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The internship report provides a new vision of the heating of ions in the solar corona through Alvén waves.
Except the introduction which gives a brief overview of the solar corona problem and some references of the
existing literature, the following tries to be more pedagogical with the description of Alvén waves and the
complete derivation of the Hamiltonian of a test particle. The neo-adiabatic theory is introduced through
the pendulum in a slowly time-modulated gravity field before it is applied to the Alfvénic Hamiltonian. Last
part suggests a self-consistent explanation for energy transfer and heating of ions in the solar corona.

I. INTRODUCTION

In 1941, Edlén1 predicted for the first time a 1 MK
temperature in the solar corona through Fe IX and Ca
XIV lines. This temperature is much higher than the
photospheric temperature which is about 6000 K - or
even 4800 K in sunspots. Because of the second law
of thermodynamics, heat transfer cannot explain such
a difference of temperature, and the puzzle of how the
200 times hotter coronal temperature can be maintained
is called the coronal heating problem. Many models
have been developed to explain this heating. However,
they often rely on non-measurable parameters such as
magnetic field strength, viscosity, waves, turbulence,
etc... It complicates their comparison to experimental
data, since most measurements give basic physical
parameters, such as density, temperatures, and flow
speeds. For the interested reader, a short introduction
to some of those models is provided by M. Aschwanden
in the chapter 9 of Physics of the Solar Corona2.
In 1942, H. Alvén predicted the existence3 of
“electromagnetic-hydrodynamic waves” in a con-
ducting fluid placed in a constant magnetic field and,
as soon as 1947, he suggested that those waves might
play a role in the coronal heating problem4. If the
transfer mechanism from waves to particles is still
unknown, it has been observed that the energy carried
by Alvén waves is sufficient to explain the difference of
temperature5,6, at least in the quiet regions. Indeed,
radiative loss scales with density to the power 7/4,
thus strong inhomogeneities of the density in the solar
corona* imply that heating requirement varies by several
orders of magnitude depending on location.

The main obstacle towards the acceptance of Alvén
waves as a major coronal heating mechanism was the
alleged lack of an effective mechanism of energy transfer

a)Electronic mail: victor.gondret@ens.fr
*The electron density ranges from ne ∼ 106 cm−3 in upper corona
to 109 − 1011 cm−3 in quiet regions and flare tops.

from Alvén waves to the ions : under solar conditions, the
linear resonance condition between Alvén waves and the
cyclotron motion of magnetized ions - the most straight-
forward and effective mechanism for energy transfer -
is hardly fulfilled7 since the cyclotron frequency in the
lower corona may stay in the kHz range (or even more),
while most of the spectrum of Alvén waves lies in the
mHz range (this value might be increased up to the Hz
range according to some authors -see Ryutova 2001 - or
when the energy is carried by shock waves - see Zirn-
stein 2018 - but this does not change qualitatively the
problem), and Doppler shift effects are not enough to fill
in this gap. In the low-β solar environment a non-self-
consistent test-particle approach is reasonable, in which
ions are treated as independent particles interacting with
a prescribed spectrum of waves. The resulting Hamilto-
nian system is non-autonomous with a temporal varia-
tion parametrized by the ratio between Alvén waves fre-
quency ω and the ion cyclotron one Ω which is extremely
slow: ω/Ω � 1. Within this regime, it is intuitive to
argue that particle dynamics is adiabatic and that no
irreversible transfer of energy from the wave may take
place (i.e., no heating)8,9. Therefore, the existence of an
efficient mechanism for draining energy from the waves
to the ions is a non-trivial issue.

Two mechanisms have been proposed in order to
overcome this alleged difficulty. First, a series of
authors7,10–13 proposed that the particle trajectories be-
come chaotic� as a consequence of their interaction with a
strongly turbulent spectrum of Alvén waves. The decor-
relating mechanism is attributed to the coexistence of
a set of several waves with different and mutually irra-
tional wavenumbers and frequencies. However, a turbu-
lent wave spectrum is not needed at all: ion motion can
be made chaotic even in the presence of a single low-
frequency wave. This fact was first noticed experimen-
tally and interpreted by McChesney, Stern, and Bellan 14

in the context of laboratory ion heating by drift-Alfvén
waves. White, Chen, and Lin 15 , recovering numerically

�Chaotic motion implies irreversible dynamics and hence energy
flow.
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the same result, provided a unified treatment of longitu-
dinal (electrostatic) and transverse waves, showing how
under some constraints the two cases may be mapped
into the same formalism. Another paper reaching similar
conclusions is Voitenko and Goossens 16 . The numerical
parts of these studies converge all to the same qualitative
conclusions: a single low-frequency wave can transfer ir-
reversibly energy to ions provided that (i) the amplitude
of the wave is large enough, and (ii) the wave propa-
gates obliquely to the ambient magnetic field. Condition
(i) stems from the necessity of going beyond the linear
approximation; condition (ii) was noticed since long to
be necessary for heating to take place17. A single Alvén
wave propagating parallel to the equilibrium field does
not heat ions, but rather transfers reversibly energy, the
so-called “pseudo-heating”12,13. We will explain exten-
sively in this paper the rationale for this constraint.

White, Chen, and Lin 15 interpret their numerical re-
sults in terms of nonlinear resonances: adiabaticity is
broken because of the resonance between the wave fre-
quency and the ion guiding-center motion, which takes
place at a fraction of the cyclotron frequency, Ω/n.
Voitenko and Goossens 16 , on the other hand, suggest
a different picture. They argue that ions are acceler-
ated non-adiabatically at the occurrence of some match-
ing between the phase of the wave and that of ion mo-
tion. Heating, accordingly, does not take place in a con-
tinuous fashion but as a sequence of transitions where
the adiabatic invariants of the particle change abruptly.
Providing an accurate explanation of the breakdown of
adiabaticity is a lot more than of academic interest.
Indeed, according to the nonlinear resonance picture,
whenω → 0, higher and higher-order resonances need
to be excited (since ω = Ω/n). Intuitively, this re-
quires larger and larger wave amplitudes. This insight
looks as supported by numerical results (see Fig. 8 of
White, Chen, and Lin 15), which suggest that heating
occurs above a wave amplitude threshold Am, and that
Am → ∞ as ω → 0�. As we shall see below, the wave
amplitude, written in dimensionless form, is

A = (kρ)(Bω/B0)(ua/cs) (1)

where k is the wavenumber transverse to the equilibrium
magnetic field, ρ the ion thermal Larmor radius, Bω the
amplitude of the magnetic perturbation associated to
the wave, B0 the value of the ambient magnetic field, uA
the Alvén speed, and cs the ion sound speed. Realistic
values for these ratios are ua/cs ∼ 106/105 (Tomczyk
et. al18) and Bω/B0 ∼ 10−1 (Esser 199919). As to kρ,
the energy spectrum of Alvén waves cascades in the

�The fact that, as ω → 0, ion heating has to be increasingly difficult
to achieve may be argued heuristically since, when ω is rigorously
zero, the Hamiltonian system is integrable, hence non-chaotic (This
must not be understood as a rigorous reasoning, though, since the
static limit is singular).

perpendicular wavenumber space, evidencing a stronger
damping for , transitioning to kinetic Alvén waves near
this threshold20; hence looks as a reasonable choice,
and is elsewhere employed16. Summing it all up, it
sounds reasonable to take A = O(1) as the typical wave
amplitude.

This work revisits afresh the issue of adiabaticity
breaking by Alvén waves, and shows that this breaking
simply results from neo-adiabatic theory, developed by
several authors three decades ago21–25 (see the good
review of Bazzani 26). So far, neo-adiabatic theory has
been applied within astrophysical contexts to the study
of the dynamics of charged particles in the Earth’s
magnetotail27,28, but not to the solar corona heating
problem, to the best of our knowledge. This theory
proves that, in systems whose phase space topology
exhibits a separatrix with lobes whose location and area
oscillate with time at a frequency ω, the smallness of
ω does not imply per se adiabatic invariance. Indeed,
while adiabatic invariance holds for a particle far from
the separatrix, a finite measure of orbits is obliged to
cross a pulsating separatrix almost periodically, and
each crossing corresponds to the breakdown of adiabatic
invariance, since the period diverges on the separatrix.
A theorem of neo-adiabatic theory29,30 proves that the
region swept by a pulsating separatrix whose area does
not vanish is chaotic. A paradigmatic such system
is the pendulum in a slowly time-modulated gravity
field30 that will be studied in the third section of
this paper as an introduction to neo-adiabatic theory.
Numerically, the time necessary for an orbit to visit
the chaotic domain scales as ω−3 ; this is backed up
analytically by a jump of the adiabatic invariant of
order ω at each separatrix crossing and the assumption
of the decorrelation of successive jumps occurring over
an ω−1 time scale31. More importantly, neo-adiabatic
theory21–25 shows also that when the area enclosed
within the separatrix decreases, trapped and detrapped
orbits are divided in different groups, with rotating in
opposite directions, which is an abrupt separation of
orbits with respect to the familiar exponential one due
to chaos. The mathematical analysis presented in this
work shows that the system of interest acts similarly,
producing a sizeable group of high energy particles after
a single separatrix crossing, i.e. over a fast (order ω−1)
time scale.

The paper is divided as follows. In section II, proper-
ties of Alvén waves and solar corona are recalled. The
Hamiltonian of a test particle is derived and simplified.
Section III provides the reader Hamiltonian tools used in
the following : canonical transformations, action-angle
variables, and a proof of the conservation of adiabatic
invariant for the harmonic oscillator. Those subsection
might be skipped by the informed reader. In the last sub-
section, the basis of neo-adiabatic theory are introduced
through the slowly time dependent pendulum Hamilto-
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nian. The discussion of the section and of the all paper
will be illustrated by several numerical simulations for
which the numerical integration of Hamilton’s equations
will be performed using the 6th-order symplectic parti-
tioned Runge-Kutta algorithm built into Mathematica
software. Section IV introduces the threshold amplitude
and deals with the case where the amplitude of the wave
A is smaller than 1. In section V, the case A > 1 is fully
exposed and the change of the adiabatic invariant at each
separatrix crossing is explained in an intuitive way. The
last subsection introduces a new invariant which is con-
served at zero order.

II. ALFVÉN WAVES IN THE SOLAR CORONA

A. Alvén waves and notations

Alvén waves propagate in a magnetized charged
fluid. Their existence results from magnetohydrodynam-
ics equations, see The Physics of Alfvén Waves32 for a
complete derivation. If one denotes the z axis as the
direction of a static axial magnetic field, the dispersion
relation for an Alvén wave in a uniform plasma is

kzVA = ω, (2)

where kz is the component of the wave vector along z,
ω is the pulsation of the wave, and VA = B0/(µ0ρ) is
the Alvén velocity, with B0 the equilibrium magnetic
field and ρ the fluid density. A wave is termed oblique
when its direction of propagation is not parallel to the
equilibrium magnetic field. In the following, we use the
usual Oxyz direct orthonormal frame, and we consider
the wave to propagate in the xOz plane, with the wave

vector ~k = kxx̂+ kz ẑ. It can be shown that, for such an
oblique propagation of the wave, the magnetic perturba-
tion is along y and the electric one is along x. Then using

Maxwell equations, ~E and ~B fields write

~E = BωVA cos(kxx+ kzz − ωt)x̂,
~B = B0ẑ +Bω cos(kxx+ kzz − ωt)ŷ,

(3)

where Bω is the magnetic amplitude of the wave.
There is a frame where the electric field vanishes and the
magnetic fields only depends on position. Such a frame
moves toward the equilibrium magnetic field at the Alvén
speed, and will be referred as the Alvén frame.

B. Derivation of the Hamiltonian

The vector potential in the Alvén frame is

~A = B0xŷ +
Bω
kz

sin(kxx+ kzz)x̂.

Thus the Hamiltonian of a particle of charge q and mass
m in interaction with this field is

H =
1

2m

(
px − qBωk−1

z sin(kxx+ kzz)
)2

+
1

2m
(py − qB0x) +

p2
z

2m
.

(4)

Since ∂H/∂y = 0, py is a constant of motion, and one
may drop it in the Hamiltonian. The Hamiltonian does
not depend on time so it is a constant. Given that px =
mẋ + Ax, the kinetic energy of a particle in the Alvén
frame 1

2mv
2 is conserved. This simplified Hamiltonian

leads to two equations of motion: mv̇x = −q2B2
0(x− x0)/m− qBω cos(kxx+ kzz)vz

mv̇z = qBω cos(kxx+ kzz − ωt)vx
(5)

In the next part, by using some orders of magnitude of
our mechanical system in the solar corona, we will sim-
plify this 3D Hamiltonian to obtain a 1D time periodic
Hamiltonian.

C. Simplification

The photospheric temperature is about2 6000 K. Thus
for an ion of typically 10 atomic mass, its velocity is
about 3000 m.s−1 whereas it reaches 10− 100 km.s−1 in
the solar corona. Those velocities should be compared to
the Alvén velocity which is about6 45−200 km.s−1. First
note that photospheric particle velocities are not larger
than the corona Alvén velocity. Energy conservation in
the Alvén frame implies that, in the laboratory frame,
the quantity

v2
⊥ + (VA − v‖)2 = Cte. (6)

where v⊥ and v‖ are the velocities perpendicular and par-
allel to the equilibrium magnetic field, is conserved. The
particle tends to accelerate along the equilibrium mag-
netic field and thus its perpendicular velocity must in-
crease. However, since the Alvén velocity is larger than
the initial particle one, in the Alvén frame, particle ve-
locity along z can be approximated as −VA. This ap-
proximation§ leads to a unique motion equation that can
be written as

kx
Ω2
c

d2x

dt2
+ kxx =

VAkx
Ωc

Bω
B0

cos(kxx− ωt), (7)

§This approximation will no longer be true if the particle is really
heated because of the conservation of the energy (Eq. 6). However
it leads to an Hamiltonian easier to study and the principle of the
study (separation of time scale) remains true. The extension of the
results will be discussed in the last section.
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where Ωc = qB0/m is the cyclotron frequency. If one
expresses time in terms of Ω−1

c and length as k−1
x − which

is equivalent to set Ωc = 1 and kx = 1 − equation (7)
reads

ẍ+ x = A cos(x− εt) where A =
ω

Ωc

kx
kz

Bω
B0

(8)

and ε = ω/Ωc � 1. The Hamiltonian for this system is
therefore

H =
p2

2
+
x2

2
−A sin(x− εt). (9)

This Hamiltonian also describes the motion of a charged
particle in a uniform magnetic field in interaction with
an electrostatic wave propagating across the field15. In
the next part, we recall familiar concepts of Hamilto-
nian mechanics : introducing canonical transformations,
action-angle variables and the adiabatic invariant. The
last part introduces neo-adiabatic theory, which is the
basis of our main results. Section IV derives a threshold
of chaos for A, the amplitude of the wave in Hamiltonian
(4). Section V and VI explain the heating mechanism
and why Alvén waves might provide an efficient heating
of the solar corona.

III. INTRODUCTION TO NEO-ADIABATIC THEORY

A. Canonical transformations

Let H(q, p) be an Hamiltonian with conjugate vari-
ables q and p. A canonical transformation is a change
of variable [Q(q, p, t), P (q, p, t)] so that the equation of
motion are still canonical in the (Q,P ) variables. Thus

there is a function H̃(Q,P, t) satisfying

dP

dt
= −∂H̃

∂Q

dQ

dt
=

∂H̃

∂P

(10)

and H̃ is the new Hamiltonian in the new conjugate vari-
ables. Variational principle ensures the existence of a
function F1 depending for example on q and Q that ver-
ifies

pq̇ −H(q, p, t) = PQ̇− H̃(Q,P, t) +
d

dt
F1(q,Q, t). (11)

This equation leads to

p =
∂F1

∂q
, P = −∂F1

∂Q
, H̃ = H +

∂F1

∂t
. (12)

Note that we can also define generating function in terms
of other pairs of old and new variables : F2(q, P, t),
F3(p,Q, t) and F4(p, P, t). As an example, F2 can be gen-
erate by means of a Legendre transformation F2(q, P, t) =
F1(q,Q, t)+QP where Q is a function of q and P . Canon-
ical transformation equation can be deduced

p =
∂F2

∂q
, Q = −∂F2

∂J
, H̃ = H +

∂F2

∂t
. (13)

B. Action-angle variables

Action-angle coordinates (θ, J) are a powerful tool to
study integrable Hamiltonian and to apply perturbation
theory. We will recall here the basis of this theory for a
pendulum Hamiltonian but the interested reader could
refer to Lichtenberg and Lieberman 33 for the general
case. For a general one-degree-of-freedom, the action is
defined as

J =̂
1

2π

∮
p dq. (14)

For a pendulum Hamiltonian, H = p2/2− ω2
0 cos(q), the

action can be geometrically defined as the area within
the orbit for trapped libration. For untrapped rotation,
the action is defined as the area between the orbit and
the q-axis for q ∈ [−π, π] as shown in Fig. 1. With
this definition, J is a constant of the motion and the
Hamiltonian (energy) is a function of J only H = H(J).
The value of J defines full orbit¶. To complete the set
of new coordinates, one has to introduce the angle θ,
conjugate coordinate of the action, defined as

θ =
∂φ

∂J
where φ(J, q) =

∫ q

q0

p(I, q′)dq′ (15)

θ

-π -π/2 π/2 π
q

-2

-1

1

2

p

FIG. 1: Sketch of areas used in the definition of action.
The adiabatic invariant is the area in blue for unbounded
rotating trajectories and in red for bounded librating
ones. The grey line represent the separatrix which sepa-
rates bounded and unbounded trajectories.

Since the Hamiltonian is a function of J only, Hamil-
ton’s equations lead to J̇ = 0 (the action is conserved)
and to

θ̇ =
∂H0

∂J
=̂ Ω(J),

¶As we shall see in the following, it is convenient to define the ac-
tion for bounded motion with a factor 1/2 so that the action is
continuous at the separatrix.
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which means that the period of an orbit with action I
is 2π/Ω(J). Note that the time needed to reach the X
point is infinite, therefore the frequency on the separatrix
is zero Ω(J) = 0.
We now display the action-angle transformation for the
harmonic oscillator (which corresponds to low-energies
trajectories for the pendulum) H ′ = p2/(2m)+ω2

0q
2/2 =

E0

J =
2

π

∫ qmax

0

√
2E0 − ω2

0q
2 dq =

E0

ω0
.

and J is again an invariant of motion. The Hamiltonian
in the new coordinate writes H̃′0 = ω0J . To define the
coordinate conjugate to the action, we use the type 2
generating function

F =

∫ q

0

√
2ω0J − ω2

0q
2 dq.

Thus, θ is defined as

θ =
∂F

∂J
= ω0

∫ q

0

(
2ω0J − ω2

0q
2
)−1/2

dq, (16)

and p and q can be deduced by using

q = (2J/ω0)1/2 sin θ, p = (2Jω0)1/2 cos θ. (17)

This transformation is usually performed by using the
type 1 generating function F1 = 1

2ω0q
2 cot θ. This trans-

formation can be really useful to develop the Hamiltonian
as a series in some small parameter.

C. Adiabatic invariant

We saw in the previous section that J is a constant
of motion, as the energy when the Hamiltonian does not
depend on time. However, when for example ω0 is a
slowly function of time, to lowest order in the slowness
parameter J does not vary from its initial value even if
ω0 and H̃′0 change by large amount : J is said to be
the lowest order adiabatic invariant. Here again we will
show this for an harmonic oscillator - which corresponds
to small energies for a pendulum - for didactic purpose.
For the Hamiltonian H̃′0, the characteristic frequency is
ω0 thus the Hamiltonian varies slowly with time if

1

ω0

dω0

dt
� ω0.

In this case, J is an adiabatic invariant. Let’s show this
for a slowly harmonic oscillator33 H = p2/2 + ω2(τ)q2/2
where the mass m is set to one and τ = εt. Using the
generating function F1 = 1

2ω0q
2 cot θ and Eq. (12), the

transformed Hamiltonian writes as

H̃ = ωJ + ε
1

2

ω′

ω
J sin 2θ, (18)

where ′ denotes differentiation with respect to τ . To zero
order, the adiabatic invariant is just H0/ω0 and is con-
stant. Let now consider the new type 1 transformation -
close to identity - from (θ, J) to (θε, Jε)

F ∗1 (θ, Jε) = θJε + ε
ω′

4ω
Jε cos 2θ

∼ θJε + ε
ω′

4ω
J cos 2θ

(19)

where we replaced Jε by J for a first order approximation.
Then, one gets

Jε = ωJ(1 + ε
1

2

ω′

ω2
sin 2θ) (20)

If one takes the time derivative of Jε, two terms of the
right hand-side of 20 will vanish thanks to Hamilton’s
equation. Thus, up to first order in ε

J̇ε = ε
J

2
sin θ

d(ω′/ω2)

dt
.

However,

d

dt
(
ω′

ω2
) ∼ ε ω

′

ω2

which means that the action is constant to first order in
ε, (indeed J̇ε ∼ ε2).
In the following of this section, we will consider the slowly
time-dependent Hamiltonian

H = p2/2− ω2
0(εt) cos(q)

with ω2
0(εt) = 1 +A cos(εt).

(21)

The previous result shows that the action is conserved for
trajectories with an energy lower than ω2

0 and it can be
shown33 that the action is also conserved for trajectories
with energies greater than ω2

0 . To check this conserva-
tion, we integrated motion equation and reported at each
period 2π/ε of the amplitude the position of the particle
in the phase space. Such a plot is called a stroboscopic
plot (we observe the system periodically), and is a spe-
cial instance of the famous Poincarré map. If the action
is conserved, we should observe that the different points
sketch an orbit with a constant energy trajectory. Fig-
ure 2, realized with ε = 0.05 and A = 1/2 shows indeed
that the action - the energy - is conserved away from the
yellow area. The dashed gray curves correspond to the
position of the separatrix at t = 0 and t = π/ε, which
pulsates within the thin layer indicated by the yellow
area.
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-π -π/2 π/2 π
q

p

FIG. 2: Stroboscopic plot in the phase space for 4 dif-
ferent trajectories (purple, green, blue and brown) with
parameters ε = 0.05 and A = 1/2. The red curve repre-
sents the separatrix at time t = 2πnε−1, n ∈ N and the
yellow area is the chaotic area.

As we will show in the next part, the adiabatic invari-
ant and the energy is no longer conserved for orbits for
which the action is between two critical values. Upper
value is given by the maximal area between the separa-
trix and the q-axis, the lower one by the minimal area.
The area between these two extrema is the chaotic area.
It takes different shapes depending on the time of the
stroboscopic plot.

D. Destruction of the adiabatic invariant: the
neo-adiabatic theory

Adiabatic theory relies on the existence of two different
time scales, one fast - the movement of the particle - and
one slow - the motion of the separatrix. However, near
the separatrix, the period of trajectories diverges and
thus the assumption of adiabatic theory is no longer true.
When a particle is close to the separatrix and crosses it,
its adiabatic invariant and energy are slightly changed.

-π -π/2 π/2 π
q

p

FIG. 3: Stroboscopic plot in the phase space for 3 differ-
ent trajectories with parameters ε = 0.05 and A = 1/2.
The initial energy of the green orbit is greater than 1+A,
the one of the brown orbit is smaller than 1−A and the
initial energy of the blue is between those two critical
energies.

If one considers a particle with an adiabatic invari-
ant between between

∫ π
−π

√
(1−A)(1 + cos q)dq - half�

of the minimal area enclosed by the separatrix - and∫ π
−π

√
(1 +A)(1 + cos q)dq - half of the maximal area -

the particle will have to cross the separatrix twice at
each period. When the instantaneous period of the par-
ticle become greater than the separatrix period, adiabatic
invariance is destroyed. The adiabatic invariant experi-
ences a little jump which can be computed. The value of
this jump21 is of order ε and depends on the phase of the
particle - its position - at the crossing.

FIG. 4: Energy of 3 orbits at each period of the wave.
Blue curve is the chaotic orbit (same orbit than the blue
of Fig. 3), red curve a bounded orbit (same orbit than
the brown of Fig. 3) and green curve an unbounded one
(same orbit than the green of Fig. 3). Those energies
match with the stroboscopic plot of Fig. 3. Dashed gray
lines represent the critical energies beyond which orbits
are regular.

Fig. 4 shows that, if the energy of particles out of the
“pulsated” area are well-conserved as expected, it is not
the case for the blue particle whose energy looks has hav-
ing a random walk and if one takes an ensemble of par-
ticles with a given energy and an uniform distribution in
phase, the evolution of the distribution in energy will be
a gaussian of width σ(εt).
Fig. 5 displays a gaussian fit to the energy histogram
at different times. The width of the gaussian, still at
first order in ε, grows as the square root of the time with
a diffusion coefficient proportional to21 ε3. This means
that the typical time for chaos to develop is proportional
to ε−3 and thus it can be very hard (painful numerical
integration of motion) to observe it numerically for very
low frequencies.

�Half of the area because we had a 1/2 factor in the definition of
the adiabatic moment for rotations
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0.7 0.8 0.9 1.0 1.1 1.2 1.3
E0

2

4
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14

f (E)

t=0

t=1×2π/ϵ

t=2×2π/ϵ

t=3×2π/ϵ

t=5×2π/ϵ

t=13×2π/ϵ

FIG. 5: Evolution of the energy distribution (normalized)
starting with a delta distribution in energy (E0 = 1),
uniform in phase with 3000 particles.

IV. PRELIMINARY RESULTS AND LOW AMPLITUDE
WAVES

In this section, we come back to the one dimensional
Hamiltonian derived in section II. We will see some gen-
eral results from numerical simulation and will treat the
case of low amplitude waves and derive a threshold that
depends on the frequency of the wave. We recall that the
Hamiltonian is

H =
p2

2
+ V (x, λ),

with V (x, λ) =
x2

2
−A cos(x− λ),

(22)

where λ = εt varies slowly with time.

A. Preliminary results

When the amplitude A of the Hamiltonian of Eq. 22
is greater than 1, the potential V might have a local
maximum - for some time - and thus a separatrix might
exist in the phase space. Neo-adiabatic theory exposed
in the previous section with the pendulum example pre-
dicts that orbits with an adiabatic invariant between the
maximal and the minimal area surrounded by the sepa-
ratrix are chaotic. Here, the separatrix has two lobes one
initially big that decreases to a point and the other one
initially a point grows. The chaotic area concerns there-
fore orbits with adiabatic invariant between 0 and the
maximum area surrounded by the separatrix which will
be called he maximal invariant. Since the chaotic area
contains the origin of the phase space, one can expect law
energy particle to spread in the phase space and there-
fore increase the total energy and speak of heating. When
A < 1, there is no separatrix in the phase space therefore
neo-adiabatic theory cannot explain heating. The stro-
boscopic plots of the phase space of Fig. 6 shows that
chaos occurs for both frequency ε = 10−2 and ε = 10−3

when A > 1, whereas the trajectory of particles are not
chaotic when A < 1 for those same frequency.

-x0 x x0

-2Ωcx0

px

-Ωcx0

a)

- A x A

- A

px

A

b)

-x0 x x0

Ωcx0/2

px

-Ωcx0/2

c)

- A x A

- A

px

A

d)

FIG. 6: Stroboscopic plots (εt ≡ π) of the phase space
for ε = 10−2 with A = 0.8 (a) and A = 1.3 (b) and for
ε = 10−3 and A = 0.8 (c) and A = 1.3 (d). In yellow, the
area swept by the separatrix and in red the separatrix
at εt = π. The initial condition for the particle used are
x0 = 0, 03 and px,0) = 0.

This figure and the fact that chaos occurs when a sep-
aratrix exists shows that neo-adiabatic theory is a good
way to explain the development of chaos for this system.
However, as remarked by White, Chen, and Lin 15 and
by numerical simulations, one can observ that chaos does
develop even when A < 1 but close to 1. The two next
subsection will be dedicated to the case A < 1 while the
next section will focus on the A > 1 case.

B. Linearisation for low amplitudes

When A < 1, potential V (x, λ) has a single minimum
at all time λ and this minimum can be labelled by xm(t)
(see Fig. 7). This minimum verifies - or is even defined
by

∂V

∂x
|xm

= xm +A sin(xm − λ) = 0. (23)

2 A-2 A

x

4A

-A

2A

6A

V(x)

FIG. 7: Potential for A = 0, 9 at different time λ = 0
(green), λ = π/2 (blue, dashed) and λ = π (red, dots).

A particle starting with low energy will follow this mini-
mum. It is therefore natural to decompose the position of
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the particle as x = xm + δx where xm varies slowly with
time and δx is the fast variable. When A = 0, xm = 0
and the movement of δx is the one of the usual harmonic
oscillator. In this case, a good approach of the prob-
lem is of course to treat the wave as a perturbation34.
However, this study does not provide any proof of heat-
ing when frequency is much lower (more than “only” ten
times) than cyclotron frequency. Deriving equations of
motion from Eq. 22 and using Eq. 23, to first older in
δx, motion equation reads

δ̈x+ Ω2δx = −ẍM +O(δx2)

where Ω(εt) =
√

1 +A cos(xM − εt).
(24)

Given the definition of xM , it is obvious that xM and thus
ẍM are 2π/ω-periodic functions and can be decomposed
as a Fourier series xm(t) =

∑
n Cn sin(nεt). Eq. (24)

is therefore the equation for an harmonic oscillator of
frequency Ω (which vary with time) forced by a 2π/ω-
periodic function. The standard resonant condition for
an harmonic oscillator is that excitation frequency should
be equal to the system frequency. By superposition, the
problem can be reduced to

δ̈x
(n)

+ Ω2δx(n) = βn sin(nεt). (25)

where βn = Cnn
2ε2 and δx =

∑
n δx

(n).

The minimum of Ω is
√

1−A, reached when εt ∼ π,
therefore when

√
1−A ∼ nε, there is a resonance. Since

the resonance condition is valid for a finite time only,
the final energy of the particle will depend on its initial
conditions - how the particle will be in phase with the
excitation. Two nearby orbits might diverge from each
other which is the signature of chaos. The condition

A ∼ 1− ε2 (26)

is therefore a sufficient condition to have heating.

C. Neo-adiabatic view of the problem

We saw that, when the instantaneous period of an orbit
is greater than the period of the wave, adiabatic invari-
ance is broken and it chaos develops. Since ẋ = ∂H/∂p,
instantaneous period is given by

T =

∮
dx

∂H/∂p
=

∮
dx√

2h− x2 − 2A cos(x− λ)
, (27)

where the integral follows the trajectory of a particle of
energy h at λ = εt fixed. If this period is greater or of
same order of the period of the wave, adiabatic theory
assumption (T � ε−1) is no longer true and one expects
adiabatic invariant not to be conserved. Instantaneous
period of a trajectory is directly related to the spacing
between the two branches of the potential. It is clear,
using the Fig. 7, that the maximal period is expected to
be around λ = π. For very low energy particles, one can

expand the cosinus in potential V and the energy of a
particle can be approximated by h = A+ (1−A)X2/2 +
O(X4) where X is the maximal position of the trajectory.
Instantaneous period is therefore given by

T ∼
∫ X

−X

dx√
(1−A)X2/2− (1−A)x2/2

∼ 2
√
h−A

1−A
.

(28)
The inequality X < 1 (to guarantee that the expansion
for the cosinus was true), implies that h < 1. In fact, the
energy is also greater than A. Taking a particle of energy
(1+A)/2 leads to a break of the adiabatic invariant when

T ∼ 1√
1−A

∼ ε−1, (29)

which is the same conclusion than the previous result.
To conclude, we saw that it exists a threshold amplitude
Ac ∼ 1 − ε2 below which chaos occurs. This threshold
limit goes to one when ε→ 0 however, behaviour of orbits
changes dramatically when amplitude is greater than 1.
This case will be study in the following section.

V. WAVE AMPLITUDE GREATER THAN 1

When A > 1, the potential may have a local maximum
depending on the value of A and time. Cary, Escande,
and Tennyson 21 calculated the change of the adiabatic
invariant at each separarix crossing at different order in ε.
In the previous example with the pendulum, at each sep-
aratrix crossing, the adiabatic invariant was continuous
at the crossing and the change was of order ε, depending
on the phase of the orbit. Here, the change of lobe is not
continuous, even at zeroth order: when an orbit crosses
the separatrix, the adiabatic invariant is changed by a
large amount.
The first subsection will be dedicated to the study of sep-
aratrix and lobes. The next subsection will treat of orbit
transfer while the last one will focus on the introduc-
tion of a conserved quantity - function of the adiabatic
invariant - which will be called the Alfvénic invariant.

A. Motion of separatrix and lobes

When A > 1, the potential may have a local maximum
depending on the value of A and time. The potential
can even have several maxima however, we will restrict
to the case A ∈ [1, 4.5] which means that there is either

0 or 1 minimum depending on time. We define by λ̃
the time at which the local maximum appears. Given
the symmetry of the potential with time, the maximum
disappears at λ = 2π − λ̃. When there is a maximum, a
separatrix (red) exists in the phase space splitting the
whole domain in three different areas: two lobes labelled
a (left lobe) and b (right lobe) and the area outside those
lobes labelled c. They are represented for different time
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in Fig. 8.

b

a, c

ba
c

ba

c

ba

c

1 2

3 4

FIG. 8: Separatrix (red solid curve) in the (x,p) phase

space at time λ̃ (1, the separatrix has just appeared),

two times at regular interval between λ̃ and π (2 and 3)
and at time λ = π (4, the two lobes are identical: we
are at half the period of the wave). The second half-
period evolves with mirror symmetry. The yellow area
is the chaotic area, defined as the area enclosed by the
trajectory (green dotted) of an orbit of the frozen system
with an adiabatic invariant equal to the critical adiabatic
invariant J̃ . Black dots and brown dots are the strobo-
scopic plots for a regular and a chaotic orbit numerically
integrated with w = 0,01. The figure has been produced
with A = 3 but is totally generic.

Fig. 8.1 represents the separatrix (red) at time λ̃.
Lobe a and region c are reduced to a point. So far, we
did not define the upper limit for region c : from now we
will define it as the orbit of the frozen system (λ fixed)
for which the adiabatic invariant is equal to the area
enclosed by the separatrix at time λ̃. This area is will
refer to the critical adiabatic invariant and will be noted
J̃ . Critical orbit with adiabatic invariant J̃ (green
dashed line) and separatrix (red) are represented on Fig.

8 at time λ = λ̃ (1)**, two times between λ̃ and π (2 and
3) and at time λ = π (4). Stroboscopic plot of two orbits
is also provide for an orbit with adiabatic invariant
greater than J̃ (black dots) and smaller (brown dots).
The black dots are aligned on a curve, showing that the
motion is regular : the adiabatic invariant of the orbit
is greater than the critical adiabatic invariant therefore
the adiabatic invariant of the orbit is conserved. On the

**At λ = λ̃, separatrix and critical orbit are overlaid.

opposite, orbits with adiabatic invariant smaller than J̃
are chaotic which is well illustrated by the sea of brown
dots on Fig. 8.

When a lobe decreases, a given set of orbits must es-
cape and cross the separatrix. In fact, the flux of orbits
that leaves a lobe is given by the time derivative of the
area of the lobe. This flux is kept by other areas ac-
cordingly to their respective growth rate. This is why
the time evolution of lobes are very important to explain
how chaos develops. The evolution of each lobe is shown
in Fig. 9 for A = 3.

λ * 2π-λ *π

4A

6A

8A

0

2A

J*

λ

A
re

a
o

f
ea

ch
lo

b
e

a

b

c

a+b

FIG. 9: Area of lobe a (red curve, labelled Aa), lobe
b (blue curve, labelled Ab) and region c (black dashed
curve, labelled Ac). Green curve on top represents the
sum of areas of lobe a and b. The figure has been pro-
duced with A = 3 but is totally generic.

The function λ 7→ Ab is a bijection so that it is possible
to express each quantity plotted here as a function of Ab

e.g. each time the lobe b has a given area Ab, the lobe a
has an area Aa(Ab), the time at which the area of lobe
b is Ab is λ(Ab) and the region c has an area Ac(Ab). It
is therefore natural to define a mapping between Aa and
Ab, so we define the function

F : [0, J̃ ] → [0, J̃ ]
A 7→ F(A )

(30)

When the lobe b has an area Ab, the lobe a has an area
Aa = F(Ab). Reciprocally, since the potential evolves
with mirror symmetry with respect to π, when the lobe
a has an area Aa, the lobe b has an area Ab = F(Aa).
This symmetry implies a nice property for F which is

F ◦ F = Id. (31)

An other property of F is that it does not depend on
time. To any area between [0, J̃ ] it is possible to map
an other area within the same interval no matter the
time, no matter the existence or not of a separatrix in
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the phase space. The notion of lobe area has of course
a sense only between λ̃ and 2π − λ̃ however, once F is
defined, its definition does not rely any more on time.
This non-dependence of F with time or presence of a
separatrix is fundamental for the following. Finally, F
has a fixed point that will be noted Jπ = F(Jπ). Note
that this fixed point corresponds to the area of lobe b
and a at time π.
As it has been shown in section III, the adiabatic
invariant corresponds to the area enclosed by the orbit
in the frozen system. The adiabatic invariant for a
chaotic orbit is within the interval [0, J̃ ] so that one
can associate a conjugated invariant F(J) at any orbit
within the chaotic area with an adiabatic invariant J .
This function is the blue solid curve on Fig. 10 while
the green dashed curve is the function J 7→ F(J) + J .

4A

J
6A 8A0 2A J*

4A

6A

8A

0

2A

J*

F
(J
)
(b

lu
e
)

a
n

d
F
(J
)+

J
(g

re
en

d
a

sh
ed

)

FIG. 10: The blue solid curve represents the variation of
F with J while the green dashed curve is the function
F(J) + J .

Finally, a last function Λ can be introduced.

Λ : [0, J̃ ] → [λ̃, 2π − λ̃]
J 7→ Λ(J)

(32)

This function maps a given adiabatic invariant J to the
time Λ(J) at which lobe b has the same area as J e.g.
the time at which Ab(Λ(J)) = J . For the same symmetry
reason seen previously, Λ verifies Λ ◦ F(J) = 2π − Λ(J).
Now that we defined those functions and we studied the
evolution of lobes, we will see how orbits of this Hamil-
tonian evolve.

B. Transfer of orbits

In this part, we will explain the separatrix cross-
ing of orbits with initial small adiabatic invariant e.g.
smaller than Jπ and we will neglect the adiabatic invari-
ant change of order ε to focus on the change of order A.
Consider an orbit of adiabatic invariant J1 at time λ = 0.
We will suppose that J1 < Jπ and will see the case
J1 > Jπ latter. At time λ = 0, there is no separatrix, it

appears only at time λ̃. The orbit changes of lobe when
the area of lobe b matches to its adiabatic invariant J1

therefore crossing happens at time Λ(J1). Since we sup-
pose that J1 < Jπ, crossing time Λ(J1) is smaller that

π. Between [π, 2π − λ̃], areas b and c decrease there-
fore orbits exiting one of those area can only enter lobe
a��. At zeroth order, right before the crossing time, at
λ = Λ(J1)−, the orbit fits with lobe b separatrix while at
time λ = Λ(J1)+, after the lobe change, orbit hugs the
lobe a separatrix. Fig. 11 shows the transfer of an orbit
from lobe b to lobe a.

a b

c

q1

p1

FIG. 11: Jump of an orbit (blue) with initial adiabatic
invariant J1 < Jπ from lobe b to lobe a. Black dashed
curve represent the separatrix. Separatrix crossing hap-
pens at λ = Λ(J1) > π.

Fig. 11 and previous reasoning can deduce the new adi-
abatic invariant of the orbit: since particle trajectory
as time Λ(J1)+ hugs lobe a separatrix, its new adia-
batic invariant J2 is equal to the area of lobe a which
means J2 = F(J1). Once the crossing happened, new
orbit’s adiabatic invariant is conserved (adiabatic the-
ory applies) therefore it and is still J2 = F(J1) at time
λ = 2π. The following is straightforward : the quantity

I = J + F(J). (33)

is conserved��. In the next subsection, we will show that
this quantity is indeed conserved for a transfer J > Jπ.

C. Defining a new invariant

We will now consider an orbit with initial adiabatic
invariant J2 > Jπ at time λ = 0. J2 = F(J1) and we will
show that its Alfvénic invariant is conserved. For this
case, Λ(J2) < π therefore when the orbit has to jump
from lobe b to an other area, it has two possibilities:
either it enters lobe a, either area c.§§

��This is not totally true, to enter lobe a, orbits from lobe b must
pass through c. However, the typical time they stay in area c is
short : it is a double-crossing.

��At time λ < Λ(J1), I1 = J1 + F(J1) while at time λ > Λ(J1),
this quantity is I2 = J2 + F(J2) however since F(J1) = J2 and
F2 = Id, we have I1 = I2. �

§§We recall that the number of orbits entering area c rather than lobe
a is proportional to the ratio of the growing rate of each area.
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Consider first the orbit does a single crossing and stay in
area c (see Fig. 12). Here again, we consider that the
orbits fits the separatrix therefore, in the area c, its new
adiabatic invariant is the sum of the two lobe area which
corresponds to J2 + F(J2). To have a continuity of the
Alfvénic invariant at a single separatrix crossing b → c,
the Alfvénic invariant must be define as

I =̂ J =

∮
pdx in area c. (34)

a

b

c

q1

p1

FIG. 12: Single crossing of an orbit (green) of initial adi-
abatic invariant J2 > Jπ from lobe b to area c. Black
dashed curve represent the separatrix. Separatrix cross-
ing happens at λ = Λ(J2) < π

After λ = π, area of region c decreases until it reaches 0
at 2π− λ̃ therefore orbits will have to enter lobe a before
separatrix disappears. Again, the orbit will enter lobe
a when its adiabatic invariant J2 + F(J2) will be equal
to the sum of lobe a and b. Crossing happens at time
2π − Λ(J2) = Λ ◦ F(J2) and the new adiabatic invariant
of the orbit is the size of lobe a in which orbit enters
(see Fig. 13). At this time, lobe a area is equal to J2

therefore new adiabatic invariant of the orbit is J2 and
its Alfvénic invariant is I = J2 +J2 (definition in lobe a)
and I is continuous at the separatrix crossing. Since its
adiabatic invariant will be constant until time λ = 2π,
the Alfvénic invariant is constant over a period.
To summarize, we just showed that, when an orbit with
initial adiabatic invariant J2 > Jπ enters area c, its
Alfvénic invariant (defined in lobe b by Eq. 34) is con-
stant the whole period.

a b

c

q1

p1

FIG. 13: An orbit (green) in area c with adiabatic in-
variant J2 + F(J2) entering lobe a. Black dashed curve
represent the separatrix. Separatrix crossing happens at
λ = Λ ◦ F(J2) > π

Now we suppose the orbit of adiabatic invariant J2 > Jπ
makes a double crossing and enter directly lobe a at time
Λ(J2). At λ = Λ(J2), lobe a area is F(J2) therefore the

new adiabatic invariant J3 of the orbit is J3 = F(J2) and
new Alfvénic invariant of the orbit is I3 = J3 +F(J3) =
F(J2) +F ◦F(J2) = I2. After the crossing, lobe a keeps
growing thus the orbit is away from the separatrix and its
adiabatic invariant and Alfvénic invariant are constant.
Here again, we showed the Alfvénic invariant is conserved
when the orbits enters directly lobe a.

a

b

c

q1

p1

FIG. 14: Double crossing of an orbit (green) of initial
adiabatic invariant J2 > Jπ from lobe b to lobe a. Black
dashed curve represent the separatrix. Separatrix cross-
ing happens at λ = Λ(J2) < π

To conclude, in this subsection, we introduced a new
quantity, function of the adiabatic invariant, which is
conserved at separatrix crossing. This quantity, the
Alfvénic invariant, is defined as

I =̂


J + F(J)

in lobe a, lobe b and when
there is no separatrix.

J in lobe c

. (35)

For the pendulum like Hamiltonian treated in section III,
we saw that during a separatrix crossing, adiabatic in-
variance is destroyed because the time scale separation
on which relies adiabatic theory is no longer true. Here,
we saw that the adiabatic invariant is even not conserved
at order zero in ε this is why we constructed the Alfvénic
invariant. However, as it was the case for the pendulum-
like Hamiltonian, the Alfvénic invariant will no longer be
conserved.

VI. STATISTICS ON ORBITS TRANSFER AND
HEATING OF THE SOLAR CORONA

In section III, we saw that the typical time for chaos to
develop scaled, for the pendulum, as the frequency to the
power −3. If we assume the same scaling for the diffusion
of the Alfvénic invariant in our system, typical scale time
for chaos to develop is about 1015Ω−1

c . This value is
too big to consider the heating realistic. We will see in
this section how Alfvénic invariant conservation rather
than adiabatic invariant conservation changes radically
the time scale for heating.
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A. Statistics on orbit transfer

We will interest here in the energy at times λ = 2nπ
with n ∈ N so that there is a bijection between adiabatic
moment and energy. Indeed, the quantity that does in-
terest physicist is particles energy since measurements
give speed of particles. We will index each quantity by
n to refer at what time the quantity is measured and
we will suppose that n is small enough so that Alfvénic
invariant is conserved. This assumption is equivalent to
neglect the change of order ε in the adiabatic invariant
when an orbit crosses the separatrix and seems reason-
able since ε ∼ 10−5. Initially, we start with cold ions
E0 ∼ −A and J0 ∼ 0 and we want to know if the average
energy per particle did increase or not after n period. To
do so, some properties must be recalled.

1. When a particle has an adiabatic invariant J < Jπ,
its adiabatic invariant after one period is F(J) >
Jπ.

2. When a particle has an adiabatic invariant J > Jπ,
its adiabatic invariant after one period is either
F(J) < Jπ either J > Jπ, depending on the phase
of the orbit. The probability that its adiabatic in-
variant is conserved after one period depends only
on J and is noted µJ .

The first property is just a trivial consequence of section
V B : since Λ(J) > π, particle must enter lobe a which
has an area greater than Jπ.
The second is deduced by the fact that the number of or-
bits entering area c rather than lobe a is proportional to
the ratio of the growing rate of each area. Crossing hap-
pens at time λ = Λ(J) < π therefore, by noting Aa (resp.
Ac) the area of lobe a (resp. lobe c), the probability µJ
for an orbit to go in lobe c verifies

µJ
1− µJ

=
A ′c
A ′a

∣∣∣∣
Λ(J)

where A ′i =̂
dAi

dλ
(36)

In fact, since µj = µF(J), the probability µJ depends
even only on the Alfvénic invariant. If we start with N
particles with same adiabatic invariant, they split into
two groups at each period. One group with low energy¶¶

E− and adiabatic invariant J− and an other group with
high energy E+ and adiabatic invariant J+ = F(J−) >
Jπ. The number of particle with energy E− (resp. E+) at
time λ = 2nπ is noted N−n (resp. N+

n ) and the evolution
of an ensemble of particle verifies N

+
n+1 = N−n + µJN+

n

N−n+1 = (1− µJ)N+
n

(37)

¶¶An energy is said low when the adiabatic invariant corresponding
to this energy is lower than Jπ .

for which the unique possible limit is

N+ =
N

2− µJ
, N− = N 1− µj

2− µJ
(38)

B. Heating of ions in solar corona conditions

On the Fig. 10, the growing rate of Aa at λ = λ̃ is
null therefore µJ(J = 0) = µJ(J = J̃ ) = 1 when an
orbits has an invariant equals to the maximal adiabatic
invariant J̃ , the orbit cannot come back to lobe a and
have an adiabatic invariant equal to zero. The same
thing happens when λ = π: the growing rate of Ac is
zero and µJ(J = Jπ) = 0: the orbit must enter lobe a.
More generally, if the initial adiabatic invariant of an
orbit is close to 0, it is more likely that the orbit will have
a high adiabatic invariant: µ is a decreasing function of
J on [0, Jπ] and an increasing function on [Jπ, J̃ ]. This
can be summarize by the following sentence: given an
ensemble of particle with same energy, the lower the
initial energy is, the higher the final average energy will
be.

It is also important to underline that the heating***

happens on a very short time scale: only one period is
enough! This is very important because Alvén waves ap-
pear and disappear and their life duration should be lower
than the time needed for chaos to fully develop - which
is proportional to ω−3. After a few period of interaction,
the energy gain by a particle is of order A. This scaling
with ω−1 rather than ω−3 is also important to justify the
test-particle approach: the collision frequency ranges in
the mHz like the frequency of the wave therefore they
must be taken into account when one deals with time
scale of order ω−3.

C. Numerical simulation

To illustrate the last subsections, it is possible to con-
sider an ensemble of 2000 ions with same initial en-
ergy of order −A therefore initial adiabatic invariant
almost null. They only differ by their phase, which is
distributed uniformly. This simulation was performed
with A = 3 and ω = 0.01. At each period of the
wave (t = 0, ν−1, 2ν−1, 8ν−1, 16ν−1 and 50ν−1), the his-
togram of the adiabatic invariant is represented in Fig.
15. We start initially a Dirac distribution (t = 0) for ions
in adiabatic invariant centred at J0. After one period,the
distribution is centred on F(J0) as expected but we al-
ready see the spread of the distribution function due to
the adiabatic invariant change of order ε. After two peri-
ods, the two peaks of the distribution function are visible

***By heating we mean increase of the average energy
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and for longer time, the spread of each peak increases.
Here, the spread of each peaks is quite clear because the

frequency is 0.01, however, when ω is of order 10−5, 10−6,
we can expect the spreading to be lower after the same
number of period.
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FIG. 15: Distribution function of the adiabatic invariant starting with ions with initial adiabatic invariant of 0.7A
interacting with a wave with parameters A = 3 and ω = 0.01. The distribution function is shown at t = 0 and after
1, 2, 8, 16 and 50 periods.

VII. CONCLUSION

We showed that, for wave amplitudes A > 1, starting
with low kinetic energy particles, we get after a few pe-
riod a non-negligible fraction of them with a energy that
increased by a value of order A. However, the ion could
gain energy when the wave is present and lost it when the
wave disappears. A particle initially at rest gains even-
tually some speed and kinetic energy, for any finite value
of A. This is the ion pick-up mechanism by the wave well
known in literature35,36. By itself, this is not a proper
heating since the energy flow is reversible and is returned
fully to the wave once the interaction is switched off. In
order to make it irreversible, it must be supplemented
by some dissipative mechanism, such as collisions or the
chaos due to the pulsating separatrix. Fig.16 makes vi-
sual the net effect due to this latter mechanism. In this
case, the waveform has been modulated by a shape func-
tion

A(t) = A

(
1 + tanh(

t− ti
τ

)

)(
1 + tanh(

tf − t
τ

)

)
(39)

such that there is no wave for t < ti and t > tf . It may be
regarded as a rough modeling of the interaction between
an initially cold ion and a burst of magnetic activity,
e.g, a flare. In the Fig. 16, we plot the instantaneous
energy H(t) from Eq. (22) for several different choices
of A. For values below unity no energy is left to the
particle after the wave vanishes; conversely, there is a net

increase in energy for those cases where A > 1. When
A < 1, ion gain energy when the wave is present and
the notion of “pseudo-heating” introduced by Wang and
Wu 12 makes sense: ion velocity increases when the wave
is present while it decreases when the wave is turned off
adiabatically.

FIG. 16: Energy of an ion as a function of time. The dif-
ferent curve represent different amplitudes. Parameters
for the shape function are τ = 100ν−1, ti = 130ν−1 and
tf = 430ν−1.

During the derivation of the one-dimensional Hamil-
tonian, we neglected the z velocity compare to the
Alvén velocity. However, by using the kinetic energy
conservation in the Alvén frame, it is possible to show
that when particle are heated, their velocity among x
increases enough to accelerate the particle among z
and the approximation might be false. Neishtadt and
Vasiliev 37 proved that neo-adiabatic theory applies also
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to two dimensional system where it exists a fast variable
(kxx in our system) and a slow variable (kzz). The
reasoning developed before applies by replacing ωt by
ωt− kzz.

To summarize, we have just shown that a particle ini-
tially at rest, after having interacted with an Alfvén wave
for a duration as short as a single wave cycle, may gain
a finite amount of energy Ef = O(A) = O(1) e.g. ions
reach energies of the order of the coronal temperature:
when A is about 2, Ef = kBT where kB is the Boltz-
mann constant, and T is the coronal ion temperature.
This result prompts us to the following speculation: for
the actual flows of ions and Alfvén waves into the corona,
its temperature is the one corresponding to the full con-
version of the Alfvén wave power into the thermal power
injected into the solar wind. Together with this scenario,
a self-organization process occurs: if A is below 1, the
transfer of energy from Alfvén waves to ions is weak, and
there is a pile up of Alfvén wave energy, which increases
A above 1. Then the transfer of energy to ions described
above sets in and increases with A. The pile-up of Alfvén
waves can be justified on the basis that there is no smooth
transition from the corona to the solar wind. This oc-
curs through the so-called “coronal holes” corresponding
to (rare) zones where the magnetic field lines are open
and where the plasma is less dense and colder. Less re-
connection is likely to occur in such zones, and thus less
generation of Alfvén waves. In contrast the hot corona
corresponds to magnetic loops where Alfvén waves are
trapped and can pile up.
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