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A micro-channel plate can be

seen as N independant single
particle detectors.
P
. . 1/
In particular, it measures N
& 7 %
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N 4 N
for any reasonable n, m
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@:- Detector recently "tomographied", see Allemand (2024)

Allemand et al. Tomography of a spatially resolved single-atom detector in the presence of shot-to-shot
number fluctuations, to appear in PRX Quantum, arXiv:2405.01211
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A quantum state is separable iff it can be written as

p= Zj Pjﬁj%\ ) PAJB

Entanglement for bipartite Gaussian states
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For Gaussian states, the gPPT is an entanglement criterion (Simon, 2001).
Iff the partial transpose of the state is negative, the state is entangled.

(A C PT (0)78 — A Co,
= \c B - \(Co,)" 0,Bo,

A Gaussian state characterized by o is positive iff
0 1
() =

detA-detB -detA - detB + (1-detC)? -Tr(AQCQBQC'Q) >0
Ts offen called Ale — VT

Simon, R. Peres-Horodecki Separability Criterion for Continuous Variable Systems. Phys. Rev. Lett. 84,
2726-2729 (2000).

Gaussian states 1.0.1

/Gaussian states are fully determined by their first and second moments

Quadrature: 4; = (X + ip;)/V/2 F = (%1, P -, Xn, Pi)
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Figure: Representation of the Wigner function of the state and its probability
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Adesso, G., Serafini, A. & llluminati, F. Extremal entanglement and mixedness in continuous variable
kystems. Phys. Rev. A 70, 022318 (2004).

g2 and g entanglement criterion

/From g and g, we access the two possible values for |c| and |d]|. \

2 (4)
B =42 gg)—lzz\/2+8(g1(§)—1)+3(g1(§)—1) - %

gives the value of |c| and |d| but we do not know which is |c| and which is
|d|... However any quantum state must respect the bona fide condition that
only depends on |c| and |d].

Po(n, np,c,d)=(1+ n)(1+ n)(niny — |c|> — |d|?)
(lcl* = 1d[?)* = 5(Id]* = |<[?)

+ (% — n1n2) (|d|2 + \c\z)

S The states (ny,n,f.,B.) and (n,n,[.,B.) are partial transpose of each other. If
’, only one respects the bona fide condition, the state is known (up to a phase).
But since its partial transpose is not positive, it is also entangled.

We have access to all the symplectic invariants of the covariance

Qistribution.

Serafini, A. Quantum Continuous Variables: A Primer of Theoretical Methods. (2017),

How to probe it
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We need to measure the terms of (A C ¢ = (3,5 d = (3 §T>
the covariance matrix. =\ B oA R
For a non-displaced
YR Gaussian state )

A <2n1 +1+2R((a])  29((40)) ) - (?R(c+d) 23(c—d)
23((a1))  2m+1—2R((47)) ~\2S(c + d) 2R(—c + d)

What we measure

----------------------------

5 (. . . A
i, v gt =24 @)l [ Theorem: For a non-displaced Gaussian state, and
. "; 2} if one measures that the local correlation function
vn, v g3 =mnetd it s 2, the measurement of the populations and the
: 17112

second and fourth order correlation functions
assesses the separability of the Gaussian state.

. +g¥thatinvolves |c|2|d|?

* R K . . . .
matrix and can compute the logarithm negativity, to quantify
entanglement.

3-7--- | It does not apply if the local g¥) is not 2. In this case, the phase
between ¢, d and ag? matters.

If one measures g¥=1.8, then g must lie within [19.36, 20.64]

Conclusion

EQo\: YV is a \J(ir\{ nacrcow e rvall !
We can assess mode entanglement of some Gaussian states without
measuring non-commuting observables.
Cauchy-Schwarz inequality is not a mode entanglement witness for too small
populations. It is however a particle entanglement witness (Wasak, 2014).
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Wasak, T et al. Cauchy-Schwarz inequality and particle entanglement. Phys. Rev. A 90, 033616 (2014).
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gl?) as entanglement witness
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@ What if | do not have a (good) measurement of g ?

3.0 We provide a threshold to witness
S entanglement using only the
D 55 entangled second order correlation function.
L|9 v
3 Gy
(_>5 2.0 o= eemeeaaaas ‘\\\ € :
— \\\\ N We need %(A”/Yo 0SSCSS ew*ww%\cwevﬁ
.L;) 1.5 - separable R w Alis qu«(’,s’hovx woar\C re%'\ow.
S |
Same "terms of service" apply as
1.0 +———mr—— 5
efore however
102 1071 10° 10t 107

Population v nin;

Demonstration: Separable states cannot have a too large second
order correlation function
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Marolleau, Q. et. al. Sub-shot-noise interferometry with two-mode quantum states. Phys. Rev. A 109,
023701 (2024).

8 gives the range of g defined as: 82 = nim(gls — 1) ===
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