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We observe entanglement between collective excitations of a Bose-Einstein condensate in a configuration anal-
ogous to particle production during the preheating phase of the early universe. In our setup, the oscillation of
the inflaton field is mimicked by the transverse breathing mode of a cigar-shaped condensate, which paramet-
rically excites longitudinal quasiparticles with opposite momenta. After a short modulation period, we observe
entanglement of these pairs which demonstrates that vacuum fluctuations seeded the parametric growth, con-
firming the quantum origin of the excitations. As the system continues to evolve, we observe a decrease in
correlations and a disappearance of non-classical features, pointing towards future experimental probes of the
less understood interaction-dominated regime.

In quantum field theory, particles are identified with excita-
tions of fields. Even in a vacuum, fields are subject to quan-
tum fluctuations, which can be amplified to create particles.
This phenomenon plays a crucial role in astrophysics and cos-
mology and is known as spontaneous particle production, to
distinguish it from its stimulated counterpart seeded by classi-
cal fluctuations. It is the underlying mechanism behind black
hole evaporation via Hawking radiation [1], the generation of
primordial cosmological inhomogeneities during inflation [2],
and the generation of particles in an empty post-inflationary
universe, a phenomenon known as preheating [3]. However,
a direct observation of these phenomena in the cosmological
context is currently out of reach [4–6].

Beginning in 1981 [4], a field of study has developed in
which fluids host analogs of the above phenomena. Unruh
showed that, in the presence of a strong coherent background,
the excitations of a fluid, or quasiparticles, can be treated us-
ing the same formalism as particles in a curved spacetime.
Following this idea, analogs of Hawking radiation [7–13], the
cosmological redshift [14], quasiparticle production in time-
varying geometries [15–17], and false-vacuum decay [18]
have been realized among others [19]. However, the entan-
glement between the produced excitations, a signature of their
quantum rather than classical origin, is fragile and elusive, and
has only been probed in a few experiments. In Bose-Einstein
condensates (BEC), these experiments involved analog Hawk-
ing radiation [9] or a sudden quench [20, 21]. In photonic
systems, time-modulated boundary conditions produced evi-
dence of spontaneous amplification in a configuration analo-
gous to the dynamical Casimir effect [22, 23].

In this work, we report the observation of entangled, para-
metrically excited, collective modes in a BEC in an analog to
cosmological preheating. In preheating, oscillations of a hy-
pothetical field, known as the “inflaton”, parametrically cre-
ate particles in other, previously empty fields. The role of
the inflaton is played by the transverse degrees of freedom
of the elongated BEC, which are coupled to the longitudinal
ones: transverse oscillations parametrically excite longitudi-
nal modes. The low thermal population of these modes en-
sures that their growth is seeded largely by vacuum fluctua-

tions, which results in an entangled two-mode state. This type
of parametric amplification has been studied in quantum fluids
and referred to as Faraday wave generation [24–29], but the
cited experiments did not witness entanglement. In our case,
the observation is made possible by a very low BEC temper-
ature, which enables an investigation in the low occupation
number regime. We make two-particle correlation measure-
ments and use recent theoretical advances linking these corre-
lations to entanglement certification [30].

Experiment – A BEC containing about 3 000 metastable he-
lium atoms in the 23S1, 𝑚𝑆 = 1 state is trapped in a crossed
optical dipole trap [31], see Fig. 1(a). The trapping frequen-
cies are 𝜔⊥/2𝜋 = 930(20) Hz in the radial direction and
𝜔𝑧/2𝜋 = 40(2) Hz in the vertical, axial direction. In an elon-
gated homogeneous cloud, longitudinal collective excitations
with momentum 𝑞 have an energy ℏ𝜔𝑞 given by the Bogoli-
ubov dispersion relation [32]

ℏ𝜔𝑞 =

√︄
𝑐2

1D𝑞
2 +

(
𝑞2

2𝑚

)2
(1)

where 𝑐1D is the longitudinal sound speed, 𝑚 the atomic mass,
and ℏ the reduced Planck constant. A periodic modulation
of the sound speed parametrically produces correlated pairs
of quasiparticles at momenta ±𝑝, whose frequency 𝜔±𝑝 is
half the modulation frequency [24–29]. The dynamics can be
modeled as a two-mode squeezing operation on the ±𝑝 quasi-
particle modes, which can become entangled depending on
the initial temperature of the cloud, the thermal damping of
the quasiparticles, and the strength of the modulation [33]. In
a harmonic trap, momentum states are not the exact eigen-
modes of the system, but the physics at play is not expected to
change significantly [34].

The periodic modulation of 𝑐1D is achieved by varying
the power of the dipole trap Plas ∝ (1 + 𝐴 sin 2𝜔⊥𝑡). This
excites the BEC transverse breathing mode, whose radius
𝜎BEC ∝ 1/𝑐1𝐷 oscillates at 2𝜔⊥ [35]. The amplitude of the
breathing depends on the modulation amplitude 𝐴 and its du-
ration, which is kept constant at 4 modulation periods in this
work. After the modulation, the trap remains on for a hold
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FIG. 1. (a) Diagram of the crossed dipole trap and the MCP detector. The breathing mode of a cigar-shaped BEC is excited for 4 periods by
modulating the laser power (top inset, Plas). The BEC is held in the trap for a hold time Δ𝑡 during which its radius 𝜎BEC continues to oscillate
(second inset). The trap laser is ramped down in 1 ms to map the collective excitations onto individual atoms (see text). (b) The position and
arrival time of individual atoms is recorded, and converted to an initial velocity. Sidebands are visible at ±11.7 mm/s. A Bragg diffraction
pulse shifts more than 97% of the BEC atoms to later times to avoid saturating the detector in the vicinity of the excitations. (c) A single shot
showing the excitations in a 3D velocity space. Each dot represents a single atom. The blue and red boxes show the position and size of a
typical analysis volume or “voxel”. (d) Auto-correlation function of the measured sideband velocities giving an estimate of the longitudinal
mode size and showing its thermal nature. (e) Probability distribution in a single voxel for different modulation depths 𝐴. The lines show the
probability distribution in Eq. (3) computed from the mean detected atom number.

time Δ𝑡 during which the transverse radius 𝜎BEC continues to
oscillate at 2𝜔⊥, see the inset of Fig. 1(a). A peculiar feature
of the breathing mode in an elongated cloud is its low damp-
ing rate [36] caused by the suppression of Landau damping
mechanisms, as both the thermal cloud and the BEC oscillate
in phase [37].

After the excitation process, the transverse confinement is
ramped down in 1 ms after which the longitudinal confine-
ment is also switched off. This ramp is sufficiently slow to en-
sure that the collective excitations are mapped onto the atoms
by a process referred to as phonon evaporation [38, 39]. Dur-
ing the free fall, these atoms fly away from the BEC, appear-
ing as sidebands in the time-of-flight spectrum relative to the
unperturbed condensate when they reach a microchannel plate
(MCP) detector, see Fig. 1(b). The MCP detector identifies
the arrival time and position of individual atoms with a quan-
tum efficiency which we estimate to be 25(5)%. The detector
is located 46 cm below the trap, sufficiently far that the ar-
rival times and positions accurately reflect the atomic veloci-
ties when the trap was turned off.

The MCP is shielded from the vertical laser by a metal disc,
requiring the atoms to be deflected towards the unshielded re-
gion. This is achieved by a 12 µs stimulated Raman transi-

tion which transfers the atoms to the magnetically insensitive
𝑚𝑆 = 0 state and imparts a transverse velocity of 42 mm/s.
In addition, to prevent the saturation of the MCP caused by
the high atomic flux from the BEC, a temporally shaped,
velocity-selective Bragg pulse, applied 1 ms after the Raman
pulse, shifts the BEC to later times thus removing 97% of
the BEC atoms from the region where we detect the excita-
tions [40]. A typical single shot velocity reconstruction is
shown in Fig. 1(c) where each dot represents an individual
atom. The blue and red boxes show the position and size of a
typical analysis volume or “voxel”.

Single mode statistics – A typical one-dimensional veloc-
ity profile, averaged over 2,000 experimental realizations, is
shown in the inset of Fig. 1(b). A Gaussian fit to the side-
band density profiles yields typical standard deviations of
𝜎⊥ ∼ 8 mm/s in the transverse direction and 𝜎𝑧 ∼ 0.8 mm/s
longitudinally. To compare these scales against that of a single
collective excitation mode, we construct a histogram of veloc-
ity differences between atom pairs. This allows us to compute
the normalized two-body auto-correlation function [41]

𝑔
(2)
𝑎 (𝜹𝒗) =

∫
Ω

⟨: �̂�𝒗−𝜹𝒗 �̂�𝒗+𝜹𝒗 :⟩
⟨�̂�𝒗+𝜹𝒗⟩ ⟨�̂�𝒗−𝜹𝒗⟩

d3𝒗, (2)

where �̂� is the atom number operator, the colons “:” refer
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to normal ordering and the integration volume Ω excludes
the residual condensate [42]. The sidebands exhibit bunch-
ing within a momentum linewidth inversely proportional to
the source size in each spatial direction [34, 43]. We show in
Fig.1(d) the auto-correlation function 𝑔

(2)
𝑎 along the 𝑧 direc-

tion. A Gaussian fit to this peak gives a standard deviation of
1.7(1) mm/s, which we interpret as the characteristic momen-
tum width of a single mode [43]. A similar analysis along the
transverse direction yields a standard deviation of 9(1) mm/s.
Our excitation thus mainly addresses pairs of single modes.

To probe the statistics of these excitations more pre-
cisely, a voxel in momentum space is defined—illustrated
in Fig. 1(c)—with a longitudinal extent equal to the mode
width of 1.7 mm/s, but without transverse selection. The re-
sulting atom number distribution is plotted in Fig. 1(e) for
various modulation amplitudes 𝐴, corresponding to differ-
ent mean atom numbers. Tracing over one mode of a two-
mode squeezed state—such as the one we expect to gener-
ate—results in a thermal density matrix

∑∞
𝑖=0 𝑃𝑖 (𝑛) |𝑖⟩⟨𝑖 | [44,

45] where the atom number distribution is given by

𝑃𝑖 (𝑛) =
𝑛𝑖

(1 + 𝑛)𝑖+1 (3)

and 𝑛 is the mean detected atom number. In Fig 1(e), 𝑃𝑖

is shown to agree remarkably well with experimentally mea-
sured distributions. The thermal character of the state is cor-
roborated by Fig. 1(d) showing that the value of 𝑔 (2)

𝑎 (𝛿𝑣𝑧 = 0)
approaches 2 [45].

Entanglement – Two-mode entanglement in bosonic sys-
tems can be directly inferred from number correlations, pro-
vided the underlying quantum state remains Gaussian [30].
Within the Bogoliubov framework, the condensate is treated
as a classical background that serves as a particle reservoir
for collective excitations. The Hamiltonian is then quadratic,
describing non-interacting quasiparticles and thus preserving
the Gaussianity of the initial thermal states [39]. This approx-
imation remains valid as long as the condensate depletion is
small. The data in Fig. 1(b) confirms the small depletion.

The normalized two-body cross-correlator of a zero-mean
Gaussian state can be expanded using Wick’s theorem [46],
yielding

𝑔
(2)
± =

⟨�̂�†+�̂�†− �̂�+�̂�−⟩
𝑛+𝑛−

= 1 + |⟨�̂�+�̂�−⟩|2
𝑛+𝑛−

+ |⟨�̂�+�̂�†−⟩|2
𝑛+𝑛−

, (4)

where �̂�± are the annihilation operators for the positive and
negative momentum sideband modes, and 𝑛± = ⟨�̂�†±�̂�±⟩ de-
note their respective mean occupations. In our experiment,
the thermal statistics exhibited by each mode imply that they
have zero mean (⟨�̂�±⟩ = 0), and are not single-mode squeezed
(⟨�̂�2

±⟩ = 0) [47], validating the expansion of Eq. (4). In
Ref. [30] we have shown that, for such a Gaussian state, the
value of 𝑔

(2)
± is an entanglement witness irrespective of the

value of ⟨�̂�+�̂�†−⟩. Entanglement is certified whenever 𝑔 (2)
± ex-

ceeds a threshold which depends on the mode populations.
This threshold is shown as the red line in Fig. 2(b).
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FIG. 2. Relative number squeezing (a) and two-body correlator (b) as
a function of the mean detected atom number, for modulation ampli-
tudes between 𝐴 = 3 and 28%. The hold time Δ𝑡 was fixed at 1.6 ms
(3 breathing periods). The red line indicates unity (a) and the thresh-
old for the entanglement witness of Ref. [30] in panel (b), assuming a
quantum efficiency of 25%. The gray curve shows the expected value
assuming a two-mode squeezed thermal state with an initial temper-
ature of 25(5) nK and a quantum efficiency of 25%. The width of
the gray band reflects the uncertainty in the temperature. Error bars
denote one standard deviation uncertainty and are computed using a
bootstrap analysis.

The measured cross-correlator between opposite momenta
𝑔
(2)
± is also shown in Fig. 2(b) as a function of the mean de-

tected atom number. This is done by varying the modulation
amplitude 𝐴 by 3 to 28%, fixing the hold time to 3 breath-
ing periods. Ideally, the value of 𝑔 (2)

± should be computed in
the limit of vanishing voxel size [43]. Here, 𝑔 (2)

± is computed
between voxels with a transverse size Δ𝑣⊥, which matches
the fitted full width at half maximum of the transverse den-
sity profile, and a longitudinal size of Δ𝑣𝑧 = 1.4 mm/s. This
size is smaller than the correlation length to mainly pick out
a single mode, yet large enough to ensure sufficient signal-to-
noise. On the horizontal axis, the plotted population refers
to the average number of detected atoms in the two side-
band voxels [48]. We see that the two modes are entangled
for a large range of mean detected atom numbers. Assuming
that the modes were initially unentangled, this entanglement
demonstrates that we successfully created quasiparticles from
the vacuum.

Two-mode squeezing model – We now discuss additional
checks to demonstrate that the system exhibits the phe-
nomenology expected in our analog preheating picture. First,
we compare the observed correlations with those predicted for
parametric pair creation in a homogeneous background from
modes initially in thermal states. Within the Bogoliubov ap-
proximation, the two-mode state remains Gaussian, and we
have ⟨�̂�+�̂�†−⟩ = 0 on account of the homogeneity [39]. The
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two-mode state is fully described by the sideband populations
𝑛± and the anomalous correlator |⟨�̂�+�̂�−⟩|, with [33]

2𝑛± = (2𝑛(in)th + 1) cosh(2𝑟) − 1,

2|⟨�̂�+�̂�−⟩| = (2𝑛(in)th + 1) sinh(2𝑟),
(5)

where 𝑟 is the squeezing parameter [49] and 𝑛
(in)
th =

1/(𝑒ℏ𝜔⊥/𝑘𝐵𝑇 − 1) is the initial thermal occupation of each
mode at energy ℏ𝜔⊥. Entanglement occurs when |⟨�̂�+�̂�−⟩|2 >

𝑛+𝑛− [50]. Since ⟨�̂�+�̂�†−⟩ = 0 here, by Eq. (4) this is equiv-
alent to 𝑔

(2)
± > 2 regardless of the mode occupation (i.e.,

in this model the equivalent of the red line in Fig. 2(b) is
a horizontal line at the value 2). The measured temperature
25(5) nK corresponds to 𝑛

(in)
th = 0.18(8), which corresponds

to a detected thermal population of 0.04(2). The low tem-
perature is key to detecting entanglement using our witness.
For larger 𝑛(in)th we could still detect entanglement in princi-
ple but only at the expense of a larger gain and lower maxi-
mal value of 𝑔 (2)

± which would be harder to distinguish from
the value 2. In Fig. 2(b), the gray band shows the theoretical
prediction of this two-mode squeezed thermal state model, as-
suming a quantum detection efficiency of 25% and our mea-
sured temperature. Measured correlations fall within this area
and are thus compatible with the expectations of a two-mode
squeezed state.

Second, the normalized variance 𝜉2 = var(𝑛+ − 𝑛−)/(𝑛+ +
𝑛−) provides a slightly different and complementary way to
characterize the state of the produced quasiparticles. The vari-
ance is a non-classical signature which does not depend on
the Gaussianity of the state nor on its two-mode nature. Thus,
we improve the signal-to-noise ratio by choosing large voxels
centered on each sideband [51, 52]. The results are shown in
Fig. 2(a). At all but the lowest mode populations, the mea-
sured values of 𝜉2 fall below shot noise level 𝜉2 = 1, confirm-
ing the non-classical nature of the state [53].

Time evolution – We investigate the time evolution by fix-
ing the modulation amplitude and varying the hold time. The
results are shown in Fig. 3 for amplitudes of 18% (orange cir-
cles) and 25% (green squares). The mean quasiparticle pop-
ulation in the excited modes, shown in Fig. 3(a), exhibits ex-
ponential growth, consistent with expectations from paramet-
ric resonance [54] and our two-mode squeezed thermal state
model [55], see Eq. (5). The corresponding evolution of the
normalized two-body correlator 𝑔 (2)

± is shown in Fig. 3(b) and
the normalized variance between the two modes is shown in
the inset of the figure. As the hold time Δ𝑡 increases, 𝑔 (2)

±
gradually approaches the value 2. This behavior is easily
understood: although the anomalous correlation |⟨�̂�+�̂�−⟩| in-
creases with time, the ratio |⟨�̂�+�̂�−⟩|2/(𝑛+𝑛−) decreases as the
population grows, leading to a decrease of 𝑔 (2)

± . On the other
hand, for hold times larger than 3 ms, the correlator begins to
fall below 2 while the normalized number variance exceeds
unity, a behavior not captured by Eq. (5) or its dissipative ex-
tension [54, 56]. In this regime, our entanglement witness is
no longer satisfied and we cannot infer entanglement. The
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FIG. 3. Plot of the mean detected population (a) and the cross-
correlator (b) as a function of the hold time Δ𝑡. Data is shown for
two different modulation depths (orange circles 18%, green squares
25%). The inset shows the normalized variance. It is seen that at long
times one cannot infer the existence of any entanglement. Error bars
denote one standard deviation uncertainty and are computed using a
bootstrap analysis.

onset of this apparent loss of entanglement for the two modu-
lation amplitudes occurs for similar mode populations.

As suggested in Ref. [57], this apparent loss of entangle-
ment could indicate the onset of a late-time regime where
higher order quasi-particle interactions become relevant and
a richer phenomenology emerges, e.g. decoherence of the
resonant modes [57], secondary spectral peaks as observed in
similar experiments in hydrodynamic systems [58], or loss
of Gaussianity [59, 60]. All these phenomena can be seen
steps on the path towards thermalization for which we may
be able to draw analogies to “reheating” in the cosmological
era when the Universe transitions to a thermal state. Future
work will investigate these effects.

Data availability – The data that support the findings of this
manuscript are available in a public Zenodo repository at [61].
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[21] A. Tenart, G. Hercé, J.-P. Bureik, A. Dareau, and D. Clément,
Observation of pairs of atoms at opposite momenta in an equi-
librium interacting Bose gas, Nature Physics 17, 1364 (2021).
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FIG. 4. (a) The auto-correlator computed with the same dataset as
in Fig. 2, in which we vary the modulation depth for a constant hold
time. Panels (b) and (c) show the corresponding auto-correlator for
the dataset of Fig. 3 where the hold time is varied with a modulation
depth of respectively 18% and 25%. The light square markers show
the negative velocity sideband and the dark stars the positive veloc-
ity one. The error bars are computed from the expected error for a
thermal law with the same detected atom number.

entanglement witness curve of Fig. 2 to the right but even a
quantum efficiency of 100% would not change our conclusion
on entanglement.

Auto-correlations

For purposes of comparison, we show in Fig. 4 the nor-
malized two-body auto-correlators for the same data as that
we used for Figs. 2 and 3. The normalized two-body auto-
correlators are defined as

𝑔
(2)
𝑗

=
𝐺

(2)
𝑗

𝑛2
𝑗

=
⟨(�̂�†

𝑗
)2�̂� 𝑗⟩
𝑛2
𝑗

(6)

where 𝑗 = + or −. These auto-correlators are always consis-
tent with the value 2 except in the case of very weak or very
strong excitation. For weak excitation, the number of atoms in
the sidebands is very low, resulting in large error bars, that we
discuss below. In addition, the signal in the voxels is contami-
nated by other residual atoms. In the case of strong excitation,

the decrease in the correlation may indicate a non-Gaussian
state.

The error bars shown in Fig. 4 are not obtained using boot-
strap techniques, but are instead estimated based on the num-
ber of repetitions and the mean detected atom number in the
voxels. When the population is sufficiently large, this estima-
tion yields results consistent with a bootstrap analysis. How-
ever, when the mean detected atom number is very low, the
available statistics are insufficient to reliably estimate error
bars. In some cases, for instance, no doublets are recorded at
all, due to limited statistics. Thus, the error bars on 𝑔 (𝑑) are
given by

Δ𝑔 (𝑑) =
𝑑!

√
𝑁shot

√√
Var[(�̂�†

𝑗
)𝑑 �̂�𝑑

𝑗
]

[(𝑑!)𝑛𝑑]2 + 𝑑
Var[�̂�†

𝑗
�̂� 𝑗 ]

𝑛2 (7)

where the variance is evaluated using Eq. (11) only depends
on the mean detected atom number and 𝑁shot is the number of
experimental cycles. Here 𝑑! represents the value of 𝑔 (𝑑) for
a thermal statistics.

In the following, we derive Eq. (11) for a state with a ther-
mal statistics. To do so, we need to evaluate

Var[(�̂�†)𝑑 �̂�𝑑] = ⟨(�̂�†)𝑑 �̂�𝑑 (�̂�†)𝑑 �̂�𝑑⟩ − ⟨(�̂�†)𝑑 �̂�𝑑⟩2
(8)

where we drop the label 𝑗 to lighten notations. The second
term in Eq. (8) is the 𝑑-body auto-correlator which is given by
𝐺 (𝑑) = ⟨(�̂�†)𝑑 �̂�𝑑⟩ = (𝑑!) 𝑛𝑑 in the case of a thermal statis-
tics [66]. To evaluate the first term, we normal order the cre-
ation and annihilation operators as [67]

(�̂�†)𝑑 �̂�𝑑 (�̂�†)𝑑 �̂�𝑑 = :(�̂�†)𝑑 �̂�𝑑 (�̂�†)𝑑 �̂�𝑑︸               ︷︷               ︸
no pair removed

:

+ : (�̂�†)𝑑 �̂�𝑑−1 (�̂�†)𝑑−1�̂�𝑑︸                     ︷︷                     ︸
remove 1 pair

: ×
(
𝑑

1

)
×
(
𝑑

1

)
︸      ︷︷      ︸

# of pairs

+ : (�̂�†)𝑑 �̂�𝑑−2 (�̂�†)𝑑−2�̂�𝑑︸                     ︷︷                     ︸
remove 2 pairs

: ×
(
𝑑

2

)
×
(
𝑑

2

)
× 2︸           ︷︷           ︸

choose �̂� then �̂�†, pair them

+ : (�̂�†)𝑑 �̂�𝑑−3 (�̂�†)𝑑−3�̂�𝑑︸                     ︷︷                     ︸
remove 3 pairs

: ×
(
𝑑

3

)
×
(
𝑑

3

)
× 3 × 2︸                 ︷︷                 ︸

choose �̂� then �̂�†, pair them

+...

(9)

from which we obtain

⟨(�̂�†)𝑑 �̂�𝑑 (�̂�†)𝑑 �̂�𝑑⟩ =
𝑑∑︁

𝑘=0
𝑘!
(
𝑑

𝑘

)2
𝐺 (2𝑑−𝑘 ) . (10)

We therefore have

Var[(�̂�†)𝑑 �̂�𝑑] =
𝑑∑︁

𝑘=0
𝑘!
(
𝑑

𝑘

)2
(2𝑑 − 𝑘)!𝑛2𝑑−𝑘 −

[
𝑑!𝑛𝑑

]2
. (11)
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