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Sub-shot-noise interferometry with two-mode quantum states
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We study the feasibility of sub-shot-noise interferometry with imperfect detectors, starting from twin Fock
states and two-mode squeezed vacuum states. We derive analytical expressions for the corresponding phase
uncertainty. We find that one can achieve phase shift measurements below the standard quantum limit, as long
as the losses are smaller than a given threshold, and that the measured phase is close enough to an optimal value.
We provide our analytical formulas in a PYTHON package, accessible online.
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I. INTRODUCTION

The ability to map many physical quantities onto a
phase shift makes interferometry both a crucial and generic
technique in metrology. Because of entanglement, some
nonclassical states can lead to improved phase resolution
compared to their classical counterparts [1–4]. Given an ex-
perimental resource of N identical bosons, an attractive choice
is to use NOON states 1√

2
(|N, 0〉 + |0, N〉). Indeed, NOON

states lead to a “Heisenberg-limited” phase uncertainty
�φ = O(N−1) [5–7], known to be optimal [8,9]. This is a
much more advantageous scaling than the best phase sensitiv-
ity reachable with classical systems (�φ = 1/

√
N), provided

by a coherent state, and usually called the standard quan-
tum limit (SQL) or shot noise. Other authors have proposed
the use of “twin Fock” (TF) states |TF〉 = |N/2, N/2〉 and
have shown that they also can achieve 1/N scaling in phase
sensitivity [10,11].

Unfortunately, NOON states are extremely fragile and be-
have even worse than classical states when losses are present
[12,13]. In addition, they are challenging to prepare, and
their realization with N larger than a few units has not been
achieved [14,15].

The effect of loss in quantum enhanced interferometers has
been studied more generally, and states minimizing the phase
uncertainty in the presence of loss have been found [16–18].
These states can be expressed as superpositions of states of
the form

|N :: m〉± = 1√
2

(|N − m, m〉 ± |m, N − m〉). (1)

As NOON states, these states involve superpositions of strong
population imbalances between the two modes (a NOON state
is in fact the special case m = 0). This imbalance is respon-
sible for the enhanced sensitivity, but these states can retain
their coherence despite a loss of order m particles, and thus
are more robust [19]. In the presence of losses, however, even
these states can only surpass the standard quantum limit by
a numerical factor, meaning that �φ = O(N−1/2) is the best
scaling possible [17,20]. Here again, although the optimal
states are conceptually interesting, their experimental realiza-
tion is not presently realistic.

On the other hand, the mixing on a beam splitter of the twin
Fock states mentioned above gives rise to a superposition of
|2n :: 2k〉± states [21–23], and one might wonder about the
robustness of such a superposition in the presence of loss.
A related state is the two-mode squeezed state (TMS) [24],
which is a superposition of twin Fock states with different
particle numbers. Both of these states are widely used and can
be produced with a large number of particles [25–30]. These
states are different from another type of experimentally realiz-
able state, the “spin squeezed” states (see Fig. 5 of Ref. [4]).

Other authors have studied the behavior of twin Fock states
in nonideal interferometers [31]. The focus of that work was
on procedures to identify different decoherence mechanisms.
Our interest here is rather to analyze how losses affect the
scaling of the phase sensitivity with the number of particles.
Unlike for spin squeezed states, the relevant observable is not
simply the population difference and in fact several choices
are a priori possible. We will follow other authors in using the
variance of the population difference as the interferometric
observable [10,11]. We find that the sensitivity in this case
only differs from that of the optimal state by a numerical
factor and that one can surpass the standard quantum limit
if the losses are low enough.

II. OUR MODEL

We will consider the interferometer configuration repre-
sented in Fig. 1, and for the sake of clarity we will distinguish
the input state (before the first beam splitter) that one must
prepare, from the probe state (after the first beam splitter) that
exhibits some phase sensitivity. We assume that the losses
are only caused by the detectors, having the same quantum
efficiency η, and we will consider �φ = 1/

√
ηN to be the

standard quantum limit, against which we should compare
our results. Our input state is either a twin Fock state or a
two-mode squeezed state. Note that without an initial beam
splitter, these states produce interference patterns that are
independent of the phase [21,22,32].

Two-mode squeezed states are spontaneously generated
from vacuum with a quadratic interaction Hamiltonian. By
denoting ξ = reiθ the squeezing parameter, whose norm
r is proportional to the interaction time, such a state
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FIG. 1. Generic diagram of an interferometry experiment using
two-mode pure states at the input modes (â1, â2) of the first beam
splitter. After the generation of a probing state, a phase shift is
applied, and the detection is performed (described by a positive oper-
ator valued measure). The 50:50 beam splitter, corresponding to the
unitary operator Ŝ, is applied twice, and the phase difference between
the two arms is φ. The detectors have a finite quantum efficiency η,
assumed to be equal, and are modeled with additional beam splitters
Ŝη applied to the output modes of the interferometer (b̂1, b̂2). The
operators ĉ1 and ĉ2 represent the modes that are effectively detected.

reads

|TMS〉 = 1

cosh(r)

∞∑
n=0

einθ tanhn(r)|n, n〉 (2)

in the Fock basis relative to the modes â1 and â2 (see Fig. 1).
The action of the interferometer on the input state is de-

scribed by the unitary operator Û :

Û = Ŝ

(
eiφ 0

0 1

)
Ŝ = ei φ

2

[
i sin

(
φ

2

)
cos

(
φ

2

)
− cos

(
φ

2

) −i sin
(

φ

2

)
]
. (3)

The losses are modeled by additional beam splitters Ŝη placed
at the output ports:

Ŝη =
[ √

η
√

1 − η

−√
1 − η

√
η

]
. (4)

With the input and output annihilation operators defined in
Fig. 1, we introduce the additional notations for the number
operators,

N̂αi = α̂
†
i α̂i / α ∈ {a, b, c}, i ∈ {1, 2}, (5)

and the detected particle number difference at the output, with
and without losses,

D̂η = 1
2

(
N̂c2 − N̂c1

)
,

D̂ = 1
2

(
N̂b2 − N̂b1

) = D̂η=1. (6)

We also denote N = 〈N̂a1 + N̂a2〉 = 〈N̂b1 + N̂b2〉 the aver-
age number of particles in the initial state. In the case of
a twin Fock state |n, n〉, we simply have N = 2n, whereas
for a two-mode squeezed state N = 2 sinh2(r), i.e., twice the
average number of particles per mode. The mean number of
detected particles therefore is ηN .

The operator Û provides the expansion of D̂ in terms of the
input modes:

D̂ = 1
2

[
cos(φ)

(
N̂a1 − N̂a2

) + i sin(φ)(â†
1â2 − â†

2â1)
]
. (7)

Therefore, whatever the phase φ and the quantum efficiency
η, a twin Fock state placed at the input of the interferometer
yields a vanishing expectation value for D̂. Due to linearity,

the same is true for two-mode squeezed states. This means
that D̂ itself is not a suitable observable to recover information
about the phase φ with those states. However, one can study
D̂2 which characterizes the width of these distributions.

Indeed, one can derive [33]〈
D̂2

η

〉
tf = η2 N

4

(
1 + N

2

)
sin2(φ) + η(1 − η)

N

4
,

〈
D̂2

η

〉
tms = η2 N

2

(
1 + N

2

)
sin2(φ) + η(1 − η)

N

4
, (8)

making explicit the phase dependence. The η(1 − η) N
4 offset

is the Poissonian noise due to the fact that the losses at each
detector are uncorrelated.

III. RESULTS

The phase uncertainty can be computed analytically using

�φ =
√

Var
[
D̂2

η

]
∣∣ ∂
∂φ

[〈
D̂2

η

〉]∣∣ . (9)

If the detectors are lossless (η = 1), the phase uncertainties
are given by

�φtf = 1

cos(φ)
√

N (N + 2)

√
2 +

(
−3 + N

4
+N2

8

)
sin2(φ),

�φtms = 1

cos(φ)
√

N (N + 2)

√
1 + 2N (N + 2) sin2(φ).

(10)

In the neighborhood of φ = 0, we find Heisenberg-limited
scaling �φ = O(N−1). We also note that the TMS state out-
performs the TF state by a factor of

√
2.

When we include losses, the analogous expressions be-
come rather long and we leave them to the Supplemental
Material [33]. In the example in Fig. 2, we show that the phase
uncertainty �φ can be smaller than the standard quantum
limit. In addition, the phase uncertainty has a minimum at a
nonzero phase φ0 which depends on the detection efficiency,
number of particles, and the input state (see Fig. 3). The
optimal phase is shifted because, in the presence of losses,
Var[D̂2

η] does not vanish at φ = 0, leading to a divergence
�φ =

φ=0
O(φ−1). Also, unlike the lossless case, in this situa-

tion the twin Fock state outperforms the two-mode squeezed
state even at the optimal phase φ0 [33].

This type of profile has been observed experimentally [34].
From the study of the variations of �φ as a function of φ, one
can compute the optimal phase φ0 around which an experi-
ment should operate to perform precision measurements. This
means that during an experiment, one must be able to tune a
phase offset, for instance, in optics by adding a tiltable glass
plate.

In Fig. 3 we show color maps of the values of φ0 as a func-
tion of the number of particles N and the quantum efficiency
η. Regions where sub-shot-noise measurements are possible
correspond to nonhashed regions. It appears in these maps that
this question is mostly related to the quantum efficiency of
the detectors: depending on whether one is dealing with twin
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FIG. 2. Ratio between the phase uncertainty �φ and the SQL,
using respectively the twin Fock state (in blue) and two-mode
squeezed state (in red) as input states of the interferometer. The
dashed lines correspond to the situation where the quantum effi-
ciency of the detectors is assumed to be perfect (η = 1), whereas
the plain lines refer to detectors with finite quantum efficiency (here
η = 0.95). Both types of states have an average population of 100
particles (50 per mode). We also give the gain in decibel defined as
G = 20 log(

√
ηN �φ).

FIG. 3. Optimal phase φ0 that maximizes the phase resolution
during a measurement, plotted as a function of the number of par-
ticles in the interferometer N and the quantum efficiency of the
detectors η. The red hatches exhibit the subdomain of the (η, N )
plane where no measurement below the SQL can be performed.
Isolines of φ0 are plotted in black. The top graph represents φ0 for
the TF state, while the bottom graph refers to the TMS state.

FIG. 4. Asymptotic behavior of the ratio between the phase un-
certainty �φ0 (i.e., �φ estimated at the optimal phase φ0) and the
SQL, as a function of the number of particles, for both TF and TMS
states. In the case of TF states, the number of particles N is restricted
to even integers. The quantum efficiency is set to η = 0.95. The point
at N = 2 showing a TMS sensitivity better than TF is an illustration
of the points made below Eq. (10) that in the lossless case the
TMS performs slightly better but that this advantage disappears with
decreasing η and increasing N (see Supplemental Material [33]).
Unlike the lossless case which provides an N−1 scaling, the ratios
converge towards a finite limit (dashed line), meaning that the SQL
is surpassed only by a constant factor. We also give the gain in decibel
defined as G = 20 log(

√
ηN �φ0 ).

Fock or two-mode squeezed states, a threshold of η ≈ 0.7 or
respectively η ≈ 0.9 must be achieved to surpass the standard
quantum limit.

We have computed �φ0 [33], the phase uncertainty when
the measurement is performed at the optimal phase φ0. When
N is small, �φ0 varies similarly to a power law �φ0 ≈ 1/Nα

with 0.5 < α < 1, depending on the value of η (an example
is plotted in Fig. 4). Experimentally, in this region one obtains
significant gains with respect to the standard quantum limit by
increasing the number of particles. In the asymptotic region,
where N goes to infinity, we recover the �φ0 = O(N−1/2)
scaling [17,20].

We also computed

γ (η) = lim
N→∞

√
ηN �φ0, (11)

which is the ratio between �φ0 and the standard quantum
limit, in the asymptotic limit. This quantity tells us what value
of η must be reached to go below the SQL. It has been proven
[17] that √

ηN �φ �
√

1 − η, (12)

but this bound is tight only when using optimal input states,
as well as an observable which is not explicitly known. In our
case, the function γ is actually a simple dilation of the lower
bound [Eq. (12)] (see Fig. 5):

γ tf (η) =
√

3
√

1 − η,

γ tms(η) =
(

2

5

)1/4√
5 + 2

√
10︸ ︷︷ ︸

≈2.676

√
1 − η. (13)

Our simple measurement protocol is therefore similar to an
optimal situation where ideal states are used.
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FIG. 5. Ratio between the phase uncertainty �φ0 and the SQL,
in the asymptotic regime, as a function of the quantum efficiency [cf.
Eq. (11)]. We find that both TF and TMS states give a profile which
is proportional to the one obtained with an optimized input state
(green dashed line). We also see in this graph the minimal values of
η leading to sub-shot-noise measurements (these values correspond
to the limit N → ∞ of the red lines in Fig. 3).

IV. CONCLUSION

We have shown that two classes of experimentally acces-
sible states, twin Fock and two-mode squeezed states, can
behave in a way reminiscent of ideal ones with respect to their
phase sensitivity in interferometers. In the absence of any loss,
their phase sensitivity exhibits O(N−1) scaling, as do NOON
states. On the other hand, in the presence of loss, they are more
robust than NOON states. Although the sensitivity scales only
as O(N−1/2), they can still surpass the standard quantum limit
if the losses are kept small enough. In this sense they resemble

other ideal states which have been shown to be optimal in the
presence of loss, only differing from the optimal states by a
numerical factor [see Eq. (13)]. We show in Fig. 4 that using
a twin Fock state and a 95% quantum efficiency results in an
8 dB improvement compared to the standard quantum limit
which is not very far from the theoretical bound of 13 dB
given by Eq. (13). For a two-mode squeezed state the gain is
only 4.4 dB.

We emphasize that minimizing the loss is critical. Figure 5
shows that both types of state require a minimum quantum
efficiency to achieve a gain. Figure 3 shows that this minimum
is roughly independent of the number of particles on that state.
Despite this drawback, we expect that such improvements
could be useful in some interferometers: for example, when
increasing the number of particles to reduce the shot noise is
not practical. Whether twin Fock or two-mode squeezed states
constitute a real advantage compared to spin squeezing will
require more work in the future using comparisons in realis-
tic experimental situations [4]. The fact that these relatively
accessible states are not far from the optimized ones is an
encouraging sign.

Our analytical formulas are provided in the Supplemental
Material and are implemented in a PYTHON package, accessi-
ble online [35].
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I. PARAMETRIZATION OF THE PROBLEM

I.1. Operator definitions

|𝑛, 𝑛⟩
or

|TMS⟩
�̂�

𝑒𝑖𝜙
�̂�

�̂�𝜂

�̂�𝜂

m
easurem

ent

�̂�1 �̂�1 �̂�1

�̂�1

�̂�2 �̂�2 �̂�2

�̂�2

Figure S1. Scheme of the interferometer that we study. â1 and â2 are the input modes, 50:50 beam splitters, corresponding
to the unitary operator Ŝ are applied twice, and the phase difference between the two arms is φ. The detectors placed at the
output ports have a finite quantum efficiency η, assumed to be the same, and that is modelled with additional beam splitters
Ŝη applied to the output modes of the interferometer (b̂1, b̂2). The operators ĉ1 and ĉ2 represent the modes that are effectively
detected. The modes v̂1 and v̂2 represent the vacuum channels.

Following the notation of fig. S1, we denote N the average value of the total number of atoms in the interferometer:

N ,
〈
N̂a1 + N̂a2

〉
=

〈
N̂b1 + N̂b2

〉
(1)

We have

Ŝ =
1√
2

(
1 1
−1 1

)
(2)

corresponding to the special case of a beam splitter that does not apply any phase shift.

Φ̂ =

(
eiφ 0
0 1

)
(3)

Û = ŜΦ̂Ŝ = ei
φ
2

 i sin
(

φ
2

)
cos

(
φ
2

)
− cos

(
φ
2

)
−i sin

(
φ
2

) (4)

(
b̂1
b̂2

)
= Û

(
â1
â2

)
(5)

We also have the beam splitters modelling the losses:

Ŝη =

( √
η

√
1− η

−
√
1− η

√
η

)
(6)

such that

ĉi =
√
η b̂i +

√
1− η v̂i / i ∈ {1, 2} (7)

We finally introduce notations for the number operators:

N̂αi
= α̂†

i α̂i / α ∈ {a, b, c} , i ∈ {1, 2} (8)
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input spin operators: 
Ĵx = 1

2

(
â†1â2 + â†2â1

)
Ĵy = 1

2i

(
â†1â2 − â†2â1

)
Ĵz = 1

2

(
N̂a1 − N̂a2

) (9)

and the observables of interest: 
D̂η =

1

2

(
N̂c2 − N̂c1

)
D̂ =

1

2

(
N̂b2 − N̂b1

)
= D̂η=1

(10)

I.2. Two-mode squeezed vacuum state and preliminary results

We recall the definition of a two-mode squeezed vacuum (TMS) state, with average total population N :

|TMS〉 ,
√

2

2 +N

∞∑
n=0

(
N

2 +N

)n
2

|n, n〉 (11)

in order to keep compact notations during the calculations, we will often use the thermal weight:

Pth(n) =
2

2 +N

(
N

2 +N

)n

(12)

corresponding to the probability to measure n particles in a given mode of the TMS state.
We also highlight the fact that

Ĵz |n, n〉 = Ĵz |TMS〉 = 0 (13)

and finally: 〈
Ĵx

〉
=

〈
Ĵy

〉
= 0 (14)

for both twin Fock and two-mode squeezed vacuum states.

II. EXPANSION OF D̂, D̂2, D̂η AND D̂2
η

D̂ = cos(φ)Ĵz − sin(φ)Ĵy (15)

D̂2 = cos2(φ)Ĵ2
z + sin2(φ)Ĵ2

y − 2 sin(φ) cos(φ)ĴyĴz + i sin(φ) cos(φ)Ĵx (16)

Since there is no particle in the vacuum channels for the input state, we always have v̂i |ψ〉input = 0. For the sake of
simplicity, we reduce the writing of D̂η and D̂2

η to the terms giving a non zero contribution. This means that (for
either D̂η and D̂2

η) we drop all the terms containing v̂i∈{1,2} annihilation operators on their rightmost side:

D̂η = ηD̂ +
1

2

√
η(1− η)

(
v̂†2 b̂2 − v̂†1 b̂1

)
(17)

D̂2
η = η2D̂2 +

η(1− η)

4

[
(v̂†1)

2 b̂21 + (v̂†2)
2 b̂22 + N̂b1 + N̂b2 − 2 b̂1b̂2 v̂

†
1v̂

†
2

]
+
η
√
η(1− η)

2

[
2D̂ b̂2v̂

†
2 +

1

2
b̂2v̂

†
2 − 2D̂ b̂1v̂

†
1 +

1

2
b̂1v̂

†
1

]
+
(1− η)

√
η(1− η)

4

[(
2N̂v2 − 1

)
b̂2v̂

†
2 +

(
2N̂v1 − 1

)
b̂1v̂

†
1

] (18)
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III. EXPECTATION VALUES OF D̂2 AND D̂2
η

III.1. Lossless case

With twin Fock states

Ĵ2
y =

1

4

[
N̂a1

(
1+ N̂a2

)
+ N̂a2

(
1+ N̂a1

)
− (â†1)

2 â22 − (â†2)
2 â21

]
(19)

thus with (13) (14) and (16), 〈
D̂2

〉
tf
=

〈
Ĵ2
y

〉
tf
sin2(φ) =

N

4

(
1 +

N

2

)
sin2(φ) (20)

With two-mode squeezed vacuum states

We can check that

m 6= n⇒
〈
n, n

∣∣∣D̂2
∣∣∣m,m〉

= 0 (21)

therefore assuring the simple relation: 〈
D̂2

〉
tms

=

∞∑
n=0

Pth(n)
〈
D̂2

〉
tf

(22)

leading to 〈
D̂2

〉
tms

=
N

2

(
1 +

N

2

)
sin2(φ) = 2

〈
D̂2

〉
tf

(23)

III.2. Lossy case (i.e. eq. (8) in the main paper)

With twin Fock states

Whatever the output state of the interferometer, we actually always have:

Var
[
N̂c2 − N̂c1

]
= η2 Var

[
N̂b2 − N̂b1

]
+ η(1− η)

〈
N̂b2 + N̂b1

〉
(24)

which in our case means: 〈
D̂2

η

〉
tf
= η2

〈
D̂2

〉
tf
+
η(1− η)

4
N (25)

and therefore 〈
D̂2

η

〉
tf
= η2

N

4

(
1 +

N

2

)
sin2(φ) +

η(1− η)

4
N (26)

With two-mode squeezed vacuum states

Again we can check on eq. (18) that

m 6= n⇒
〈
n, n

∣∣∣D̂2
η

∣∣∣m,m〉
= 0 (27)
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thus we still have 〈
D̂2

η

〉
tms

=

∞∑
n=0

Pth(n)
〈
D̂2

η

〉
tf

(28)

and finally: 〈
D̂2

η

〉
tms

= η2
N

2

(
1 +

N

2

)
sin2(φ) +

η(1− η)

4
N (29)

IV. EXPECTATION VALUES OF D̂4 AND D̂4
η

IV.1. Lossless case

With twin Fock states

We compute
〈
D̂4

〉
tf
=

∥∥∥D̂2
∣∣N
2 ,

N
2

〉∥∥∥2. The only non-vanishing term of D̂2 |n, n〉 are:
Ĵ2
y |n, n〉 =

1

4

(
2n (1 + n) |n, n〉 −

√
(n− 1)n (n+ 1) (n+ 2)

[
|n+ 2, n− 2〉+ |n− 2, n+ 2〉

])
Ĵx |n, n〉 =

1

2

√
n(n+ 1)

(
|n+ 1, n− 1〉+ |n− 1, n+ 1〉

) (30)

all these vectors are mutually orthogonal, then:∥∥∥∥D̂2

∣∣∣∣N2 , N2
〉∥∥∥∥2 =

N

4

(
1 +

N

2

)
sin2(φ)

[
1 +

3

2

(
−1 +

N

4
+
N2

8

)
sin2(φ)

]
(31)

With two-mode squeezed vacuum states

Looking at eq. (30), we can convince ourselves that the decomposition in the two-mode Fock basis of Ĵ2
y |n, n〉 and

Ĵx |n, n〉 with n ∈ N generate vectors that are all mutually orthogonal.
Therefore ∥∥∥D̂2 |TMS〉

∥∥∥2 =

∞∑
n=0

Pth(n)
∥∥∥D̂2 |n, n〉

∥∥∥2 (32)

and thus, ∥∥∥D̂2 |TMS〉
∥∥∥2 =

N

2

(
1 +

N

2

)
sin2(φ)

[
1 +

9N

2

(
1 +

N

2

)
sin2(φ)

]
(33)

IV.2. Lossy case

We follow the same procedure as before, but here the number of non-vanishing terms is much larger. We will only
write the final results.

With twin Fock states

With
P tf
0 (N, η) = 64− 320 η + 256 ηN + 384 η2 − 384 η2N + 96 η2N2 − 144 η3 + 156 η3N − 60 η3N2 + 9 η3N3

P tf
1 (N, η) = −4 (N + 2) η

(
16 + 24 (N − 2) η + 3

(
8− 6N +N2

)
η2
)

P tf
2 (N, η) = 3

(
−16− 4N + 4N2 +N3

)
η3

(34)
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we have: ∥∥∥∥D̂2
η

∣∣∣∣N2 , N2
〉∥∥∥∥2 =

ηN

1024

[
P tf
0 (N, η) + P tf

1 (N, η) cos(2φ) + P tf
2 (N, η) cos(4φ)

]
(35)

With two-mode squeezed vacuum states

With 
P tms
0 (N, η) = 8 + 24 η + 64 ηN + 48 η2N + 72 η2N2 + 12 η3N + 36 η3N2 + 27 η3N3

P tms
1 (N, η) = −4 (N + 2) η

(
4 + 18 ηN + 9 η2N2

)
P tms
2 (N, η) = 9N (N + 2)

2
η3

(36)

we have: ∥∥∥D̂2
η |TMS〉

∥∥∥2 =
ηN

128

[
P tms
0 (N, η) + P tms

1 (N, η) cos(2φ) + P tms
2 (N, η) cos(4φ)

]
(37)

V. PHASE UNCERTAINTY ∆φ

Phase uncertainties are computing using

∆φ =

√
Var

[
D̂2

η

]
∣∣∣∣ ∂∂φ [〈

D̂2
η

〉]∣∣∣∣ . (38)

V.1. Lossless case (i.e. eq. (10) in the main paper)

With twin Fock states

Injecting (20) and (31) into eq. (38), we get:

∆φtf =
1

cos(φ)
√
N(N + 2)

√
2 +

(
−3 +

N

4
+
N2

8

)
sin2(φ) (39)

With two-mode squeezed vacuum states

Injecting (23) and (33) into eq. (38), we get:

∆φtms =
1

cos(φ)
√
N(N + 2)

√
1 + 2N(N + 2) sin2(φ) (40)

V.2. Lossy case

With twin Fock states

Injecting (25) and (35) into eq. (38), we get:


Qtf

0 (N, η) = −144η3 + 384η2 − 320η + 3η3N3 − 52η3N2 + 64η2N2 + 132η3N − 320η2N + 192ηN + 64

Qtf
1 (N, η) = −4η (N + 2)

(
η2

(
N2 − 14N + 24

)
+ 16η (N − 3) + 16

)
Qtf

2 (N, η) = η3
(
N3 + 4N2 − 20N − 48

) (41)
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∆φ =
1

4N(N + 2) η2 |sin(2φ)|

√
η N

[
Qtf

0 (N, η) +Qtf
1 (N, η) cos(2φ) +Qtf

2 (N, η) cos(4φ)
]

(42)

With two-mode squeezed vacuum states

Injecting (29) and (37) into eq. (38), we get:
Qtms

0 (N, η) = 3η + 3η3N3 + 4η3N2 + 8η2N2 + η3N + 6η2N + 7ηN + 1

Qtms
1 (N, η) = −2η (N + 2)

(
2η2N2 + 4ηN + 1

)
Qtms

2 (N, η) = η3N(N + 2)2
(43)

∆φ =
1

N(N + 2) η2 |sin(2φ)|

√
η N [Qtms

0 (N, η) +Qtms
1 (N, η) cos(2φ) +Qtms

2 (N, η) cos(4φ)] (44)

VI. OPTIMAL PHASE φ0

When considering non-unit quantum efficiency, the phase uncertainty exhibits a minimum in φ0 > 0. In that case,
the study of the derivative of ∆φ as a function of φ gives the analytic expression of φ0.

With twin Fock states

φ0 = arccsc

[(
η3N(N2 − 12N + 12)− 2

√
2
(
(η − 1)(−16η2(5N2 − 19N + 12)

+ 2η5N(N3 − 15N2 + 48N − 36)

− 2η4N(N3 − 31N2 + 144N − 180)

+ η3(−33N3 + 268N2 − 540N + 144)

+ η(72− 48N)− 8))1/2

+16η2(N − 3)N + 8η(4N − 3) + 8

)1/2
]

(45)

VII. COMPARISON OF TF AND TMS STATE IN THE PRESENCE OF LOSSES

In the main paper, we noticed that when considering unit quantum efficiency, the TMS outperforms the TF by a
factor of

√
2, in the neighbourhood of the optimal phase φ0 = 0 (see eq. (10) of the main paper).

However, it is questionable to conclude that this implies that in such an idealized context (where the losses are zero)
the TMS state is superior to the TF state for performing a quantum interferometry experiment. Indeed, examination
of Fig. 2 reveals that the phase neighbourhood around which the TMS exhibits a better behaviour is very narrow.
Overall, even in the absence of losses, the phase domain where sub-shot-noise interferometry can be observed is much
larger using TF states than using TMS states. We posit that this

√
2 factor advantage of the TMS state at φ0 = 0 is

more likely a result of mathematical accident than a predictable outcome based on physical argument.
When losses are introduced, the optimal phase resolution continuously evolves towards a situation where TF states

perform better, regardless of the phase. This implies that, when focusing on the optimal phase resolution as a function
of the number of particles, one can find a crossing point between TF and TMS: numerically this crossing point exists
for 0.946 . η < 1 as it is shown in fig. S2 below.
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Figure S2. Asymptotic behaviour of the ratio between the phase uncertainty ∆φ0 (i.e. ∆φ estimated at the optimal phase
φ0) and the SQL, as a function of the number of particles, for both TF (blue points) and TMS states (red lines), for various
quantum efficiencies. We also give the gain in decibel defined as G = 20 log

(√
ηN ∆φ0

)
.
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