

Creation and non-separability of phonon pairs in a modulated BEC

Victor Gondret

Quantum gases group meeting of July, 05th of 2021

García–Bellido, J. (1999). The origin of matter and structure in the universe. *Philosophical Transactions of the Royal Society of London.* Series A: Mathematical, Physical and Engineering Sciences 357.1763 (1999): 3237-3257.

Creation and nonseparability of phonon pairs in a modulated BEC

UNIVERSITE PARIS-SACLAY

The story of the universe in a nutshell

Creation and nonseparability of phonon pairs in a modulated BEC

3

PARIS-SACLAY

05/07/2021

Creation and nonseparability of phonon pairs in a modulated BEC

3

PARIS-SACLAY

Simulating the early universe in the lab (no exaggeration of course...)

Outline of the talk

Describing the background BEC

Phonon pair creation

Non separability of the phonon pair

Decompose the field as

$$\widehat{\Phi} = \Phi_0(1 + \widehat{\phi})$$

where the mean field Φ_0 obeys the GP equation

$$i\partial_t \Phi_0 = -\frac{1}{2m} \nabla^2 \Phi_0 + V \Phi_0 + g |\Phi_0|^2 \Phi_0.$$

Assumptions :

- $\omega_z = 0 \rightarrow$ condensate homogeneous in z of size L
- ansatz for the atom density

$$|\Phi_0(r,t)|^2 \sim \frac{n_1}{\pi\sigma^2} e^{-r^2/\sigma^2}$$

where n_1 is the constant linear density N/L.

Valid for $n_1 a_s \rightarrow 0$, with the scattering length $a_s = mg/4\pi$

Gerbier F., "Quasi-1D Bose-Einstein condensates in the dimensional crossover regime." *EPL (Europhysics Letters)* 66,6 (2004):771.

with $\omega_{\perp} \gg \omega_z$

PARIS-SACLA

6

05/07/2021

Creation and nonseparability of phonon pairs in a modulated BEC

Describe the condensed WF

05/07/2021

Creation and nonseparability of phonon pairs in a modulated BEC

PARIS-SACLAY

Describe the condensed WF

Plug the ansatz $|\Phi_0(r,t)|^2 \sim \frac{n_1}{\pi\sigma^2} e^{-r^2/\sigma^2}$ into the GP equation. When ω_{\perp} varies, σ does also as $m\ddot{\sigma} = -\partial_{\sigma}U(\sigma)$ with $U(\sigma) = \frac{m\omega_{\perp}^{2}(t)}{2}\sigma^{2} + \frac{1+4n_{1}a_{s}}{2m\sigma^{2}}$ $\rho(r=0, t)/\rho_0$ 1.2 0.8 Density response of the condensate when the — A=0.3 0.6 transverse trapping frequency varies as — A=0.1 0.4 $\omega_{\perp}(t) = \omega_{\perp,0}(1 + A\sin\omega t)$ for t > 00.2 ωt -20 -1010 20 30 40 50 0

Creation and nonseparability of phonon pairs in a modulated BEC

Describe the condensed WF

Plug the ansatz $|\Phi_0(r,t)|^2 \sim \frac{n_1}{\pi\sigma^2} e^{-r^2/\sigma^2}$ into the GP equation. When ω_{\perp} varies, σ does also as

$$m\ddot{\sigma} = -\partial_{\sigma}U(\sigma)$$
 with $U(\sigma) = \frac{m\omega_{\perp}^{2}(t)}{2}\sigma^{2} + \frac{1+4n_{1}a_{s}}{2m\sigma^{2}}$

Obtain the BdG equation for longitudinal excitations Come back to the total field $\hat{\Phi} = \Phi_0(1 + \hat{\phi}(z, t))$

- 1. Plug $\widehat{\Phi}$ into the GP equation and keep only 1st order terms in $\widehat{\phi}(z,t)$
- 2. Integrate over r and obtain the Bogoliubov-de Gennes equation for $\hat{\phi}$:

$$i\partial_t\hat{\phi} = -\frac{1}{2m}\partial_{zz}\hat{\phi} + g_1n_1(\hat{\phi} + \hat{\phi}^{\dagger})$$

Robertson et al, Phys. Rev. D95, 065020 (2017)

where $g_1(t) = g/2\pi\sigma^2(t)$

Creation and nonseparability of phonon pairs in a modulated BEC

PARIS-SA

Outline of the talk

Describing the background BEC

Phonon pair creation

Shake the system transversally at frequency ω \downarrow Perturbation field $\hat{\phi}(z,t)$ follows $i\partial_t \hat{\phi} = -\frac{1}{2m} \partial_{zz} \hat{\phi} + g_1 n_1 (\hat{\phi} + \hat{\phi}^{\dagger})$

with modulated interaction strength g_1 at ω

Non separability of the phonon pair

Start with the Bogoliubov de Gennes equation,

$$i\partial_t \hat{\phi} = -\frac{1}{2m} \partial_{zz} \hat{\phi} + g_1(t) n_1(\hat{\phi} + \hat{\phi}^{\dagger})$$

Fourier transform with $\hat{\phi} = \sum_k \hat{\phi}_k e^{ikz}$ with $k \in 2\pi \mathbb{Z}/L$.

$$\mathrm{i}\partial_t \begin{pmatrix} \hat{\phi}_k \\ \hat{\phi}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \frac{k^2}{2m} + g_1 n_1 & g_1 n_1 \\ -g_1 n_1 & -\frac{k^2}{2m} - g_1 n_1 \end{pmatrix} \begin{pmatrix} \hat{\phi}_k \\ \hat{\phi}_{-k}^{\dagger} \end{pmatrix}$$

 $\hat{\phi}_k$ annihilation operator for atoms

and perform Bogoliubov transformation to deal with phonons

$$\begin{pmatrix} \hat{\phi}_k \\ \hat{\phi}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} u_k & v_k \\ v_k & u_k \end{pmatrix} \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix}$$

 \hat{b}_k annihilation operator for phonons

PARIS-SACLA

$$i\partial_t \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} \quad \text{with} \quad \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

- \hat{b}_k is the annihilation operator for collective excitations (phonons)
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes

$$i\partial_t \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} \quad \text{with} \quad \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

- \hat{b}_k is the annihilation operator for collective excitations (phonons)
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes

Why do we create phonons?

PARIS-SAC

$$i\partial_t \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} \quad \text{with} \quad \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

- \hat{b}_k is the annihilation operator for collective excitations (phonons)
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes

Why do we create phonons?

Define the number of phonons with momentum $k : n_k \equiv \langle \hat{b}_k^{\dagger} \hat{b}_k \rangle$

$$\hat{b}_k(t) = \alpha(t) \times \hat{b}_k(0) + \beta(t) \times \hat{b}_{-k}^{\dagger}(0)$$
$$\widetilde{\neq 0} \text{ if } \partial_t \Omega_k \neq 0$$

$$i\partial_t \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} = \begin{pmatrix} \Omega_k & -i\partial_t \Omega_k / 2\Omega_k \\ -i\partial_t \Omega_k / 2\Omega_k & -\Omega_k \end{pmatrix} \begin{pmatrix} \hat{b}_k \\ \hat{b}_{-k}^{\dagger} \end{pmatrix} \quad \text{with} \quad \Omega_k^2 = \frac{g_1 n_1 k^2}{m} + \left(\frac{k^2}{2m}\right)^2$$

- \hat{b}_k is the annihilation operator for collective excitations (phonons)
- When $\partial_t \Omega_k = 0$: k and -k modes evolve independently from each other
- When $\partial_t \Omega_k \neq 0$: mixing between k and -k modes

Why do we create **pairs** of phonons ?

Define the number of phonons with momentum $k : n_k \equiv \langle \hat{b}_k^{\dagger} \hat{b}_k \rangle$ Show that

$$\partial_t (n_k - n_{-k}) = 0$$

PARIS-SA

Number of phonons created n_k as a function of k in units of the healing length $\xi = 1/\sqrt{g_1 n_1 m}$.

> From Robertson et al, Phys. Rev. D95, 065020 (2017)

> > PARIS-SACLAY

Creation and nonseparability of phonon pairs in a modulated BEC

Outline of the talk

Describing the background BEC

Phonon pair creation

Non separability of the phonon pair

Non separability of the phonons pair

A state of a 2 modes system is said separable if its density matrix can be written as

$$\hat{\rho}_{k,-k} = \sum_{j} P_{j} \ \hat{\rho}_{k}^{j} \otimes \ \hat{\rho}_{-j}^{j}$$

- $0 < P_j < 1 \text{ and } \sum_j P_j = 1$
- $\hat{\rho}_k^j$ is the density matrix of a single-mode k subsystem

where
$$n_j \equiv \langle \hat{b}_j^{\dagger} \hat{b}_j \rangle$$

UNIVERS PARIS-SAC

Non separability of the phonon pair

In the experiment, we count the number of atoms arriving of the detector and compute

 $g^{(2)}(k,-k) = \langle \hat{n}_k \hat{n}_{-k} \rangle / \langle \hat{n}_k \rangle \langle \hat{n}_{-k} \rangle$

Noting that $\hat{n}_k = \hat{b}_k^{\dagger} \hat{b}_k$ and using Wick contraction

$$\langle \hat{n}_k \hat{n}_{-k} \rangle = \left\langle \hat{b}_k^{\dagger} \hat{b}_{-k}^{\dagger} \hat{b}_k \hat{b}_{-k} \right\rangle = n_k n_{-k} + \left| \left\langle \hat{b}_k \hat{b}_{-k} \right\rangle \right|^2 + \left| \left\langle \hat{b}_k^{\dagger} \hat{b}_{-k} \right\rangle \right|^2$$

if the state is separable : $\leq n_k n_{-k}$

if the state is separable :

Non separability criteria $q^{(2)}(k,-k) > 2$

Non separability of the phonon pair

Creation and nonseparability of phonon pairs in a modulated BEC

Conclusion

- Oscillations of the transverse frequency of a BEC induces oscillations of the BEC speed of sound
- Modulation of *c* creates pair of entangled phonons
- Nonseparability of the phonon pair can be witnessed by the value of $g^{(2)}(k,-k)$

Helium[×] ONE

hankyou foryour lime

Witter and a start a

Validity of the Gaussian ansatz

05/07/2021

Creation and nonseparability of phonon pairs in a modulated BEC

20

PARIS-SACLAY