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Characterizing the quantumness of
Generalized Coherent States with
intensity-field correlation

@ WHAT DOES THIS MEAN?

® ok... BUT WiY?
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N OUANTUM SOUEEZING TO ENHANCE PRECISION IN METROLOGY

WiY?

Light can be squeezed
to improve sensitivity
to a measurement

Y \

Improved microscopy
c

Gravitational wave detection

Quantum

Classical

1

Mw oy M f V \/WLJ i

Mormalized intensity

0

The LIGO Sci. Coll. et a/. Nature Phys 7, 962-965 (2011).
Z. He et al. Nat Commun 14, 2441 (2023).
M. Bailes et a/. Nat Rev Phys 3, 344-366 (2021).
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MNormalized intensity correlation

How) Much?

In an ideal experiment, only remains noise due to
vacuum fluctuations. Coherent states set the standard
quantum limit in metrology

1
ApsqL ~ /_N (Or shot woise)
Wigner description of a quantum state
4 I
gc\od
Jacuum VO wwwm
A =
‘/)\‘ (xSe - K noise
A coherent state A squeezed state
o J
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AMAZING

.\" QMU/\NTUM NON-GAUSSIAN STATES TO FURTHER ENHANCE PRECISION

/—Fock states for metrology

h o, -
Standard Quantum Limit 02|
A¢ ~ i o1
=0l JN Negative Quasiprobabilities T 006f
Enhance Phase Estimation in s %
Gaussian squeezed Quantum-Optics Experiment [1] R ¢
¢ Phase sensing data
states 90! . — Phase sensing fit
) 0.005 L R T S . e e e S
Qure quantum stades whick are 2 3 5 10 20 30 4050 70 100
Some other non- —> wot Hawssin have o vxow—?os'(\"\\lc n
Gaussian states Wigner Sunction Quastum wetrology werl \arge Fock states (21
Heisenberg Limit ~—Schrédinger cat states N
A _ 1 A A stCr'\?os'(\’iow o§ colerent
PHeis ~ N sfakXes allows A'\s‘\?\a/ocmcvﬁ |
wmeasurements at Ahe \_ |
Hc’\scw\ou% \wer (31 '

\\§ J
[1] N. Lupu-Gladstein et al. Phys. Rev. Lett. 128, 220504 (2022)

[2] X. Deng et a/. Nat. Phys. 20, 1874-1880 (2024).

[3] A. Gilchrist et a/. J. Opt. B: Quantum Semiclass. Opt. 6, S828-5833 (2004).
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A OUANTUM NON-GAUSSIAN STATES FOR QUANTUM COMPUTATION

Computation
Metrology 4 P N\
Standard Quantum Limit The negativity of the Wigner
1 function is a requirement
APpsqL ~ — - » 2 a _
JN *- o » for building a universal
- - »
- O ® » quantum computer with
- - » 0 0
Gaussian states - " » continuous variables [1,2]
(regadivery of the s¥are
Some other non- ¢ or ke detector)
Gaussian states Ok s¥afes For ercor
correction
Gottesman, Kitaev & Preskill,
Heisenberg Limit \Phys. Rev. A 64, 012310 (2001). /
1
AdHeis ~ —
¢ els N

Generation and characterization of
E> non-Gaussian quantum states is
an active field of research

[1] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999). .
[2] Walschaers, PRX Quantum 2, 030204 (2021) ‘ 6
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N OUANTUM HOW TO GENERATE NON-GAUSSIAN STATES?

Won-deferminishic A/’\?’FFOA/(/\A

Herald a photon in
one mode of an
entangled state.

Start from a Welcome to the
Gaussian state non-Gaussian
world!

Make it evolve

under a higher

than quadratic
Hamiltonian

Deterministic wﬂ?rouo\,x

-

A. 1. Lvovsky et al. arXiv.2006.16985 (2020) | 7
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Generic Hamiltonian nonlinear in the
photon number operator

Mowmic
o?cru\’or
|a) . -
‘ H[nt == ﬁgﬁiod
Nonlinear

?A,raume*u 5

< efSective wderaction ime

Dimensionless time t =0T

lag, t)

3 QMU/\NTUM A GENERAL MODEL FOR NONLINEAR INTERACTIONS

€e=1/2
4 Trclwdes Ahe ’Swwes—(/uwwlw%s
o Haowmibromian i Ahe resowand
NG ) . .
N wrense Sield e,
Dﬂi/?/; é
o ¥ K Deterministic generation
of large (displaced) Fock
‘ states.
‘ ‘»/ @ \kp o 100 '\7\/»r\’ows Foc\ staXe
S = o werh currend (,a,?a,\o’\\'(\’\{(
—€=2
o Deterministic generation of large
Kerr Hamiltonian superpositions of coherent states.
t=n/4 t=n/3 t=n/2 t=m
: 1] = .
N =
.

M. Uria et a/. Phys. Rev. Research 5, 013165 (2023). «
M. Uria et a/. Phys. Rev. Lett. 125, 093603 (2020).
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N OUANTUM GENERALIZED COHERENT STATES

|0 t) is a Generalized Coherent State (GCS)

| (00
i Ll _' 3
lae,c) =e™ 2 Z “In)e

Generic Hamiltonian nonlinear in the Nonlinear A ’\
photon number operator parameler e55e e Fock hasis
Mowmic wXeraciion fime
operator ~ Properties N
/ Coherent in the sense of Glauber [1]
lCl) (see Aheir Poissoniam
A AE A i on .
‘ Hint = hgn Aoa |O{£,t) O ((aT)lal) sYaXistics)
Vi, gt/ =—F77=1
\ @ay
Nowlinear They can have a large negativity in their Wigner function [2]
parameter ¢
Provide a large metrological quantum advantage [2]
< e§8ective deraction ime Y 9 g g g )

Dimensionless time t =0T

[1] D. Stoler. Phys. Rev. D 4, 2309-2312 (1971). /;
[2] M. Uria et a/. Phys. Rev. Research 5, 013165 (2023). ‘10
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N OUANTUM PROBING THE QUANTUMNESS OF GCSS

/

.

|ae t) is a Generalized Coherent State (GCS)

o2 <& am
a =e_TZ—e“t” n
|, t) 2, |n)

&ov\\'\w(’,br A
?a,rouwe*er e56e Xive
wXerachion fime
Properties R

Coherent in the sense of Glauber
(see Aheir PoisSOmiaM

(a’r)iai) shafistics)

They can have a large negativity in their Wigner function

Provide a large metrological quantum advantage

HOW TO PROBE EXPERIMENTALLY THE
QUANTUMNESS OF THESE STATES?

Quantum state tomography

oo \ow%( Lo We %wé oher leL/{S.?.?

- Use (low order) correlation functions
Intensity correlation functions are useless.
((@hka*) = (a'a)*

We must consider correlation function with a
different number of a and a".

(ata?)
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ANTUM THE INTENSITY-FIELD CORRELATION FUNCTION

-

\ Y
QU

Homodyne{

measurement |

The intensity field correlation function

( :’;’;) A--: ) LOQ l ;

(3/2) +NAe; : A — Aa—i0 L ATal0 L

g = d Qg=ae " +a'e / ( Af s
() {@e) alad: )
Ias,t>

Carmichael et a/. have shown that any classical

Gaussian state must satisfy the inequality” (e Intensity
measurement
2 A A N
/2y AGa=64a— (4 . L
0< |Qe=qrg(a) 1< 1+ |G|2/{AGTAG) (@) Fig: Measurement principle.

*under the LO phase conditions 6=arg(<a>).

/4
@ Only applies for Gaussian states... }

H. J. Carmichael et a/. Phys. Rev. Lett. 85, 1855-1858 (2000). ;1_3
H. J. Carmichael et a/. in Progress in Optics 46 355-404 (2004). ‘<



N OUANTUM WHAT MEANS NON-CLASSICAL?

P

&

In [1], non-classicality relies on
(:02:)=(0)2=0

for any classical state.

Norwmal wécriw% does not
wmatrer Sor classical Q'\c\ésj

.

Ex: antibunching is a non-classical

signature: A A
(:A%:)—(A)? <0 T
%1
~— Non-classicality definition {\ B
The state of an electromagnetic field is = %
7 W
nonclassical if: 4
C
a) (n) <1
b) The P-distribution p = f d?a P(a)|a){al
C
is not a probability density i.e. itis
more singular than a delta function.

L. Mandel. Phys. Scr. T12, 34-42 (1986y

The Wigner function is a “smoothed” P-function

2
W(a) = ;L d?B exp(—2la—BI?) P(B).

@ We cannot measure in general the P-function.

The P-function is directly related to normal
ordered correlation functions

((ahHman) =J d?a P(a) (a*)™ a".

C

P(a) is a [4] 1 (Go) (M)
probability ‘ Deg = [{Gp) (155') (:Gon1:)| =0
distribution (n (:Gph:) ('ﬁz')

[1] H. J. Carmichael et a/. Phys. Rev. Lett. 85, 1855-1858 (2000).
[2] R. J. Glauber. Phys. Rev. 131, 2766-2788 (1963).

[3] E. C. G. Sudarshan. Phys. Rev. Lett. 10, 277-279 (1963). :‘1-4
[4] E. V. Shchukin & W. Vogel. Phys. Rev. A 72, 043808 (2005).
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N OUANTUM NON CLASSICALITY BASED ON THE MOMENTS

P(a) is a
probability A “o 3
distribution (ny (:aen:) (:n<:)

:” ~\: E’ A-- i --~\: : X 2:
If Dpg =§((:d§ ) — (de)z)ixi((:nz 1) — (n)zj'—i(ae)z( A)?2 (9(93/2) 1) <O mmm) The state is non-classical.

A x B - C

This can be wc(éume or This is wc%w\"\ue
?os'rhuc or null

315
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N OUANTUM NON CLASSICALITY FOR GCSs

P(a) is a
probability A hCA 5
distribution (n)  (:aen:) (:N=:)

GCSs are Glauber coherent (:fA?2 !) = (ﬁ)2

/2) (1Nde:) * Easy to measure
For GCSs, if g ~ = —(m(A ) # 1 , the state is nonclassical. * No data analysis
0

* Real-time measurement
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N OUANTUM INTENSITY-FIELD CORRELATION FUNCTION WITNESS

. A A . >‘
G2y (1Nae:) - L 2
9 = W # 1 = nonclassicality a 2
n
0 Double check :';1
pd
(b)
4 parameters : |O¢,t)
n population,
€ nonlinear parameter, i~
, D
t time, ©
Il
. )
0 local oscillator phase -
W =
\ =
G:apr%(L&>) §
Qo
o
'd
/ \ The intensity-field function captures
well the nonclassicality of the state
N
1 1 1 1 1 1 |
0 1 2 3 4 5
[1] Salinas et a/. Characterization of Generalized Coherent States Rescaled time t, = 2t/e :‘1'8

through Intensity-Field Correlation, ArXiv, 2512.15655 (2025)
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: Adg :
(3/2) _ ((—) # 1 = nonclassicality

() (Ge)

4 parameters : |O¢,t)
n population,
€ nonlinear parameter,

t time,

0 local oscillator phase

w»
\ 6=¢br(6(47\p>)

For Kerr states:

(3/2)

Jo—arg(a) = €OS 2t

It does not depend on n !! >

but its “measurement” does...
(de) e ﬁe—n(l—cos(Zt))

(: ﬁde :) o n3/Ze—n(1—cos(2t))

3 QHU/\NTUM A SIMPLE ANALYTIC FORMULA FOR KERR STATES

Very different for g@
of Fock states

gl(s)) =1—1/n

p
Define a connected correlation function

/2)

L GE:,39 # 0 = non-classicality




N OUANTUM PROPERTIES OF THE WITNESS

Define a connected correlation function . : | . 0.0
0 2 4 6 8 10
(b) t(1l+a?)
(3/2) _ ;. aa . A _
Gl g = (:NGe:)— (N)(Ge). €=2 | y
Hard 4o defech non-
3/2 . . 0.3
\G( /2) # 0 = non-classicality J assicaldry kere.. ?_ >

- 0.2
27 0.1
T T T T T T 0.0

e=3 77 ||||'Iw\mu”rluuwllun 7]
* (il Iy f 0.6
(3/2) — 47 " 'M 4 0.4
Fig: value of IG /a2 1 liL' |y \| .‘l |I | '

] LAy I -

2 : VAN 0.2
[1] Salinas et a/. Characterization of Generalized Coherent States -

through Intensity-Field Correlation, ArXiv, 2512.15655 (2025) 0o 02 o2 o o8 1o ° (20

[2] M. Uria et a/. Phys. Rev. Lett. 125, 093603 (2020). ¢
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N QUANTUM MIXED STATES

[ What About Mixed States?

Ce = (:Adg:) — (N){Go). b= pildie,t) (At
i %

\ ’Fos’(\"\vc

If |ai|=|oy| V i,j, the state remains
Glauber coherent and G2 is still
a nonclassical witness.

X T a general scenario, we expect such

o wmiyYwre (31,

[1] Salinas et a/. Characterization of Generalized Coherent States
through the Intensity-Field Correlation Function, Submitted?

[2] M. Uria et a/. Phys. Rev. Lett. 125, 093603 (2020).

[3] M. Uria et a/. Phys. Rev. Research 5, 013165 (2023).

/If you trace out the atomic
subsystem in an entangled
field-atom system, the field
is not in a pure state.
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&Y QUANTUM EFFECT OF LOSSES

Pure loss channel: Glauber
coherence is preserved.

gy’? = —('Anaf) ! ()
(M) (Go) 0.75 P\, — 0.15
Normalized correlation function: oy \ —— w4
A A A A . > . =
G(C?’/ez) (:AGo:) — (N){Go) does not depend on the detection = 0.50 \\\ /2
efficiency. © 0.25 - N
2 NS
H-‘.
0.00
/ Model: pure loss channel 4\ (b) ' ' ' '
2 £
£ n=1—e"" T
= . “.o e 9
% Y decay rate of ©
) ; I
the. cavity, o
T time -
9 S
o £~ A A A —

é a _ an =»\/ﬁa+... S
- I QO

w \ / / 00 02 0.4 06 08 1.0

I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Losses n
[1] Salinas et a/. Characterization of Generalized Coherent States ;22
12

through the Intensity-Field Correlation Function, Submitted?



Agencia
4@, Nacional de
Investigacion
1L
i .
Tecnologia, Conocimiento
I

43 UNIVERSIDAD [§®, rmnzine MIRO)
%4 DE CHILE af QUANTUM  mmmipeies

Gobierno de Chile

iThank you!

Pablo Solano

* Non-Gaussian states are bakan in quantum optics
: . Mariano Uria
* Generalized Coherent States arise in many Ignacio Salinas

nonlinear situations Valdivieso

* We can probe their qguantumness using the
intensity field correlation function
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N OUANTUM NON CLASSICALITY BASED ON THE MOMENTS

P(a) is a
probability A A ,
distribution (M) (:a@en:) (:n<:)

A X B - (o
This can be wc(éume or This is wc%w\"\ue
posiiive or nuwll
Sw\?@r\owwo\mw%
#®  Coherent state: D=0 Squeezed state: Dg= (—)x(+)—(+)< 0
D(’:‘?(’,wés ow ©
a,w’\’i\owwo\,xiw%
Fock state: Do=i(+) x{)i- (+) <0 % GCS state?????

'
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N OUANTUM SOUEEZING TO ENHANCE PRECISION IN METROLOGY

Wigner description of a quantum state

a N\ Zero-point vacuum fluctuations (thus coherent states)
set the standard quantum limit in metrology
Z.Cro-;\‘fo’\w\’ 2o 1
QUaAT SQL ™~ ——=  (Or shot woise)
g\wc’kwaj\"\ot«.s m ‘

Vi

But you can beat the standard quantum limit (in one
direction) by squeezing one quadrature.

<>

A coherent state in phase space

APPLICATIONS

Gravitational wave detection Improved microscopy

nsiral Merger Riagdawn / \ 9 Classical

[
Quantum

.// i Y ’ ‘ .é

6@\0\# N OATRIEIVY © /0 ¢ 9 c o £ %

P woise ; g :

b '|Wr f

WL",] ll.\-\. 'll"\""ljlllr'-J n' I'u ' ||J | |I | I| {\J lL\llllhl ) E é

L 2 3

' £

A coherent state in phase space I . - 0o

\ / The LIGO Sci. Coll. et a/. Nature Phys 7, 962-965 (2011).
Z. He et al. Nat Commun 14, 2441 (2023). P

M. Bailes et a/. Nat Rev Phys 3, 344-366 (2021). -‘%5
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