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Coherent coupling of momentum states: Selectivity and phase control
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We demonstrate the effect of pulse shaping in momentum-selective atomic Bragg diffraction. We compare
temporal square pulses, which produce sidelobes in momentum space, with other shapes that can produce more
nearly square momentum distributions. We produce pulses that simultaneously address two sets of velocity
classes and demonstrate that we can control the differential phase imprinted on them in a way that is insensitive
to laser phase fluctuations. Our work marks a significant step forward in testing Bell inequalities using massive
particles entangled in momentum.
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I. INTRODUCTION

The coherent coupling of quantum states is central to
many quantum technologies, including quantum computation,
simulation, and sensing [1–3]. Depending on the specific ap-
plication, this coupling must typically be optimized according
to various criteria such as efficiency, selectivity, speed, or
immunity from noise. Here we will discuss a common exam-
ple, the coupling of different atomic momentum states using
Bragg diffraction or momentum-selective Raman transitions
[2,4,5].

These coupling mechanisms can be understood as two-
photon transitions producing transfers between two well-
defined momentum classes [6]. In the Raman case, the
momentum transfer is accompanied by a transition between
two low-lying states in a three-level system [7]. They are
basic techniques in atom interferometry [7,8] as well as being
a spectroscopy technique for many-body physics [9]. Laser
beams producing the transfer are typically pulsed on for some
duration and, roughly speaking, the duration determines the
momentum selectivity of the pulse. Bragg diffraction has
been used to perform atomic Hong-Ou-Mandel and other in-
terferometry experiments which are working towards a Bell
inequality test with momentum-entangled atoms [10–13]. In
these experiments, both the momentum selection and the
control of the wave-packet phase are crucial. The transition
probability associated with a pulse depends on the momentum
of the atoms. In particular, the atomic response to a pulse
whose temporal profile is square leads to a transfer efficiency
which is not flat near the resonant momentum class and which
also contains sidelobes out of resonance [see Eq. (4)].

These drawbacks can be mitigated by choosing more com-
plex pulse shapes. Some authors have investigated the use
of Gaussian pulse shapes [14–16] and polychromatic fre-
quency spectra [17], while others have used optimal control
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techniques [18–22] to improve various aspects of interfer-
ometer performance. While highly effective couplings can
be engineered through optimal control techniques, the cost
function used for the optimization is very specific and the
resulting waveform is complex. Pulse-shaping protocols were
pioneered in the context of NMR [23,24] and have recently
found some applications in atom interferometry [25–27].
These earlier methods have the advantages of being general,
with analytical forms and depending on a small number of
parameters. However, they require changing the sign of the
two-photon Rabi frequency during the pulse [see Eq. (5)].

In this article we report the experimental realization of
these pulse-shaping techniques in the context of atomic Bragg
diffraction. We first demonstrate our ability to efficiently ad-
dress atoms in a given momentum class while suppressing the
coupling to others. We then extend these ideas to implement
a simple and effective method to simultaneously address two
sets of momentum classes and control their relative phase.

II. MODEL AND CALCULATIONS

Bragg diffraction can be understood as a two-photon transi-
tion coupling momenta separated by 2h̄k, with k = 2π

λ
sin α

2 ,
where α is the angle between the beams, each characterized
by a frequency ωi, a phase ϕi, and a Rabi frequency �i. In the
rotating frame, two momenta are coupled by an interaction
Hamiltonian

ĤI = h̄�R(t )

2
eiδt |p〉 〈p + 2h̄k| + H.c., (1)

where H.c. denotes the Hermitian conjugate and �R is the
two-photon Rabi frequency, defined as

�R = �1�
∗
2

2	
= |�1||�2|

2	
eiϕL , (2)
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FIG. 1. (a) Schematic diagram of the modulation technique to produce a sinc-shaped excitation. Here PI denotes proportional integral;
VCO, voltage-controlled oscillator; and AWG, arbitrary waveform generator. The two plots show the waveforms used to produce a sinc
excitation. The phase shifter used is a Mini-Circuits SPHSA-251+ component. The top panel shows the intensity waveform produced by
AOM 0. The bottom panel shows the phase shift applied to AOM 1. The 2.5 V corresponds to a π phase shift. (b) The horizontal BEC (hBEC)
is highly confined in the vertical direction and hence has a broad momentum distribution, much larger than the typical width of the Bragg
pulses used here. Thus only a part of the distribution is transferred. The vertical BEC (vBEC) has a narrow distribution in the z direction and
thus acts as a spectroscopic probe of the laser pulse distribution.

with ϕL = ϕ1 − ϕ2 the laser phase difference. We also define
the two-photon detuning δ,

h̄δ = h̄(ω2 − ω1) −
(

2h̄2k2

m
+ 2h̄k

m
p

)
, (3)

which is assumed to be small compared to 	, the one-photon
detuning from the excited state. The doublet is resonantly
coupled when the frequency difference ω2 − ω1 and the mo-
mentum p are such that δ = 0. Off-resonant doublets are still
coupled, but their transfer efficiencies are lower, a point that
is of central importance for this article. This Hamiltonian ĤI

can be derived from the dipole atom-light interaction of two
beams, after adiabatic elimination of the excited state due to
the large detuning 	 [28].

Given an atom in an initial momentum state |p〉, the above
interaction Hamiltonian takes the atom to the state cp |p〉 +
cp+2h̄k |p + 2h̄k〉. Assuming that δ is constant and that cp+2h̄k

remains small, first-order perturbation theory predicts

cp+2h̄k (δ) ∝
∫ t

0
dt ′�R(t ′)eiδt ′

, (4)

meaning that the deflection coefficient cp+2h̄k as a function
of the detuning is proportional to the Fourier transform of
the pulse �R as a function of time. Thus a square pulse
results in a momentum space profile in the form of a sinc
function [sinc(x) = sin x/x]. Conversely, one can realize a
transfer with a nearly square profile in momentum space by
having the atoms interact with a laser pulse whose profile is a
sinc function.

When the fraction of transferred atoms |cp+2h̄k|2 is large,
Eq. (4) is not exact; however, we will show that even for a 50%
or 100% transfer, a sinc is a simple and effective pulse shape in
our conditions. In the following, we denote by �M the mag-
nitude of the two-photon Rabi frequency, so a square pulse
corresponds to �R(t ) = �M during the pulse and �R(t ) = 0
otherwise. According to the Fourier relationship [see Eqs. (3)
and (4)], the selected momentum spectrum contains sidelobes
at momenta inversely proportional to the duration of the pulse.

A temporal sinc pulse in the interval [0, T ] is given by

�R(t ) = �Msinc[�S(t − T/2)]. (5)

The duration T of the sinc pulse has been chosen relative
to the typical 1/�S pulse oscillation period so as to retain
a significant number of sinc sidelobes (at least three for the
desired momentum response) while ensuring that the pulse is
short enough to avoid decoherence issues due to spontaneous
emission [see Fig. 1(a) for an example]. In order to produce
a deflector (100% transfer) one chooses �S = �M so that the
time integral of the Rabi frequency is π . For a 50:50 beam
splitter one chooses �S = 2�M. The use of a sinc pulse has
the advantage, compared to optimal control methods, of being
intuitive and having a simple analytical form. One can also
realize more complex pulse shapes [see Eq. (8) and Fig. 3].

In the above discussion, it is assumed that there is no
diffraction into higher orders, i.e., that we remain within the
so-called Bragg regime [2]. This limits the peak power of the
beams so that the peak transfer energy h̄�M remains below
the two-photon recoil energy h̄2k2/m. The pulse parameters
are chosen so that this condition, where only two diffraction
orders are coupled, is well satisfied. This is checked exper-
imentally by counting atoms at momenta p − 2h̄k, p + 4h̄k,
and so on.

For further confirmation, numerical calculations are con-
ducted using a multilevel model where levels are coupled two
by two through the interaction Hamiltonian from Eq. (1), i.e.,
without making a two-level approximation. The full Hamilto-
nian used for the simulations1 is therefore

Ĥsim = h̄�R(t )

2

∑
n

eiδ2nt |p + 2nh̄k〉 〈p + 2(n + 1)h̄k| , (6)

1The numerical results were obtained using the [29] solver of the
PYTHON SCIPY package. The Hamiltonian of Eq. (6) was truncated
at n ∈ [−2, 2]. Initially, the state is such that all the atoms are in the
considered momentum class p. The numerical figures are plotted as
a function of δ0/2π , which determines the resonant doublet.
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where

h̄δ2n = h̄(ω2 − ω1) − 2h̄k

m
[h̄k(2n + 1) + p]. (7)

In the results shown below, the higher-order terms have
negligible effect.

III. EXPERIMENTAL SETUP

In our experiment, we use a metastable helium Bose-
Einstein condensate (BEC) in two geometries, shown in
Fig. 1. The vertical BEC is in an optical dipole trap and is
elongated in the z direction, hence having a narrow velocity
distribution along this axis [30]; indeed, its width is negligible
for what follows. We make use of this BEC to perform the
spectroscopy measurements. The horizontal BEC is in a mag-
netic trap elongated in the x direction and has a broad velocity
distribution along the vertical axis z [31]. A 1083-nm laser,
red detuned by 	/2π = −800 MHz from the 2 3S1 → 2 3P0

transition, is split into two beams that intersect at the atomic
cloud with a vertical angle of α = 31◦. The Bragg velocity
is therefore 2h̄k/m = 49.6 mm s−1 along the vertical axis.
With this detuning and the pulse durations used, excitation
to the electronically excited state is negligible. To generate
the modulated Bragg pulses, the power is controlled by an
acousto-optic modulator (AOM) common to both beams and
locked to a reference signal using a feedback loop with a
70 kHz bandwidth (Fig. 1). This is a simple way to handle
the nonlinear response of the AOM while also compensating
for intensity drifts. The relationship between the (two-photon)
Rabi frequency and the power is calibrated using Rabi
oscillations.

To produce a sinc-shaped two-photon Rabi frequency, the
laser power at the output of AOM 0 is controlled to be propor-
tional to |�R(t )| with �R(t ) of Eq. (5), and a π phase shift is
added whenever the Rabi frequency changes sign (see Fig. 1).
The intensity and phase set points are sent numerically to an
arbitrary waveform generator which is triggered at a specific
time after the trap cutoff. The temporal accuracy of both the
trigger timing and the generated waveform are better than 1 µs.
The pulse shapes are limited by the 70 kHz bandwidth of the
power servo loop.

IV. EXPERIMENTAL RESULTS

A. Pulse-shaping results

After producing the vertical BEC, we turn off the trap
and allow the cloud to expand for 1 ms. We then apply a
velocity-independent Raman pulse to transfer the atoms from
the mJ = 1 state to the mJ = 0 state, rendering the falling
cloud insensitive to magnetic-field gradients, while the 1-ms
expansion reduces the effect of interactions. We then apply the
Bragg pulse, including a frequency chirp to compensate for
the acceleration due to gravity. After diffraction, the atoms fall
46 cm onto a microchannel plate (MCP) detector [32], which
records the arrival times and transverse positions of individ-
ual atoms. The approximately 300-ms time of flight is long
enough that the detected times and positions correspond to the
three-dimensional velocities of the atoms after the diffraction
pulse. Due to the narrow velocity distribution (3 mm s−1), the

FIG. 2. Experimental (circles) and theoretical (solid lines) trans-
fer efficiency of a beam splitter for (a) a square pulse and (b) a sinc
pulse where 1 kHz in detuning corresponds to 2 mm s−1 in velocity.
The theoretical expectations are computed from the Schrödinger
equation using the Hamiltonian given in Eq. (1) without any fit
parameter and integrated over a range of 1 kHz to account for the
experimental binning range. The parameters are �M/2π = 1.88 kHz
and durations of 133 µs and 1 ms for the square and sinc pulses,
respectively.

cloud is uniformly diffracted into momentum states with an
upward Bragg velocity and barely expands along the vertical
axis during the time of flight. The diffracted atoms fall onto
the MCP about 5 ms after the undiffracted atoms.

To illustrate the effect of pulse shaping, we scan the fre-
quency difference ω2 − ω1, hence the detuning δ, and observe
the fraction of diffracted atoms for several pulse shapes. The
results are shown in Figs. 2 and 3 and compared to theoretical

FIG. 3. Experimental (circles) and theoretical (solid lines) trans-
fer efficiency of a deflector for (a) a square pulse, (b) a sinc pulse,
and (c) a REBURP. The theoretical expectations are integrated
over a range of 1 kHz to account for the experimental binning
range. The parameters are �M/2π = 1.88 kHz and a duration of
266 µs for the square pulse, �M/2π = 2.05 kHz and a duration of
1.5 ms for the sinc pulse, and �M/2π = 0.57 kHz and a duration of
1.8 ms for the REBURP. For the REBURP, all points in the interval
[−0.5 kHz, 0.5 kHz] are better than 98%.
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expectations, computed without any fit parameter by integrat-
ing the Schrödinger equation using the coupling Hamiltonian
defined in Eq. (6) for a multilevel model. The error bars
provided in Figs. 2 and 3 account for the typical standard
deviation obtained over about ten runs.

For a 50% transfer, which can be thought of as a beam
splitter, we compare a square pulse in Fig. 2(a) with a sinc
pulse in Fig. 2(b) with the same two-photon Rabi frequency
(and therefore the same peak power). Although the fraction
of transferred atoms is not small, we observe that the sinc
pulse eliminates the side lobes and leads to an almost square
profile. The rising and falling slopes of the sinc pulse are 4
times greater than for the square pulse. The resonance width,
which we define to be the range over which the transferred
fraction is close to 1/2 (between 47.5% and 52.5%), is greater
for the sinc pulse by a factor of 1.5. The results are in very
good agreement with the expected theoretical profiles in terms
of width, efficiency, and spectral shape. Although it was not
used to obtain the data in Fig. 1, pulse shaping also lends itself
easily to apodization, which would help to further flatten the
spectrum for the sinc pulse.

We perform the same experiment for a pulse with 100%
transfer (a momentum deflector). As mentioned in Sec. II,
the effectiveness of the sinc-shaped pulses is directly due to
the Fourier relationship between the temporal profile of the
two-photon Rabi frequency and the momentum response to
the pulse. The Fourier relationship is not exact for large pop-
ulation transfers, and so other shapes have been developed,
one of which we discuss below. We compare a square pulse
to a sinc pulse and to a so-called refocusing band-selective
pulse with uniform response and phase (REBURP), which
was identified in the context of NMR [23,24] and theoretically
studied for Bragg diffraction in Ref. [26]. The REBURP is
defined in terms of a Fourier series as

�R(t ) = �M

(
A0 +

∑
n=1

Ancos(n�St )

)
(8)

for 0 � t � 2π/�S, where �S = 2A0�M and the An are co-
efficients up to the 15th order.2 Like the sinc, this pulse also
undergoes sign changes.

The parameters of the three pulses (power and duration)
were chosen so as to have the same half-width in momen-
tum. The results are plotted in Fig. 3. It is observed that for
the sinc pulse, the deviations from the Fourier relationship
shown in Eq. (4) become significant. Although not giving
a square spectrum, the sinc still reduces the sidelobes and
gives a sharper and flatter profile than the square pulse: The
slopes at a 50% transfer are 1.8 times greater for the sinc
pulse, while the resonance width (defined here as the range
for which there is at least a 95% transfer) increases by a factor
of 1.5 compared to the square pulse. The REBURP leads to a
momentum deflector for which the resonant momentum range
is wider (by a factor of 2 compared to the square pulse), flatter,
and sharper (the rising and falling slopes are 2 times greater

2The coefficients used are An = [0.48, −1.03, 1.09, −1.59, 0.86,

−0.44, 0.27, −0.17, 0.10, −0.08, 0.04, −0.04, 0.01, −0.02, 0.00,

−0.02]. The peak Rabi frequency is 6.24 times �M.

FIG. 4. Effect of an overall modulation of the diffraction pulse.
Two velocity doublets are selected by the same pulse (�M/2π =
1.5 kHz, T = 1.5 ms) and the separation is controlled by the mod-
ulation frequency �D. (a) A modulation frequency of �D/2π =
2.5 kHz leads to a velocity difference of 5 mm/s, while (b) a modu-
lation frequency of �D/2π = 10 kHz leads to a velocity difference
of 20 mm/s. Data are averaged over 50 experimental runs with the
horizontal BEC. (c) Transfer efficiency of the vertical BEC (color
scale) as a function of the detuning. Each slice shows a different
modulation frequency.

than the square pulse) than the others. We know of no equally
effective pulse shapes in the case of 50% transfer [26].

B. Application: Dual coupling

Pulse shaping also allows one to select two distinct mo-
mentum doublets from a distribution. This can be achieved
with a single pair of Bragg beams modulated by a cosine
function. In the case of a sinc pulse, we have

�R(t ) = �Msinc[�S(t − T/2)]cos(�Dt/2). (9)

From the interaction Hamiltonian given in Eq. (1), one can
see that a two-photon Rabi frequency �Mei�Dt/2 results in an
effective detuning which will shift the resonance by �D/2.
Therefore, multiplying any given pulse by a cosine induces a
resonance with two momentum doublets, provided that the du-
ration of the pulse is long enough. The frequency �D controls
the separation between the selected momentum doublets.

We illustrate in Fig. 4 this process experimentally using
the horizontal BEC for two values of �D. As expected, there
are two resonant velocity classes, separated by 	v = �D/2k.
Using the vertical BEC, we tested this technique over a large
range of �D and confirmed the expected linear variation of
the selected velocity class difference by varying the detun-
ing between the two Bragg beams. The frequency difference
between the observed resonance peaks as a function of �D

is fitted, and we find a linear relationship with a slope of
1.02(4), which confirms that the modulation frequency �D

indeed controls the resonance difference.
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FIG. 5. Diagram of the interferometer used to test the phase
stability of the Bragg pulses. Two π/2 pulses create four falling
clouds interfering two by two when they overlap at the detector. The
fringe period depends on the value of the interferometer time τ . The
inset displays fringes observed with the interferometer for τ = 2 ms,
which is much smaller than the free fall duration. The color encodes
the density as a function of the arrival time T defined in Eq. (11)
and the horizontal position Y . Data are averaged over 25 repetitions:
The good contrast confirms the stability of the phase difference for a
duration of the order of τ .

C. Differential phase control

We can also tune the phase imprinted on the atomic wave
packets. To this end, a phase parameter θ can be added to the
modulation function

�R(t ) = �Msinc[�S(t − T/2)]cos[(�Dt + θ )/2], (10)

where θ controls the relative phase imprinted between the two
selected momentum doublets through its contribution to the
phase in Eq. (2). The phase imprinted is ϕL ± θ/2, depending
on the considered momentum doublet.

To investigate this phase imprinting effect, we have re-
alized an interferometer using the Bragg pulses. In the
following, the procedure is described in two main steps. First,
we describe the interferometer and the results that were ob-
tained using unmodulated pulses as defined in Eq. (5). The
observation of an interference patterns aims at confirming
that a stable phase can be imprinted on the atoms. Second,
we show that the use of modulated pulses like in Eq. (10)
thereby realizes two parallel interferometers, each involving a
different momentum doublet. The objective here is to ensure
precise control over the phase difference between these two
doublets through the pulse-shape parameter θ .

1. Unmodulated pulses

The interferometer consists of two consecutive beam split-
ter pulses, as shown in Fig. 5. A horizontal BEC is first split
into two parts by a beam splitter sinc pulse similar to that in
Fig. 2. After a time τ , a second identical pulse is applied and
the resulting four clouds fall on the detector. Two clouds with
the same momentum after the second pulse (p or p + 2h̄k)
have a spatial separation of 2h̄kτ/m, which is much smaller
than their spatial width, so they overlap. Since they did not
acquire the same phase during their fall, the two clouds in-
terfere and produce fringes while falling on the detector. The
interference pattern depends on a phase � given by

� = 2kgτT − φ1 + φ2 + φgrav, (11)

where g is the acceleration of gravity, T the arrival time at
the detector, and φi the phase imprinted by each pulse on the

atoms (i = 1 or 2). The constant term φgrav corresponds to the
relative phase accumulated between the two Bragg pulses. In a
gravity field, it depends on g and τ but not T . Propagating the
phase of both clouds from their position right after the second
pulse to the detector leads to an additional phase difference
2kgτT .

In Fig. 5 we show the interference patterns corre-
sponding to two overlapping clouds for a wait time of
τ = 2 ms, obtained using two successive sinc beam splitters
with �M/2π = 5 kHz. The fringes show high contrast even
when averaged over 25 repetitions. For each Bragg pulse, the
phase φi imprinted by the pulse is the phase difference ϕL

between the lasers, so the stability of the fringes confirms that
the laser phase difference is stable on a timescale of 2 ms.

The fringes can be shifted at will by adding a voltage to
the phase shifter during the second pulse. We observe that the
atomic phase � varies linearly with the electronically added
phase with slope 1.

2. Modulated pulses

More importantly, when using pulses modulated by a
cosine function as in Eq. (10), we create two parallel inter-
ferometers A and B involving different momentum doublets
(see Fig. 6). For the first pulse, we use θ = 0, leading to
φA

1 = φB
1 = ϕL. For the second pulse, we add a phase at the

origin θ/2 to the cosine modulation function. We denote by
A (B) the momentum doublet whose resonance was shifted
by −�D/2 (+�D/2). Phases ∓θ/2 are therefore imprinted on
the two momentum doublets with opposite signs. The phases
φ2 in Eq. (11) are given by

φA
2 = ϕL − θ/2, φB

2 = ϕL + θ/2, (12)

where the laser phase difference ϕL was shown to remain
constant over the timescale of the interferometer. Therefore,
we have

φA
2 − φA

1 = −θ/2, φB
2 − φB

1 = θ/2 (13)

such that the fringes from each resonant doublet are shifted in
opposite directions when varying θ , in a way that is indepen-
dent of the two laser phases.

Figure 6(a) shows the resulting fringes. As expected, we
observe four regions exhibiting interference fringes, corre-
sponding to two parallel interferometers. The interference
patterns in region A centered at an arrival time of 296 ms
and region B centered at 298 ms are shifted by ∓�D/2,
respectively, relative to the resonance that would be obtained
without modulating the Rabi frequency. In order to verify that
a different phase is indeed imprinted on these two momentum
doublets, we fit the interference patterns for different values of
θ . The phase of the interference pattern is plotted as a function
of θ in Figs. 6(d) and 6(e) for each of these clouds. The slopes
of the linear fits as a function of θ are −0.51(2) for region
A and +0.50(2) for region B. This confirms that the phase at
the origin θ of the pulse-shaping modulation function controls
the relative phase imprinted between the two selected velocity
classes.

The ability to control the relative phase of two parallel
beam splitters is of particular importance in an experiment
such as that of Ref. [11]. In this experiment, a BEC emits a
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FIG. 6. (a) Interference fringes from two parallel interferome-
ters, which are produced by modulated π/2 pulses as in Eq. (9).
Data are averaged over 350 experimental runs, conducted with a
modulated sinc pulse with �M/2π = 5 kHz, �D/2π = 10 kHz, and
τ = 4 ms. Close-ups of interference regions (b) A and (c) B show the
fringes for phases θ = 0 (solid line) and θ = π/2 (dashed line). The
phase of the interference patterns, defined in Eq. (11), shifts with
θ . (d) and (e) Also shown is the phase of the interference pattern
as a function of θ for (d) interference region A and (e) interference
region B. A linear fit yields slopes of −0.51(2) for region A and
+0.50(2) for region B. The parameters used for these two plots are
�M/2π = 1.5 kHz, �D/2π = 10 kHz, and τ = 1 ms.

superposition of atom pairs with opposite momenta via a four-
wave-mixing process [33,34]. If the population is low, the
output state is |ψ〉 = 1√

2
(|p,−p〉 + |q,−q〉) when restricting

the study to two atom pairs (p,−p) and (q,−q). This two-
particle four-mode state can be used as an input of a Bell
interferometer when coupling p and −q on one hand (momen-
tum doublet A) and q and −p on the other hand (momentum
doublet B). A test of Bell inequality can therefore be realized
[35], provided a control parameter can tune the two-particle
interference, typically through the phase imprinted on the
atoms by Bragg beam splitters. This was done in Ref. [13]
and very recently in Ref. [36]. Notably, Ref. [36] reported
a nonlocal Bell correlation between momentum-entangled
massive particles. However, the independent control of the

phase of each momentum doublet was not achieved, pre-
venting the authors from demonstrating a violation of the
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [37].

In the configuration proposed in Ref. [11], such an inequal-
ity requires one to control independently φA, the phase of
doublet A, and φB, the one of doublet B. The Bell parameter
involved in the CHSH inequality varies then as φA − φB for
the above entangled state. With the setup presented in this
paper with a dual beam splitter as demonstrated in Fig. 6,
this relative phase is well controlled, in contrast to Ref. [11],
where it was fixed. Moreover, by controlling the absolute
phase of the Bragg laser beam as in Ref. [36], independent
control of φA and φB will be achieved, paving the way towards
a violation of the CHSH Bell inequality. In addition, we have
performed simulations of a Bell inequality experiment and
shown that not only is the phase controlled but also the phase
remains nearly constant over the velocities inside a given
momentum doublet, ensuring that all the atoms in the doublet
contribute to the Bell signal [38].

V. CONCLUSION

We have demonstrated precise control over the reflectivity
of Bragg diffraction using shaped pulses. Our experimental
setup provides access to negative or even complex two-photon
Rabi frequencies, thereby enhancing the selectivity and reflec-
tivity characteristics of Bragg transfers. For beam splitters,
a sinc pulse produces a square-shaped spectrum, while for
deflectors, a REBURP yields a more nearly square profile
than a sinc pulse. These pulses offer the advantage of being
parameter sparse and easily adaptable to various experimental
conditions.

By modulating a pulse with a cosine function, dual
Bragg coupling with resonances with two momentum dou-
blets can be achieved. An interferometry experiment further
demonstrates fine control over the phase difference imprinted
between each momentum doublet, ensuring that this differ-
ence remains, by design, independent of the phases of the
lasers used. This is of particular interest when trying to act
differently on two momentum classes that are very close
spatially.
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