

Observation of entanglement between collective excitation in a quantum fluid: when Faraday waves grow from vacuum fluctuations

Victor Gondret, 13th of November, 2025 Concepción

Slides available at www.normalesup.org/~gondret/talk.pdf

Paris-Saclay University

Paris-Saclay University

Do not be fooled, it is more Saclay, than Paris!

Do not be fooled, Research @LCF

Adaptative optics

Nanophotonics

Biophotonics

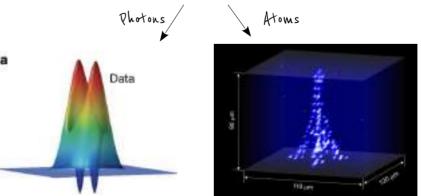
Institut d'Optique Graduate School

Is part of the university

The unique lab of the school

43 researchers/profs 75 PhDs/post-docs

Quantum optics



Quantum gases

Quantum gases at LCF

8 researchers/professors

6 experiments (from 1D to 3D)

3D Anderson localization

D gases

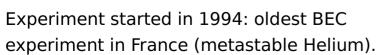
uttracold Fermions

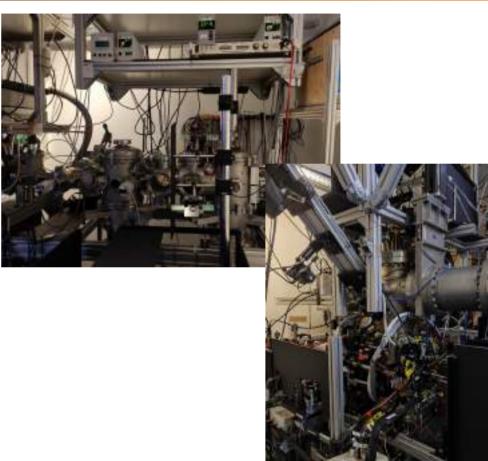
Quantum microscope

Exp: Chris Westbrook, Rui Dias, Charlie Leprince, Denis Boiron, Victor Gondret, Clothilde Lamirault, Léa Camier

Th: Amaury Micheli & Scott Robertson

Experimental setup

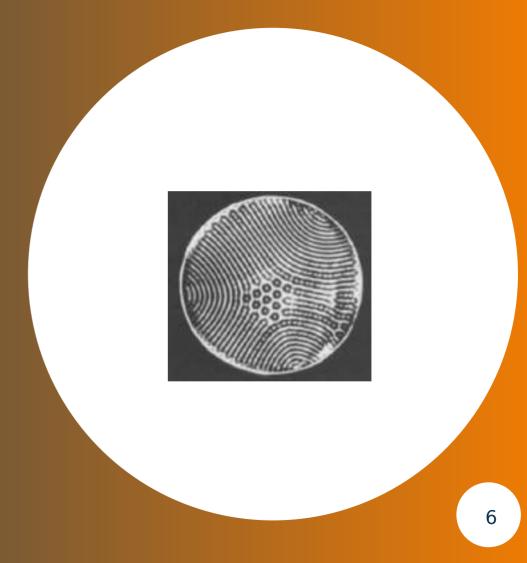




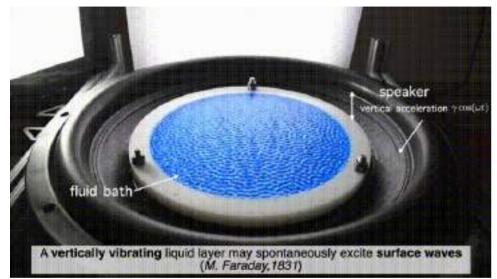
- I. Introduction
- II. Model and setup
- III. Growth and decay of quasiparticles
- IV. Assessing entanglement of two-mode Gaussian states with many-body correlation functionV. Observation of entanglement

OUTLINE

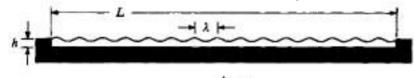
I. Introduction



Faraday waves



Guan et al. PR Fluids (2023), Edwards & Fauve J. Fluid Mech. (1994)



Vertical oscillation of the tank at Ω

$$\omega_k = \sqrt{\tanh(hk)[gk + \gamma k]} = \Omega/2$$

Modulation of the effective gravity

g gravity

 γ surface tension

Parametric oscillation ≠ forced oscillation

 $\Omega/2$

Ω

Variation of an internal parameter External force

Parametric excitation & forced oscillation

Parametric oscillation ≠ forced oscillation

Ω/2

Ω

Variation of an internal parameter

External force

Parametric excitation & forced oscillation

Parametric oscillation ≠ forced oscillation

 $\Omega/2$

Ω

Variation of an internal parameter

External force

Growth triggered by fluctuations

Growth initialized by the force

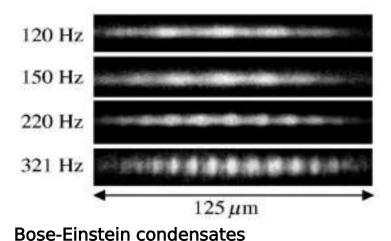
- Experimental imperfection
- Thermal fluctuations,
- Quantum fluctuation

Parametric resonance at all scales

Photons

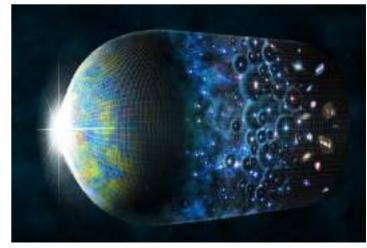


amplification which leads to entanglement.



Fluid

Edwards & Fauve J. Fluid Mech. **278**, 123 (1994).



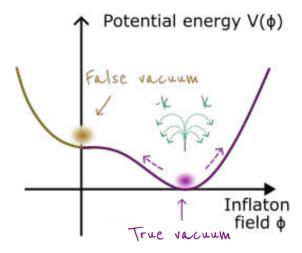
Preheating in the early universe

The **inflaton** goes from its initial false vacuum state. Its almost constant potential energy **drives the inflation**.

A. Linde, Phys. Lett. 129B, 177 (1983).

It starts to oscillate around its minimum and, coupled to matter fields, it creates particles through broad parametric resonance.

L. Kofman, A. Linde & A. Starobinsky, Phys. Rev. D 56, (1997).



Particles are created in **pairs** with **opposite momenta from vacuum** in a highly entangled two modes squeezed state. Interactions lead to decoherence and thermalization.

D. Campo & R. Parentani, Phys. Rev. D **74**, 025001 (2006).

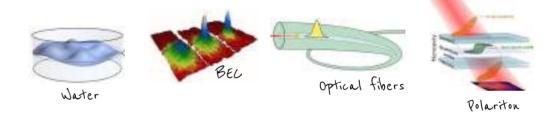
Analog gravity

-Analog gravity-

In the presence of a strong coherent background, the excitations of a fluid, or quasiparticles, can be treated using the same formalism as particles in a curved spacetime.

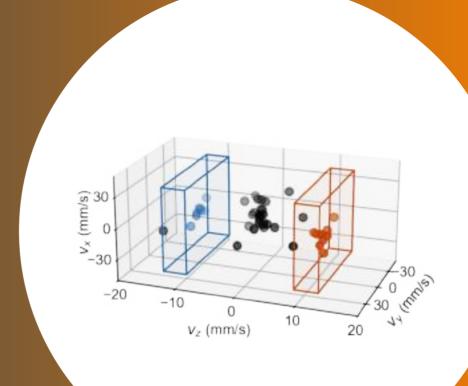
Unruh, Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351 (1981)

Use the tools of quantum field theory formalism to describe a condensed matter system,

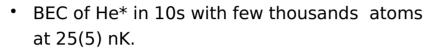


Shape the fluid to mimic famous effect of QFT.

II. Model and setup



Collective excitations in a BEC



1 kHz & 50 Hz: effective 1D dynamics

Bose gas with contact interaction

$$\hat{H} = \sum_{k} \epsilon_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k} + \frac{g}{2V} \sum_{k_{1}, k_{2}, q} \hat{a}_{k_{1}+q}^{\dagger} \hat{a}_{k_{2}-q}^{\dagger} \hat{a}_{k_{2}} \hat{a}_{k_{1}}$$

with \hat{a}_k the atomic annihilation operator.

How to change gn?

- g with a Feshbach resonance (Chicago, Rice, Heidelberg)
- n with trap modulation (Mexico, NIST, Palaiseau, Trento, Utrecht)

Bogoliubov description:

We treat the BEC as a coherent state and quantized other modes k. Introduce the quasiparticle modes b_k which diagonalize the Hamiltonian.

$$\hat{a}_k = u_k \hat{b}_k + v_k \hat{b}_{-k}^{\dagger}$$

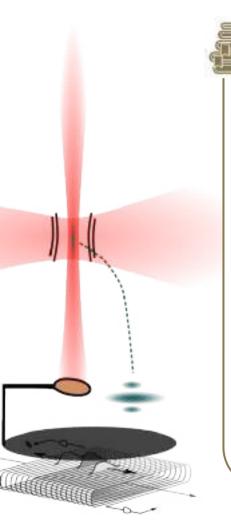
with u_k and v_k the Bogoliubov coefficients and

$$\omega_k = \sqrt{\frac{gn}{m}k^2 + \left(\frac{\hbar k^2}{2m}\right)^2}$$

Quasiparticle evolution

$$\partial_t \hat{b}_k = -i\omega_k \hat{b}_k + \frac{\omega_k}{2\omega_k} \hat{b}_{-k}^{\dagger}$$

Theoretical details



If non-zero temperature, both thermal and vacuum fluctuations trigger the exponential growth.

Amplification of vacuum fluctuation is witnessed by two-mode entanglement.

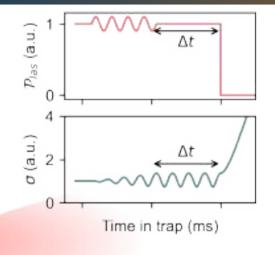
♣J

A large temperature prevent the appearance of entanglement.

Beyond Bogoliubov numerics: quasiparticle interactions further destroy entanglement.

Busch *et al.* Phys. Rev. A **89** (2014), Robertson *et al.*, Phys. Rev. D **95**, 065020 (2017), Robertson *et al.*, Phys. Rev. D **98**, 056003 (2018). Two-mode squeezing model.

Faraday waves with quantum fluids

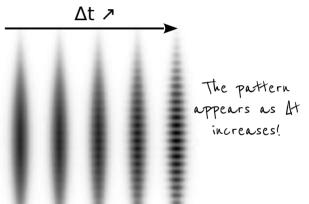


Protocol

- (1) Excite the transverse breathing mode of the BEC at Ω for 4 periods,
- (2) Let it breath for Δt : longitudinal collective excitations with $\omega_k = \Omega/2$ are parametrically excited

$$\omega_{k} = \sqrt{\frac{gn}{m}k^{2} + \left(\frac{\hbar k^{2}}{2m}\right)^{2}}$$
Modulation of interactions at 0

- g effective interaction strength
- *n* density
- *m* atomic mass
- \hbar reduced Planck cte

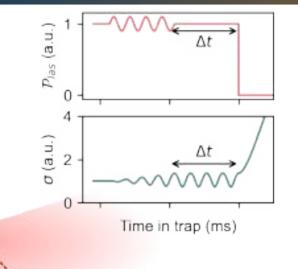


Excitation procedure does not heat the cloud.

We can hope to get an entangled

state!

Faraday waves with quantum fluids

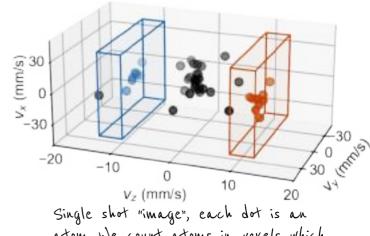


Protocol

- (1) Excite the transverse breathing mode of the BEC at Ω for 4 periods,
- (2) Let it breath for Δt : longitudinal collective excitations with $\omega_k = \Omega/2$ are parametrically excited

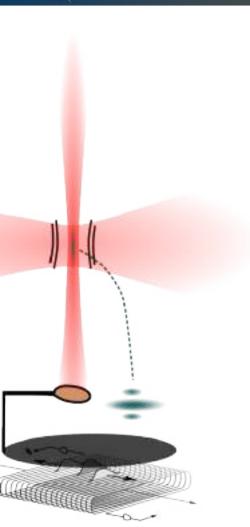
$$\omega_k = \sqrt{\frac{gn}{m}k^2 + \left(\frac{\hbar k^2}{2m}\right)^2}$$

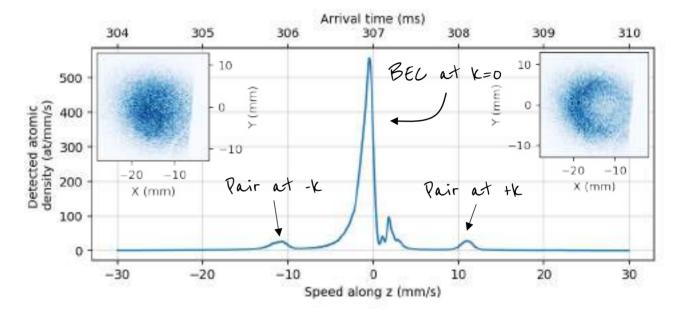
- (3) Switch off the trap: cloud expansion
- (4) Single particle detection after time of flight $(t,x,y) \leftrightarrow (v_Z,v_X,v_Y)$



atom. We count atoms in voxels which define the modes -> measure the full particle number probability distribution 17

Saturation of the detector

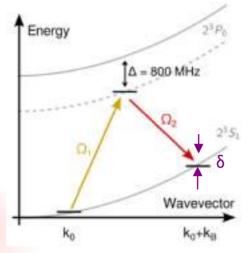




The BEC saturation affects the 2nd pair detectivity....

Use a velocity selective two-photon process to deflect only the BEC.

How to kick off atoms? With light!

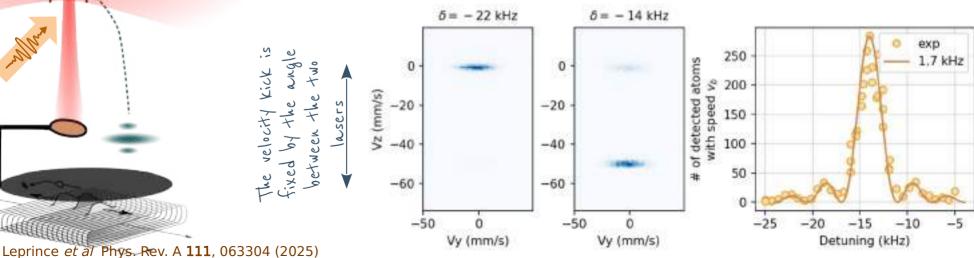


Use a velocity selective two-photon process to deflect only the BEC.

The two-photons Rabi frequency:

$$\Omega_R = \frac{\Omega_1 \Omega_2^*}{2\Delta}$$

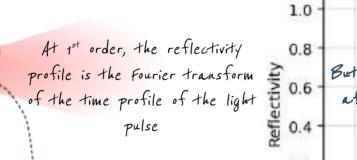
 \rightarrow By changing the detuning δ between the two lasers, different velocity speeds can be addressed: $\delta \leftrightarrow v_{res}$.

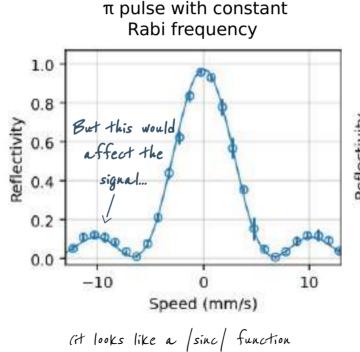


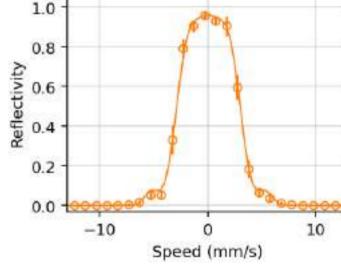
Bragg deflection of the BEC

We have an equivalence frequency momentum

Use a velocity selective two-photon process to deflect only the BEC.

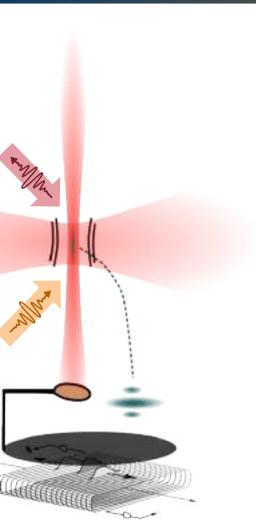


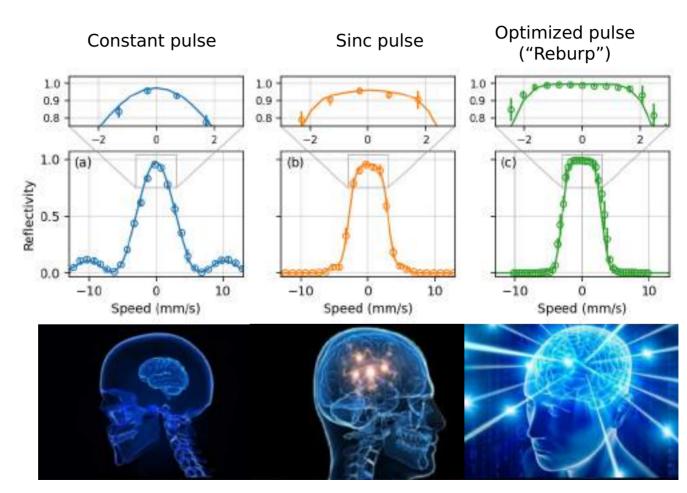




Time dependent Rabi freq

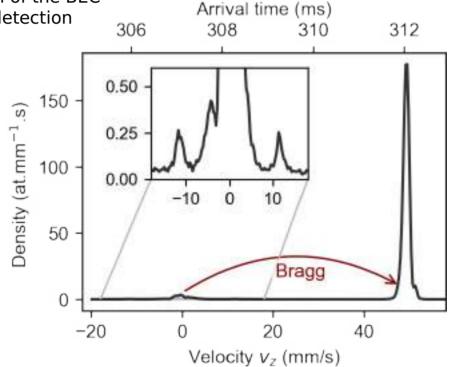
as a sinc function





So does it work?

- 1. Parametric excitation
- 2. Raman transfer (+kick)
- 3. Bragg deflection of the BEC
- 4. Single particle detection

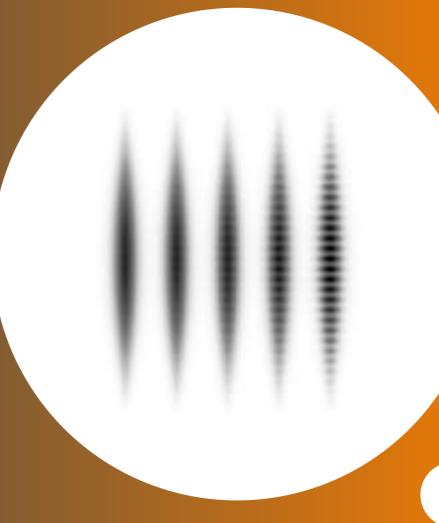


In the following, we use a pulse-shaped Bragg deflector

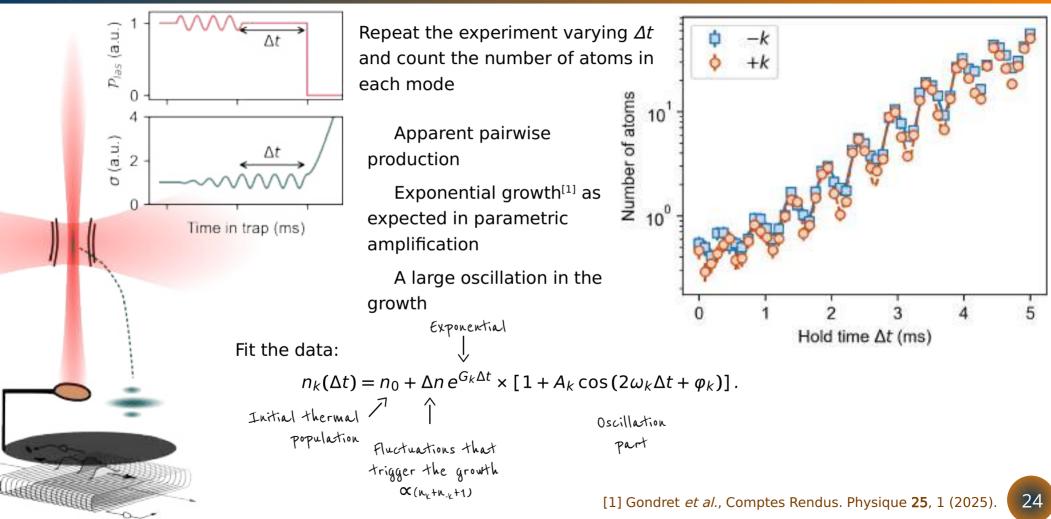
III. Growth and decay of quasiparticles

Gondret *et al.*, Parametric pair production of collective excitations in a Bose–Einstein condensate, Comptes Rendus. Physique **25**, 1 (2025).

So freeeesh: published last week!



Growth of the (quasi)particle number



Measuring the growth

Theory: assuming a sine modulation of *gn* with amplitude *a*

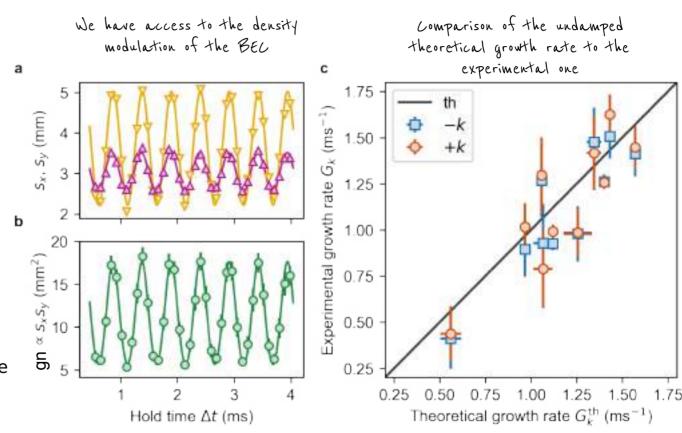
$$\omega_k = \sqrt{\frac{gn}{m}k^2 + \left(\frac{\hbar k^2}{2m}\right)^2}$$

The growth is analytical:

$$G_k^{\text{th}} = \frac{\alpha}{2} \frac{\omega_k}{1 + k^2 \xi^2 / 4}$$

BEC healing length

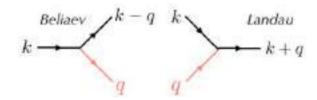
→ This model does not account for damping: the discrepancy between theory and experiment gives the value of the decay rate in the experiment.



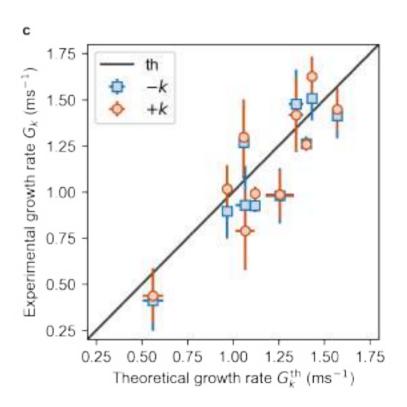
Why measuring the decay is interesting?

In a pure 1D gas, collective excitations do not decay because the system is **integrable** [1].

Recent prediction [2] derive an analytical formula for the decay of Bogoliubov quasiparticles in elongated Bose gases.

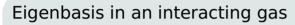


Although 3D, our cloud approach the 1D regime. Can we check the validation of the prediction?



Why this oscillation? Mapping the quasiparticles onto the particles

We measure *atoms* and not *quasiparticles*



$$\omega_k = \sqrt{\frac{g_1 n_1}{m} k^2 + \left(\frac{\hbar k^2}{2m}\right)^2}$$

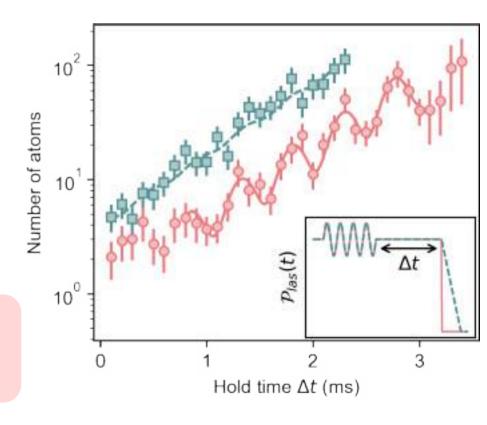
What we produce

Equivalence if $\partial_t \omega_k / \omega_k \ll \omega_k$

What we measure

$$\omega_k = \frac{\hbar k^2}{2m}$$

Eigenbasis for non-interacting atoms



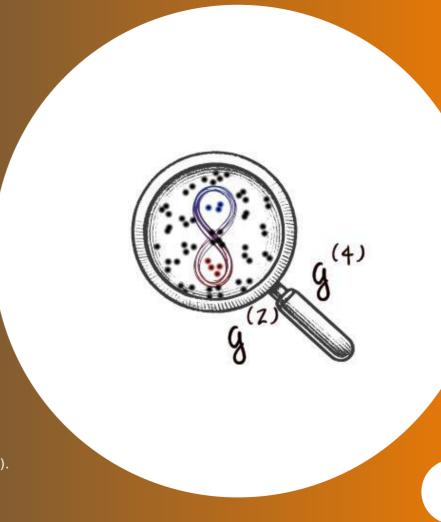
→ In the following, we slowly turn off interactions.

We measure the full probability distribution of the quasiparticle number of a two-mode state.

→ How extract entanglement from it?

IV. Assessing entanglement of two-mode Gaussian states with many-body correlation function

Gondret *et al.*, Quantifying Two-Mode Entanglement of Bosonic Gaussian States from Their Full Counting Statistics, Phys. Rev. Lett. **135**, 100201 (2025).



What is entanglement

HOW?

Just violate a Bell inequality

Bell *Physics* (1964) CHSH *Phys. Rev. Lett.* (1969)

Entanglement \iff Bell inequalities

⇔ Distillability

⇔ Teleportation

EQUIVALENCE ONLY FOR PURE STATES

Gisin, *Phys. Lett. A* (1991) Gisin & Peres*, Phys. Lett. A* (1992) Popescu & Rohrlich, *Phys. Lett. A* (1992)

WHAT ABOUT MIXED STATES?

Teleportation

Bell inequalities

Popescu Phys. Rev. Lett. (1994)

Define a partition 1-2 (two modes here). Any **separable** state can be written as

$$\rho = \sum_{i} \alpha_{i} \rho_{i,1} \otimes \rho_{i,i}$$

where $\alpha_i \geq 0$ are probabilities.

Other states are non-separable / entangled.

Werner Phys. Rev. A (1989)

How to assess entanglement?

SO HOW?

Many entanglement witnesses and criteria in the literature

PPT:

$$\hat{\rho}^{t_2} \geq 0$$

Peres, Phys. Rev. Lett. (1996)

$$|\langle \hat{a}_1 \hat{a}_2 \rangle|^2 \le n_1 n_2$$

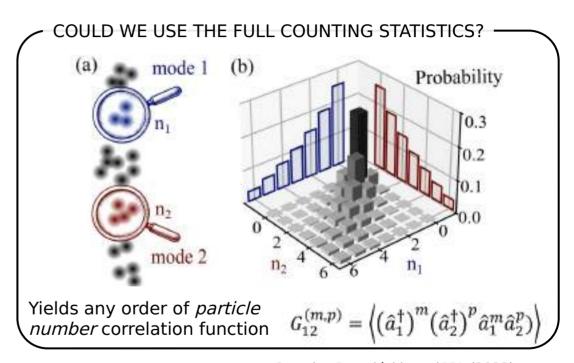
Hillery & Zubairy Phys. Rev. Lett. (2006)

:

EXERIMENTAL TOOLS NEEDED

To measure the mean/variances of field operators, one needs homodyne-like detection schemes¹ or to reconstruct the state measuring non-commuting operators² (e.g. \hat{x} and \hat{p})

- [1] Gross et al. Nature (2011)
- [2] Bergschneider et al. Nat. Phys. (2019)



See also Barasiński et al PRL (2023)

Can we assess entanglement in general from the FCS?

Entanglement definition-

A (k,-k) state is entangled if it is not separable i.e. it cannot be written as

$$\hat{\rho} = \sum_{i} \alpha_{i} \hat{\rho}_{i,k} \otimes \hat{\rho}_{i,-k}$$

with $\alpha_i \geq 0$.

Werner, Phys. Rev. A 40, 4277 (1989)

Take a two-mode squeezed state

$$\hat{\rho}_{TMS} \propto \sum_{i,n} \kappa^i \kappa^n |i\rangle \langle i|_k \otimes |n\rangle \langle n|_{-k}$$

→ Can we prove it is entangled from its full counting statistics?

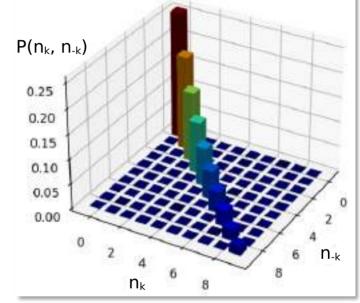


Fig: full counting statistics of a two-mode squeezed state

NO

(in general)

Ex: the following separable state has the same full counting statistics

$$\hat{\rho}_{separ} \propto \sum_{i} \kappa^{i} |i\rangle \langle i|_{k} \otimes |i\rangle \langle i|_{-k}$$

This state IS separable

One cannot assess the entanglement of *any* quantum state from its full counting statistics.

It only measures the diagonal terms of the density matrix

So... thank you ??

Wait a minute... this is not true for *Gaussian* states!

Two-body correlation function to witness entanglement

-DEFINITION-

A Gaussian state is defined by its 1^{st} and 2^{nd} moments: it has vanishing cumulants of order > 2.

PROPERTIES

Any operator that involves more than 2 fields $\hat{a}^{(\dagger)}$ can be expressed with 1- and 2-field operators.

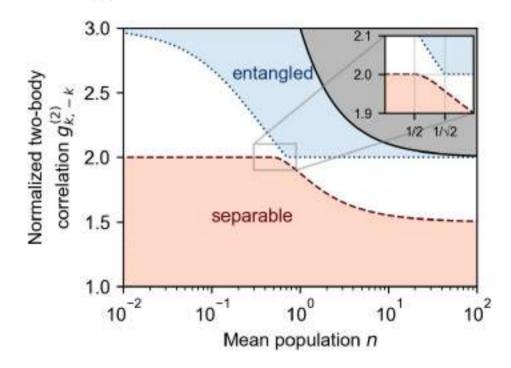
Ex: for zero mean Gaussian states,

$$G_{-k,k}^{(2)} = \langle \hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_k \hat{a}_{-k} \rangle = n_k n_{-k} + |\langle \hat{a}_k \hat{a}_{-k} \rangle|^2 + |\langle \hat{a}_k \hat{a}_{-k}^{\dagger} \rangle|^2$$

Populations

Entanglement is guaranteed when these quantities are sufficiently greater than the

If we assume that each mode exhibits a thermal probability distribution, $G^{(2)}$ is an entanglement witness^[1]:



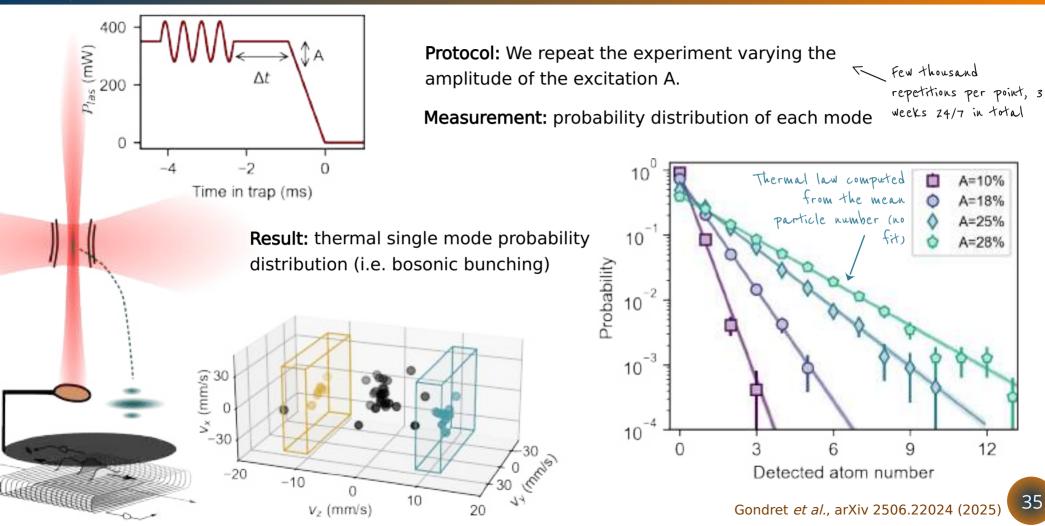
If we also measure the four-body correlation function, entanglement can be certified and quantified through logarithm negativity [1].

V. Observation of entanglement between collective excitations in a parametrically driven BEC

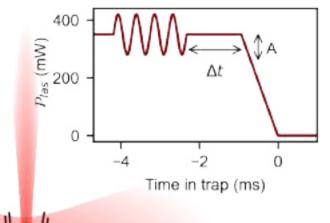
Gondret *et al.*, Observation of Entanglement in a Cold Atom Analog of Cosmological Preheating, arXiv 2506.22024 (2025)

Just accepted last week in PRL! tippee!!!

Thermal single mode probability distribution



Thermal single mode probability distribution



Protocol: We repeat the experiment varying the amplitude of the excitation A.

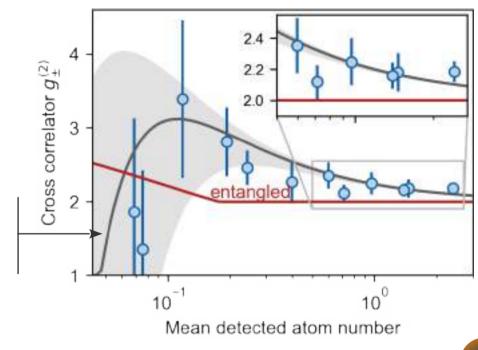
Measurement: cross normalized two-body correlation

function g⁽²⁾

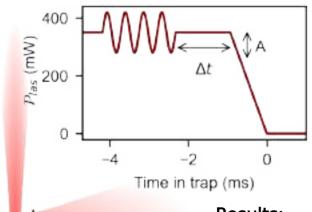
Result: assuming the two-mode state is Gaussian, it is entangled for sufficiently large excitation amplitude.

Model: two-mode squeezed thermal state without free parameter.

- 25(5)% detector efficiency,
- 25(5) nK temperature. Fluctuation of 0.5 + 0.18(8)



Continuing the driving

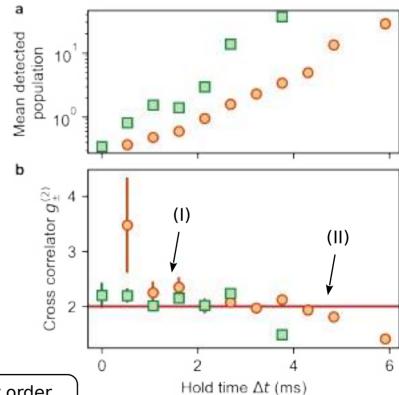


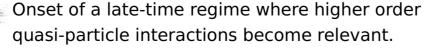
Protocol: vary the excitation duration Δt

Expected in the two-mode squeezing model.

Results:

- (I) $g^{(2)} \rightarrow 2$ as population grows
- (II) At later time, $g^{(2)}$ drops below 2 \hat{i}





Onset of a late-time regime where higher order quasi-particle interactions become relevant.

Towards the study of the much-less understood interaction-dominated regime:

- decoherence of the resonant modes,

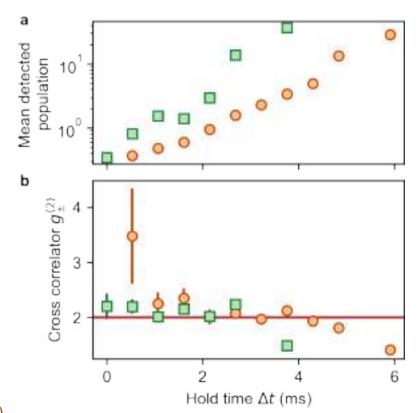
 Robertson et al., Phys. Rev. D 98, 056003 (2018)
- loss of Gaussianity,

 Schweigler *et al.*, Nat. Phys. **17**, 559 (2021)

 Bureik *et al.*, Nat. Phys. **21**, 57 (2025)
- appearance of higher order peaks,

 Gregory et al., arXiv:2410.08842 (2025)
- back-reaction of the quasiparticles on the BEC...

 Butera and I. Carusotto, Phys. Rev. Lett. **130**, 241501 (2023)



- Analogy between quasiparticles in a fluid and particles in curved space time,
- Two-mode entanglement of Gaussian state can be assessed from particle number correlation,
- Observation of vacuum amplification through entanglement between quasiparticles in a BEC.

Thank you for your attention!

- arXiv 2411.09284
- arXiv 2503.09555
- arXiv 2506.22024
- arXiv 2508.01654

huijae lang. Andre Buand, rukanicon.

