

Creation and non-separability of phonon pairs in a modulated BEC

Victor Gondret, Charlie Leprince, Quentin Marolleau, Marc Cheneau, Denis Boiron, Chris Westbrook, Amaury Micheli and Scott Robertson

victor.gondret@institutoptique.fr

Optique Nice 2022

1 Context

(2) Experimental setup

③ Phonon pair creation and non-separability of the phonon pair

④ First experimental result

The story of the universe in a nutshell

LABORATOIRE

CHARLES **FABRY**

Inflation ↓ Preheating ↓ Re-heating

Chatrchyan *et al.*, (2021) Analog cosmological reheating in an ultracold Bose gas, Phys. Rev. A 104, 023302.

García–Bellido, J. (1999). The origin of matter and structure in the universe. *Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences* 357.1763 (1999): 3237-3257.

Experimental setup

45 cm

Production of a He^{*} BEC with ~10⁵ atoms every 10 seconds Cigar shape BEC in a crossed dipole trap • $\omega_{\parallel} = 70$ Hz • $\omega_{\perp} = 1,3$ kHz

Detection of individual atoms using a MCP (microchannel plate)

Phonon pair creation

Robertson, S., Michel, F., Parentani, R., 2017. Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates. Phys. Rev. D 95, 065020.

Phonon pair creation

$$i\partial_t \begin{pmatrix} \hat{a}_k \\ \hat{a}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{a}_k \\ \hat{a}_{-k}^{\dagger} \end{pmatrix} \quad \text{with} \quad \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

2.0

- \hat{a}_k is the annihilation operator for collective excitations (phonons or quasi-particles) •
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes ٠

In the experiment, we count the number of atoms arriving of the detector and compute

$$g^{(2)}(k,-k) = \langle : \hat{n}_k \hat{n}_{-k} : \rangle / \langle \hat{n}_k \rangle \langle \hat{n}_{-k} \rangle$$

Noting that $\hat{n}_k = \hat{a}_k^{\dagger} \hat{a}_k$ and using Wick contraction

Non-separability of the phonon pairs

CHARLES

$$\langle : \hat{n}_k \, \hat{n}_{-k} : \rangle = \left\langle : \hat{a}_k^{\dagger} \, \hat{a}_{-k}^{\dagger} \hat{a}_k \hat{a}_{-k} : \right\rangle = n_k n_{-k} + |\langle \hat{a}_k \hat{a}_{-k} \rangle|^2 + \left| \left\langle \hat{a}_k^{\dagger} \hat{a}_{-k} \right\rangle \right|^2$$
 if the state is separable : $\underbrace{\leq n_k n_{-k}}$

Non separability criteria $g^{(2)}(k,-k) > 2$

Busch, X., Parentani, R., 2013. Dynamical Casimir effect in dissipative media: When is the final state nonseparable? Phys. Rev. D 88, 045023.

First experimental result

- Longer acquisition
- Try to modulate the effective mass of the atoms using a lattice
- Study the creation dynamics of the phonon pairs
- Check the non-separability criteria assumptions : Bragg diffraction + interferometer
- Study the time evolution of the phonon pair correlations / entenglement, the time evolution of the re-thermalization

Thank you for your time !

Some lecture

- Jaskula et al., 2012. Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate. Phys. Rev. Lett. 109, 220401.
- Robertson, Michel & Parentani, 2017. *Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates*. Phys. Rev. D 95, 065020
- Robertson, Michel & Parentani 2018. Nonlinearities induced by parametric resonance in effectively 1D atomic Bose condensates. Phys. Rev. D 98, 056003.
- Micheli & Robertson, 2022. Phonon decay in 1D atomic Bose quasicondensates via Beliaev-Landau damping. ArXiv.

Fundings

On The Theory side

Amaury Micheli and Scott Robertson

Marc Cheneau, Alexandre Dareau, Denis Boiron Charlie Leprince, N.G., Quentin Marolleau, Chris Westbrook

Experimental setup

From the Gross-Pitaevski to Bogoliubov-de Gennes

$$i\partial_t\hat{\phi} = -\frac{1}{2m}\partial_{zz}\hat{\phi} + g_1(t)n_1(\hat{\phi} + \hat{\phi}^{\dagger})$$

Fourier Transform
Bogliubov transformation

$$i\partial_t \begin{pmatrix} \hat{a}_k \\ \hat{a}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{a}_k \\ \hat{a}_{-k}^{\dagger} \end{pmatrix} \quad \text{with} \quad \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

- \hat{a}_k is the annihilation operator for collective excitations (phonons or quasi-particles)
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes

Robertson, S., Michel, F., Parentani, R., 2017. Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates. Phys. Rev. D 95, 065020.

$$i\partial_t \begin{pmatrix} \hat{a}_k \\ \hat{a}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{a}_k \\ \hat{a}_{-k}^{\dagger} \end{pmatrix} \qquad \text{with} \quad \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

- \hat{a}_k is the annihilation operator for collective excitations (phonons)
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes

Why do we **create phonons**?

Define the number of phonons with momentum $k : n_k \equiv \langle \hat{a}_k^{\dagger} \hat{a}_k \rangle$

$$\hat{a}_{k}(t) = \alpha(t) \times \hat{a}_{k}(0) + \beta(t) \times \hat{a}_{-k}^{\dagger}(0)$$
$$\widetilde{\neq 0} \text{ if } \partial_{t}\Omega_{k} \neq 0$$

$$i\partial_t \begin{pmatrix} \hat{a}_k \\ \hat{a}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{a}_k \\ \hat{a}_{-k}^{\dagger} \end{pmatrix} \quad \text{with} \quad \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

- \hat{a}_k is the annihilation operator for collective excitations (phonons)
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes

Why do we create **pairs** of phonons?

Define the number of phonons with momentum $k: n_k \equiv \langle \hat{a}_k^{\dagger} \hat{a}_k \rangle$ Show that

$$\partial_t (n_k - n_{-k}) = 0$$

FABRY Supplement : checking the non-separability criteria

$$\langle \hat{n}_{k} \hat{n}_{-k} \rangle = \langle \hat{b}_{k}^{\dagger} \hat{b}_{-k}^{\dagger} \hat{b}_{k} \hat{b}_{-k} \rangle = n_{k} n_{-k} + \left| \langle \hat{b}_{k} \hat{b}_{-k} \rangle \right|^{2} + \left| \langle \hat{b}_{k}^{\dagger} \hat{b}_{-k} \rangle \right|^{2}$$

if the state is separable :
$$\leq n_{k} n_{-k} \qquad 0 ????$$
$$c = \cos(\phi) a + \sin(\phi) b$$
$$a + \sin(\phi) b$$
$$b = b$$

 $n_c = \langle c^{\dagger} c \rangle = \cos(\phi)^2 a^{\dagger} a + \sin(\phi)^2 b^{\dagger} b + \cos \phi \sin \phi (a^{\dagger} b + b^{\dagger} a)$

 \rightarrow Check that this term is zero.