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The Quantum Atom Optics team in the spotlight
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• This talk,

• Clothilde’s seminar (16th) on the 
delicious subtleties of a non-
symetric atomic interferometer,

• Victor’s PhD defense on the 28th

on (quasi)-particle creation out 
of vacuum.
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Outline of the talk
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Quantifying the entanglement of two-mode 
Gaussian states via their full counting statistics

(and why)

Part ④ Part ②

Part ③
Part ①

Part ⑤ An entanglement criterion based on the one-, two-, three-,
and four-body correlation functions.
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4

① Full counting statistics and motivations

② Some notions on entanglement

③ Gaussian state formalism

④ Entanglement witness and quantifier

⑤ An entanglement criterion based on the one-, two-, and four-

body correlation functions.
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Why quantifying entanglement from FCS
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Entanglement : fundamental resource of 

the 2nd quantum revolution.

Quantifying entanglement 

• How useful the state is for teleportation, 

communication…? 

• Why and how entanglement is dissipated ? 

(thermal bath, gravity…)

In situ

(position space)

@LCFGQ: 3/6 experiments 
(and 5/8 permanents) !
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Time-of-flight

momentum space

FCS: full counting statistics (with a 

quantum gas microscope)
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① Full counting statistics and motivations

② Some notions on entanglement

③ Gaussian state formalism

④ Entanglement witness and quantifier

⑤ An entanglement criterion based on the one-, two-, and four-

body correlation functions.
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Definition of entanglement
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Entanglement is “not one but rather 

the characteristic trait of quantum 

mechanics”, Schrödinger (1935) 

| ൿΨ ± ∼
| ۧ↑↑ ± | ۧ↓↓

√2

EPR (1935) paradox

Manifestation of entanglement through 

the violation of a Bell inequality

Bell (1964)

CHSH (1969) 

Any non-product pure state violates a 

Bell inequality.

Pure states

Mixed states

Gisin, Phys. Lett. A (1991)

Gisin & Peres, Phys. Lett. A (1992)

Popescu & Rohrlich, Phys. Lett. A (1992)

Entanglement

Mathematically, any separable state can be 

written as

𝜌 = 

𝑖

𝛼𝑖𝜌𝑖,1 ⊗ 𝜌𝑖,2

where 1 and 2 refer to the two subsystems (the 

partition) and 𝛼𝑖 ≥ 0 are probabilities.

Werner Phys. Rev. A (1989)

Entanglement   ⟸ Bell inequalities 

Teleportation   ⇏ Bell inequalities 

⟺ Bell inequalities 

⟺ Distillability

⟺ Teleportation

𝜌 =
1

8
𝕀 +

1

2
ൿ|Ψ(+) ൻΨ(+)|,      Popescu PRL, (1994)
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Non-separability exemples
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Mathematically, any separable state can be 

written as

Werner Phys. Rev. A 40, 4277 (1989)

𝜌 = 

𝑖

𝛼𝑖𝜌𝑖,1 ⊗ 𝜌𝑖,2

where 1 and 2 refer to the two subsystems (the 

partition) and 𝛼𝑖 ≥ 0 are probabilities.

ۧ|𝑇𝑀𝑆𝑣 𝑟 ∼ 
𝑖
tanh𝑖  𝑟 ۧ|𝑖, 𝑖A two-mode squeezed vacuum state

✓  𝜌𝑇𝑀𝑆𝑣 is a non-separable state in the partition A

𝜌𝑇𝑀𝑆𝑣  ∼ 
𝑖,𝑘

tanh𝑖  𝑟 tanh𝑘  𝑟 ۧ|𝑖, 𝑖 ,𝑘ۦ 𝑘|

Consider two modes 1 & 2 in a partition 

A with â1, â2 annihilation operators. 
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Non-separability exemples
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Mathematically, any separable state can be 

written as

Sperling et al. Phys. Rev. A 100, 062129 (2019)

𝜌 = 

𝑖

𝛼𝑖𝜌𝑖,1 ⊗ 𝜌𝑖,2

where 1 and 2 refer to the two subsystems (the 

partition) and 𝛼𝑖 ≥ 0 are probabilities.

Does the non-separability of a bi-

partite state depend on the 

partition?

ê1

ê2
= 𝑈

â1

â2
=

1

2

1 1
−1 1

â1

â2

Consider now the partition E= (ê1, ê2) where

Partition: chose the basis 𝑒±𝑖𝑘𝑥 or the 

cosine and sine basis.

ۧ|𝑢 = ê1
† ۧ|𝑣𝑎𝑐

𝜌𝑢 ∼ ۧ|1,0 𝐸1,0ۦ|𝐸

ۧ|𝑢 =
ۧ|0,1 + ۧ|1,0

√2
=

â1
† + â2

†

√2
ۧ|𝑣𝑎𝑐

𝜌𝑢 ∼ ۧ|0,1 |0,1ۦ + ۧ|1,0 |0,1ۦ + ۧ|0,1 |1,0ۦ + ۧ|1,0 |1,0ۦ

①

✓  𝜌𝑢 is a non-separable state 

(in the partition A)

A 2-mode, 1-particle state

× Is  𝜌𝑢 is a separable state (in 

the partition E)

Consider two modes 1 & 2 in a partition 

A with â1, â2 annihilation operators. 
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𝜌𝑢 ∼ ۧ|1,1 𝐸1,1ۦ|𝐸 is separable in 

the partition E.

Non-separability exemples
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Mathematically, any separable state can be 

written as

𝜌 = 

𝑖

𝛼𝑖𝜌𝑖,1 ⊗ 𝜌𝑖,2

where 1 and 2 refer to the two subsystems (the 

partition) and 𝛼𝑖 ≥ 0 are probabilities.

𝜌𝑢 is non-separable in the 

partition A.

Consider now a 2-mode, 2-particle state

✓ Both particles in the same mode:

ۧ|𝑢 =
1

2
â1

† + â2
† 2

ۧ|𝑣𝑎𝑐

𝜌𝑢 is non-separable in the 

partition A.

✓ Both particles in orthogonal 

modes:

ۧ|𝑢 =
1

2
â1

† + â2
† â1

† − â2
† ۧ|𝑣𝑎𝑐

× Take each particle in modes 

which are nonparallel and 

nonorthogonal

ۧ|𝑢 = â1
† â1

† + â2
†

√2
ۧ|𝑣𝑎𝑐

=
ۧ|2,0 𝐴 + ۧ|1,1 𝐴

√2

Theorem: Sometimes, the non-separability of a 

bi-partite state depends on the partition. But 

there are states that are entangled no matter 

the partition.

Sperling et al. Phys. Rev. A 100, 062129 (2019)

Does the non-separability of a bi-

partite state depend on the 

partition?

𝜌𝑢 ∼ ۧ|2,0 𝐸2,0ۦ|
𝐸

is separable in the 

partition E.
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Probing the non-separability of a TMSv state from its FCS
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Mathematically, any separable state can be 

written as

𝜌 = 

𝑖

𝛼𝑖𝜌𝑖,1 ⊗ 𝜌𝑖,2

where 1 and 2 refer to the two subsystems (the 

partition) and 𝛼𝑖 ≥ 0 are probabilities.

ۧ|𝑇𝑀𝑆𝑣 𝑟 ∼ 
𝑖
tanh𝑖  𝑟 ۧ|𝑖, 𝑖 𝐴

Consider a two-mode squeezed vacuum state

𝜌𝑇𝑀𝑆𝑣 is a non-separable state in 

the partition A.

𝜌𝑇𝑀𝑆𝑣  ∼ 
𝑖,𝑘

tanh𝑖  𝑟 tanh𝑘  𝑟 ۧ|𝑖, 𝑖 𝐴ۦ𝑘, 𝑘|𝐴

But the state describe by 

𝜌𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙  ∼ 
𝑖
tanh𝑖  𝑟 ۧ|𝑖, 𝑖 ,𝑖ۦ 𝑖|

Is a separable state which has the same two-mode 

probability distribution as a TMSv).

Can we prove 

the NS from 

the FCS?

𝑃(𝑛1, 𝑛2)

𝑛1

𝑛2
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Non-separability from the FCS
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One cannot assess the non-separability of any quantum 

state from their full counting statistics.

THANK YOU FOR YOUR ATTENTION !

Wait a minute… Not true for Gaussian states!
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Outline of the talk
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① Full counting statistics and motivations

② Some notions on entanglement

③ Gaussian state formalism

④ Entanglement witness and quantifier

⑤ An entanglement criterion based on the one-, two-, and four-

body correlation functions.

For mixed states, Werner’s 

definition of 

entanglement (non-

separability)
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Leonhardt, Essential of Quantum Optics (2010)

Leibfried et al. Phys. Rev. Lett. 77, 4281 (1996)

Gaussian states

14

Definition

Any operator that involves more than 2 

fields can be expressed with 1- and 2-

field operators.

Exemple:

â1
†â1â2

† = â1
†â1 â2

† + â1
†â2

† â1 + â1â2
† â1

† − 2 â1
† â1 â2

†

Definition

A Gaussian states has a Gaussian Wigner quasi-

probability distribution of the quadratures.

𝑊 𝑥, 𝑝 =
1

2𝜋
න 𝑒𝑖𝑝𝑦𝑝/ℏ 𝑥 − 𝑦/2 ො𝜌 𝑥 + 𝑦/2 𝑑𝑦

Demonstration of Gaussianity by showing 

that all cumulants higher than 2 vanish.

Measure the Wigner function 

and show it is Gaussian
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Covariance matrix of a Gaussian state
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A Gaussian state ො𝜌 is defined by its 

first and second moments

Mean ො𝒓𝒋

Covariance matrix

𝝈𝒋𝒊 = ො𝒓𝒋  − ො𝒓𝒋 , ො𝒓𝑖
† − ො𝒓𝑖

†

ො𝒓 = â1, â1
†, â2, â2

† 𝑇

𝝈 =
𝑨 𝑪
𝑪† 𝑩

Single mode properties (A,B) is obtained 

by tracing out other modes.

Brask arXiv:2102.05748 (2022)

𝑨 =
2𝑛1 + 1 2 â1

2

2 â1
†2

2𝑛1 + 1 𝑔𝑖𝑖
𝑛

=
â𝑖

†𝑛
â𝑖

𝑛

â𝑖
†â𝑖

𝑛
𝑔𝑖𝑖

2
= 1 𝑔𝑖𝑖

2
= 2 𝑔𝑖𝑖

2
> 2

The probability distribution characterizes the 

state… up to the phase.

This talk: the phase does not (always) matter 

in the quantification of non-separability.𝝈 is hermitian (but is often defined as real 

symmetric).

if ො𝒓𝒋 = 0
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Bona fide condition of a Gaussian state
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𝝈 must respect a generalized Heisenberg 

inequality: a bona fide condition. 

All its eigenvalues must be bigger or equal 

to 1.

Otherwise, the state is unphysical.

Arvind et al. Pramana 45 (1995)

Serafini, Quantum continuous variable (2017) 

An arbitrary Hermitian matrix does not 

necessary correspond to a 

covariance matrix of a ‘bona fide’ 

quantum state ො𝜌:

(necessary for the positivity of any 
quantum state, sufficient for Gaussian)

𝝈 =
𝑨 𝑪
𝑪† 𝑩

The eigenvalues of 𝝈 are given by

𝜈± = Δ ± Δ − det 𝝈

where Δ = det𝑨 + det 𝑩 − 2 det 𝑪 .

Serafini et al. J. of Phys. B 37, L21 (2004)

Two-mode Gaussian state:
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Outline of the talk
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① Full counting statistics and motivations

② Some notions on entanglement

③ Gaussian state formalism

④ Entanglement witness and quantifier

⑤ An entanglement criterion based on the one-, two-, and four-

body correlation functions.

A Gaussian state must 

satisfy a bona fide

condition based on the 

eigenvalues of its 

covariance matrix.
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Detecting entanglement
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Gühne & Tóth, Phys. Rep. 474,1-6 (2009)

Entanglement witness: provides a sufficient 

condition.

Entanglement criterion: is a necessary and 

sufficient condition.

PPT criterion (which is not always a 

criterion…)

• Consider a quantum state ො𝜌,

• Take a partition (A, B).

• Compute the partial transpose operation

ො𝜌
𝑃𝑇

ො𝜌𝑡𝐵

ො𝜌𝑛𝜇,𝑚𝜈

𝑃𝑇
ො𝜌𝑛𝜈,𝑚𝜇 

• Is ො𝜌𝑡𝐵 a valid quantum state ? (Positive 

semidefinite density matrix)

Peres, Phys. Rev. Lett. 77, 8 (1996)

PPT criterion (witness)

o Separable state ⟹ ො𝜌𝑡𝐵 ≥ 0

o Non ( ො𝜌𝑡𝐵 ≥ 0) ⟹ entangled state

Horodecki, Phys. Lett. A  223, 1-2 (1996)
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Entanglement and logarithmic negativity for Gaussian states
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Simon (2000) shows that

• the Wigner distribution of a Gaussian state remains 

Gaussian under partial transpose operation,

Simon, Phys. Rev. Lett, 84, 2726 (2000)

𝝈 =
𝑨 𝑪
𝑪† 𝑩

𝑃𝑇
 𝝈𝒕𝑩 =

𝑨 𝑪𝝈𝒙

(𝑪𝝈𝒙)† 𝝈𝒙𝑩𝝈𝒙
 

where ΔtB = det𝑨 + det 𝑩 + 2 det 𝑪.

𝜈±
𝑡𝐵 = ΔtB ± ΔtB − det 𝝈

Entanglement ⇔ 𝜈−
𝑡𝐵 < 1

• PPT is an entanglement criterion (also sufficient for 

separability).
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Outline of the talk
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① Full counting statistics and motivations

② Some notions on entanglement

③ Gaussian state formalism

④ Entanglement witness and quantifier

⑤ An entanglement criterion based on the one-, two-, and four-

body correlation functions.

The PT of the Wigner 

function of a Gaussian 

state is still Gaussian.

A Gaussian is entangled iff

its PT is not a bona fide

Gaussian state
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Probing the entanglement of Gaussian states from 𝑔12
2

21

𝐺12
2

= ො𝑎1
† ො𝑎2

† ො𝑎1 ො𝑎2 = 𝑛1𝑛2 + ො𝑎1 ො𝑎2
2 + ො𝑎1

† ො𝑎2

2

Particle detectors can measure the two-body 

correlation function

Wick expansion (Gaussian + centered)

Hillery-Zubairy, Phys. Rev. Lett.  96, 050503 (2006)

Observation of 𝑛1𝑛2 < ො𝑎1 ො𝑎2
2

implies entanglement (HZ06).

If ො𝑎1
† ො𝑎2 = 0, observation of 

𝑔12
2

= 𝐺12
2

/𝑛1𝑛2 > 2

 implies entanglement

Coherence

How to measure the coherence?

Sol. 1: set up an interferometer

Sol. 2: use the four-body correlation function 

and the tools of this talk.

ො𝛾

ො𝑎1

ො𝑎2

𝜃

ො𝛾† ො𝛾 ∝ ො𝑎1
† ො𝑎2

2
sin 2𝜃

𝐺12
2

= ො𝑛1 ො𝑛2

Anomalous

correlation
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An additional hypothesis
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We further assume that ො𝑎1
2 = ො𝑎2

2 = 0

(neither mode is squeezed) 

Perrier et al. Scipost, 7, 002 (2019)

Hypothesis

✓ Gaussian 

state

✓ Zero mean

✓ ො𝑎1
2 = ො𝑎2

2 = 0

… but this hypothesis can be verified 

probing the single mode statistics 

which must be purely thermal.

Dall et al. Nat. Phys. 9(6) (2013)

Hercé et al. Phys. Rev. Res. 5, L012037 (2023)

For a thermal state, 

𝑔𝑖
𝑛

= 𝑛!

If ො𝑎𝑖
2 ≠ 0:

𝑔𝑖
2

= 2 + ො𝑎𝑖
2 2

𝑔𝑖
3

= 6 + 9 ො𝑎𝑖
2 2

𝑔𝑖
4

= 24 + 72 ො𝑎𝑖
2 2

+ 9 ො𝑎𝑖
2 4
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Probing the entanglement of Gaussian states from its FCS
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Hypothesis

✓ Gaussian 

state

✓ Zero mean

✓ ො𝑎1
2 = ො𝑎2

2 = 0

The state is characterized by 𝑛1, 𝑛2, ො𝑎1 ො𝑎2  & ො𝑎1
† ො𝑎2

Lemma 1: Measurement of 𝑛1, 𝑛2 , 𝑔12
2

& 𝑔12
4

yields 

a symmetric system for ො𝑎1 ො𝑎2  &    ො𝑎1
† ො𝑎2

• 𝑔12
2

involves their quadratic sum, 

•  𝑔12
4

also involves their product.

𝑔12
(4)

= ො𝑎1
†2 ො𝑎2

†2 ො𝑎1
2 ො𝑎2

2 /𝑛1
2𝑛2

2

We find two solutions 𝛽±

𝛽±
2 = 𝑛1𝑛2 𝑔12

2
− 1

1 ± 1 − 𝜃

2
where

𝜃 =
𝑔12

4
+ 12 − 16𝑔12

2
 − 4 𝑔12

2
− 1

2

𝑔12
2

− 1
2

𝜃 ∈ [0,1] so that 𝛽±
2 ≥ 0 as a supplementary 

check for the consistency of the hypothesis.

We have two possible solutions

• “State” 𝜇: ො𝑎1 ො𝑎2 = 𝛽+   &   ො𝑎1
† ො𝑎2 = 𝛽−,

• “State” 𝛾: ො𝑎1 ො𝑎2 = 𝛽− &   ො𝑎1
† ො𝑎2 = 𝛽+.
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Probing the entanglement of Gaussian states from its FCS

24

Hypothesis

✓ Gaussian 

state

✓ Zero mean

✓ ො𝑎1
2 = ො𝑎2

2 = 0

We have two possible solutions

• “State” 𝜇: ො𝑎1 ො𝑎2 = 𝛽+ & ො𝑎1
† ො𝑎2 = 𝛽−,

• “State” 𝛾: ො𝑎1 ො𝑎2 = 𝛽− & ො𝑎1
† ො𝑎2 = 𝛽+.

Lemma 2:

The bona fide condition does not depend on the 

phase of ො𝑎1 ො𝑎2 and ො𝑎1
† ො𝑎2 .

The (smallest) eigenvalue is given by 

𝜈𝜇 = 𝑓 𝑛1, 𝑛2, 𝛽+, 𝛽− &    𝜈𝛾 = 𝑓(𝑛1, 𝑛2, 𝛽−, 𝛽+ )

We have 3 possibilities

• 𝜈𝛾 ≤ 𝜈𝜇 < 1: unphysical states (wrong hypothesis)

• 𝜈𝛾 < 1 ≤ 𝜈𝜇: only one solution (we found it),

• 1 ≤ 𝜈𝛾 ≤ 𝜈𝜇: two solutions and we cannot 

distinguish the states

Lemma 3:

‘States’ 𝜇 and 𝛾 are partial 

transpose of each other.

The state is entangled

The state is separable

𝑓 𝑛1, 𝑛2, 𝑥, 𝑦 =
Δ − Δ2 − det 𝝈

2
where
det 𝝈 = 16 𝑥2 − 𝑦2 2 + 1 + 2𝑛1

2 1 + 2𝑛2
2

             −9 𝑥2 + 𝑦2 1 + 2𝑛1 1 + 2𝑛2

and
Δ = 2𝑛1 + 1 2 + 2𝑛2 + 1 2 − 8(𝑥2 − 𝑦2)
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Probing the entanglement of Gaussian states from its FCS

25

Hypothesis

✓ Gaussian 

state

✓ Zero mean

✓ ො𝑎1
2 = ො𝑎2

2 = 0

Entanglement criterion

• Measure 𝑛1, 𝑛2 , 𝑔12
2

& 𝑔12
4

 and deduce 𝛽±,

• Compute  𝜈𝛾 = 𝑓(𝑛1, 𝑛2, 𝛽−, 𝛽+ )

• The state is entangled if 𝜈𝛾 < 1, (criterion)

• Quantify entanglement LN = Max(− log2 𝜈𝛾 , 0)

Fig: Entanglement in the (𝑔12
2

, 𝜃) plane for three populations. 

Without 𝒈𝟏𝟐
𝟒

 , 𝒈𝟏𝟐
𝟐

is still a witness!
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𝑔12
2

entanglement witness
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Hypothesis

✓ Gaussian 

state

✓ Zero mean

✓ ො𝑎1
2 = ො𝑎2

2 = 0

Fig: Entanglement witness based on the value of 𝑔12
2

. 

n1n2=1/2 

n1n2=1/4 

• The 𝑔12
2

 entanglement witness 

depends on the populations,

• The value of 𝑔12
4

 is needed to determine 

the entanglement in the ‘??’.

• Taking into account the quantum 

efficiency of the detector can ‘help’ to 

witness entanglement, 

If ො𝑎𝑗
2 ≠ 0, the phases matter 

in the state’s non-separability.

Limit given by the two-mode 
squeezed vacuum state.
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Conclusion

27

We can quantify the entanglement of thermal 

Gaussian states from their full counting statistics.

Gaussian states must satisfy a bona fide condition (generalized Heisenberg),

Entangled Gaussian states have an un-physical partial transposed (PPT criterion),

The spectrum of the PT state quantifies the state’ entanglement (LN),

This spectrum can be measure via the FCS for thermal Gaussian states.

Thank you for your attention.
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What is entanglement? 

29

E
P

R
 P

a
ra

d
o

x

“Entanglement”

From 1935

Bell’s inequality
Bell, Physics (1964)

Aspect et al, PRL (1981-82)

to 2025

Non-separability
Werner, PRA (1989)

PPT criterion
Peres, PRL (1996)

Horodecki3, Phys. Lett. A(1996)

“
S
te

e
ra

b
ility

”

Teleportation Bennett et al, PRL (1993)

Popescu, PRL, (1994)

Bouwmeester et al.

Nature (1997) 

Entanglement distillation
Bennett et al, PRL, (1993)

Horodecki3, PRL (1998)

Dür, PRL (1998)

| ൿΨ ± ∼
| ۧ↑↑ ± | ۧ↓↓

√2

A bipartite state 𝜌 is distillable, iff - by 

means of LOCC – we can create 

| ൿΨ ± out of 𝑛 identical copies of 𝜌.

Equivalence 

for pure states

Gisin, Phys. Lett. A (1991)
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What is entanglement?

30

Any distillable state must be NPT.
Horodecki3, PRL (1998)

However, it is equivalent for two-modes 

Gaussian states (also 1xN)
Duan et al, PRL (2001), Werner and Wolf, PRL (2001)

What about Bell’s inequalities?

Some states violate a Bell inequalities but are not distillable 

(bounded).
Dür, PRL (2001)

“Violation of a Bell inequality implies bipartite distillability”.
Acin, PRL (2001)

Any bipartite entangled state 𝜎 exhibits a hidden nonlocality 

which can be activated (∃ 𝜌 entangled that does not violate 

CHSH inequality but 𝜌 ⊗ 𝜎 violates it)
Acin, PRL (2001)

NPT implies entanglement
Peres, PRL (1996)

Some states are entangled but with PPT 

(bound entanglement)
Horodecki3, Phys. Lett. A(1996)

Horodecki4, RMP (2009)

If a bounded NPT state 𝜎 exists, then it 

also exists 𝜌 PPT such that 𝜌 ⊗ 𝜎 is 

distillable (superactivation).
Shor, Smolin & Terhal, PRL (2001)
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Quantifying entanglement with logarithmic negativity
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Vidal & Werner, Phys. Rev. A, 65, 032314 (2002)

Plenio, Phys. Rev. Lett., 95 090503 (2005) 

Logarithmic negativity:

LN =  log ො𝜌𝑡𝐵
1

i.e. the sum of the absolute 

eigenvalues of ො𝜌𝑡𝐵.

Comparison of 3 entanglement witnesses: LN decreases with noise

𝑇𝑟 ො𝜌𝑡𝐵 = 1

ො𝜌𝑡𝐵 ≥ 0 ∀𝑖, 𝜈𝑖 ≥ 0


𝑖
𝜈𝑖 = 1


𝑖
|𝜈𝑖| = 1 𝐿𝑁 = 0

𝑇𝑟 ො𝜌𝑡𝐵 = 1

ො𝜌𝑡𝐵  ≥ 0 ∃ 𝑖, 𝜈𝑖 ≥ 0


𝑖
𝜈𝑖 = 1


𝑖
|𝜈𝑖| > 1 𝐿𝑁 > 0

Demonstration: (PT preserves the trace)

separable

NPT

LN is an entanglement 

monotone

✓ LN is zero for separable 

states,

✓ LN does not increase under 

LOCC,

✓ LN provides an upper bound 

for distillable entanglement
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Particle versus mode entanglement
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The debate

Consider â↑
†â↓

† ۧ|𝑣𝑎𝑐 = ۧ|1,1 in 2nd quantization.

In the 1st quantized picture, labelling particles by 

A and B, we have
| ۧ↑ 𝐴| ۧ↓ 𝐵 + | ۧ↓ 𝐴| ۧ↑ 𝐵

2
which is entangled?

For some, this ‘entanglement’ is unphysical and 

the labels A and B are meaningless.

No consensus on the nature of this correlation 

due to exchange symmetry, sometime referred to 

as particle entanglement.

Nevertheless, particle entanglement is a useful 

and consistence resource”

Morris et al. PRX 10 (2020)

New definitions of entanglement have been 

proposed but only Werner’s definition based on 

the mode entanglement is satisfying

Benatti et al. Phys. Rep. (2020).

“Identical particle entanglement can be transferred, 

with unit probability, onto independent modes using 

elementary operations. Thus, symmetrization

entanglement is a fundamental, ubiquitous, and 

readily extractable resource for standard quantum 

information tasks.”

Killoran, Cramer and Plenio, PRL 112 (2014)

Violation of the Cauchy-Schwarz inequality is a 

particle entanglement witness

Wasak et al. PRA. (2014).

(I strongly recommend to read the introduction 
of Morris et al and Killoran et al.)
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Bona fide condition of a Gaussian state
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𝝈 must respect a generalized Heisenberg 

inequality: a bona fide condition. 

All its eigenvalues must be bigger or equal 

to 1.

Otherwise, the state is unphysical.

Arvind et al. Pramana 45 (1995)

Serafini, Quantum continuous variable (2017) 

The symplectic group: all transformations of 𝝈
that preserve the canonical commutation 

relations.

Exemples: Bogoliubov transformations, a 

displacement,  rotation….

An arbitrary Hermitian matrix does not 

necessary correspond to a 

covariance matrix of a ‘bona fide’ 

quantum state ො𝜌:

(necessary for the positivity of any 
quantum state, sufficient for Gaussian)
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