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By exciting the transverse breathing mode of an elongated Bose-Einstein condensate, we parametrically pro-
duce longitudinal collective excitations in a pairwise manner. This process also referred to as Faraday wave
generation, can be seen as an analog to cosmological particle production. Building upon single particle de-
tection, we investigate the early time dynamics of the exponential growth and compare our observation with a
Bogoliubov description. The growth rate we observe experimentally is in very good agreement with theoretical
predictions, demonstrating the validity of the Bogoliubov description and thereby confirming the smallness of
quasiparticle interactions in such an elongated gas. We also discuss the presence of oscillations in the atom
number, which are due to pair correlations and to the rate at which interactions are switched off.

I. INTRODUCTION

Parametric resonance is a ubiquitous phenomenon in
physics, manifesting in systems ranging from nonlinear op-
tical amplifiers to particle creation in the early Universe [1]. It
was first reported in 1831 when Faraday observed the sponta-
neous formation of surface wave patterns on a fluid subjected
to vertical oscillations [2]. The oscillation periodically modi-
fies the effective gravitational field and thus the dispersion re-
lation, which parametrically excites modes whose frequencies
are multiples of half the driving frequency [3]. The amplitude
of these modes grows exponentially from an initial seed, for
instance thermal or vacuum fluctuations, forming a pattern at
the interface, before the growth saturates because of nonlin-
earities [4].

In quantum fluids such as Bose-Einstein condensates
(BECs), the dispersion relation depends on the interaction
strength between atoms, which can be modulated in time [5,
6], resulting in the formation of Faraday patterns [7–9]. These
patterns have been further interpreted as time crystals [10–
12] and have revealed a wide variety of structures in two-
dimensional gases [13–16]. The role of vacuum fluctuations
in seeding the growth of the pattern was revealed through the
observation of entanglement between waves of opposite mo-
mentum [17]. Faraday waves were also explored in other
configurations, including fermionic clouds [18, 19], two-
component superfluids [20], and fluids with different disper-
sion relations, such as those exhibiting a roton minimum [21]
or in optical lattices [22, 23].

The dynamics of these collective excitations, or quasipar-
ticles, on top of the fluid is analogous to the dynamics of
a quantum field on a curved space-time [24]. Thus, by en-
gineering an appropriate background profile, these experi-
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ments can reproduce well-known effects of quantum field the-
ory [25, 26], such as analogs of Hawking radiation [27], cos-
mological particle creation [28–31], or the dynamical Casimir
effect [32, 33]. However, in order to interpret or design these
experiments as faithful analogs of these effects, precise mod-
eling of the system is required, an endeavor to which R.
Parentani made major contributions [34–38]. These propos-
als successfully led to the experimental study of quasiparticle
production in a time-dependent background [39–47] or in the
presence of an analog horizon [48–55].

In this work, we use single particle detection to investigate
the early-time development of Faraday patterns in a modu-
lated BEC and give an interpretation within Bogoliubov the-
ory, in light of Parentani’s work [36–38]. In Section II, we
present the experimental setup and procedure, along with a
brief summary of our model. In Sections III and IV, we ob-
serve the exponential growth of the quasiparticle number and
we compare the observed growth rate to a theoretical treat-
ment [36]. Section V provides an interpretation of the oscilla-
tory behavior of the atom number observed during the growth
dynamics. This oscillation results from the presence of cor-
relations between modes of opposite momentum, as well as
from the non-adiabatic transfer between the collective state
confined in the trap and the free particles which we ultimately
detect.

II. EXPERIMENTAL SETUP AND MODEL

Modulation protocol – We produce a cigar-shaped BEC
with typically 15,000 atoms and at a temperature between
30 and 45 nK, in a crossed dipole trap with longitudinal and
transverse frequencies of 40 Hz and 1 kHz, respectively. The
experimental setup and procedure, sketched in Fig. 1a, are
the same as in Ref. [17], with the main difference being the
number of atoms in the BEC and its temperature, which we
control by adjusting the final trap power. To excite the gas,
the power of the vertical trapping laser is modulated at twice
the transverse trap frequency 𝜔⊥, for four oscillation periods,
see Fig. 1b. This modulation excites the transverse breathing
mode of the BEC: its width 𝜎 continues to oscillate with the
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FIG. 1. Experimental parametric excitation of quasiparticles. a, Diagram of the experimental setup. b, By modulating dipole trap laser
power P𝑙𝑎𝑠 , the breathing mode of the BEC is excited. c, The BEC width 𝜎 oscillates as long as the cloud is kept in the trap for a duration Δ𝑡.
The breathing mode parametrically excites two longitudinal excitations with opposite momenta. d, Time evolution of the longitudinal density
profile of the atom velocity distribution. The dark band at 𝑣𝑧 = 0 is the condensate. After a hold time of about 2 ms, sidebands appear on
either side of the condensate.

same amplitude for an additional hold time Δ𝑡 after the modu-
lation ends [56], as drawn in Fig. 1c (see also the experimental
data in Fig. 3a). This breathing mode is not damped by ther-
mal phonons [57] but rather couples to longitudinal collective
excitations i.e. Faraday waves [58].

Detecting atoms – When the trap is switched off, density
decreases and atoms that carry a collective excitation separate
from the BEC, forming two sidebands, as shown in Fig. 1d.
Atoms fall onto a microchannel plate detector located 46 cm
below the trap, which records the arrival time and position of
single atoms with a quantum efficiency of 25(5)% [59]. The
time of flight is sufficiently long that the arrival time and po-
sition at the detector accurately reflect the three-dimensional
velocity of the atoms at the moment the trap and interactions
were switched off. The detector is protected from the ver-
tical trapping laser; thus the 13 µs Raman pulse that trans-
fers the atoms to a magnetically insensitive state after the trap
switch off also imparts a transverse momentum, ensuring that
the atoms are detected on the unshielded region of the detec-
tor. In some data sets, a 1 ms velocity-selective Bragg pulse
deflects 97% of the BEC atoms upwards at 48 mm/s, while
not affecting the sidebands [60]. The Bragg pulse helps pre-
vent saturation of the detector in the vicinity of the sidebands,
which may alter their shape and intensity. However, in the
data shown in this work the presence of the Bragg pulse had
no observable effect on the sidebands.

Modeling quasiparticle production – To model the produc-
tion of longitudinal collective excitations or quasiparticles, we
make use of the Bogoliubov description and refer the inter-
ested reader to the appendix or to Refs. [37, 61] for the de-
tails of the model. In this approximation, the BEC is treated
as a coherent state acting as a reservoir for non-interacting
quasiparticles. For simplicity, we neglect the weak longitu-
dinal harmonic trapping, which is not expected to change the
physics at play [62]. Quasiparticles with energy ℏ𝜔𝑘 and mo-
mentum ℏ𝑘 are then described by annihilation (creation) op-

erators 𝑏̂ (†)
𝑘

whose evolution obeys [37]:

𝜕𝑡 𝑏̂𝑘 = −𝑖𝜔𝑘 𝑏̂𝑘+
¤𝜔𝑘

2𝜔𝑘

𝑏̂
†
−𝑘 where 𝜔𝑘 =

√︄
𝑔1𝑛1
𝑚

𝑘2 +
(
ℏ𝑘2

2𝑚

)2
.

(1)
Here, ℏ is the reduced Planck constant, 𝑚 is the mass of
the atoms, 𝑛1 is the one-dimensional density and ¤𝜔𝑘 repre-
sents the time derivative of 𝜔𝑘 . The effective 1D interaction
strength 𝑔1 is proportional to the mean transverse density, and
therefore inversely proportional to the cross-sectional area of
the BEC. Assuming a Gaussian transverse profile and extend-
ing the result of Refs [63, 64] to the anisotropic case, we
find 𝑔1 = 2ℏ2𝑎𝑠/(𝑚𝜎𝑥𝜎𝑦), where 𝑎𝑠 is the atomic 𝑠-wave
scattering length and where 𝑥 and 𝑦 correspond to the princi-
pal axes along which the transverse profile has minimal and
maximal width. During the breathing oscillation, 𝜎𝑥 and 𝜎𝑦

vary in time which in turn modulates the dispersion relation
in Eq. (1). In the absence of oscillation, ¤𝜔𝑘 = 0 and the sec-
ond term in Eq. (1) vanishes. Thus, each quasiparticle mode
𝑏̂𝑘 evolves independently as 𝑏̂𝑘 ∝ 𝑒𝑖𝜔𝑘 𝑡 . However, when 𝑔1
varies, we have ¤𝜔𝑘 ≠ 0 and the evolution of modes with oppo-
site wavevector are coupled. In particular, when ¤𝜔𝑘 oscillates
at 2𝜔⊥, the two modes with 𝜔±𝑘 = 𝜔⊥ are parametrically
excited and squeezed. The number of quasiparticles ⟨𝑏̂†

𝑘
𝑏̂𝑘⟩

increases exponentially, as does their anomalous correlation
|⟨𝑏̂𝑘 𝑏̂−𝑘⟩|, signaling a pair production process. The rate of
the exponential growth depends on the breathing amplitude,
which itself depends on the amplitude and duration of the laser
power modulation.

Mapping quasiparticles to atoms – When the trap is
switched off, the atomic wavefunction expands and the col-
lective excitation state is mapped onto the free atomic state
which is then detected. The (a)diabatic nature of this map-
ping depends on the rate of change of the interaction strength
𝑔1𝑛1 [65] and will be discussed further in Sec. V.
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FIG. 2. Detected atom number in each sideband as a function of
the hold time. In this data set the laser power was modulated by
±15%. The atom number was counted in each voxel as defined in
the text. The data was fitted to Eq. (2) in the exponential regime,
that is between 0.5 and 4 ms. The solid blue and dashed orange
lines show the fits for the negative and positive velocity sidebands
respectively. The fits give a reduced chi-squared of 𝜒2

𝜈 = 1.0 and
𝜒2
𝜈 = 1.2 respectively.

III. EXPONENTIAL CREATION OF QUASIPARTICLES

Observations – Fig. 1d shows the one-dimensional den-
sity in velocity space as a function of the hold time Δ𝑡 during
which the BEC continues to breathe. In the figure, visible
sidebands emerge after about 2 ms, rapidly growing in in-
tensity and oscillating at the modulation frequency 𝜔⊥. We
will focus on these two features — growth and oscillations
of the sidebands — in the following. One also sees that the
mean momentum of the sidebands increases with time, a be-
havior which may be related to an excitation of the longitudi-
nal breathing mode [10]. Lastly, we note that the longitudinal
width of the BEC (at 𝑣𝑧 = 0) also exhibits oscillations. This
effect may be an artifact caused by detector saturation varying
with the transverse width. In any case, since it affects only the
BEC and not the sidebands, we consider it unimportant for
our analysis.

To quantify the growth, we define a 3D volume in velocity
space, a voxel, whose longitudinal size is roughly that of one
mode [17]. For each hold time Δ𝑡, the voxel is centered at the
velocity for which the atom density is maximum. In Fig. 2,
the evolution of the number of atoms in the two sidebands is
plotted as a function of hold time, confirming the exponential
growth. The oscillations shown here have also been observed
in other experiments [10, 13, 16, 19] and we will discuss their
interpretation in section V.

Model – We fit the measured number of atoms in the side-
bands using

𝑛𝑑𝑘 (Δ𝑡) = 𝑛0 + Δ𝑛 𝑒𝐺𝑘Δ𝑡 × [1 + 𝐴𝑘 cos (2𝜔𝑘Δ𝑡 + 𝜑𝑘)] . (2)

The model fits well to the data in Fig. 2. The physical mean-
ing of some fit parameters, whose theoretical expression is
given in the appendix, is as follows. The offset 𝑛0 accounts
for other non-excited modes which are detected in the voxel
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FIG. 3. Comparison between the experimental and homogeneous
undamped theoretical rate. a, The asymmetric breathing mode of
the BEC is fitted with a sine function along both axes. The modula-
tion parameters are the same as in Fig. 2. b, The relative, effective
1D interaction strength. c, The fitted growth rate for different mod-
ulation amplitudes on the vertical axis is compared to the prediction
of Eq. (4) on the horizontal axis. The theoretical growth rate is also
shown as a line of unit slope.

analysis. The exponential growth is multiplied by an overall
prefactor Δ𝑛, which characterizes the fluctuations that seed
the parametric growth. The parameter 𝐺𝑘 characterizes the
growth and 𝐴𝑘 the amplitude of the oscillations. In our fit, 𝑛0
and Δ𝑛 are sensitive to the analysis voxel size, while 𝐺𝑘 and
𝐴𝑘 are robust. These will be discussed in the next sections.

IV. MEASUREMENT OF THE GROWTH RATE

If we assume that the interaction strength 𝑔1 is modulated
as

𝑔1 (𝑡) = 𝑔1 (0) [1 + 𝑎 cos(𝜔𝑑𝑡)] (3)

where 𝑎 is the modulation amplitude and 𝜔𝑑 the driving fre-
quency, the growth dynamics is analytical. Without damping,
the growth rate for the resonant mode 𝜔𝑘 = 𝜔𝑑/2 in a homo-
geneous gas is predicted to be [36]

𝐺 th
𝑘 =

𝑎

2
𝜔𝑘

1 + 𝑘2𝜉2/4
(4)

where 𝜉 =
√︁
ℏ2/(𝑚𝑔1𝑛1) is the healing length of the BEC.

Numerical estimates – The healing length is estimated via
the dispersion relation (1) by matching the sidebands velocity



4

and the trap frequency. Since the quasiparticles are predom-
inantly produced where the density is highest, our estimate
amounts to characterizing the cloud near the center. The ef-
fective 1D interaction strength is inversely proportional to the
cross-sectional area of the BEC, 𝑔1 ∝ 1/𝜎𝑥𝜎𝑦 . We can mea-
sure the relative amplitude of the oscillation by measuring the
transverse widths 𝑠𝑥 and 𝑠𝑦 of the cloud at the detector for dif-
ferent hold times Δ𝑡. Due to the inverse relationship between
spatial confinement and rate of expansion, the width at detec-
tion is inversely proportional to the in situ width, 𝑠𝑥 ∝ 1/𝜎𝑥 .
We observe a 50% asymmetry in the breathing amplitude be-
tween the 𝑥 and 𝑦 directions, as shown in Fig. 3a, which might
reflect a small trap anisotropy [66]. The time dependence of
𝑠𝑥 and 𝑠𝑦 is well modeled by a sine function from which we
extract the amplitudes 𝑎𝑥 and 𝑎𝑦 . Because the effective inter-
action strength depends on their product 𝑔1 ∝ 𝑠𝑥𝑠𝑦 , the value
of 𝑎 is given by 𝑎 = (𝑎𝑥 + 𝑎𝑦)/(1+ 𝑎𝑥𝑎𝑦/2). The evolution of
𝑔1 is shown in Fig. 3b and the solid line is the product of the
fits of 𝑠𝑥 and 𝑠𝑦 , which shows a good agreement.

Results – We show in Fig. 3c the measured growth rate 𝐺exp
𝑘

as a function of the theoretical growth rate 𝐺 th
𝑘

, evaluated us-
ing Eq. (4). The line of unit slope thus corresponds to the
theoretical prediction, and the measured growth rates are seen
to be in very good agreement with it the predicted ones. Re-
cently, it was shown that the growth rate should be sensitive to
interactions between quasiparticles [61] arising from higher-
order terms in the Hamiltonian, which are not taken into ac-
count within the Bogoliubov description. The dominant effect
is the presence of a decay rate that acts counter to the growth
of quasiparticle populations and correlations [61, 67]. With
our experimental parameters, the magnitude of this decay is
predicted to be on the order of 0.1 ms−1, and while our data
are not sufficiently precise to confirm such a small reduction,
they do confirm that any decay rate present cannot be much
larger.

V. MICROSCOPIC INTERPRETATION AND SCALING OF
THE OSCILLATIONS

The large oscillation in the exponential growth of the atom
number shown in Fig. 2 was also observed in other experi-
ments [10, 13, 16, 19]. Here we analyze this oscillation within
the Bogoliubov framework and show that it stems from two
ingredients: the anomalous correlation between opposite mo-
mentum quasiparticles and the diabatic transfer from the in-
teracting basis to the non-interacting one.

Bogoliubov transformation – During the parametric excita-
tion, the number of quasiparticles grows exponentially. We
refer here to the quasiparticle operators as the operators 𝑏̂𝑘
which diagonalize the Hamiltonian at any time. These quasi-
particles correspond to superpositions of 𝑁 atoms moving in
one direction and 𝑁 − 1 moving in the other. Since quasi-
particles are produced coherently in ±𝑘 pairs, the superpo-
sition of these moving atoms creates a standing wave in the
atomic density, which oscillates at frequency 𝜔𝑘 as observed
in Refs. [10–12, 19]. This standing wave corresponds to a su-
perposition of equal numbers of atoms at momenta 𝑘 and −𝑘 ,

whose number is minimal whenever the density is momentar-
ily stationary. As this occurs twice per cycle, it oscillates at
frequency 2𝜔𝑘 . At (almost) any instant there is thus an excess
of moving atoms above the minimum, and this excess can be
interpreted physically as driving the movement of the density
pattern, i.e. as those atoms which are moving from regions of
decreasing density into regions of increasing density.

Mathematically, the quasiparticle and atomic operators 𝑏̂𝑘
and 𝑎̂𝑘 are related by a Bogoliubov transformation 𝑎̂𝑘 =

𝑢𝑘 𝑏̂𝑘 + 𝑣𝑘 𝑏̂
†
−𝑘 and characterized by (𝑢𝑘 , 𝑣𝑘) coefficients [68].

The number of atoms 𝑛at
𝑘
= ⟨𝑎̂†

𝑘
𝑎̂𝑘⟩ with momentum 𝑘 can be

evaluated in the quasiparticle basis 𝑏̂𝑘 and is given by

𝑛at
𝑘 = 𝑣2

𝑘 +
(
𝑢2
𝑘 + 𝑣2

𝑘

)
⟨𝑏̂†

𝑘
𝑏̂𝑘⟩ + 2𝑢𝑘𝑣𝑘Re

(
⟨𝑏̂𝑘 𝑏̂−𝑘⟩

)
, (5)

where we have used ⟨𝑏̂†
𝑘
𝑏̂𝑘⟩ = ⟨𝑏̂†−𝑘 𝑏̂−𝑘⟩. When 𝑔1 is modu-

lated, all the terms of Eq. (5) experience an oscillation. How-
ever, the amplitudes of 𝑢𝑘 , 𝑣𝑘 and ⟨𝑏̂†

𝑘
𝑏̂𝑘⟩ are small and the

large oscillation in the atom number is caused by the last term
of Eq.(5), see Appendix A 1.

If the number of atoms 𝑛at
𝑘

is directly probed within the trap,
Eq. (5) must be evaluated within the trap. In the regime of
exponential growth 𝐺𝑘 𝑡 ≥ 1, we have |⟨𝑏̂𝑘 𝑏̂−𝑘⟩| ∼ ⟨𝑏̂†

𝑘
𝑏̂𝑘⟩

and the relative oscillation amplitude 𝐴𝑘 only depends on the
(𝑢𝑘 , 𝑣𝑘) Bogoliubov coefficients

𝐴inst
𝑘 =

2 |𝑢𝑘 | |𝑣𝑘 |
𝑢2
𝑘
+ 𝑣2

𝑘

=

(
1 + ℏ2𝑘2

2𝑚𝑔1𝑛1

)−1

(6)

which is approximately equal to 0.7 with our parameters.
However, experiments that measure atoms in momentum
space do so either after time-of-flight expansion (as in our
case) or by imaging atoms following a phase-space rota-
tion [69, 70], as in Ref. [16]. In both cases, the measurement is
performed once the atoms cease to interact and quasiparticles
and atom operators are formally identical: 𝑢𝑘 = 1 and 𝑣𝑘 = 0.
Then, the amplitude of the observed oscillation depends on
the mapping of the collective excitation state to the atomic
one and this depends on the rate of change of the quasiparticle
frequency ¤𝜔𝑘/𝜔𝑘 . This can be seen from Eq. (1) where a high
value of ¤𝜔𝑘/𝜔𝑘 induces a mixing between the 𝑘 and −𝑘 . This
point has also been discussed in the context of other analog
gravity experiments in Ref. [71].

(A)diabatic mapping – If the interaction is switched off sud-
denly with respect to 1/𝜔𝑘 , the state of the system is instan-
taneously projected onto the atomic plane wave basis in a
way similar to an in situ fluorescence measurement. Exper-
imentally this situation is realized when interactions are tuned
using a Feshbach resonance [16, 44] or in an optical lattice
[23, 72]. On the other hand, if the interaction term 𝑔1𝑛1 de-
creases slowly so that ¤𝜔𝑘 ≪ 𝜔2

𝑘
, the system is in the so-called

phonon evaporation regime [65], and the collective excitation
state is mapped adiabatically onto the atomic basis.

Intermediate case – In our experiment, the interaction
strength is driven by the transverse width of the BEC 𝑔1 ∝
𝜎−2. Even if the dipole trap is turned off instantaneously, the
transverse width increases on a time scale of the order of 𝜔−1

⊥ .
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FIG. 4. A more adiabatic mapping of the quasiparticles to the
atoms. a, Numerical solution and b, experimental plot of the evolu-
tion of the number of atoms when the transverse laser power, shown
in the inset, is abruptly turned off (solid and round markers, in red)
or ramped down in 1 ms (dashed line and square markers, in green).

As the frequency of the excited quasiparticles corresponds
precisely to this timescale, we are neither in the adiabatic nor
in the diabatic regime. The observed oscillation amplitudes
in Figs. 2 and 4b are about 0.5, smaller than 𝐴inst

𝑘
= 0.7 and

close to the amplitude found numerically (see Fig. 4a). Al-
though we cannot strictly reach it experimentally, we can ap-
proach the adiabatic case by slowly ramping down the trans-
verse laser power. The resulting evolution of the atom number
for a 1.5 ms ramp is shown in green squares Fig. 4b. One sees
that the oscillations, if present, are quite weak. On the other
hand, the total number of atoms is higher than for the sudden
turnoff. This is because the pair production mechanism con-
tinues to operate during the ramping down of the laser power
(see Appendix A 4).

VI. CONCLUSION

Our observations of exponential growth and oscillation of
the particle number are in agreement with Bogoliubov theory
as applied in Ref. [37]. The data clearly shows the paramet-
ric nature of the process and the fact that the excitations are
generated in a pairwise manner.

The measured growth rate is in very good agreement with
the predicted value, even in the presence of a trap inhomo-
geneity. The precision of our measurements cannot isolate and
measure the small effect of quasiparticle interactions, which
should reduce the growth rate [61]. Nevertheless, our results
do confirm the smallness of this decay, if present. Future work
will aim to improve the experimental procedure in order to in-
crease the signal-to-noise ratio and further isolate this effect.

In addition, we envision repeating the above experiments in
a square potential [73] in order to realize a situation closer to
the present theoretical model. Alternatively, the model could
be improved by including the density inhomogeneities. Also,
exciting the gas with a Feshbach resonance would allow to
excite other 𝑘 modes while our excitation method is restricted
to modes satisfying 𝜔𝑘 = 𝜔⊥ [74]. This perspective is inter-
esting because the predicted decay rate of Ref. [61] depends
on 𝑘 .

The observed oscillations are well understood. If we could
precisely measure their amplitude and estimate 𝑢𝑘 and 𝑣𝑘 , we
would be able to compare the quasiparticle population to their
anomalous correlation (see Eq. (5)). This comparison would
demonstrate the (non)separability of the two-mode state [38]
without looking at many-body correlation functions [75].
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Appendix A: Model

In this appendix, we describe with a bit more details than
in the main text our modeling of the longitudinal excitations
produced in the experiment and refer the reader to Refs. [37,
67] for more details.

Collective excitations – Our gas is neither in the 3D cigar-
shaped regime nor in the 1D mean-field regime [76] so we
model its transverse profile using an effective Gaussian ansatz,
assumed cylindrically symmetric for simplicity, characterized
by its width 𝜎 [63, 64]. The evolution of 𝜎 is controlled by
the trapping frequency [37]

¥𝜎 + 𝜔2
⊥ (𝑡) 𝜎 =

ℏ2

𝑚2𝜎3 . (A1)

Neglecting transverse excitations, we integrate over this
profile to have an effective one-dimensional gas with a
contact interaction 𝑔1 = 2ℏ𝑎2

𝑠/(𝑚𝜎2) [77]. The small
excitations around the BEC of our weakly interacting gas
are well described within Bogoliubov theory [78]. We split
the atomic field Ψ̂(𝑧) into a classical piece Ψ0 describing
the homogeneous BEC, and a quantum perturbation 𝛿Ψ̂(𝑧)
describing the uncondensed atoms, and truncate the Hamil-
tonian at second order in this perturbation 𝐻 (2) [79] [80].
The dynamics of these interacting uncondensed atoms can
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be conveniently recast as that of freely evolving collective
excitations, or quasiparticles. The are represented by anni-
hilation (creation) operators 𝑏̂

(†)
𝑘

related to the atomic one
𝑎̂
(†)
𝑘

by a Bogoliubov transformation 𝑎̂𝑘 = 𝑢𝑘 𝑏̂𝑘 + 𝑣𝑘 𝑏̂
†
−𝑘 ,

where the values of 𝑢𝑘 , 𝑣𝑘 are given in the main text. The
quasiparticle operators by definition diagonalize the Hamil-
tonian 𝐻 (2) =

∑
𝑘≠0 ℏ𝜔𝑘 (𝑔1)𝑏̂†𝑘 𝑏̂𝑘 with 𝜔𝑘 given by Eq. (1)

and 𝑛1 = |Ψ0 |2 the density of the BEC. Thus, a collective
excitation of momentum 𝑘 has an energy ℏ𝜔𝑘 and consists
of atoms with opposite momenta ±𝑘 that keep interacting.
Our experimental set-up allows us to measure atom numbers
𝑛at
𝑘
= ⟨𝑎̂†

𝑘
𝑎̂𝑘⟩ as a function of momentum 𝑘 which is related

to the number of quasiparticles 𝑛𝑘 = ⟨𝑏̂†
𝑘
𝑏̂𝑘⟩ and their

anomalous correlations 𝑐𝑘 = ⟨𝑏̂𝑘 𝑏̂−𝑘⟩ by Eq. (5).

Dynamics – Working in the Heisenberg picture, the evo-
lution of the quasiparticle content is given by Eq. (1) whose
solution between two times 𝑡 ≥ 𝑡′ is given by a Bogoliubov
transformation on the quasiparticle operators [36]

𝑏̂𝑘 (𝑡) = 𝛼 (𝑡; 𝑡′) 𝑏̂𝑘 (𝑡′) + 𝛽★ (𝑡; 𝑡′) 𝑏̂†−𝑘 (𝑡
′) , (A2)

where 𝛼 (𝑡; 𝑡′) , 𝛽 (𝑡; 𝑡′) are solutions of Eq. (1) with initial
conditions 𝛼 (𝑡′; 𝑡′) = 1, 𝛽 (𝑡′; 𝑡′) = 0. At the start of the ex-
periment the trap is held constant 𝜔⊥ = 𝜔⊥,0, the gas’s trans-
verse size 𝜎 is fixed and so 𝜔𝑘 is time-independent, which
leaves only the first term in Eq. (1) encoding the free evo-
lution 𝑏̂𝑘 (𝑡) = 𝑏̂𝑘 (0)𝑒−𝑖𝜔𝑘 𝑡 . The quasiparticle density is
time-independent 𝑛𝑘 (𝑡) = 𝑛𝑘 (0) and the correlation oscillates
𝑐𝑘 (𝑡) = 𝑒−𝑖2𝜔𝑘 𝑡𝑐𝑘 (0) at 2𝜔𝑘 . When the trap frequency 𝜔⊥
is varied, the transverse size of the gas reacts according to
Eq. (A1) and 𝜔𝑘 becomes time-dependent. The second term
in Eq.(1) then does lead to a production of pairs of opposite
momentum quasiparticles which can be separated in the fol-
lowing two stages [37].

1. Modulation

We initially modulate the trap at resonance 𝜔⊥,0 for 𝛿𝑡 =

4 × 𝜋/𝜔⊥,0 after which we hold the trap at 𝜔⊥,0 for a du-
ration Δ𝑡. Eq. (A1) then predicts that 𝜎 first experiences
breathing oscillations at frequency 2𝜔⊥,0 with linearly grow-
ing amplitude, which then persist at fixed amplitude during
the hold time, see Fig. 1. This variation leads 𝑔1 to oscil-
late at 2𝜔⊥,0 [37]. To get explicit expressions, we neglect the
growth phase and assume sinusoidal oscillation with a fixed
amplitude 𝑎 i.e. 𝑔1 (𝑡) is given by Eq. (3) from 𝑡 = 0 to Δ𝑡.
This modulation corresponds to a two-mode squeezing oper-
ation on the ±𝑘 modes which are resonant with the process
𝜔±𝑘 = 𝜔⊥,0 [36]. Assuming an initial thermal population
𝑛±𝑘 (0) = 𝑛in

𝑘
and 𝑐𝑘 (0) = 0, Eq. (A2) can be solved using

a rotating wave approximation and gives [36]

𝑛𝑘 (𝑡) +
1
2
=

(
𝑛in
𝑘 + 1

2

)
cosh (𝐺𝑘 𝑡) ,

𝑐𝑘 (𝑡) = 𝑒−2𝑖
∫ 𝑡

0 𝜔𝑘 (𝑡 ′ )d𝑡 ′
(
𝑛in
𝑘 + 1

2

)
sinh (𝐺𝑘 𝑡) ,

(A3)
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FIG. 5. a, Quasiparticle and atomic populations during the excita-
tion. b, Corresponding evolution of the real part of the anomalous
correlation Re(𝑐𝑘) (left 𝑦 scale, solid yellow) and of the Bogoliubov
coefficients 𝑢𝑘 and 𝑣𝑘 (right 𝑦 scale, in blue dashed).

where the growth rate is given by Eq. (4). Neglecting the early
linear phase [67], these quantities grow exponentially

𝑛𝑘 (𝑡) +
1
2
→

(
𝑛in
𝑘 + 1

2

)
1
2
𝑒𝐺𝑘 𝑡 ,

𝑐𝑘 (𝑡) → 𝑒−2𝑖
∫ 𝑡

0 𝜔𝑘 (𝑡 ′ )d𝑡 ′
(
𝑛in
𝑘 + 1

2

)
1
2
𝑒𝐺𝑘 𝑡 .

(A4)

To check that Eqs (A4) capture the essential features of
the quasiparticle production process, we compare them to a
more complete numerical description of the experiment, see
Sec. A 4 for details. The results are shown Fig 5.

The number of atoms 𝑛at
𝑘

, defined in Eq. (5) and shown in
solid red, exhibits pronounced oscillations as witnessed ex-
perimentally. In contrast, and in agreement with Eq. (A4),
the number of quasiparticles 𝑛𝑘 , shown in dashed blue, grows
exponentially with only shallow oscillations not captured by
Eq. (A4) because of the rotating wave approximation. Since
these cannot be responsible for the oscillations of 𝑛at

𝑘
, we ex-

amine in Fig. 5b, the evolution of the other terms in Eq. (5):
the Bogoliubov coefficients 𝑢𝑘 , 𝑣𝑘 , shown in dashed blue
lines, and the real part of the anomalous correlation Re(𝑐𝑘),
in solid yellow. While the Bogoliubov coefficients do exhibit
small oscillations, their amplitude is much smaller than that
of Re(𝑐𝑘), which is thus the source of the large oscillations in
𝑛at
𝑘

as claimed in the main text. Note that a non-zero value of
𝑣𝑘 in Eq. (5) is also required.

2. Expansion

After Δ𝑡 the trap is switched off, i.e. 𝜔2
⊥ → 0, the gas

expands 𝜎 → ∞, and the atoms stop interacting 𝑔1 → 0,



7

see Fig. 1. This change of interaction also affects the quasi-
particle state via a Bogoliubov transform given by Eq. (A2)
which has to be solved from opening time 𝑡 = Δ𝑡 to detec-
tion time, effectively 𝑡 = ∞ using the variation of 𝜎 computed
from Eq. (A1). We make this dependence implicit and write
𝛼op. = 𝛼(∞;Δ𝑡), 𝛽op. = 𝛽(∞;Δ𝑡). Since at 𝑡 = ∞ the gas
is non-interacting (𝑔1 = 0), we have 𝑢𝑘 (∞) = 1, 𝑣𝑘 (∞) = 0
and quasiparticles correspond to atoms, in particular 𝑛at

𝑘
(∞) =

𝑛𝑘 (∞). The number of atoms with momentum 𝑘 at the end
of the expansion is thus related to the quasiparticle state at the
opening time via

𝑛at
𝑘 (∞) + 1

2
=

(
|𝛼op. |2 + |𝛽op. |2

) [
𝑛𝑘 (Δ𝑡) +

1
2

]
+ 2Re

[
𝛼op.𝛽

★
op.𝑐𝑘 (Δ𝑡)

]
.

(A5)

Eq. (A5) demonstrates that the details of the opening proce-
dure must be taken into account since they condition the way
the quasiparticle number and correlations are revealed in the
detected atom number [65]. First, the coefficients depend on
the opening time Δ𝑡 that selects initial values of 𝜎 and ¤𝜎.
Yet, since 𝜎 oscillates at fixed amplitude we expect that de-
pendence to be weak. Second, they will depend strongly on
how quickly the trap is turned off [37], which gives different
evolutions for 𝜎 computed from Eq. (A1).

In the regime of exponential growth where |𝑐𝑘 (Δ𝑡) | ∼
𝑛𝑘 (Δ𝑡), we can immediately read off the relative amplitude
of the oscillations:

𝐴𝑘 =
2|𝛼op. | |𝛽op. |

|𝛼op. |2 + |𝛽op. |2
≈ 2|𝛽op. | . (A6)

This is the analogue of Eq. (6) when the interaction switch-
off is not instantaneous, while the approximation of 2|𝛽op. |
applies when |𝛽op. |2 ≪ |𝛼op. |2 ≈ 1. The relative amplitude
of the oscillations thus provides us with a measurement of the
strength of the Bogoliubov transformation associated with the
expansion.

3. Analytical growth of the atom number

We now combine the effect of the modulation and the ex-
pansion to derive the expected growth in the atom number.

We assume that 𝑔1 is modulated sinusoidally as Eq. (3) for
a duration Δ𝑡 before opening the trap. The number and corre-
lation of quasiparticles are then given by Eq. (A3) at opening
time. The detected number of atoms 𝑛det

𝑘
in the resonant mode

𝜔𝑘 = 𝜔𝑑/2 after trap expansion is obtained by inserting these
function in Eq. (A5) and multiplying the overall number atom
number by 𝜂 the quantum efficiency of the detector. We then

obtain

𝑛det
𝑘 (Δ𝑡) =𝑛0 + 2 cosh (𝐺𝑘Δ𝑡) × Δ𝑛

× [1 + 𝐴𝑘 tanh (𝐺𝑘Δ𝑡) cos (2𝜔𝑘Δ𝑡 + 𝜑𝑘)] .
(A7)

with

𝑛0 = −𝜂

2
,

Δ𝑛 = 𝜂

(
𝑛in
𝑘 + 1

2

)
1
2

(
|𝛼op. |2 + |𝛽op. |2

)
,

𝐴𝑘 =
2|𝛼op. | |𝛽op. |

|𝛼op. |2 + |𝛽op. |2
,

𝜑𝑘 = 2
∫

[𝜔⊥ − 𝜔𝑘 (𝑡)] − Arg
[
𝛼op.𝛽

★
op.

]
,

(A8)

which for 𝐺𝑘Δ𝑡 ≥ 1 gives Eq.(2). In Eq. (2), we have sup-
pressed the time-dependence of 𝜑 which is expected to be
small compared to the rotating phase 2𝜔⊥Δ𝑡.

4. Numerical simulation of both phenomena

The predicted amplitude in Eq. (A8) relies on the value
of |𝛽op |, which characterizes the Bogoliubov transformation
from the quasiparticle to the atomic basis. We can then sim-
ulate numerically the expected amplitude within our model.
Using our Gaussian ansatz, we infer 𝑔1𝑛1 and using the disper-
sion relation we find the resonant modes 𝑘 such that 𝜔𝑘 = 𝜔⊥.
We then numerically solve the full dynamics of 𝜎 given by
Eq. (A1): an initial four periods of modulation at 2𝜔⊥,0, a
hold time of Δ𝑡, and then the opening. Using this variation
we numerically solve Eq. (A2) from an initial thermal state of
quasiparticles at temperature 𝑇 = 35 nK, to a late enough time
after the trap switch-off such that the Bogoliubov coefficients
have become time-independent. This gives us access numer-
ically to the number of detected atoms Eq. (2), with a 25%
quantum efficiency. We repeat this procedure for two differ-
ent switch-off ramps, a very short one of 10 µs and a longer
one of 1.5 ms, matching that of the experimental realizations
shown in Fig. 4b. The corresponding evolution of the atom
number is shown in Fig. 4a. The solid red line corresponds to
the case where the dipole trap power is switched off abruptly
and the dashed green curve assumes that the dipole trap power
is ramped down in 1.5 ms. In agreement with the experimen-
tal data, we observe pronounced oscillations of relative am-
plitude 𝐴𝑘 ≈ 0.34 for the shortest ramp, roughly half that of
the in situ oscillations for which Eq. (6) gives 𝐴inst

𝑘
≈ 0.7,

and much reduced oscillation for the slowest turn off, with an
amplitude of 0.1. As for the experimental data, we observe
that the green dashed curve is above the solid red one, an in-
dication of the additional quasiparticle production that occurs
during the slow switch-off.
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Faraday waves in Bose-Einstein condensates, Phys. Rev. A 76,
063609 (2007).

[9] J. H. V. Nguyen, M. C. Tsatsos, D. Luo, A. U. J. Lode, G. D.
Telles, V. S. Bagnato, and R. G. Hulet, Parametric excitation of
a bose-einstein condensate: From faraday waves to granulation,
Phys. Rev. X 9, 011052 (2019).

[10] J. Smits, L. Liao, H. T. C. Stoof, and P. van der Straten, Ob-
servation of a space-time crystal in a superfluid quantum gas,
Phys. Rev. Lett. 121, 185301 (2018).

[11] J. Smits, H. T. C. Stoof, and P. van der Straten, Spontaneous
breaking of a discrete time-translation symmetry, Phys. Rev. A
104, 023318 (2021).

[12] J. Smits, H. T. C. Stoof, and P. van der Straten, On the long-
term stability of space-time crystals, New Journal of Physics
22, 105001 (2020).

[13] H. Fu, L. Feng, B. M. Anderson, L. W. Clark, J. Hu, J. W.
Andrade, C. Chin, and K. Levin, Density waves and jet emis-
sion asymmetry in bose fireworks, Phys. Rev. Lett. 121, 243001
(2018).

[14] K. Kwon, K. Mukherjee, S. J. Huh, K. Kim, S. I. Mistakidis,
D. K. Maity, P. G. Kevrekidis, S. Majumder, P. Schmelcher,
and J.-y. Choi, Spontaneous formation of star-shaped surface
patterns in a driven bose-einstein condensate, Phys. Rev. Lett.
127, 113001 (2021).

[15] Z. Zhang, K.-X. Yao, L. Feng, J. Hu, and C. Chin, Pattern for-
mation in a driven Bose–Einstein condensate, Nature Physics
16, 652 (2020).

[16] N. Liebster, M. Sparn, E. Kath, J. Duchene, K. Fujii, S. L.
Görlitz, T. Enss, H. Strobel, and M. K. Oberthaler, Observa-
tion of pattern stabilization in a driven superfluid, Phys. Rev. X
15, 011026 (2025).

[17] V. Gondret, C. Lamirault, R. Dias, L. Camier, A. Micheli,
C. Leprince, Q. Marolleau, J.-R. Rullier, S. Robertson, D. Bo-
iron, and C. I. Westbrook, Observation of entanglement
in a cold atom analog of cosmological preheating (2025),
arXiv:2506.22024 [cond-mat.quant-gas].

[18] P. Capuzzi and P. Vignolo, Faraday waves in elongated super-
fluid fermionic clouds, Phys. Rev. A 78, 043613 (2008).

[19] D. Hernández-Rajkov, J. E. Padilla-Castillo, A. del Rı́o-Lima,
A. Gutiérrez-Valdés, F. J. Poveda-Cuevas, and J. A. Seman,
Faraday waves in strongly interacting superfluids, New Journal
of Physics 23, 103038 (2021).

[20] R. Cominotti, A. Berti, A. Farolfi, A. Zenesini, G. Lamporesi,
I. Carusotto, A. Recati, and G. Ferrari, Observation of mass-
less and massive collective excitations with faraday patterns
in a two-component superfluid, Phys. Rev. Lett. 128, 210401

(2022).
[21] K. Łakomy, R. Nath, and L. Santos, Faraday patterns in coupled

one-dimensional dipolar condensates, Phys. Rev. A 86, 023620
(2012).

[22] P. Capuzzi, M. Gattobigio, and P. Vignolo, Suppression of fara-
day waves in a bose-einstein condensate in the presence of an
optical lattice, Phys. Rev. A 83, 013603 (2011).

[23] N. Dupont, L. Gabardos, F. Arrouas, G. Chatelain, M. Ar-
nal, J. Billy, P. Schlagheck, B. Peaudecerf, and D. Guéry-
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[33] Z. Tian, S.-Y. Chä, and U. R. Fischer, Roton entanglement in
quenched dipolar bose-einstein condensates, Phys. Rev. A 97,
063611 (2018).

[34] J. Macher and R. Parentani, Black-hole radiation in bose-
einstein condensates, Phys. Rev. A 80, 043601 (2009).

[35] X. Busch and R. Parentani, Dynamical casimir effect in dissi-
pative media: When is the final state nonseparable?, Phys. Rev.
D 88, 045023 (2013).

[36] X. Busch, R. Parentani, and S. Robertson, Quantum entangle-
ment due to a modulated dynamical casimir effect, Phys. Rev.
A 89, 063606 (2014).

[37] S. Robertson, F. Michel, and R. Parentani, Controlling and ob-
serving nonseparability of phonons created in time-dependent
1d atomic bose condensates, Phys. Rev. D 95, 065020 (2017).

[38] S. Robertson, F. Michel, and R. Parentani, Assessing degrees
of entanglement of phonon states in atomic bose gases through
the measurement of commuting observables, Phys. Rev. D 96,
045012 (2017).

[39] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R.
Johansson, T. Duty, F. Nori, and P. Delsing, Observation of the
dynamical Casimir effect in a superconducting circuit, Nature
479, 376 (2011).

[40] J.-C. Jaskula, G. B. Partridge, M. Bonneau, R. Lopes, J. Ru-
audel, D. Boiron, and C. I. Westbrook, Acoustic analog to the

https://doi.org/10.1098/rstl.1831.0018
https://doi.org/10.1098/rstl.1831.0018
https://doi.org/https://doi.org/10.1146/annurev.fl.22.010190.001043
https://doi.org/10.1017/S0022112094003642
https://doi.org/10.1017/S0022112094003642
https://doi.org/10.1103/PhysRevLett.89.210406
https://doi.org/10.1103/PhysRevLett.89.210406
https://doi.org/10.7566/JPSJ.92.064602
https://doi.org/10.7566/JPSJ.92.064602
https://doi.org/10.1103/PhysRevLett.98.095301
https://doi.org/10.1103/PhysRevLett.98.095301
https://doi.org/10.1103/PhysRevA.76.063609
https://doi.org/10.1103/PhysRevA.76.063609
https://doi.org/10.1103/PhysRevX.9.011052
https://doi.org/10.1103/PhysRevLett.121.185301
https://doi.org/10.1103/PhysRevA.104.023318
https://doi.org/10.1103/PhysRevA.104.023318
https://doi.org/10.1088/1367-2630/abbae9
https://doi.org/10.1088/1367-2630/abbae9
https://doi.org/10.1103/PhysRevLett.121.243001
https://doi.org/10.1103/PhysRevLett.121.243001
https://doi.org/10.1103/PhysRevLett.127.113001
https://doi.org/10.1103/PhysRevLett.127.113001
https://doi.org/10.1038/s41567-020-0839-3
https://doi.org/10.1038/s41567-020-0839-3
https://doi.org/10.1103/PhysRevX.15.011026
https://doi.org/10.1103/PhysRevX.15.011026
https://arxiv.org/abs/2506.22024
https://arxiv.org/abs/2506.22024
https://arxiv.org/abs/2506.22024
https://doi.org/10.1103/PhysRevA.78.043613
https://doi.org/10.1088/1367-2630/ac2d70
https://doi.org/10.1088/1367-2630/ac2d70
https://doi.org/10.1103/PhysRevLett.128.210401
https://doi.org/10.1103/PhysRevLett.128.210401
https://doi.org/10.1103/PhysRevA.86.023620
https://doi.org/10.1103/PhysRevA.86.023620
https://doi.org/10.1103/PhysRevA.83.013603
https://doi.org/10.1073/pnas.2300980120
https://doi.org/10.1073/pnas.2300980120
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.2300980120
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.12942/lrr-2011-3
https://doi.org/https://doi.org/10.1016/j.ppnp.2025.104198
https://doi.org/https://doi.org/10.1016/j.ppnp.2025.104198
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1103/PhysRevA.69.033602
https://doi.org/10.1103/PhysRevA.69.033602
https://doi.org/10.1103/PhysRevA.70.063615
https://doi.org/10.1088/1367-2630/7/1/248
https://doi.org/10.1088/1367-2630/7/1/248
https://doi.org/10.1103/PhysRevA.76.033616
https://doi.org/10.1140/epjd/e2009-00314-3
https://doi.org/10.1103/PhysRevA.97.063611
https://doi.org/10.1103/PhysRevA.97.063611
https://doi.org/10.1103/PhysRevA.80.043601
https://doi.org/10.1103/PhysRevD.88.045023
https://doi.org/10.1103/PhysRevD.88.045023
https://doi.org/10.1103/PhysRevA.89.063606
https://doi.org/10.1103/PhysRevA.89.063606
https://doi.org/10.1103/PhysRevD.95.065020
https://doi.org/10.1103/PhysRevD.96.045012
https://doi.org/10.1103/PhysRevD.96.045012
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561


9

dynamical casimir effect in a bose-einstein condensate, Phys.
Rev. Lett. 109, 220401 (2012).
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[54] P. Švančara, P. Smaniotto, L. Solidoro, J. F. MacDonald,
S. Patrick, R. Gregory, C. F. Barenghi, and S. Weinfurtner, Ro-
tating curved spacetime signatures from a giant quantum vortex,
Nature 628, 66 (2024).

[55] K. Falque, A. Delhom, Q. Glorieux, E. Giacobino, A. Bra-
mati, and M. J. Jacquet, Polariton fluids as quantum field theory
simulators on tailored curved spacetimes, Phys. Rev. Lett. 135,
023401 (2025).

[56] F. Chevy, V. Bretin, P. Rosenbusch, K. W. Madison, and J. Dal-
ibard, Transverse breathing mode of an elongated bose-einstein
condensate, Phys. Rev. Lett. 88, 250402 (2002).

[57] B. Jackson and E. Zaremba, Accidental suppression of landau
damping of the transverse breathing mode in elongated bose-

einstein condensates, Phys. Rev. Lett. 89, 150402 (2002).
[58] L. Pitaevskii and S. Stringari, Elementary excitations in trapped

bose-einstein condensed gases beyond the mean-field approxi-
mation, Phys. Rev. Lett. 81, 4541 (1998).

[59] R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and
C. I. Westbrook, Atomic Hong–Ou–Mandel experiment, Nature
520, 66 (2015).

[60] C. Leprince, V. Gondret, C. Lamirault, R. Dias, Q. Marolleau,
D. Boiron, and C. I. Westbrook, Coherent coupling of momen-
tum states: Selectivity and phase control, Phys. Rev. A 111,
063304 (2025).

[61] A. Micheli and S. Robertson, Phonon decay in one-dimensional
atomic bose quasicondensates via beliaev-landau damping,
Phys. Rev. B 106, 214528 (2022).

[62] S. Butera, D. Clément, and I. Carusotto, Position- and
momentum-space two-body correlations in a weakly interact-
ing trapped condensate, Phys. Rev. A 103, 013302 (2021).

[63] F. Gerbier, Quasi-1D Bose-Einstein condensates in the dimen-
sional crossover regime, Europhysics Letters (EPL) 66, 771
(2004).

[64] L. Salasnich, A. Parola, and L. Reatto, Effective wave equations
for the dynamics of cigar-shaped and disk-shaped bose conden-
sates, Phys. Rev. A 65, 043614 (2002).

[65] C. Tozzo and F. Dalfovo, Phonon evaporation in freely expand-
ing bose-einstein condensates, Phys. Rev. A 69, 053606 (2004).

[66] We believe this anisotropy to be small because both radii
breathe at the same frequency.

[67] A. Micheli and S. Robertson, Dissipative parametric reso-
nance in a modulated 1D Bose gas, Comptes Rendus. Physique
10.5802/crphys.250 (2024), online first.

[68] The Bogoliubov coefficients are given by 𝑢𝑘 , 𝑣𝑘 =

1
2

(√︁
ℏ𝑘2/(2𝑚𝜔𝑘) ±

√︁
2𝜔𝑘𝑚/(ℏ𝑘2)

)
. This transformation de-

pends on the quasiparticle frequency 𝜔𝑘 , which itself depends
on the interaction term 𝑔1𝑛1, see Eq. (1).

[69] S. Tung, G. Lamporesi, D. Lobser, L. Xia, and E. A. Cornell,
Observation of the presuperfluid regime in a two-dimensional
bose gas, Phys. Rev. Lett. 105, 230408 (2010).

[70] P. A. Murthy, D. Kedar, T. Lompe, M. Neidig, M. G. Ries, A. N.
Wenz, G. Zürn, and S. Jochim, Matter-wave fourier optics with
a strongly interacting two-dimensional fermi gas, Phys. Rev. A
90, 043611 (2014).

[71] A. Álvarez-Domı́nguez and P.-L. Álvaro, The relevance of ”on”
and ”off” transitions in quantum pair production experiments
(2025), arXiv:2505.04473 [gr-qc].
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