integrable so standard Fourier trans-
forms (with Lebesgue integrals and functions) will not
work either. Hopefully a good normalization will gives
intuitive results. Let’s first define the kind of object we
want to study: noises.

1. Noise

Intuitively noises are random functions of time. So we
will study continuous (time variable) stationary stochas-
tic processes. Let’s write Ω a space of probability, T the
time space (' R) and X a physical variable space (' R).
The stochastic process N is a function from Ω to the set
of the time dependent x:

N : Ω −→ (T → X)

ω 7−→ (t 7→ xω(t))

Remarks:

• At that point we don’t add any other assumption.

• In the lab we have access only to one realization of
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the random process. The ergodic hypothesis will
have to be used (but we don’t assume it now).

From now we use the signs <> for average over the
probability space: < x >=

∫
Ω

x

2. Fourier transform

This part is here only to give my conventions for
Fourier transform. Given a function t 7→ x(t), if it exists
I call Fourier transform of x the function

f 7→ X(f) =

∫ +∞

−∞
x(t)e−2πiftdt

Remarks:

• With this convention f is a frequency.

• With this convention the invert Fourier transform
is the same with just the sign in the exponential

flipped: f 7→ x(t) =
∫ +∞
−∞ X(f)e2πiftdt

• With this convention Parseval-Plancherel’s equa-

tion is written:
∫ +∞
−∞ x2(t)dt =

∫ +∞
−∞ |X(f)|2df

3. Spectral power density

Let’s take one realization of the noise x : t 7→ x(t).
”Usually” x is not suitable for a Fourier transformation
(there no reason for it to be square-integrable). Given T
a time (real number) we define xT as the function:

xT (t) =

{
x(t) for |t| ≤ T

0 for |t| > T

For all T, xT is Fourier transformable (non-zero only
on a segment). Let’s write XT (f) the Fourier transform
of xT (t). At this point it’s good to remember that XT (f)
is a stochastic process. We can reasonably estimate that
XT (f) scales with T at a speed of the order of

√
T . This

estimation leads us to define:

When it exist, we call spectral power density:

S(f) = lim
T→∞

< |XT (f)|2 >
2T

(1)

Remarks:

• We generally can’t invert the limit and average be-
cause one realization of the random process is a
common function and usually the limit does not
converge.

4. Properties of the spectral power density

The properties of the standard Fourier transform have
equivalents with the spectral power density. We keep
the names used before (x(t) the function and S(f) the
spectrum power density).

Parseval equation becomes:

< |x2| >=

∫ +∞

−∞
S(f)df

Remark:

• We don’t precise t because x is a stationary process.

Given a linear filter of transparency h(f), the spectrum
power density after the filter S′(f) is:

S′(f) = S(f)|h(f)|2

The Wiener-Khintchine theorem makes the link be-
tween the spectral power density and the autocorrelation
function:

S(f) =

∫ +∞

−∞
< x(t)x(t+ τ) > e−2πifτdτ

Now we know what a spectrum is and can start the
theory of the measurement.

B. Recovering the laser spectrum from the
frequency noise spectrum

The measurement I suggest is really useful only if we
can recover at least some characteristics of the laser light.
Let’s consider a complex representation of the laser elec-
tric field (only the temporal part) which is almost a
monochromatic field with the frequency ν0:

E(t) = E0e
2πi

∫ t
0

(ν0+∆ν(t))dt

We call respectively SE(f) and S∆ν(f) the spectrum
power density of E(t) and ∆ν(t). The goal here is to
express SE(f) with only S∆ν(f) and ν0.

We can start with Wiener-Khintchine’s theorem for
E(t). It leads to:

SE(f) = E2
0

∫ +∞

−∞
e2πi(ν0−f)τ < e2πi

∫ τ
0

∆ν(t)dt > dτ

In this expression appears < e2πi
∫ τ
0

∆ν(t)dt >. This
can’t be expressed easily from S∆ν(f). At this point
we introduce the strong hypothesis that for each τ ,∫ τ

0
∆ν(t)dt (a random variable since E(t) is a random

process) has a Gaussian probability law. This is a
strong hypothesis but since we have no more informa-
tion, this is still the most reasonable hypothesis. Thanks
to this assumption, we can use the following property:

< e±i
∫ τ
0

∆ν(t)dt >= e−
1
2<[

∫ τ
0

∆ν(t)dt]
2
>.
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Once this approximation is done, we can compute:

SE(f) = E2
0

∫ +∞

−∞
e2πi(ν0−f)τe

−2
∫ +∞
−∞ S∆ν(g)

sin2(πgτ)

g2 dg
dτ

(2)
This equation is exactly what we were looking for: a

direct expression of the laser spectrum in function of the
spectrum of frequency noises. Let’s see what comes out
for a specific case: when the spectrum of frequency power
density is constant.

C. Case S∆ν(f) constant

We write h0 = S∆ν(f) (independent from f). With
this notation,∫ +∞

−∞
h0

sin2(πgτ)

π2g2
dg = h0|τ |

This leads to

SE(f) = E2
0

∫ +∞

−∞
e2πi(ν0−f)τe−2π2h0|τ |dτ =

4E2
0

1
h0

1 + ( f−ν0
2πh0

2

)2

At the end of those computations, we have found that
with a constant spectrum of frequency noise power h0 the
line-shape of the laser is a Lorentzian with a full width
at half maximum of 2πh0. This π seems quite strange
because we worked only with frequency, without taking
the π out of the exponentials. It actually comes out from

a Dirichlet integral (
∫ +∞
−∞

sin(ω)
ω dω = π).

IV. EXPERIMENTAL

We now know that the idea of analysing the frequency
noise allows to compute The spectrum of the laser. Fur-
thermore as we can expect to be able to reduce low
frequency noises with a feedback control, knowing the
frequency noise power spectrum help estimating the im-
provement we can bring to the laser.

A. Set up

To perform the measurement, one wants to convert
the frequency fluctuation into intensity fluctuation in a
known way. To achieve this goal it is essential to keep
the conversion factor from frequency to optical power
almost constant. This happens only if we work in an area
in which the slope of the transmission curve is almost
constant. This implies that the linewidth of the laser
should be smaller than the linewidth of the cavity. This is
important for the choice of cavity: we have to make sure
the linewidth is large enough. Another danger is the slow
drift. A solution to solve it is to lock the piezoelectric

LASER light

Scannable cavity

Photo-diode

Spectrum analyser

Piezo control electronics

FIG. 3. Experimental set-up for the characterisation of the
laser. the cavity is locked at half resonance.

crystal within the tunable cavity to a given voltage on
the photo-diode.

The definitive set-up was the following: The laser light
is taken from where we can access it to an optical fibre
(with a half-wave plate and a beam polarisation splitter
to be able to reduce the power).

Then it is directed (after a mirror) to a tunable Fabry-
Pérot cavity. Ideally the linewidth of the cavity is be-
tween 10 times and 100 times the linewidth of the laser.
Indeed the narrower the cavity, the higher the frequency
intensity conversion coefficient will be. But we also want
this coefficient to be almost constant: the laser linewidth
have to be small in comparison with the cavity linewidth.

At the output of the cavity the light is converted into
voltage by a fast avalanche photo-diode.

The signal is then split in two: some goes to a lock-box
to slowly lock the cavity at half resonance of the laser.
Most of the signal goes to a spectrum analyser.

Of course all the optics elements need to be precisely
aligned.

B. Locking the cavity

After some unfortunate attempts to use an old lock-
box built some decades ago by an unknown undergradu-
ate that leads me only into some smoke, and after some
sophisticated attempts to lock the laser at the cavity, I
decided to build my own lock-box.

I started from the model used in the lab and modified
it a little. Basically it takes the signal from the photo-
diode, add a tunable offset, integer it and add a new
offset. There is also the possibility to switch to a signal
produced by an external function generator. The switch
is designed so that when you switch from the external
source to the locked position, the output voltage stay
continuous. If there is any voltage discontinuity when you
try to lock the cavity, it will fail. For instance the (bad
quality) function generator I used had an offset (even
when it was supposed to be 0) and the locking process
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failed. I had to add a cut-low filter before my lock-box.
Once this problem solved, the lock was quite efficient.

C. Calibrations

In the theoretical part, we have seen how to compute
the spectrum of a laser from the spectral frequency noise
power density. But the spectrum analyser measures an
electrical power. To make the conversion, one needs to
know the slope of the transmission curve at half reso-
nance (where the cavity is locked). In order to have an
absolute value of this slope, two quantities have to be
determined experimentally.

The first one is the voltage emitted by the photo-diode
when the transmission of the cavity is maximum. As
the input impedance of the spectrum analyser depends
on the frequency (DC block), we can’t just measure the
value when we are at half resonance and multiply by 2.
The easiest way I’ve found is to scan the cavity and look
at the photo-diode output voltage with an oscilloscope
equipped with a 50 Ω input.

The second one is the linewidth of the cavity. Due
to the general set-up of the lab, it is possible to shift
the lasers by an arbitrary frequency. A side-band (cre-
ated by modulation) is locked so as long as the lock fol-
lows, changing the modulation frequency changes the fre-
quency of the laser. This is controlled by a computer.
With a good function generator I was able to send ramps
to the piezo of the cavity when ordered by the computer.
With this sophisticated material it was possible to send
ramps at the piezo so that at each one the frequency of
the laser has been shifted (one time up, one time down).
By averaging the photo-diode signal on an oscilloscope
and recording it on a computer, I was able to extract the
linewidth of the cavity by using the absolute frequency
value given by the shift between the maxima (shift in the
modulation frequency).

With the exact value of the coefficient to convert fre-
quency into voltage fluctuations, we are ready to analyse
the data from the spectrum analyser.

D. Analysis

We have seen that we can reconstruct the spectrum of
a laser from the analysis of the measurement data. As we
hope to be able to make low-frequency noise decreasing
significantly with a feedback control, looking at high fre-
quency noises gives us an indication of the best spectrum

we will be able to obtain with an electronic control that
can reduce low frequency noises.

Indeed when we look at laser spectra, we notice that
they seem to finish at a flat stage. We have seen that
the corresponding spectrum is a pure Lorentzian. So it
behaves like if the lasers had a Lorentzian spectrum pol-
luted at low frequency by ”technical” noises.

To implement numerically the formula 2 we have infi-
nite integrals to evaluate whereas we can only access ex-
perimentally to a finite window. A solution is to assume
S∆ν to be constant outside of the experimental window.

With this hypothesis we can use the linearity of the
integral within the exponential to have two terms: one
have non zero values only in the experimental window
(and a numerical integration is possible without special
problem) and the other one correspond to a Lorentzian
whose spectrum characteristics (the linewidth) can be
determined by just knowing the level of the stage at one
point.

V. CONCLUSION

As we have seen, laser quality is essential in atomic
physics to reach high levels of precision. The presented
technique and theories gives an opportunity to evaluate
the characteristics of lasers.

In this study what I call ”intrinsic Lorentzian spec-
trum” seems to be the best quality we can reach with
a given laser. In fact it exist techniques to lower the
linewidth of this Lorentzian. One possible technique is
to use a long external cavity[5]. Perhaps with this tech-
nique it will be possible to improve the lasers of the main
experiment enough to create a very efficient optical quan-
tum transistor.

Appendix A: figures
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FIG. 4. Experimental measurement on the spectrum analyser
and laser spectrum after processing


