

Non-separability of phonon pairs in a time modulated Bose-Einstein Condensate Acoustic Analog of the Dynamical Casimir Effect

Victor Gondret, Charlie Leprince, Quentin Marolleau, Clothilde Lamirault, Denis Boiron & Chris Westbrook

The Dynamical Casimir Effect (DCE)

Dynamical Casimir effect : fast oscillation of the mirror creates photons out of vacuum.

$$N_{photons} \sim \omega \tau \left(\frac{v}{c}\right)^2 F$$

Lambrecht *et al* PRL (1996)

Macrì, V. et al. PRX (2018).

CHARLES Experimental plateforms to observe DCE

Lähteenmäki et al. PNAS (2013) Vezzoli, S. et al. Com Phys (2019).

LABORATOIRE Theoretical description CHARLES FABRY

Cigar shape BEC (10s)

• $\omega_{\parallel} = 70 \text{ Hz} (\sim 100 \text{ } \mu\text{m})$

small perturbation of Describe the system as $\widehat{\Psi} = \Phi_0(r,t)(1 + \widehat{\phi}(z,t))$ Gaussian ansatz 🤳 (σ, L, N) At lowest order, collective excitations : $i\partial_t \hat{a}_k = \Omega_k \hat{a}_k + \frac{-i\dot{\Omega}_k}{2\Omega_\nu} \hat{a}^{\dagger}_{-k}$ with $\Omega_{\rm k} = \sqrt{c_s^2 k^2 + \left(\frac{\hbar k^2}{2m}\right)^2}$

recover Bogoliubov dispersion relation with sound speed

$$c_{\rm s} = \left(\frac{2 a_{\rm s} N}{L \sigma^2}\right)^{1/2}$$

- modes k and -k evolve independently when $c_s = cst$
- k/-k mixing when the sound speed varies !

Busch et al. PRA (2013); Robertson et al. PRD (2018)

Steinhauer et al, PRL (2002)

the field

How to change the sound speed ?

$$c_s = \sqrt{g_1 n_1/m} = \left(\frac{2 a_s N}{L \sigma^2}\right)^{1/2}$$

- a_s atomic scattering length
- L, σ length and width of the BEC

5

CHARLES How to measure collective excitations?

How to measure a_k ?

How collective excitation evolves when one release the BEC ?

Particles

$$_{k} = \begin{pmatrix} u_{k} & v_{k} \\ v_{k} & u_{k} \end{pmatrix} \begin{pmatrix} \hat{a}_{k} \\ \hat{a}^{\dagger}_{-k} \end{pmatrix}$$

Quasi-particles

For high enough momentum, the collective excitation is mapped to a single atom.

(For us : $k \ge a_{\rho} \sim 0.8$)

Outline of the talk

Outline of the talk

(1) Parametric creation of phonon in a cigar shape Bose-Einstein condensate

(2) Creation of quasi-particles in a Bose-Einstein condensate of He^{*}

③ Correlation analysis of the phonon

Summary of (1)

- Detecting the momentum of individual atoms
- Create entangled pairs of phonons when varies density
- Phonons adiabatically transform to atoms when release the trap

Let's do that !

Experimental procedure

V_y (mm/s)

 V_x (mm/s)

Recipe

- Modulate the transverse trap frequency at ω,
- Wait a bit (or not),
- Release the trap and measure,

Time (a.u.)

Repeat

Trap Stiffness ω_{\perp} (a.u.)

 V_x (mm/s)

Measuring the dispersion relation

Recipe

- Modulate the transverse trap frequency at ω,
- Wait a bit (or not),
- Release the trap and measure the gap between the quasiparticles,
- Repeat but change ω

Parametric excitation near the breathing mode excites the BEC at resonance.

Measuring the dispersion relation

Recipe

- Modulate the transverse trap frequency at ω,
- Wait a bit (or not),
- Release the trap and measure the gap between the quasiparticles,
- Repeat but change ω

- Parametric excitation near the breathing mode excites the BEC at resonance.
- Excitations on the phonon branch

CHARLES Measuring the production rate of phonon

- Modulate the transverse trap frequency at ω,
- Wait a bit (or not),
- Release the trap and measur the gap between the quasiparticles,
- Repeat but change the number of excitations

One $expects^{(1)}$:

- exponential creation of phonons,
- higher orders phonons

Measuring the production rate of phonon

Recipe

- Modulate the transverse trap • frequency at ω ,
- Wait a bit (or not),
- Release the trap and measure ٠ the gap between the quasiparticles,
- Repeat but change the ٠ number of excitations

One expects $^{(1)}$:

- exponential creation of phonons,
- higher orders phonons ۲

Check the decay of the production rate⁽²⁾

Measuring the production rate of phonon

Recipe

- Modulate the transverse trap f Outline of the talk
- Wait a bit (or not),

(1) Parametric creation of phonon in a cigar shape Bose-Einstein condensate

(2) Experimental procedure and phonon creation

3 Correlation analysis of the phonon

- exponential creation of phonons,
- higher orders phonons

- Creation and detection of quasiparticles in a BEC
- Population grows exponentially with excitation parameters
- Quasi-particles are phonons, in a BEC with $c_s = 16$ mm/s

LABORATOIRE CHARLES FABRY Two mode squeezed state

Tracing over one of the modes leaves the remaining mode in a thermal state

Detected atoms

2. Counting statistics

$$^{(2)}(k,-k) = 2 + \frac{1}{\langle n \rangle}$$

function

 $g^{(2)}(q,k) \stackrel{\text{\tiny def}}{=} \frac{\langle : \hat{n}_q \hat{n}_k : \rangle}{\langle \hat{n}_r \rangle \langle \hat{n}_r \rangle}$

3. Entanglement

Local correlations (normal)

 $g^{(2)}(k,k) = 2$ in the limit where the integration volume goes to 0.

(In the limit where pixels size goes to zero)

How to measure the number of particles in mode ? (for counting statistics)

How to define a mode size ? $(2\pi/L)$

Use the HBT effect ! Bosonic bunching

The width of the auto-correlation gives the mode size.

Parametric amplification in a moving lattice

For a thermal state, the mean number of particles determines the distribution statistics.

Counting statistics

When the size of the box is too large, the distribution is no longer thermal.

Assuming equal population per mode, the number of modes can be fitted.

CHARLES FABRY Probing (cross) correlations

- $g^{(2)}(k,-k) < 2$
- Pic value of ~1.3 (< 2 of local correlations)

CHARLES Probing (cross) correlations

LABORATOIRE CHARLES FABRY Probing (cross) correlations

- $g^{(2)}(k,-k) < 2$
- Pic value of ~1.3 (< 2 of local correlations) •

$$V = \frac{Var(n_k - n_{-k})}{n_k + n_{-k}} > 1$$

CHARLES FABRY Sub-shot noise variance and CSI

Cauchy-Schwarz inequality

$$C = \frac{G^{(2)}(k, -k)}{\sqrt{G^{(2)}(-k, -k) \times G^{(2)}(k, k)}} < 1$$

Normalized variance

 $V = \frac{Var(n_k - n_{-k})}{n_k + n_{-k}} > 1$

We observe for the «*right* » pinhole :

- Violation of the Cauchy-Schwarz inequality,
- Sub-shot noise variance

LABORATOIRE Sub-shot noise variance and CSI CHARLES FABRY

$$\langle \hat{n}_k \hat{n}_{-k} \rangle = \left\langle \hat{b}_k^{\dagger} \hat{b}_{-k}^{\dagger} \hat{b}_k \hat{b}_{-k} \right\rangle = n_k n_{-k} + \left| \left\langle \hat{b}_k \hat{b}_{-k} \right\rangle \right|^2 + \left| \left\langle \hat{b}_k^{\dagger} \hat{b}_{-k} \right\rangle \right|^2$$

if the state is separable : $\leq n_k n_{-k}$ 0 ????

g2 >2 <-> entanglement witness

CHARLES Momentum transfer: Bragg diffraction

Two photons momentum transfer between p and p + 2ħk

What we saw

- Creation and detection of (evaporated) phonons in a Bose-Einstein Condensate,
- Bogoliubov dispersion relation and exponential creation of phonons,
- Counting statistics compatible with a twomode squeezed state,
- Preliminary results on non-separability
- Setup of the interferometer to check mode coherence.

2D correlation map of $g^{(2)}(V_{z,1},V_{z,2})$

Thank you for your time !

Some lecture

- J.-C. Jaskula et al., Phys. Rev. Lett. 109, 220401 (2012).
- S. Robertson, F. Michel, and R. Parentani, Phys. Rev. D **95**, 065020 (2017).
- A. Micheli and S. Robertson, Phys. Rev. B **106**, 214528 (2022).

Describe the system as

 $\widehat{\Psi} = \Phi_0(r,t)(1+\widehat{\phi}(z,t))$

 Φ_0 : gaussian ansatz for the transverse profile with width σ

with

 $\hat{\phi}$: small perturbation of the field, depending only on z and time.

The perturbation obeys the Bogoliubov - de Gennes equation

$$i\hbar\partial_t\hat{\phi} = \frac{-1}{2m}\partial_{zz}\hat{\phi} + g_1n_1(\hat{\phi} + \hat{\phi}^{\dagger})$$

where g_1n_1 depends on transverse profile Φ_0 (and time !). Fourier transforming this eq :

$$i\hbar\partial_t\hat{\phi}_k = \frac{k^2 + g_1 n_1}{2m}\widehat{\phi}_k + \widehat{\phi}_k^{\dagger}$$

$$\begin{pmatrix} \hat{\phi}_k \\ \hat{\phi}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} u_k & v_k \\ v_k & u_k \end{pmatrix} \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix}$$

$$\frac{u_k}{v_k} = \frac{\sqrt{\Omega_k + mc^2} \pm \sqrt{\Omega_k - mc^2}}{norm} \text{ and } \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

$$i\partial_t \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix}$$

- \hat{b}_k is the annihilation operator for collective excitations (phonons)
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes

Detecting single atoms

How to measure

$$g^{(2)}(k,q) = \langle : \hat{n}_q \hat{n}_k : \rangle / \langle \hat{n}_k \rangle \langle \hat{n}_q \rangle$$

How to define a mode size ? ($2\pi/L$)

Use the HBT effect ! Bosonic bunching

- Constructive interferences for bosons,
- Destructive interference for fermions

Jeltes et al, Nature (2007)

HBT : Correlation width (2)

LABORATOIRE

CHARLES

Correlations width (up) and amplitude (down) of beam a as a function of voxel size. Fit function is lorentzian

Box 1 at -10.0 mm/s Box 2 at 10.0 mm/s $\Delta V_{x,y}$ (mm/s) $\Delta V_{x,y}$ (mm/s) 4 4 40.0 15.0 40.0 15.0 • ۰. 10.0 10.0 30.0 ÷ 30.0 ÷ Number of modes Number of modes 8.0 8.0 25.0 • 25.0 • ¢ 3 3 · 20.0 5.0 20.0 5.0 ٠ +1 2 2 · 1 1 0 -0 -Box size along z (mm/s) Box size along z (mm/s)

Nombre de modes et nombre d'atomes par modes pour différentes tailles de boîte.

10⁹ atoms

Plasma to excite He to metastable state : 20 eV, 2h.

Evaporative cooling to obtain a BEC

10⁷ atoms

5.10⁴ atoms

How to measure the number of particles in mode ? (for counting statistics) How to define a mode size ? $(2\pi/L)$ 1.8 1.6 50 40 $g^{(2)}(k,k+\delta k)$ V_y (mm/s) 25 30 1.4 0 20 -25 - 10 1.2 -50 0 $\Delta V_x \ \Delta V_v$ or σ (mm/s) 25 -25 -500 V_x (mm/s) $\sigma = 0.37$ 1.0 $\sigma = 0.34$ -2 V,

40, 40,

20, 20,

5, 5,

Use the HBT effect !

Bosonic bunching

 $g^{(2)}(k,k) = 2$ in the limit where the integration volume goes to 0.

The width of the autocorrelation gives the mode size.

Local correlations (normal)

δVz (mm/s)