
TH
ES
E
D
E
D
O
CT
O
RA

T
N
N
T
:2
02
5U

PA
SP
00
5

On the entanglement of quasi-particles in
a Bose-Einstein Condensate

From Faraday waves to the Dynamical Casimir Effect

De l’intrication de quasi-particules dans un condensat de
Bose-Einstein

Des ondes de Faraday à l’effet Casimir dynamique

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦572, Ondes et matière (EDOM)
Spécialité de doctorat : Physique

Graduate School : Physique. Référent : Institut d’Optique

Thèse préparée au Laboratoire Charles Fabry
(Université Paris-Saclay, CNRS, Institut d’Optique Graduate School),

sous la direction de Denis BOIRON, Professeur des universités,
et le co-encadrement de Christoph WESTBROOK, Directeur de recherche.

Thèse soutenue à Palaiseau, le 28 janvier 2025, par

Victor Gondret

Composition du jury
Membres du jury avec voix délibérative

Valentina Parigi Présidente
Professeure, Sorbonne Université
Radu Chicireanu Rapporteur
Chargé de Recherche, Université de Lille
Tommaso Roscilde Rapporteur
Maître de Conférence, École Normale Supérieure de
Lyon
Frédéric Chevy Examinateur
Professeur, École Normale Supérieure de Paris
Nicolas Pavloff Examinateur
Professeur, Université Paris-Saclay

Membres du jury sans voix délibérative

Denis Boiron Directeur de thèse
Professeur, Université Paris-Saclay
Christoph Westbrook Co-directeur de thèse
Directeur de recherche, Université Paris-Saclay





Contents

Remerciements 7

Résumé (en français) 9
1. Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Contenu du manuscrit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Introduction 17
1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2. Content of this manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

I Parametric creation of quasi-particles 25
1. Description of the ground state BEC . . . . . . . . . . . . . . . . . . . . . . 26

1.A A gas of bosons in an elongated trap . . . . . . . . . . . . . . . . . . 27
1.B The 3D cigar-shaped regime or radial Thomas-Fermi regime . . . . . 28
1.C The 1D mean field regime . . . . . . . . . . . . . . . . . . . . . . . 29
1.D BEC in the crossover regime: the Gaussian Ansatz . . . . . . . . . . 30
1.E The crossover regime: beyond the Gaussian Ansatz . . . . . . . . . . 32

2. Transverse collective oscillation of the BEC . . . . . . . . . . . . . . . . . . 33
2.A Collective excitations in BECs: brief historical perspectives . . . . . 33
2.B When the laser quenches, it’s time to breathe . . . . . . . . . . . . . 34
2.C Forcing oscillations of the BEC width: Let gentleness my strong en-

forcement be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3. Parametric creation of quasi-particles in a BEC . . . . . . . . . . . . . . . . 40

3.A Bogoliubov-de Gennes equation . . . . . . . . . . . . . . . . . . . . 40
3.B Bogoliubov transformation . . . . . . . . . . . . . . . . . . . . . . . 41
3.C Controlling and observing non-separability of phonons in a 1D Bose

gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II Quantifying entanglement of two-mode Gaussian states 51
1. Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.A Density matrix of a quantum state . . . . . . . . . . . . . . . . . . . 52
1.B The Wigner function . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.C Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.D Single mode Gaussian states and single mode transformations . . . . 58
1.E Two-mode Gaussian states and transformations . . . . . . . . . . . . 60
1.F Joint probability distribution . . . . . . . . . . . . . . . . . . . . . . 61

2. Entanglement criteria review . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.A Separability definition . . . . . . . . . . . . . . . . . . . . . . . . . 63

3



CONTENTS

2.B The positive partial transpose criterion . . . . . . . . . . . . . . . . . 64
2.C Logarithmic negativity . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.D Other (non-hermitian) entanglement witnesses . . . . . . . . . . . . 68

3. On the Cauchy-Schwarz inequality and the normalized variance . . . . . . . 70
3.A Relative number squeezing . . . . . . . . . . . . . . . . . . . . . . . 70
3.B Classical Cauchy-Schwarz inequality violation: a mode entanglement

witness ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.C Cauchy-Schwarz inequality and particle entanglement . . . . . . . . 73
3.D Numerical test to check mode entanglement . . . . . . . . . . . . . . 74

4. Assessing the degree of entanglement of thermal Gaussian states with 2- and
4-body correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.A What information can correlation functions say about the covariance

matrix ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.B The second order correlation function to probe non-separability . . . 78
4.C The second order correlation function to probe separability . . . . . . 80
4.D Graphical resolution of the 𝑔 (2) witness . . . . . . . . . . . . . . . . 82
4.E Second and fourth order correlation function as an entanglement cri-

terion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.F Finite efficiency effects . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.G Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

III Bose-Einstein condensation of metastable Helium 93
1. From helium to a magneto-optical trap of metastable helium . . . . . . . . . 94

1.A Atomic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
1.B Design of the metastable helium source . . . . . . . . . . . . . . . . 96
1.C Magneto-optical trap . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.D Magnetic Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2. Bose-Einstein condensation in an optical dipole trap . . . . . . . . . . . . . . 100
2.A Optical dipole trap . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.B Raman transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.C Dipole trap evaporation ramp . . . . . . . . . . . . . . . . . . . . . 102
2.D Stability of the BEC . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3. Bragg diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.B Resonant two-photon transfer . . . . . . . . . . . . . . . . . . . . . 106
3.C Rabi oscillations: chi va piano, va sano e va lontano . . . . . . . . . 107
3.D Mirror, Mirror on the wall, who’s the fairest of them all? . . . . . . . 109

4. Measuring the BEC properties . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.A From its size after a time-of-flight . . . . . . . . . . . . . . . . . . . 111
4.B From the quasi-particle excitations . . . . . . . . . . . . . . . . . . . 113
4.C By measuring the in situ mean field . . . . . . . . . . . . . . . . . . 114

IV The microchannel plate to probe momentum correlations 117
1. MCP detection principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

1.A From a metastable atom to an electronic signal . . . . . . . . . . . . 118
1.B Reconstruction of individual particles . . . . . . . . . . . . . . . . . 120

2. Protection and analysis of our MCP . . . . . . . . . . . . . . . . . . . . . . 123
2.A Protection of the detector . . . . . . . . . . . . . . . . . . . . . . . . 123
2.B Offset and resolution map of the detector . . . . . . . . . . . . . . . 126

4



CONTENTS

3. Physical description and limits of the detector . . . . . . . . . . . . . . . . . 130
3.A Model of the MCP . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.B Maximum number of particle per mode . . . . . . . . . . . . . . . . 131
3.C Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.D Efficiency, tomography and conclusion . . . . . . . . . . . . . . . . 134

V Controlling the quasi-particle creation 135
1. Measuring the Bogoliubov dispersion relation . . . . . . . . . . . . . . . . . 135

1.A Observation of the breathing mode of the BEC . . . . . . . . . . . . 135
1.B Forcing the BEC oscillation . . . . . . . . . . . . . . . . . . . . . . 137
1.C Exciting Bogoliubov modes to measure the dispersion relation . . . . 138

2. Exponential creation of phonons . . . . . . . . . . . . . . . . . . . . . . . . 139
2.A Exponential creation of phonons . . . . . . . . . . . . . . . . . . . . 139
2.B Initial thermal seed and initial time of the squeezing . . . . . . . . . 140
2.C Oscillation of the occupation number . . . . . . . . . . . . . . . . . 141
2.D Growth rate of the phonon occupation . . . . . . . . . . . . . . . . . 142
2.E Saturation of the phonon growth . . . . . . . . . . . . . . . . . . . . 144
2.F Shift of the density peaks . . . . . . . . . . . . . . . . . . . . . . . . 145

VI Observation of quasi-particles entanglement 147
1. Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

1.A Density analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
1.B Bragg deflection to prevent saturation . . . . . . . . . . . . . . . . . 148
1.C Stability of the BEC . . . . . . . . . . . . . . . . . . . . . . . . . . 149
1.D Adiabatic opening of the trap . . . . . . . . . . . . . . . . . . . . . . 151

2. Probing correlations via momentum-integrated correlations . . . . . . . . . . 152
2.A Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.B Measurement of the peak correlation value . . . . . . . . . . . . . . 154

3. Probing correlations via momentum-resolved correlations . . . . . . . . . . . 155
3.A Momentum-resolved correlations . . . . . . . . . . . . . . . . . . . 155
3.B Integrating the momentum-resolved correlation . . . . . . . . . . . . 158

4. Conclusion on entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.A Full counting statistics of a single mode . . . . . . . . . . . . . . . . 162
4.B Towards entanglement : measurement of the population . . . . . . . 165
4.C Quantifying entanglement via the 4-body correlation function . . . . 166
4.D Influence of the non-unit efficiency . . . . . . . . . . . . . . . . . . 168
4.E Two-mode Fock probability distribution . . . . . . . . . . . . . . . . 170
4.F Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Conclusion 175
1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2. Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Appendix 179
1. General appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

1.A Detecting particle entanglement of spin-1/2 systems . . . . . . . . . 179
1.B Impact on the correlations of the BEC arrival time fluctuations . . . . 183
1.C Local correlation function . . . . . . . . . . . . . . . . . . . . . . . 186

2. QControl3, our python based experiment program . . . . . . . . . . . . . . . 188

5



CONTENTS

2.A From Adwin to QControl3 . . . . . . . . . . . . . . . . . . . . . . . 188
2.B Introduction to QControl3 . . . . . . . . . . . . . . . . . . . . . . . 190
2.C Remote server and drivers . . . . . . . . . . . . . . . . . . . . . . . 196
2.D Our current configuration . . . . . . . . . . . . . . . . . . . . . . . 201

3. Technical details about the experiment . . . . . . . . . . . . . . . . . . . . . 206
3.A The source of metastable helium . . . . . . . . . . . . . . . . . . . . 206
3.B Liquid nitrogen cooling . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.C Water cooling of the experiment . . . . . . . . . . . . . . . . . . . . 209
3.D Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4. Reconstruction and correlation codes . . . . . . . . . . . . . . . . . . . . . . 218
4.A Correlations and data analysis . . . . . . . . . . . . . . . . . . . . . 219
4.B Momentum integrated correlations . . . . . . . . . . . . . . . . . . . 219
4.C Errors on the particle number of a thermal and poisson distribution . . 223

Glossary 225

Bibliography 245

6



Remerciements

Je tiens à remercier tout d’abord mon jury de thèse pour l’intérêt qu’il a porté à mon travail
et pour ses remarques pointues lors de ma soutenance. Merci donc à Radu Chicireanu et
Tommaso Roscilde pour leur temps précieux qu’ils m’ont accordé en tant que rapporteurs.
Merci à Valentina Parigi comme présidente, et Nicolas Pavloff et Frédéric Chevy.

Un immense merci à Denis Boiron, mon directeur de thèse, avec qui j’ai aimé apprendre,
du refroidissement atomique à l’optique quantique et que je remercie pour sa gentillesse et
sa confiance. J’ai particulièrement été touché par l’investissement de Denis sur la manip’ et
son soutien pour ses doctorants, que ce soit sur un calcul théorique ou un déboulonnage d’une
chambre à vide. Un immense merci également à ChrisWestbrook, co-directeur de mes travaux
de thèse. Sa vision de la physique et sa façon de présenter nos travauxm’ont beaucoup apporté.
Merci pour son travail de l’ombre qui nous a permis d’avancer sans soucis ces quatres années.

Ce travail n’aurait pas été possible sans les artisans journaliers de la manip’. Merci à

Figure 1: L’équipe avec laquelle j’ai travaillé durant ma thèse. De gauche à droite, haut en
bas: March Cheneau, Alexandre Dareau, Denis Boiron, Charlie Leprince, Quentin Marolleau,
Chris Westbrook et V.G. Sur la seconde photo, Paul Paquiez et Clothilde Lamirault nous ont
rejoint. En bas: Amaury Micheli, un collbaorateur théoricien et Rui Dias récemment arrivé.

7



Remerciements

Alexandre Dareau d’avoir guidé mes premiers pas sur l’expérience et pour la transmission de
ses bonnes pratiques qui nous ont guidées par la suite. Merci à Quentin Marolleau, qui par son
engouement m’a donné envie de rejoindre l’équipe, et qui (malgré ses mises en garde) m’a
donné envie de continuer. En plus des nombreuses discussions, son dynamisme et sa rigueur
ont permis à la manip de repartir sur des bases très saines. Ces années au labo auraient été très
différentes sans la présence de mon accolyte Charlie Leprince, avec qui j’ai passé toute ma
thèse. J’ai adoré travailler à ses côté, et je le remercie pour sa gentillesse, son implication et
son enthousiasme (même quand Quentin dit que non, ce n’est pas un BEC). Merci à Clothilde
Lamirault pour sa rapide prise en main de la manip, sa détermination et dont le calme dans les
situations tendues est impressionant ainsi qu’à Rui Dias pour son abnégation et sa sincérité.
Avec Léa Camier, je n’ai pas de doute que ces trois là vont former une belle équipe. PS:
désolé pour tous les problèmes qu’il reste à régler sur la manip et que vous ne manquerez pas
de débusquer. PPS2: le projet Bell c’est vrai que c’est beau mais je vous promets qu’il y a
aussi de la belle physique à faire en simulant l’Univers ;-). Merci aussi à Paul Paquiez pour
son travail avec nous.

Je remercie globalement l’ensemble des permanents du groupe Gaz quantique pour leur
gestion colégiale du groupe, qui permet d’instaurer une ambiance d’entraide et solidaire entre
les équipes. Un merci particulier à Marc Cheneau pour ses conseils lors de la remise sur pied
de l’expérience, à David Clément pour sa disponibilité et les discussions autour de l’intrication
ou de l’écologie ainsi qu’à la Capitaine Isabelle Bouchoule, pour la régate sous la houle ou
les manifs dans la foule. Plus globalement, merci à l’ensemble des membres du groupe pour
l’ambiance agréable au sein du labo et plus spécialement à Léa Dubois et Guillaume Thémèze
au sein du bureau.

Au sein du laboratoire, je remercie Patrick Georges pour son dévouement, ainsi que
l’ensemble des services techniques du laboratoire et du service infrastructure de l’Institut. Un
merci particulier à Jean-René Rullier, dont le calme et l’efficacité redoutable sont précieux et
Fabien Siffritt pour les nombreux dépannages qui furent cruciaux dans la réalisation de ces
travaux.

Un grand merci à nos deux théoriciens de l’équipe COSQUA. Merci à Scott Robertson
d’avoir pris le temps de me former et de s’être toujours rendu disponible pour prendre au
sérieux mes question naïves. Merci à Amaury Micheli (Mikeli pardon) pour l’ensembre de
nos discussions et moments, que ce soit de physique ou autre et avec qui c’est un plaisir de
travailler. Merci à Maxime Jacquet pour les nombreuses discussions que nous avons eu, et
pour son dynamisme dans le développement de la recherche en gravité analogue.

Un immense merci à ma famille, avec une pensée particulière pour la préparation du pôt
et les modifications de présentation de dernière minute. Merci également à tous mes amis
pour leur soutien et les moments de qualités partagés. Merci aussi pour leur perspicacité pour
relativiser les soirs de loose: “En vrai, t’es sûr qu’il faut que tu refasse des expériences ? À
force, je pense tu introduis un biais dans la science.” Merci particulièrement aux colocs de La
Plata pour ces belles années passées ensamble. Enfin, à Alice, gracias por todo, y vamos!

8



Résumé (en français)

1. Contexte

Ce travail de thèse revisite une variante de l’instabilité de Faraday en l’interprétant comme une
analogie avec l’effet Casimir Dynamique et le préchauffage dans l’univers primordial. En par-
ticulier, nous nous intéressons aux effets quantiques lors d’une excitation paramétrique. Cet
travail se situe dans le domaine de la théorie quantique des champs en espace-temps courbe
(QFTCST), également connu sous le nom de gravité analogue. Ce domaine vise à reproduire,
dans des expériences de laboratoire, des prédictions de QFTCST dont l’observation directe
est impossible. Cela permet également d’utiliser et modifier des outils théoriques intialement
développés en relativité générale ou en théorie quantique des champs pour modéliser des sys-
tèmes de matière condensée. Ce champs de recherche a été initié par un article fondateur de
Unruh (1981) “Experimental Black-Hole Evaporation”. L’idée centrale de son approche est
d’observer des radiations de Hawking (analogues). Dans sa proposition, l’horizon des trous
noirs analogues est défini par l’interface où un écoulement de fluide passe du régime sub-
sonique au régime supersonique. Les photons des trous noirs sont remplacés par des phonons,
qui ne peuvent pas remonter le courant lorsque l’écoulement est supersonique, tout comme un
photon ne peut s’échapper après avoir traversé l’horizon d’un trou noir.

Depuis 2008, des trous noirs analogues ont été réalisés sur différentes plateformes expéri-
mentales (Jacquet et al., 2020) : des réservoirs d’eau (Rousseaux et al., 2008; Weinfurtner
et al., 2011), des fibres optiques (Philbin et al., 2008), des condensats de Bose-Einstein (CBE)
(Lahav et al., 2010), des cristauxmassifs (Belgiorno et al., 2010), des polaritons enmicrocavité
(Nguyen et al., 2015) ou encore l’hélium superfluide 3He-B (Človečko et al., 2019).

Alors que la plupart des expériences cherchent à observer l’intrication des radiations
de Hawking émises de façon spontanée (Steinhauer, 2016), d’autres plateformes se sont
récemment concentrées sur des modèles analogues de l’inflation, ainsi que sur les phases de
préchauffage et de réchauffage de l’Univers primordial.

La cosmologie standard a prédit l’existence du Fond Diffus Cosmologique (CMB, pour
Cosmic Background Radiation) et l’expansion de l’univers (loi de Hubble) (Watson, 2000).
Avant un moment spécifique appelé découplage (voir Figure 2(a)), l’univers était un plasma
chaud et dense composé de photons, d’électrons et de protons, où la lumière était continuelle-
ment diffusée par les électrons libres. Au découplage, environ 380 000 ans après le Big Bang,
l’univers s’est suffisamment refroidi pour que les électrons et les protons forment des atomes
d’hydrogène neutres, permettant ainsi aux photons de voyager librement à travers l’espace.
Cet instant a donné naissance à ce que l’on appelle la “surface de dernière diffusion”, qui
constitue une photo de l’univers au moment du découplage. La lumière issue de ce processus
est aujourd’hui observée sous la forme du CMB, qui sert de référence pour comparer les pré-
dictions des modèles cosmologiques aux observations. Malgré le succès de ses prédictions,
le modèle standard n’explique pas la remarquable isotropie et homogénéité du CMB à larges

9



Résumé (en français)

Figure 2: (a) Évolution de notre Univers décrite par le modèle standard. (b) Évolution du
rayon de l’Univers actuellement observé, reproduite de Guth (1997). Sans inflation, deux
régions opposées du ciel sont causalement séparées, ce qui est contredit par l’apparente uni-
formité du CMB. (c-d) Deux modèles simple pour étudier la désintégration de l’inflaton. Ini-
tialement, le champ est dans un état de faux vide et transit vers un état de vrai vide, dans lequel
il commence à osciller, créant des paires de particules sous forme d’états comprimés à deux
modes. ©Figures (a-b) de Guth (1997).

échelles (le problème de l’horizon). En particulier, lorsque nous observons deux régions op-
posées du CMB1, celles-ci présentent la même température et structure, ce qui implique une
connexion causale à un certain moment. La Figure 2(b) montre le rayon de l’univers observ-
able en fonction du temps. Si nous extrapolons l’expansion de l’univers jusqu’au moment
du Big Bang, le rayon de l’univers observable aujourd’hui serait trop grand pour que ces ré-
gions largement séparées aient jamais été en contact causal. Ce problème de l’horizon, ainsi
que d’autres, a motivé l’introduction d’un nouveau champ appelé inflaton, qui entraîne une
période d’expansion rapide nommée inflation (Guth, 1981; Linde, 1982). Nous voyons sur le
graphique que selon la théorie de l’inflation, l’univers observable a, au début, été en contact
causal.

La dynamique du champ d’inflaton est décrite comme une transition de phase. Initiale-

1En fait, les deux régions n’ont pas besoin d’être opposées pour être causalement déconnectées. Watson (2000)
affirme que “toute régions séparées de plus de 2 degrés dans le ciel aujourd’hui aurait été causalement déconnectée
au moment du découplage” sans inflation.

10



Résumé (en français)

ment, ce champ était dans un état appelé “faux vide”. Il a ensuite évolué vers sa valeur de
“vrai vide”, libérant une grande quantité d’énergie. Les Figure 2(c) et (d) présentent deux
modèles différents de cette transition de phase (Gregory, 2023). Un modèle prévoit un effet
tunnel induit par des fluctuations quantiques et/ou thermiques, récemment simulé par Zenesini
et al. (2024). L’autre est analogue à une transition de phase du premier ordre. Selon le modèle
et la forme du potentiel testé, la dynamique de l’expansion est modifiée. Sa cohérence vis-à-
vis des observations du CMB est ensuite vérifiée, ce qui permet de valider le modèle ou de
l’affiner.

Une fois l’inflation terminée, l’Univers est froid et vide en raison de cette expansion rapide.
Le champ d’inflaton atteint sa valeur minimale mais possède encore une grande énergie poten-
tielle et commence à osciller. Ce champ oscillant se désintègre en particules, “en raison d’une
résonance paramétrique large” (Kofman et al., 1994). Cette période de création paramétrique
de particules est connue sous le nom de préchauffage.
À mesure que le nombre de particules créées augmente, les oscillations de l’inflaton diminu-
ent et la rétroaction des particules avec le champ d’inflaton ne peut plus être négligée. Les
particules interagissent et thermalisent : cette période est appelée réchauffage (Kofman et al.,
1997). Dans cette thèse, nous nous concentrons sur la toute première étape, le préchauffage.
Une dynamique de (pré)chauffage analogue a également été étudiée dans un réservoir d’eau, à
Nottingham, par Barroso et al. (2022). Je pense que leur conclusion résume bien l’objectif de
la QFTCST, qui n’est pas de reproduire exactement la physique de l’inflaton, mais plutôt de
démontrer “l’universalité et la robustesse des modèles théoriques abordant la thermalisation
dans l’Univers primordial et ses différentes étapes”.
Une fois l’inflation terminée, l’Univers est vide : ce sont les fluctuations du vide qui dé-
clenchent la croissance exponentielle des modes bosoniques (Parentani, 2003). En raison de
la conservation de l’impulsion, le vide évolue en un produit d’états comprimés à deux modes
d’impulsion opposées (−𝑘, 𝑘) (Grishchuk and Sidorov, 1990; Campo and Parentani, 2006).
Afin d’observer expérimentalement une amplification paramétrique bosonique depuis le vide,
il faut donc un système vide d’excitation donc à température nulle. En effet, lorsque la tempéra-
ture n’est pas nulle, le mécanisme d’amplification bosonique est déclenché par les fluctuations
thermiques plutôt que par les fluctuations du vide. Parmi les différents systèmes utilisés en
gravité analogue, la température extrêmement basse des condensats de Bose-Einstein permet
justement d’être sensible aux fluctuations du vide et de révéler des effets quantiques. Bien
sûr, la température absolue zéro est inatteignable et il existe donc toujours une infime frac-
tion thermique qui déclenche l’amplification bosonique. Dans ce cas, la population de chaque
mode croît selon une loi (2𝑛𝑡ℎ + 1)sinh2𝐺𝑡, où 𝑛𝑡ℎ est la population thermique initiale du
mode et 𝐺 le gain du processus. Le “1” dans 2𝑛𝑡ℎ + 1 témoigne de la contribution des fluctu-
ations du vide dans la croissance de la populatio. Plutôt qu’un état comprimé du vide à deux
modes, nous observerons donc un état comprimé thermique à deux modes dans notre système.
Dans ce cas, le rôle des fluctuations du vide se manifeste dans la non-séparabilité de l’état : la
valeur moyenne de | 〈𝑎𝑘𝑎−𝑘〉 | dépasse la population 〈𝑎†𝑘𝑎𝑘〉. L’objectif central de ce travail
de thèse est donc d’observer qu’une résonance paramétrique des excitations collectives dans
un condensat conduit à un état non séparable.

Avec les condensats de Bose-Einstein (CBEs), une modulation soudaine de l’intensité
des interactions excite un large éventail de modes de Bogoliubov (Jaskula et al., 2012). De
nombreuses expériences ont étudié l’évolution temporelle des corrélations après un quench
(changement brutal d’un paramètre du système) : Cheneau et al. (2012) a étudié leur propaga-
tion dans un cône de lumière (cône sonore) et Hung et al. (2013) a observé des oscillations de
Sakharov. Avec un gaz de Bose unidimensionnel, Schemmer et al. (2018) a tenté de mettre
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Figure 3: Les différents domaines auxquels cette thèse se rapporte. ©Figures de Macrì et al.
(2018), Engels et al. (2007), Edwards and Fauve (1994) et Eckel et al. (2018).

en évidence la compression des phonons de faible 𝑘 , mais celle-ci a été masquée en raison du
potentiel harmonique peu profond. Cependant, des développements technologiques récents
permettent désormais d’ingénier des potentiels arbitraires (Gaunt et al., 2013; Corman et al.,
2014). En particulier, Eckel et al. (2018) rapporte l’observation du décalage vers le rouge des
excitations de grande longueur d’onde dans un condensat en anneau en expansion superson-
ique. Chen et al. (2021) utilise un potentiel de type boîte plate et une résonance de Feshbach
pour effectuer un quench sur un gaz de Bose bidimensionnel et démontrer des corrélations non
classiques des quasi-particules créées. Grâce à un microscope quantique 2D, Viermann et al.
(2022) exploite une résonance de Feshbach pour ajuster les interactions et utilise leur outil
de potentiel arbitraire afin de démontrer la production de particules sur différentes courbures
spatiales.

Bien que la résonance paramétrique de l’inflation soit large, celle que nous étudions dans
cette thèse ne concerne qu’un seul mode : la fenêtre de résonance en impulsion est relative-
ment étroite. Dans cette perspective, elle est mieux décrite comme une “analogie acoustique
de l’effet Casimir dynamique”. L’effet Casimir dynamique est en lui-même un domaine de
recherche actif (Dodonov, 2010). Il désigne la production de particules due à un paramètre
variant de manière non adiabatique. Dans l’étude initiale de Moore (1970), une oscillation
rapide de la position d’un miroir de cavité à une fréquence 𝜔 crée des photons à partir du vide,
dont le vecteur d’onde 𝑘 ∝ 2𝜋/𝐿 est égal à 𝜔/2𝑐. Ici, 𝑐 désigne la vitesse de la lumière et 𝐿 la
longueur de la cavité. Cependant, le nombre de photons créés est proportionnel à (𝑣𝑚/𝑐)2, où
𝑣𝑚 est la vitesse du miroir (Lambrecht et al., 1996). Le rapport (𝑣𝑚/𝑐) est assez défavorable,
en particulier dans le contexte du mouvement mécanique. Une alternative consiste à modifier
rapidement l’indice optique de la cavité, i.e. changer la vitesse de la lumière dans le milieu.
Cette technique a permis d’observer la création paramétrique de quasi-particules à partir du
vide dans quatre dispositifs différents : des circuits supraconducteurs (Wilson et al., 2011),
des jonctions Josephson (Lähteenmäki et al., 2013), une fibre optique modulée spatialement
(Vezzoli et al., 2019) et une chaîne d’ions (Wittemer et al., 2019).
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Figure 4: Dispositif expérimental : le CBE allongé verticalement est piégé dans un piège
dipolaire croisé. Le laser de piégeage est modulé à deux fois la fréquence du piège avec une
faible amplitude pendant quelques périodes (6 périodes pour la courbe rouge en encart). Le
CBE est excité dans son mode de respiration: sa largeur oscille à deux fois la fréquence du
piège et l’amplitude de cette oscillation augmente avec l’amplitude et la durée de l’excitation
laser. La largeur attendue du CBE est montrée dans l’encart avec la courbe verte. Lorsque
la modulation du laser s’arrête, le CBE continue d’osciller, et donc d’exciter un mode de
Bogoliubov. Une fois le piège éteint, l’excitation collective est transféré en atomes “témoins”
qui s’échappent du CBE et sont détéctés. Nous pouvons discriminer ces atomes de ceux du
condensat: sur l’image, ils sont de part et d’autre du condensat

Notre dispositif expérimental est le même2 que celui utilisé par Jaskula et al. (2012) pour
démontrer la création paramétrique de phonons dans un CBE dont la densité est modulée. Les
auteurs ont mis en évidence une corrélation claire entre les paires de phonons, mais celle-ci
n’était pas suffisante pour démontrer la non-séparabilité de l’état. Le protocole pour exciter
ces phonons est le suivant : le confinement transverse d’un CBE allongé (forme de cigar) est
modulé dans le temps à une fréquence 𝜔. Une telle excitation excite paramétriquement des
modes longitudinaux à la fréquence𝜔/2, un phénomène centenaire connu sous le nom d’ondes
de Faraday. De telles excitations paramétriques ont été étudiées avec des gaz quantiques 1D
par Engels et al. (2007), Nguyen et al. (2019) et Hernández-Rajkov et al. (2021), ainsi qu’avec
un CBE 2D par Liebster et al. (2023). Une expérience plus exotique de type Faraday a été
réalisée dans un CBE 1D à deux espèces par Cominotti et al. (2022).

Dans ce travail, nous excitons le mode de respiration transverse d’un CBE en forme de
cigar, à deux fois la fréquence du piège (voir l’encart rouge P𝑙𝑎𝑠 de Figure 4). À cette
fréquence spécifique, le CBE entre dans un mode de respiration et sa largeur oscille dans
le temps (encart vert 𝜎𝐶𝐵𝐸). Cette oscillation transverse à 2𝜔⊥ excite une onde de Faraday
longitudinale, dont l’énergie est moitié moindre soit à 𝜔⊥. Lorsque le piège est relâché, les
deux modes de phonons sont transférés vers des modes atomiques témoins. Durant le temps
de vol de 307 ms, les paquets d’ondes atomiques (−𝑘, 𝑘) se séparent du CBE et nous pouvons
ainsi discriminer l’impulsion des atomes. Cela est représenté par les deux nuages bleus qui
se détachent du CBE sur le schéma de Figure 4. À droite, l’histogramme montre le nombre

2Notons tout de fois qu’il ne s’agit pas exactement de la même expérience : entre-temps, nous avons changé
quelques composants (voir le troisième chapitre). Cependant, le grand ralentisseur Zeeman de 4 m est resté le
même depuis 30 ans, bien qu’il ait peut-être perdu quelques bobines au fil des doctorants...
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d’atomes détectés en fonction du temps : le pic central correspond au CBE et les deux bandes
latérales aux pics de phonons.

2. Contenu du manuscrit
Le premier chapitre de cette thèse est une revue de la littérature sur le processus de pro-
duction de quasi-particules. La première section décrit la fonction d’onde de l’état fonda-
mental du CBE, qui se situe dans le crossover entre le régime en forme de cigare 3D et le
régime de champ moyen 1D. Nous introduisons un ansatz gaussien pour modéliser le pro-
fil transverse du gaz, que nous utilisons tout au long de ce manuscrit. La deuxième section
introduit les oscillations collectives, en mettant particulièrement l’accent sur le mode de res-
piration du CBE. En particulier, nous étudions la réponse du rayon transverse du CBE à un
potentiel arbitraire dépendant du temps et proposons un protocole pour mieux contrôler son
oscillation. La dernière section introduit la théorie et la transformation de Bogoliubov. Elle
passe en revue les principaux progrès théoriques sur le processus de création de paires induit
par un hamiltonien dépendant du temps.

Le deuxième chapitre présente la contribution théorique de cette thèse. La première section
introduit le formalisme des états gaussiens et la deuxième section passe en revue les critères
d’intrication. Notamment, nous introduisons le critère généralisé de Peres-Horodecki perme-
ttant d’évaluer la non-séparabilité des états gaussiens. La troisième section se concentre sur
deux témoins de corrélation largement utilisés dans les expériences sur les atomes froids :
la compression du nombre relatif et la violation de l’inégalité classique de Cauchy-Schwarz.
Cette discussion est motivée par notre besoin de mieux comprendre si ces quantités perme-
ttent ou non d’évaluer l’intrication des modes. La dernière section constitue la principale
contribution de ce chapitre. En utilisant les outils introduits dans les première et deuxième
sections, nous démontrons qu’il est possible d’évaluer et de quantifier la non-séparabilité des
états gaussiens en mesurant les fonctions de corrélation à 2 corps et 4 corps. Lorsque la mesure
des corrélations à 4 corps est impossible ou trop bruitée, nous proposons également une borne
inférieure sur la fonction de corrélation à 2 corps pour détecter l’intrication. Enfin, nous dis-
cutons du domaine d’applicabilité de ce critère ainsi que de sa mise en œuvre expérimentale.

Le troisième chapitre présente l’expérience sur laquelle j’ai travaillé. Nous résumons
brièvement les améliorations apportées à l’appareil et décrivons le déroulement de la
séquence expérimentale. Les principales descriptions techniques sont laissées en annexe.
La troisième section prend un peu plus de temps pour décrire la diffraction de Bragg. Sans
entrer trop dans les détails, nous expliquons comment nous façonnons temporellement
les impulsions lumineuses de Bragg afin de réaliser des déflecteurs sélectifs et efficaces.
Nos capacités expérimentales avec les impulsions de Bragg façonnées dépassent ce qui est
décrit dans ce manuscrit et ont conduit à une publication en cours de publication (Leprince
et al., 2024). La dernière section discute des propriétés de notre CBE, en s’appuyant sur la
description théorique faite dans le premier chapitre.

Le quatrième chapitre décrit notre détecteur, la galette de microcanaux (MCP pour mi-
crochannel plate) et les lignes à retard. Ce détecteur original permet de mesurer le temps
d’arrivée et la position des atomes individuels. La première section explique comment nous
reconstruisons l’impulsion tri-dimensionnelle in-situ d’atomes individuels ainsi que le proces-
sus de reconstruction. La deuxième section rapporte l’installation d’un écran de protection
pour la MCP afin de la protéger du laser vertical, visible dans la Figure 4. La dernière section
décrit le processus de mesure du détecteur et discute de ses limitations.

Le cinquième chapitre de cette thèse se concentre sur la dynamique du processus de créa-
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tion de quasi-particules. Dans la première section, nous mesurons la relation de dispersion
Bogoliubov. La deuxième étudie la création exponentielle de phonons. En particulier, nous
mesurons le taux de croissance de la production de quasi-particules et le relions à la prédiction
théorique. La différence entre le gain mesuré et la valeur théorique nous permet de déterminer
le taux de décroissance des quasi-particules. Bien que ces résultats soient encore prélimi-
naires, ils sont prometteurs et sont comparés aux taux de décroissance théoriques issus de la
littérature.

Le sixième chapitre présente le principal résultat expérimental de ce travail. En supposant
que l’état est gaussien, nous démontrons la non-séparabilité de l’état de quasi-particules, en
nous appuyant sur le travail théorique du deuxième chapitre. La première section rappelle
les éléments expérimentaux clés nécessaires pour observer cette non-séparabilité, dans une
section “méthode”. Les deuxième et troisième sections rapportent la mesure des fonctions
de corrélation du deuxième ordre, en utilisant deux approches différentes. Elles donnent des
résultats similaires, tant pour les fonctions de corrélation locales que croisées. Dans la dernière
section, nous analysons davantage la distribution de Fock de chaque mode pour nous vérifier
que nos mesures sont dans le domaine d’applicabilité du critère dintrication dérivé dans le
chapitre 2. Nous mesurons également la fonction de corrélation à 4 corps. L’incertitude assez
grande sur la mesure nous empêche de caractériser complètement l’état gaussien et son degré
d’intrication. Cependant, sur la base de la discussion et des bornes de 𝑔 (2) dérivées dans le
deuxième chapitre, nous évaluons que l’état (gaussien) est intriqué. Nous estimons son degré
d’intrication en utilisant la négativité logarithmique. Enfin, nous utilisons une approche auto-
consistante pour estimer l’efficacité quantique du détecteur, ce qui nous permet de reconstruire
l’état en tenant compte d’une efficacité quantique non unitaire.
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Introduction

1. Context

This thesis lies at the intersection of various fields of physics, drawing analogies between the
Dynamical Casimir effect and the preheating scenario in the early Universe. In particular, it
explores the well-known Faraday wave effect with a particular focus on quantum aspects. It
belongs to the so-called field of quantum field theory in curved space-time (QFTCST), also
known as analog gravity. This field aims to reproduce on table-top experiments systems that
behave like unaccessible observables. It also intends to use theoretical tools developed in
general relativity or quantum field theory tomodel condensedmatter systems. It was pioneered
by a seminal paper by Unruh (1981), titled “Experimental Black-Hole Evaporation”. Central
to his idea is to observe (analog) Hawking radiations. In such experiments, the horizon of the
analog black holes is defined by the interface at which a liquid flow changes from subsonic
to supersonic. The photons of the black holes are replaced by the phonons, which cannot
go upstream when the water flow is supersonic, as a photon cannot escape once crossed the
black hole horizon. Analog black holes were realized since 2008 on various experimental
platforms (Jacquet et al., 2020): water-tanks (Rousseaux et al., 2008; Weinfurtner et al., 2011),
optical fibers (Philbin et al., 2008), Bose-Einstein condensates (BEC) (Lahav et al., 2010), bulk
crystals (Belgiorno et al., 2010), microcavity polaritons (Nguyen et al., 2015) or superfluid
3He-B (Človečko et al., 2019). While most of the experiments aim to observe entanglement
of spontaneous Hawking radiations (Steinhauer, 2016), other platforms focused more recently
on analog model of inflation, on the preheating and reheating stages.

Standard cosmology greatly succeeded in predicting the existence of the Cosmic Back-
ground Radiation (CMB) and the universe expansion (Hubbles law) (Watson, 2000). Before
a specific time called decoupling (see Figure 5(a)), the universe was a hot, dense plasma of
photons, electrons, and protons, where light was continuously scattered by free electrons. At
decoupling, about 380,000 years after the Big Bang, the universe cooled enough for electrons
and protons to form neutral hydrogen atoms, allowing photons to travel freely through space.
This moment created what is called the “last scattering surface”, which is a snapshot of the
universe at decoupling. The light from this process is now observed as the CMB which is
the resource used to compare cosmological models. One of the long-standing problems in
cosmology, known as the horizon problem, arises from the observation that the CMB is re-
markably isotropic and homogeneous across vast distances. In particular, when we observe
two opposite3 regions in the CMB, they exhibit the same temperature and structure, which
implies a causal connection at a time. Figure 5(b) shows the radius of the observable universe
as function of time. If we extrapolate the expansion of the universe back to the time of the

3In fact the two regions do not need to be opposite to be causally disconnected. Watson (2000) states that “any
region separated by more than 2 degrees in the sky today would have been causally disconnected at the time of
decoupling”.
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Figure 5: (a) Evolution of our Universe described by the Standard model. (b) Evolution of the
radius of the (currently) observed Universe, reproduced from Guth (1997). Without inflation,
two opposite regions in the sky are causally separated. (c-d) Two toy models for the decay
of the inflaton field. Initially, the field is in the a false vacuum state and later decays into a
true vacuum state, in which it starts to oscillates, creating pairs of particles in a product of
two-mode squeezed states. ©Figures (a-b) from Guth (1997).

Big Bang, the radius of the observable universe today would be too large for these widely sep-
arated regions to have ever been in causal contact. This horizon problem, along with others,
motivated the introduction of a new field known as the inflaton, which drives a period of rapid
expansion called inflation (Guth, 1981; Linde, 1982).

The dynamics of the inflaton field is described as a phase transition: initially, this field was
in a state that is referred to as “false vacuum”. This field then decayed to its “true vacuum”
value, releasing a great amounts of energy. Figure 5(c) and (d) show two different models
of this phase transition (Gregory, 2023). One model expects quantum and/or thermal driven
tunneling and was recently mimicked by Zenesini et al. (2024). The other one is analogous
to a first order phase transition. Depending on the model and the shape of the test potential,
the dynamics of the expansion is modified. Its consistency can be verified through CMB
observations, which determines the validity of the model, or fine-tunes it.

Once inflation ends, the Universe is cold and empty, due to this rapid expansion. The
inflaton field reached its minimum value but has still a large potential energy and starts to
oscillate. This oscillating field decays into particles, “due to a broad parametric resonance”
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(Kofman et al., 1994). Such period of parametric creation of particles is known as preheating.
While the number of created particles increases, backreaction with the inflaton field cannot
be neglected and the oscillations of the inflaton decrease. Particles interact together and ther-
malize: this period is referred to as reheating (Kofman et al., 1997). In this thesis, we focus
on the very first step, the preheating. Analog (p)reheating dynamics was also investigated
in tank water, in Nottingham by Barroso et al. (2022). I think that their conclusion summa-
rizes well the goal of QFTCST which is not to exactly reproduce inflaton physics but rather
to demonstrate “universality and robustness of theoretical models tackling the thermalization
in the Early Universe and its distinct stages”.
After inflation the Universe is empty: it is vacuum fluctuations that trigger the exponential
growth of bosonic modes (Parentani, 2003). Because of conservation of momentum, the vac-
uum evolves into a product of two-mode squeezed states in the (−𝑘, 𝑘) basis (Grishchuk and
Sidorov, 1990; Campo and Parentani, 2006). When the temperature is not zero, bosonic am-
plification mechanism is triggered by thermal fluctuations rather than vacuum fluctuations.
Among analog gravity setups, the extremely low temperature of BECs allows to be sensitive
to vacuum fluctuations and to reveal quantum effects. Of course, absolute zero temperature
is unreachable therefore there is always a tiny thermal fraction that triggers bosonic amplifi-
cation: the population grows as (2𝑛𝑡ℎ + 1)sinh2𝐺𝑡, where 𝑛𝑡ℎ is the initial thermal population
of the mode and 𝐺 the gain of the process. Without initial thermal population, the mode pop-
ulation grows due to quantum fluctuations. The “1” in 2𝑛𝑡ℎ + 1 witnesses this vacuum fluc-
tuation part. Rather than a two-mode squeezed vacuum state, we shall observe a two-mode
squeezed thermal state in our system. In this case, the role of vacuum fluctuation manifests
in the non-separability of the state: the average value of | 〈𝑎𝑘𝑎−𝑘〉 | exceeds the population
〈𝑎†𝑘𝑎𝑘〉. Central to this work is therefore to demonstrate that a parametric resonance leads to
a non-separable state.

With BECs, quenching the interaction strength excites a broad range of Bogoliubovmodes
(Jaskula et al., 2012). Many experiments studied the time evolution of the correlations after
a quench: Cheneau et al. (2012) studied their spreading within a light-cone (sound-cone) and
Hung et al. (2013) observed Sakharov oscillations. With a 1D Bose gas, Schemmer et al.
(2018) tried to evidence the squeezing of low 𝑘 phonons, the latter being masked due to the
shallow harmonic potential. However, recent technological developpements allow now to en-
gineer arbitrary potentials (Gaunt et al., 2013; Corman et al., 2014). In particular, Eckel et al.
(2018) report on the observation of the redshift of long-wavelength excitations in a superson-
ically expainding ring condensate. Chen et al. (2021) use a flat box potential and a Feshbach
resonance to quench a 2D Bose gas and demonstrate non-classical correlations of the created
quasi-particles. With a 2D quantum microsope, Viermann et al. (2022) make use of a Fesh-
bach resonance to tune interactions, using their arbitrary potential tool to demonstrate particle
production on different spatial curvatures.

While the parametric resonance of inflation is broad, the one we study in this thesis in-
volves only a single mode: the resonant window in 𝑘 is quite narrow. From this perspective,
it is better described as an “Acoustic analog of the Dynamical Casimir Effect”. The Dynami-
cal Casimir effect is in itself already an active field of research (Dodonov, 2010). It refers to
the production of particles due to a non-adiabatically changing parameter. Originally,Moore
(1970) sudied a fast oscillation of the position of a cavity mirror at 𝜔, which creates photons
from vacuum whose wave-vector 𝑘 ∝ 2𝜋/𝐿 is equal to 𝜔/2𝑐. Here, 𝑐 refers to the light speed
and 𝐿 to the cavity length. However, the number of created photons scales as (𝑣𝑚/𝑐)2 where
𝑣𝑚 is the speed of the mirror (Lambrecht et al., 1996). The (𝑣𝑚/𝑐) is a rather unfavorable
ratio, especially in the context of mechanical motion. One could instead rapidly change the
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Figure 6: The different fields to which this thesis refers to. ©Figures fromMacrì et al. (2018),
Engels et al. (2007), Edwards and Fauve (1994) and Eckel et al. (2018).

optical index of the cavity i.e. modifying the light speed in the medium. This technique led
to the observation of the parametric creation of quasi-particles from vacuum in four different
setups, with superconducting circuits (Wilson et al., 2011), Josephson junctions (Lähteenmäki
et al., 2013), an optical fiber (Vezzoli et al., 2019) and an ion chain (Wittemer et al., 2019).

Our experimental machine is the same experiment4 that was used by Jaskula et al. (2012) to
demonstrate parametric creation of phonons in a density-modulated BEC. The authors demon-
strated a clear correlation between the phonon pairs however the correlation was not suffi-
cient to demonstrate non-separability of the state. The protocol to excite these phonons fol-
lows: the highly elongated BEC transverse confinement is time-modulated at frequency 𝜔.
Such excitation parametrically excites longitudinal modes at frequency 𝜔/2, a century-year
old phenomenon known as Faraday waves. Such parametric excitations were studied with
1D quantum gases by Engels et al. (2007), Nguyen et al. (2019) and Hernández-Rajkov et al.
(2021) and a 2D BEC by Liebster et al. (2023). A more exotic Faraday-like experiment was
conducted in a two-species 1D BEC by Cominotti et al. (2022).

In this work, we excite the transverse breathing mode of a highly elongated BEC at twice
the frequency of the trap (see the red inset P𝑙𝑎𝑠 of Figure 7). At this specific frequency, the
BEC enters a breathing mode and its width oscillates in time (green inset 𝜎𝐵𝐸𝐶). This trans-
verse oscillation at 2𝜔⊥ excites a longitudinal Faraday wave, whose energy is 𝜔⊥. When the
trap is released, the two phonon modes are transferred to witness atomic modes. During the
307 ms time-of-flight, the (−𝑘, 𝑘) atomic wave-packets separate from the BEC. This is repre-
sented by the two blue clouds that separate from the BEC on the sketch of Figure 7. On the
right, the histogram shows the number of detected atoms as a function of time: the central
peak corresponds to the BEC and the two side-bands to the phonon peaks.

4Let me emphasize that it is not exactly the “same” experiment: in the meantime, we changed a few components
(see the third chapter). The large 4m Zeeman slower is however the same since 30 years, even though it might
have lossed a few coils per PhD student...
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Figure 7: Experimental setup: the vertically elongated BEC is trapped in a cross dipole trap.
The trapping laser is modulated at twice the trap frequency with a small amplitude for a few
periods (6 periods in the red curve inset). The BEC enters breathing mode, its width oscillates
at twice the trap frequency and the amplitude of its oscillation increases with both the ampli-
tude and the excitation duration. The BEC expected width is shown in the inset, with the green
curve. When the laser stops modulating, the BEC keeps oscillating, hence keeps exciting one
Bogoliubovmode. Once the trap is switched off, the collective excitation is mapped to witness
atoms that are detected just before and after the BEC.

2. Content of this manuscript

The first chapter of this thesis is a literature review of the quasi-particle production process.
The first section describes the BEC ground state wave-function which is in the crossover be-
tween the 3D cigar shaped regime and the 1D mean field regime. We introduce a Gaussian
Ansatz to model the gas transverse profile that we use throughout this manuscript. The second
section introduces collective oscillations, with a special focus on the BEC breathing mode. In
particular, we study the response of the BEC transverse radius to an arbitrary time-dependent
potential and propose a protocol to better control its oscillation. The last section introduce
Bogoliubov theory and transformation and reviews the major theoretical progresses on pair
creation process due to a time dependant Hamiltonian.

The second chapter contains the theoretical contribution of this thesis. The first section in-
troduces Gaussian state formalism and the second reviews entanglement criteria. Notably, we
introduce the bona fide condition for any Gaussian state and the generalized Peres-Horodecki
criterion that assess non-separability of Gaussian states. The third section focuses on two cor-
relation witnesses widely used in cold atoms experiment: relative number squeezing and the
classical Cauchy-Schwarz inequality violation. Such discussion is motivated by our need to
better understand if these quantities can or cannot assess mode entanglement. The last section
is the main contribution of this chapter. Using the tools introduced in the first and second sec-
tion, we demonstrate that we can assess and quantify non-separability of Gaussian states by
measuring the 2- and 4-body correlation functions. When the 4-body correlation measurement
is not possible or too noisy, we also provide a lower bound on the 2-body correlation function
to assess entanglement. We finally discuss the range of applicability of this criterion and its
experimental implementation.

The third chapter introduces the BEC machine on which I have been working. We briefly

21



Introduction

summarize the upgrades implemented on the apparatus and describe the course of the experi-
mental sequence. Major technical descriptions are left within the appendix. The third section
takes a bit more time to describe Bragg diffraction. Without going too much into the details,
we describe howwe shape Bragg pulses to realize selective and efficient deflectors. Our exper-
imental capabilities with shaped bragg pulses go beyond what is described in this manuscript,
and led to a submitted publication (Leprince et al., 2024). The last section discusses the prop-
erties of our cigar shaped BEC, relying on the theorical description made in the first chapter.

Fourth chapter describes our detector, the micro-channel plate (MCP) and delay lines.
This original detector allows to detect the arrival time and position of individual atoms. The
first section explains how we reconstruct the in-trap 3D momentum of individual atoms and
reconstruction code. The second section reports on the installation of a shield to protect the
MCP from the vertical laser, which can be seen in Figure 7. The last section describes the
measurement process of the detector and discusses its limitations.

The fifth chapter of this thesis focuses on the dynamics of the quasi-particle creation pro-
cess. In the first section, we measure the Bogoliubov dispersion relation. The second studies
the exponential creation of phonons. In particular, we measure the growth rate of the quasi-
particle production and relate it to the theoretical prediction. The difference between the mea-
sured gain and the theoretical value allows us to determine the quasi-particle decay rate. While
these results are still preliminary, they are promising and are compared with the theoretical
decay rates from the literature.

The sixth chapter presents the main experimental result of this work. Assuming the state
is Gaussian, we demonstrate non-separability of the quasi-particle state, relying on the theoret-
ical work of the second chapter. The first section recalls the key ingredients that were needed
to observe this non-separability, in a “method” section. The second and third sections report
the measurement of the second-order correlation functions, using two differents approaches.
They yield similar results, both for local and cross correlation functions. In the last section,
we further analyse the full-counting statistics of each mode to demonstrate that we are in the
applicability domain of the criterion derived in chapter 2. We also measure the 4-body cor-
rrelation function. The quite large uncertainty on the measurement prevents us to completely
characterize the Gaussian state and its degree of entanglement. However, based on the discus-
sion and the 𝑔 (2) bounds derived in the second chapter, we assess that the (Gaussian) state is
entangled. We estimate its degree of entanglement using the logarithmic negativity. Finally,
we use a self-consistent approach to estimate the detector’s quantum efficiency, which allows
us to reconstruct the state accounting for non-unit quantum efficiency.
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Figure 8: On overview of the journey in this manuscript.
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Chapter I

Parametric creation of
quasi-particles

Faraday’s experiment consists in shaking a fluid vertically at a well-defined frequency. De-
pending on the viscosity of the fluid and the boundary conditions, a specific pattern appears
at the liquid interface. After the proposal of Staliunas et al. (2002) from which we reproduce
numerical simulations in Figure 9, Engels et al. (2007) performed similar experiment with a
cigar-shape Bose-Einstein condensate. By modulating periodically the transverse potential of
the BEC, the authors excite longitudinal collective excitations. In particular, they show that
when the frequency of the modulation is𝜔𝑑 , they excite the collective mode with wave-vector
𝑘 such that 𝜔(𝑘) = 𝜔𝑑/2, where 𝜔(𝑘) is the BEC dispersion relation. A series of theoretical
papers followed this experiment to better model the dispersion relation 𝜔(𝑘) (Nicolin et al.,
2007; Nicolin and Raportaru, 2010; Nicolin, 2011). In their work, the authors use a transverse
Ansatz to study an effective 1D Gross-Pitaevskii equation. Linearizing the system for a small
perturbation with wave-vector 𝑘 , they obtain a Mathieu equation for which a Floquet analysis
gives access to unstable regions. As for any periodically driven system, it reveals the presence
of multiple resonances, at wave-vectors such that 𝜔(𝑘) = 𝑛𝜔𝑑/2, where 𝑛 is an integer. The
unstable regions, shown in Figure 9, are referred to as Mathieu tongues due to their shape.
With quantum fluids, secondary resonances were observed experimentally by Nguyen et al.
(2019) and Hernández-Rajkov et al. (2021).

These Faraday waves can be interpreted microscopically as pairs of Bogoliubov quasi-
particles with opposite momenta, 𝑘 and −𝑘 . This is our approach in this manuscript: we
partition the system in the (𝑘,−𝑘) basis and focus on the non-separability of the two-mode
state. This perspective is particularly relevant because, when the trap is turned off, the quasi-
particle state maps onto the atomic state, yielding a momentum-entangled source of massive
particles. To describe the state entanglement dynamics, we must keep the longitudinal modes
quantized. With this approach, our treatment and theoretical description align more closely
with other pair-creation mechanisms studied in the literature.

• Four-wave mixing with two colliding Bose-Einstein condensates by Perrin et al. (2007),
Kheruntsyan et al. (2012) and Hodgman et al. (2017);

• Collisional de-excitation of a 1D Bose gas by Bücker et al. (2011);
• Four-wave mixing by changing the dispersion relation in an optical lattice by Campbell
et al. (2006) and Bonneau et al. (2013);

• Modulation of the interaction strength though a Feshbach resonance by Clark et al.
(2017).

We start this chapter by describing the background on which quasi-particles propagate
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Figure 9: Left: Resonance tongues of the parametric instability, which are typical in paramet-
rically driven systems. The shaded area represents the unstable regions. In panel (a), there is
no damping, so all wave-vectors 𝑘𝑛 such that 𝜔(𝑘𝑛) = 𝑛𝜔𝑑/2 can be excited, even with very
low parametric forcing. In panel (b), a small dissipative term is included. For sufficiently
small forcing, only one resonant wavevector 𝜔(𝑘1) = 𝜔𝑑/2 is excited. Right: Simulation
snapshots showing the evolution of the Faraday pattern in real space (top) and Fourier space
(bottom). ©Figures from Staliunas et al. (2002).

which is the BEC wave-function. In the second section we focus on the transverse dynamics
of the BEC when the transverse trap frequency is modulated. The last section is dedicated to
the pair creation process: we introduce Bogoliubov transformation and discuss under which
conditions the entanglement of the two-mode state can be observed.

What we knew, what is new ? This chapter is mainly a review of the literature.
The only contribution is the proposed protocol to better control the oscillations
of the BEC radius, in section 2.C.

1. Description of the ground state BEC

In this chapter, we investigate the dynamics of the field Ψ̂ describing N bosons of mass 𝑚
confined in an external potential 𝑈. The typical density of our Bose-Einstein condensate is a
few 1013 at/cm3 meaning that the typical interparticle distance is 0.5 µm. The typical range
of the interatomic forces at play is much lower than this distance, hence we can consider
only interactions between two particles (Pitaevskiĭ and Stringari, 2016). The typical length of
interaction is given by the scattering length 𝑎𝑠 ∼ 7 nm. We can therefore consider that our
gas is weakly interacting. Second, we model the atomic interactions by a contact potential
(Dalibard, 2022) so that the Hamiltonian of the bosonic field Ψ̂(r) is

𝐻 =
∫

𝑑r

[
ℏ2

2𝑚
∇Ψ̂† · ∇Ψ̂ +𝑈 (r)Ψ̂†Ψ̂ + 𝑔

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

]
(1)

where the coupling constant is related to the s-wave scattering length 𝑔 = 4𝜋ℏ2𝑎𝑠/𝑚. From this
many-body hamiltonian (1), we can derive the motion equation for the field, that is then given
by the commutator of Ψ̂ with the hamiltonian. This leads to the Gross-Pitaevskii equation,
derived independently by Gross (1961) and Pitaevskii (1961)

𝑖ℏ𝜕𝑡 Ψ̂ =

(
−ℏ

2∇2

2𝑚
+𝑈 (𝑟) + 𝑔 |Ψ̂|2

)
Ψ̂(𝑟). (2)
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In order to derive the ground state wave-function, we replace the field Ψ̂ by a classical field
Ψ0, that represents the Bose-Einstein condensate wave-function.

In subsection 1.A, we describe the system and the trap properties, resulting in a highly
elongated BEC. We recall the BEC properties in two different one-dimensional regimes. The
first one (section 1.B) is the 3D cigar-shaped regime in which the system keeps its 3D features.
The second one (section 1.C) is the one-dimensional mean field regime, in which the radial
dynamics is frozen. The chemical potential is low compared to the first excited level of the
harmonic oscillator. As we shall see, the relation between the sound speed, the chemical
potential, the number of atoms and the BEC size are quite different in these two regimes. Our
experiment being in between those two regimes, we will use the approach of Gerbier (2004)
to describe the system in the crossover regime in section 1.D, using a Gaussian Ansatz for the
transverse density profile.

1.A A gas of bosons in an elongated trap
The BECwe consider is cigar-shaped : the trapping frequencies in the transverse directions𝜔⊥
aremuch larger than the longitudinal one𝜔𝑧 . The aspect ratio 𝜆 ≡ 𝜔𝑧/𝜔⊥ is small compared to
1. The transverse frequency is typically of the order of 1 kHz and the longitudinal is typically
30 Hz. The mean field Ψ0 obeys also the Gross-Pitaevskii equation (2) for which, in the
stationary configuration, the time derivative on the left hand-side is replaced by the chemical
potential 𝜇0, that represents the energy per particle, leading to

− ℏ2

2𝑚
∇2Ψ0 +𝑈 (r, 𝑧)Ψ0 + 𝑔 |Ψ0 |2Ψ0 = 𝜇0Ψ0. (3)

Note that the stationary Gross-Pitaevskii equation can also be derived from the energy func-
tional of equation (1) by introducing the chemical potential by hand as a Lagrange multiplier,
as in the chapter II of Dalibard (2024). The first term in this equation is the kinetic energy of
the ground state whose contributions result from the confining strength along each axis. The
so-called Thomas-Fermi (TF) limit consists of neglecting this term with respect to the interac-
tion term. In this limit, the BEC density has an inverted parabola shape. We are not in this case
because the BEC is strongly confined along the transverse direction. We now write the order
parameter Ψ0 =

√
𝑛1 𝑓 (𝑟, 𝑛1)/𝑎⊥, introducing the harmonic oscillator length 𝑎⊥ =

√
ℏ/𝑚𝜔⊥

along the transverse direction, the 1𝐷 density 𝑛1(𝑧) and 𝑟 = 𝑟/𝑎⊥. Even though it is not
explicit, we allow the 𝑓 function to depend on 𝑧 through the density 𝑛1. We now neglect
the kinetic energy along 𝑧 i.e. we neglect 𝜕𝑧Ψ0 compared to the kinetic energy. This is the
so-called local density approximation where one solves the Gross-Pitaevskii equation at any
position 𝑧 for a fixed density 𝑛1(𝑧). We then find the solution 𝑓 that depends on 𝑧 through 𝑛1.
In this case, the stationary Gross-Pitaevskii equation (3) reads(

−1
2
Δ𝑟 +

1

2
𝑟2 + 4𝜋𝑎𝑠𝑛1 𝑓

2

)
𝑓 =

𝜇𝑙𝑒
ℏ𝜔⊥

𝑓 . (4)

where 𝜇𝑙𝑒 = 𝜇0 − 𝜔2
𝑧𝑧

2/2 is the local equilibrium chemical potential that fixes the 1D atomic
density 𝑛1. The balance between the kinetic energy and the interaction depends on the dimen-
sionless parameter 𝑛1𝑎𝑠. The density 𝑛1 that drives the transition between those two regimes
cannot be approximated by 𝑁/𝑎𝑧 where 𝑎𝑧 is the harmonic oscillator length along the z direc-
tion and 𝑁 the number of atoms. Indeed, the size of the BEC is much larger than this length.
As we shall see, the natural dimensionless number to describe in which regime the gas is

𝜒 := 𝑁
𝑎𝑠𝑎⊥
𝑎2𝑧

= 𝑁𝜆
𝑎𝑠
𝑎⊥

. (5)
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Figure 10: Left: scheme of the system. A cigar-shaped BEC of size 𝐿 is trapped in a harmonic
trap with frequencies 1100 and 50 Hz, trapping frequencies for the crossed-dipole trap BEC.
Right: phase diagram in the plane 𝑁𝜆 and 𝑎⊥/𝑎. In the 3D cigar-shaped regime, the system
keeps its 3D features which is not the case in the one dimensional mean field regime. The ideal
gas region, where the conditions of applicability of the LDA fails, is where the inequality
(𝑁𝑎/𝑎⊥

√
𝜆)1/3 � 1 no longer holds. The value of 𝜆 taken was 0.04, which is the typical

value for cross dipole trap BECs in our experiment. The black star represents the experiment
carried by Jaskula et al. (2012) for which 𝑎𝑠𝑛1 ∼ 0.2. The square shows the region where the
experiment reported in this manuscript are performed (𝑎𝑠𝑛1 ∼ 1). ©Inspired from Menotti
and Stringari (2002).

When this number is large, the product 𝑛1𝑎𝑠 is large and the behavior of the system can be
approximated by neglecting the kinetic energy term : this regime is called the three dimen-
sional cigar regime, or 1D Thomas-Fermi regime. On the opposite, when 𝜒 is small com-
pared to one, the kinetic energy can no longer be neglected and one enters in the one dimen-
sional mean field regime. Note that the description we will give of the system in this regime
fails when the interparticle distance 𝑛−11 is smaller than the healing length 𝜉 = (8𝜋𝑎𝑠𝑛3𝐷)−1/2.
In this case, the regime enters the so-called Tonks-Girardeau regime. The transition between
those two regimes is tuned by the dimensionless parameter 𝑁𝜆𝑎2⊥/𝑎2𝑠 = 𝜒𝑎3⊥/𝑎3𝑠 (Petrov et al.,
2000; Dunjko et al., 2001). Our experiment being far from this regime, we do not aim to de-
scribe it and refer the interested reader to Menotti and Stringari (2002) or the chapter 24 of
Pitaevskiĭ and Stringari (2016).

1.B The 3D cigar-shaped regime or radial Thomas-Fermi regime

When 𝑎𝑠𝑛1 � 1, the kinetic energy is small compared to the interaction strength. Such regime
is called the radial Thomas-Fermi regime, or three-dimensional cigar. In this regime, even
though the density profile is very anisotropic and elongated, the system keeps its 3D features
as its chemical potential is sufficient not to be confined to the first transverse energy level
(Pitaevskiĭ and Stringari, 2016). In this regime, we start by writing the transverse profile
defined by the function 𝑓 , at fixed position 𝑧 i.e. at fixed density 𝑛1. Neglecting the kinetic
energy leads to an inverted parabola for the transverse profile

|Ψ0 |2 =
2𝑛1

𝜋𝑅2
⊥

(
1 − 𝑟2

𝑅2
⊥

)
, 𝑅⊥ = 2𝑎⊥(𝑎𝑠𝑛1)1/4 (6)
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and zero where 𝑟 > 𝑅⊥. In this regime, the local equilibrium chemical potential reads
𝜇𝑙𝑒
ℏ𝜔⊥

= 2
√
𝑎𝑠𝑛1. (7)

In particular, this equation links the chemical potential to the density at the center of the trap.
The total number of particles 𝑁 =

∫
𝑛1 fixes then the length of the BEC, which is the length

at which the density vanishes. Especially, the 1D atomic density takes the form (Menotti and
Stringari, 2002)

𝑛1(𝑧) =
1

16𝑎𝑠

(
15𝑁𝜆

𝑎𝑠
𝑎⊥

)4/5 (
1 − 𝑧2

𝑍2
3𝐷

)2
(8)

where the length of the BEC is given by

𝑍3𝐷 =

√
2𝜇0

𝑚𝜔2
𝑧

=
𝑎𝑧√
𝜆

√
2𝜇0
ℏ𝜔⊥

=
𝑎𝑧√
𝜆

(
15𝑁𝜆

𝑎𝑠
𝑎⊥

)1/5
. (9)

Note that this profile is not the same as a 3DThomas-Fermi profile: the shape is not an inverted
parabola on the long axis but a square of an inverted parabola. As we will see, this changes the
dispersion relation in the fluid compared to the isotropic case. In particular, the speed of sound
𝑐𝑠 can be deduced from the thermodynamic relation 𝑚𝑐2𝑠 = 𝑛1𝜕𝑛1𝜇 (Pitaevskiĭ and Stringari,
2016). Using equation (7), one obtains at the center of the trap

𝑐𝑠 =
ℏ

𝑚𝑎⊥
(𝑎𝑛1)1/4 =

√
𝜇/2𝑚. (10)

It worth noticing that this result differs from the sound velocity derived in the case of a isotropic
harmonic trap by a factor

√
2, the latter being simply given by 𝑚𝑐2𝑠 = 𝜇0. This result was

derived by Zaremba (1998) after the first measurement of the sound speed in a cigar-shaped
BEC by Andrews et al. (1997). The exhibited dependence of the speed of sound on the density
did not match the 3D case which motivated a more careful analysis, taking into account the
anisotropic profile and leading to this

√
2 factor. Note however that the expression of the total

chemical potential in the 3D cigar regime is the same as in the 3D Thomas-Fermi. We have

𝜇0 =
ℏ𝜔⊥
2

(
15𝑁𝜆

𝑎𝑠
𝑎⊥

)2/5
=
ℏ�̄�
2

(
15𝑁

𝑎𝑠
𝑎

)2/5
(11)

where �̄�3 = 𝜔𝑥𝜔𝑦𝜔𝑧 and 𝑎 =
√
ℏ/𝑚�̄�. The right hand-side of this equation is the expression

of the chemical potential in the 3D TF regime.

1.C The 1D mean field regime
When 𝑎𝑠𝑛1 � 1, the kinetic energy can no longer be ignored. Neglecting it totally would lead
us to recover the Gaussian ground state of the radial harmonic oscillator. At first order, the
chemical potential is linear with 𝑎𝑠𝑛1 (Menotti and Stringari, 2002)

𝜇

ℏ𝜔⊥
= 1 + 2𝑎𝑠𝑛1 (12)

In this regime, we often introduce the effective one-dimensional coupling constant 𝑔1𝐷 =
2𝑎𝑠ℏ𝜔⊥: the stronger the transverse confinement is, the stronger the interactions are. In this
regime, the Thomas-Fermi radius is given by (Dunjko et al., 2001)

𝑍1𝐷 =
𝑎𝑧√
𝜆

(
3𝑁𝜆

𝑎𝑠
𝑎⊥

)1/3
(13)
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and the density is

𝑛1(𝑧) =
1

4𝑎𝑠

(
3𝑁𝜆

𝑎𝑠
𝑎⊥

)2/3 (
1 − 𝑧2

𝑍2
1𝐷

)
. (14)

The longitudinal profile of the gas exhibits the usual inverted parabola profile. In this regime
the sound speed takes the form

𝑐𝑠 =
ℏ

𝑚𝑎⊥
(2𝑎𝑠𝑛1)1/2. (15)

1.D BEC in the crossover regime: the Gaussian Ansatz
In our experiment, the typical value of 𝜒 is not far from 1, so that we are neither in the TF
regime nor in the 1Dmean field one. Following Gerbier (2004), we use a Gaussian Ansatz1 for
the radial dependence of the order parameter, characterized by a width 𝜎, that depends on the
density 𝑛1. This Ansatz can be justified by the fact that, when there are no interactions 𝑎𝑠 = 0,
the lowest energy level of the gas is just the ground state of the harmonic oscillator, which is
Gaussian. In fact when 𝑎𝑠𝑛1 is very large, the transverse TF profile is also well approximated
by this approach. With this Ansatz, the atomic density is given by

|Ψ0 |2 =
𝑛1(𝑧)
𝜋𝜎2

𝑒−𝑟
2/𝜎2

(16)

where 𝑛1 =
∫
𝑑r|Ψ0 |2 is the 1D density and 𝜎 is the width of the trial function that might

depend on the location 𝑧 through the 1𝐷 density. Within the local density approximation, the
spatial derivative of the wave-function along the shallow axis is neglected with respect to the
radial derivative. Inserting this Ansatz in the Gross-Pitaevskii equation and integrating over
the transverse size leads to

𝜇 =
1

2
𝑚𝜔2

⊥𝜎
2 + 1 + 4𝑛1𝑎𝑠

2𝑚𝜎2
. (17)

where 𝜇 is the local equilibrium chemical potential, which is simply the chemical potential
minus the potential dependence along the longitudinal direction e.g. 𝜇 = 𝜇0−𝑚𝜔2

𝑧𝑧
2/2 in the

case of a harmonic trapping. In equation (17), we have therefore three unknown quantities that
are the density 𝑛1, the width 𝜎 and the chemical potential. To express the width as a function
of 𝑛1, we simply argue that this width is such that, at 𝑛1 fixed, the local equilibrium potential
is minimized. In other words, we find the width 𝜎 such that 𝜕𝜎𝜇 = 0, at fixed 𝑛1. This leads
to

𝜎[𝑛1] = 𝑎⊥ (1 + 4𝑛1𝑎𝑠)1/4 (18)

Here again, we recover the fact that when interactions are turned off, the ground state is simply
given by the Gaussian wave-function of the harmonic oscillator. While increasing the inter-
action strength, the wave-function expands. Inserting the width functional from equation (18)
in equation (17), the chemical potential reads

𝜇[𝑛1] = ℏ𝜔⊥(1 + 4𝑎𝑠𝑛1)1/2. (19)

Here, it must be stressed out that this dependence of the chemical potential with the local
equilibrium potential is not specific to the Gaussian Ansatz for the radial profile. This equation

1Note other authors proposed different Ansatz to describe a BEC in this cross-over regime. For example,
Muñoz Mateo and Delgado (2006) uses a modified radial Thomas-Fermi profile Ansatz. Note also that this Gaus-
sian Ansatz was already studied by Jackson et al. (1998) and Salasnich et al. (2002).
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of state was shown to be accurate by Fuchs et al. (2003). The local equilibrium chemical
potential is just the chemical potential minus the the trapping potential: one recovers that for
a constant trap potential, 𝑛1 no longer depends on 𝑧. The chemical potential is then fixed by
the total number of atoms that is

ℏ𝜔⊥(1 + 4𝑎𝑠𝑛1)1/2 =𝜇0 − 𝑚𝜔2
𝑧𝑧

2/2 ,∫
𝑛1𝑑𝑧 =𝑁.

(20)

From this equation, we can deduce the Thomas-Fermi radius 𝑍𝑐 = 𝐿/2. Its value is no longer
given by the point where the right hand-side of equation (20) vanishes but when it takes the
value ℏ𝜔⊥, that is when 𝑛1 = 0. It is therefore given by

𝑍2
𝑐 = 2

𝜇0 − ℏ𝜔

𝑚𝜔2
𝑧

=
𝑎4𝑧

𝑎2⊥
𝛼 , 𝛼 ≡ 2

(
𝜇0
ℏ𝜔⊥

− 1

)
(21)

where we introduced the dimensionless parameter 𝛼 as Gerbier (2004). Deep in the Thomas-
Fermi regime, this parameter is large but it approaches 0 when going into the 1D mean field
regime. Using the 𝛼 parameter and the TF radius, the density is given by

𝑛1(𝑧) =
𝛼

16𝑎𝑠

(
1 − 𝑧2

𝑍2
𝑐

) [
𝛼

(
1 − 𝑧2

𝑍2
𝑐

)
+ 4

]
. (22)

and the normalization condition leads to(
15𝑁𝑎𝑠𝑎⊥

𝑎2𝑧

)2
= (15𝜒)2 = 𝛼3(5 + 𝛼)2 (23)

where we recover the parameter 𝜒 introduced in equation (5). This equation links the chemical
potential 𝜇0, through the quantity 𝛼, to the atom number and the trap frequencies. When 𝛼 is
large, the number of atoms is proportional to the chemical potential to the power 5/2, that is
what we found in the Thomas-Fermi regime, in equation (11). When 𝛼 is small, the chemical
potential grows linearly with the atom number to the power 2/3, as in the one-dimensional
mean field regime. In Figure 11, we extracted a figure from Gerbier (2004) and the appendix
of Robertson et al. (2017b) that illustrates that the Gaussian Ansatz well describes the system
in the crossover 1D-3D.

The sound speed for the longitudinal excitation is given by 𝑚𝑐2 = 𝑛1𝜕𝑛1𝜇 hence we have

𝑚𝑐2𝑠 = 𝑎𝑠𝑛1
2ℏ𝜔⊥√
1 + 4𝑎𝑠𝑛1

=
𝑔

2𝜋𝜎2
𝑛1 ≡ 𝑔1𝑛1 (24)

where we introduced 𝑔1 called the effective one-dimensional coupling constant. Note that in
both regimes 𝑎𝑠𝑛1 � 1 and 𝑎𝑠𝑛1 � 1, we recover the 1D mean field dependence 𝑐 ∼

√
2𝑎𝑠𝑛1

and the 3D Thomas-Fermi relation for which 𝑐 ∼ (𝑎𝑠𝑛1)1/4. We will also use the healing
length 𝜉, that is

𝜉 =
ℏ

𝑚𝑐𝑠
=

√
𝜎2

2𝑎𝑠𝑛1
= 𝑎⊥

(1 + 4𝑎𝑠𝑛1)1/4√
2𝑎𝑠𝑛1

(25)
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Figure 11: Accuracy of the description of the crossover regime by the Gaussian Ansatz. (a)
Local chemical potential as a function of the local density 𝑛1. The circles are numerical cal-
culations from Menotti and Stringari (2002) that should be compared with equation (19). The
dotted and dashed lines represent the 3D radial TF and 1D mean field regime limiting case.
(b) One dimensional density as a function of z for 𝜒 = 1. The circles were obtained from a
numerical solution of the Gross-Pitaevskii equation are indistinguishable from the Gaussian
Ansatz result (solid line). The dotted and dashed lines give the 3D TF and 1D mean-field
profiles, extrapolated to 𝜒 = 1 for comparison. Right: difference of the chemical potential
computed numerically solving the 3D GPE and the result of equation (19). The quantity that
is plotted is exactly 1 in the Gaussian Ansatz, the deviation from this value are deviation of
the Gaussian Ansatz to the numerical prediction. It is quite small for all values of 𝑛1𝑎𝑠, the
difference being smaller by a few percents. As expected, on the left, where 𝑎𝑠𝑛1 → 0, the
Gaussian Ansatz is expected to be quite accurate. One can see that the Ansatz is still good
even for large values of 𝑛1𝑎𝑠. The maximum deviation is 0.025 which highlights the fact that
the Gaussian approximation is quite accurate. ©Left figure is extracted from Gerbier (2004)
and right figure from Robertson et al. (2017b).

1.E The crossover regime: beyond the Gaussian Ansatz

Actually, assuming a Gaussian for the transverse profile is not necessary. Indeed, Robert-
son et al. (2018) showed that the Gaussian transverse density profile of the cloud is quite
different from Gross-Pitaevskii numerics. The idea of their study is to only assume that the
radial wavefunction is a certain function of 𝑎𝑠𝑛1. The authors then use thermodynamic rela-
tions to constrain this function. For example, the authors assume the thermodynamic relation
𝜇[𝑎𝑠𝑛1] = ℏ𝜔⊥

√
1 + 4𝑎𝑠𝑛1 which was shown to be accurate by Fuchs et al. (2003). I will

not repeat the calculation here but go straight to the result, which gives the expression for the
sound speed velocity (Micheli, 2024).

𝑚𝑐2 = 2ℏ𝜔⊥𝑎𝑠𝑛1𝐺 (𝑎𝑠𝑛1) . (26)

where

𝐺 (𝑎𝑠𝑛1) =
6𝑎𝑠𝑛1

√
1 + 4𝑎𝑠𝑛1 − (1 + 4𝑎𝑠𝑛1)3/2 − 1

6 (𝑎𝑠𝑛1)2
−−−−−−→
𝑎𝑠𝑛1→0

1
√
1 + 4𝑎𝑠𝑛1

(27)

This generalized result converges to the Gaussian Ansatz in the limit where 𝑎𝑠𝑛1 goes to 0.
From the measure of the speed of sound, one can therefore deduce within the Gaussian Ansatz

𝑎𝑠𝑛1 =
1

2

(
𝑚𝑐2

ℏ𝜔⊥

)2 1 +
√
1 +

(
ℏ𝜔⊥
𝑚𝑐2

)2 (28)
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or the generalized result

𝑎𝑠𝑛1 =
1

8

3 + 9

(
𝑚𝑐2

2ℏ𝜔⊥

)2
+
√
3

[
−1 + 3

(
𝑚𝑐2

2ℏ𝜔⊥

)] √
3 + 2

𝑚𝑐2

2ℏ𝜔⊥
+ 3

(
𝑚𝑐2

2ℏ𝜔⊥

)2 (29)

Summary In this section, we reviewed the different regime that describe a highly
elongated quantum gas. The dimensionless parameter 𝑎𝑠𝑛1, where 𝑎𝑠 is the scat-
tering length and 𝑛1 is the 1D density drives the transition between the 1D mean
field (frozen transverse dynamics) and the 3D cigar shaped regime. In particular,
we showed that assuming the transverse wave-function profile to be Gaussian,
we are able to describe the system in the in between regime. In the following of
this work, we will describe the transverse profile using this Ansatz.

2. Transverse collective oscillation of the BEC
In the last section, we described the ground state properties of the system. We now aim to
describe its response to a time-dependent trap. We start in subsection 2.A by briefly recalling
central works on collective excitations that followed the first BEC experiments. We end this
historical journey with the experiment by Chevy et al. (2002) that observed the un-damped
breathing mode. This specific collective mode is the topic of the next section. Within the
Gaussian Ansatz, we express the time dependence of the BEC width in subsection 2.B and
show that the BEC width dynamics exhibits a resonance at 2𝜔⊥ i.e. twice the frequency of
the trap. Subsection 2.C proposes a protocol to force the BEC oscillation at any frequency
avoiding the resonance.

2.A Collective excitations in BECs: brief historical perspectives
Collective excitations play a central role in understanding the physical properties of matter.
Their applications range from the physics of tsunamis (Kanamori, 1972) to the theory of su-
perfluidity (Bogoliubov, 1947) and superconductivity (Bardeen et al., 1957). After the obser-
vation of the first Bose-Einstein condensates (Anderson et al., 1995; Davis et al., 1995), the
study of collective excitations in Bose gases in harmonic potentials sparked significant inter-
est, both theoretically and experimentally (Jin et al., 1997; Stamper-Kurn et al., 1998). In the
last section, we described the ground state of our BEC; we will now examine its collective
oscillations. We will continue to assume the temperature is very low, and the gas is weakly
interacting. By doing so, we neglect the interaction of our BEC with both the thermal compo-
nent and quantum depletion (Stringari, 1996). With this approach, the collective excitations
of the Bose gas are well described by the time-dependent Gross-Pitaevskii equation.

𝑖ℏ𝜕𝑡Ψ0 = − ℏ2

2𝑚
∇2Ψ0 +𝑈 (r, 𝑧)Ψ0 + 𝑔 |Ψ0 |2Ψ0. (30)

For our purpose of a highly anisotropic trap, the excitation spectrum of a 3D cigar Bose gas was
studied, for example, by Stringari (1998) and Fliesser et al. (1997), and the excitations in the
crossover between different 1D regimes are discussed by Menotti and Stringari (2002). While
we neglected the interaction with the non-condensed gas in equation (30), we can describe
the influence of temperature by adding damping to these collective excitations. Damping of a
collective excitation 𝜈 occurs via two channels, called the Landau and Beliaev channels.
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• Landau damping refers to the combination of this excitation with another excitation
into a third one i.e. a thermal excitation 𝜈𝑡ℎ with the collective excitation: 𝜈𝑡ℎ + 𝜈 → 𝜈′.
This damping therefore vanishes at zero temperature. For homogeneous systems, a
seminal result was obtained by Hohenberg andMartin (1965), who showed a 𝑇4 scaling.
This result was revisited and derived for BECs by Pitaevskii and Stringari (1997) and
Vincent Liu (1997). However, it was noted by Fedichev et al. (1998) that the value of
the damping rate “drastically depends on the trapping geometry”.

• Beliaev damping refers to the decay of a single excitation into two lower-energy exci-
tations i.e. 𝜈 → 𝜈1 + 𝜈2. This damping occurs at zero temperature, as it was originally
derived in this context by Beliaev (1958) before being extended to non-zero tempera-
tures by Popov (1972).

Chevy et al. (2002) reported the observation of an undamped collective oscillation: the
breathing mode (monopole mode) of an elongated BEC. In this mode, the transverse radius of
the BEC oscillates at 2𝜔⊥, i.e., twice the transverse trap frequency. The authors showed that
the damping of this breathingmode is very low compared to others already reported. They also
showed that it is independent of the temperature. This “anomalously small measured damp-
ing rate” was numerically and theoretically studied by Jackson and Zaremba (2002). They
demonstrated that this was due to an “accidental suppression of Landau damping” for this spe-
cific mode (transverse breathing) and geometry (elongated). In the usual derivation of a decay
rate, the non-condensed cloud is assumed to be in thermal equilibrium. Here, both the BEC
and the thermal cloud oscillate at 2𝜔⊥ (Castin and Dum, 1996; Kagan et al., 1996), resulting
in the suppression of Landau damping. The origin of this damping was already suggested
by Pitaevskii and Stringari (1998). In their work, they emphasized that this breathing mode
“could produce a parametric instability [...] due to decay into two or more axial excitations,”
which was further investigated by Kagan and Maksimov (2001). Twenty-five years later, it is
the subject of this work.

In order to study entanglement of the longitudinal (𝑘,−𝑘) modes, we will treat the breath-
ing collective oscillation of the BEC classically, while keeping the collective excitations of
the gas along the long axis quantized. We will assume the BEC is homogeneous along the
𝑧-axis and factor out the transverse profile of the gas

Ψ̂ = Ψ0(𝑟, 𝑡) [1 + 𝜙(𝑧, 𝑡)] . (31)

In the following section, we will study the evolution of Ψ0(𝑟, 𝑡) when the trap is modulated.
Our approach is a special case of the description of BECs in time-dependent traps by Castin
and Dum (1996) and Kagan et al. (1996).

2.B When the laser quenches, it’s time to breathe

We therefore factor out the radial dependence of the BEC wave-function (31) and describe the
atomic wave-function within the Gaussian Ansatz seen in section 1.D. This choice is justified
by the fact that our BEC is neither in the 1D Thomas-Fermi regime nor in the 1D mean field
regime. We therefore write the transverse profile as

Ψ0(𝑡, 𝑟) =
√

𝑛1

𝜋𝜎2
0

𝑒−𝑟
2/2𝜎2

0 𝑒−𝑖𝜇0𝑡/ℏ. (32)

The subscript 0 underlines the fact that they are defined at 𝑡 = 0, time at which the trap
frequencies are constant and the cloud at equilibrium. Kagan et al. (1996) showed that when
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one knows the initial stationary solution, it is possible to build the time-dependent solution
from that initial solution (Micheli, 2023)

Ψ0(𝑡, 𝑟) =
√

𝑛1
𝜋𝜎2

𝑒−𝑟
2/2𝜎2

exp 𝑖

[
𝑚𝑟2

2ℏ
¤𝜎
𝜎

− 𝜇0
ℏ

∫ 𝑡 𝜎2
0

𝜎2(𝜏) 𝑑𝜏
]

(33)

where the width 𝜎 is time-dependent and satisfies the so-called Ermakov-Pinney equation
(Leach and Andriopoulos, 2008)

¥𝜎 + 𝜔2
⊥(𝑡)𝜎 =

𝜎4
0𝜔

2
⊥,0

𝜎3
. (34)

In the following of this section we aim to describe how the width of the BEC responds to a
time-dependent trap.

Remark
This non-trivial result was reviewed under an other angle by Robertson et al. (2017b). In
the last section 1.D, we derived the (local equilibrium)width𝜎 of the BEC byminimizing
the local equilibrium chemical potential. We can therefore see the chemical potential
from equation (17) as an effective potential for the width 𝜎

𝑉𝑒 𝑓 𝑓 (𝜎) =
1

2
𝑚𝜔2

⊥𝜎
2 + 1 + 4𝑛1𝑎𝑠

2𝑚𝜎2
. (35)

The dynamics of the width 𝜎 in this potential is then simply given by the equation of
motion of a classical particle with mass 𝑚 and position 𝜎

𝑚 ¥𝜎 = −𝜕𝜎𝑉𝑒 𝑓 𝑓 (𝜎) = −𝑚𝜔2
⊥𝜎 + 1 + 4𝑛1𝑎𝑠

𝑚𝜎2
(36)

which leads to equation (34) by replacing 1+4𝑛1𝑎𝑠 by the initial width and initial trapping
frequency from equation (18).

Knowing the time-dependence of the trap frequency 𝜔⊥, we can integrate equation (34)
over time to access the time-evolution of the BEC transverse density. An example of the re-
sponse of the BEC width is given in Figure 12. After a quench, the BEC enters a breathing
mode and oscillates at twice the frequency of the trap. This was the protocol used in the exper-
iment by Chevy et al. (2002). This oscillation is represented in the upper panel of Figure 12
in which trap frequency was abruptly changed by a factor of

√
2 (left subplot (a)). The BEC

width is observed to oscillate at a frequency which is 2±1/2 × 2𝜔⊥,0. On the plot of Figure 12,
we see that the frequencies of the two quenches differ by a factor 2. On the lower panel, the
trap frequency was modulated periodically at a frequency 2𝜔⊥,0 with a small amplitude 𝐴 of
a few percent for a few periods in order to inject energy in the system. The excitation form
is 𝜔2

⊥ = 𝜔2
⊥,0 [1 + 𝐴 sin(2𝜔⊥,0𝑡)] with 𝐴 = 4-8% during 6 periods. As we excite a system at

its resonant frequency, the amplitude of the BEC oscillation grows with the excitation dura-
tion. Figure 13 represents the peak-peak amplitude of the width oscillation as a function of the
amplitude of the modulation and its duration. It shows that the amplitude of the modulation
increases linearly with those parameters.
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Figure 12: Response of the BEC ground state to different modulation. Time is in units of
twice the initial trap frequency 1/2𝜔⊥,0. Upper panels: response of the BEC to a quench. (a)
The frequency of the trap is divided (multiplied) by a factor

√
2 on the green solid (orange

dash) curve. (b) Response of the BEC width for the two quenches. The BEC width oscillates
at twice the final frequency: the orange dashed curve (𝜔⊥, 𝑓 =

√
2𝜔⊥,0) frequency is twice

the frequency of the solid green line (𝜔⊥, 𝑓 = 𝜔⊥,0/
√
2). Lower panels: response of the BEC

width to a resonant excitation, (c) The trap frequency is modulated with an amplitude A at a
frequency 2𝜔⊥,0 that corresponds to the breathing frequency for 6 periods : 𝜔2

⊥ = 𝜔2
⊥,0 [1 +

𝐴 sin(2𝜔⊥,0𝑡)] . (d) The BEC width response to the excitation increases exponentially with
times. For a modulation of 4%, the BEC width oscillates with an amplitude that is comparable
with the quenches of the upper panel.

Figure 13: Peak-peak amplitude Δ𝜎 in units of the initial with 𝜎0 of the final oscillation of
he BEC width after a trap modulation 𝜔2

⊥ = 𝜔2
⊥,0 [1 + 𝐴 sin(2𝜔⊥,0𝑡)] for a duration 𝑁 =

Δ𝑡𝜔⊥,0/𝜋. On the left, Δ𝜎 is plotted as a function of the modulation amplitude 𝐴 and on the
right as a function of the modulation duration. We observe that Δ𝜎 increases linearly with
both parameters.
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2.C Forcing oscillations of the BEC width: Let gentleness my strong en-
forcement be

We can also explore the time-dependent response of the BEC width to an excitation at a non-
resonant frequency, 𝜔𝑑 . To achieve this, we continuously modulate the transverse trap at
frequency 𝜔𝑑 rather than halting after a certain number of oscillations. We would like to find
a way to force the BEC to oscillate at the driving frequency 𝜔𝑑 .
Protocol: A first way to excite the system is to modulate the trap frequency at 𝑡 = 0 at the
frequency 𝜔𝑑 , i.e. with the function

𝜔2
⊥ = 𝜔2

⊥,0 [1 + 𝐴 sin(𝜔𝑑𝑡)𝐻 (𝑡)] (37)

where 𝐻 (𝑡) denotes the Heaviside step function, defined as zero for 𝑡 < 0 and one for 𝑡 > 0. A
second possibility is to rise slowly the modulation frequency, for example with a hyperbolic
tangent function as

𝜔2
⊥(𝑡) = 𝜔2

⊥,0 [1 + 𝐴 sin(𝜔𝑑𝑡)(1 + tanh[𝑡/𝜏])/2] . (38)

Results: The time dependent form of those two excitation functions are represented on the
first row of Figure 14. The first column represents the “brutal” modulation in equation (37),
the second one the “sweet” excitation in equation (38), for which the modulation is raised
adiabatically (with respect to 2𝜔⊥,0). The modulation frequency chosen here is 𝜔𝑑 = 3𝜔⊥,0.
The second row depicts the time evolution of the width of the BEC 𝜎(𝑡). In the case of a brutal
modulation (left), the BEC width response does not look like a sine function and exhibits two
harmonics. In the case of a sweet modulation, the width response seems much nicer (right).
To confirm this intuition, one can look at the third row that represents the Fourier transform
�̃� of the BEC width 𝜎(𝑡). The Fourier transform is computed between 6𝜔⊥,0 and 20𝜔⊥,0 so
that the response is in the steady state regime. On the Fourier spectrum, the green and red
vertical lines with transparent shading represents respectively the driving frequency 𝜔𝑑 and
the natural frequency 2𝜔⊥,0. The brutal modulation response presents two peaks: one at the
resonant frequency 2𝜔⊥,0 and the second one at the driving frequency 𝜔𝑑 . In the case of the
“sweet” modulation, we observe only one peak, located at the driving frequency 𝜔𝑑 .

Conclusion We conclude that, at the excitation frequency 3𝜔⊥,0, the response
of the BEC follows well the “sweet” modulation function (38). This allows us
to control the oscillation frequency of the BEC i.e. we control the collective
excitation. That said, this was checked for a particular excitation frequency. This
study could be scaled up to examine other excitation frequencies.

Protocol: To better check the robustness of the sweet modulation approach, we numeri-
cally solve the time evolution of the width of the BEC, 𝜎(𝑡). We solve it for various frequen-
cies 𝜔𝑑 , both for the brutal modulation (37) and the gentle modulation (38). Once 𝜎(𝑡) is
known, we compute its Fourier transform, �̃� in the steady state regime.

Results: The spectrum depicted in Figure 15 illustrates the Fourier components �̃�(𝜔) of
the BEC width response. The color scale denotes the magnitude |�̃�(𝜔) | of the Fourier compo-
nents, shown along the 𝑦-axis. The 𝑥-axis represents the driving frequency 𝜔𝑑 . Frequencies
are given in units of the initial trapping frequency 𝜔⊥,0. The Fourier amplitude is normalized
so that the maximal Fourier component is 1: each column of the map is normalized. This
allows us to see for each driving frequency 𝜔𝑑 what the main frequencies (bluer) are in the
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Figure 14: Response of the BEC width to two different excitation profiles with a driving fre-
quency of 3𝜔⊥,0. The left column matches the brutal excitation (37) and the right column
the sweet excitation (38). The first row represents the trap frequency profile, which is exper-
imentally realized by changing the laser power of the trap. On the left, the excitation starts
at 𝑡 = 0 brutally while the excitation is adiabatically tuned (𝜏 = 2/𝜔⊥,0) on the right column.
The second row represents the time dependent response of the BEC width. The left subplot
exhibits a non-sinusoidal behavior while the right one seems proper. The last row depicts the
Fourier transform of the width response in steady state regime (i.e. for 𝑡𝜔⊥,0 > 6). The red
are highlights the breathing mode frequency and the green area the driving frequency. The
brutal modulation exhibits two peaks: one at the resonance frequency and one at the driving
frequency while the sweet modulation has only one frequency. For this figure, the amplitude
of the modulation is A = 8%.

BEC width response. If the BEC oscillates exactly at the driving frequency 𝜔𝑑 , one would
observe a stronger signal on the diagonal, as the Fourier transform of the BEC width would
exhibit a peak only at 𝜔 = 𝜔𝑑 .

The right panel of Figure 15 is easier to interpret: we observe a strong signal on the diag-
onal, which means that the main frequency of the system is the driving frequency. The only
exceptions are at 1𝜔⊥,0 and 2𝜔⊥,0.

The left panel is a bit more chaotic. For low driving frequencies 𝜔, that is, on the left of
the graph, the system follows the driving frequency: the Fourier transform �̃� is well-peaked
on the diagonal. When the driving frequency is greater than 𝜔⊥,0, the main component of �̃�
is no longer the driving frequency but the resonant frequency 2𝜔⊥,0. The system is oscillating
at its natural frequency. We can interpret this as the oscillation at 2𝜔⊥,0 being due to the
energy injected at 𝑡 = 0, when the frequency of modulation is not yet defined. When the
modulation is applied smoothly, the system is better controlled and keeps oscillating at the
driving frequency2. The conclusion of this subsection leaves no doubt: the softer, the better.

2Before attempting this adiabatically raised modulation, I initially attempted a more sophisticated approach. I
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Figure 15: Spectrum of the BEC width �̃�(𝜔) response to a modulation at frequency 𝜔𝑑 , on
the x-axis. The vertical axis represents the Fourier frequency of the function �̃�(𝜔) whose
amplitude is proportional to the colorscale. A bluer color represents a higher amplitude of the
Fourier component. When the transverse trap is modulated with a brutal modulation given by
equation (37), the system does not follow perfectly the driving frequency but tends to oscillate
at its own natural frequency 2𝜔⊥,0. This is shown by the strong horizontal blue line. When
the modulation is gently switched on (right plot), with the excitation given by equation (38),
the unwanted oscillation at 2𝜔⊥,0 is suppressed. For this image, 𝐴 = 5% and 𝜏 = 2/𝜔⊥,0. The
duration of the modulation is 80/2𝜔⊥,0 and the Fourier transform is computed at late time i.e.
for 𝑡 > 60/2𝜔⊥,0

This is why we titled it with Orlando’s line “Let gentleness my strong enforcement be.”, As
you Like It, Shakespeare.

Summary This section showed, using the Gaussian Ansatz, that a quench or a
small variation of the transverse trap frequency causes the BEC to oscillate at
twice the frequency of the trap: that is, the breathing mode. We then proposed a
protocol to force the BEC to oscillate at any frequency.

aimed to engineer a modulation𝜔2
⊥,0 so that its response 𝜎(𝑡) would oscillate at frequency𝜔𝑑 . Let 𝑓 be a function

representing this targeted width, behaving like a constant plus a small modulation at frequency 𝜔𝑑 , for instance.
By utilizing equation (34), one can designed the modulation function 𝜔2

⊥ ∝ 1/ 𝑓 4 − ¥𝑓 / 𝑓 so that the solution 𝜎 of
(34) would converge to 𝑓 . However, the results from this method proved no better than those depicted in Figure 15
when the modulation was turned on adiabatically, and it performed even worse results near the resonance. The
simpler being the better, I preferred to stick with the smooth approach.
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3. Parametric creation of quasi-particles in a BEC
In the last section, we studied the time dependence of the ground state of the BEC when it is
time-modulated. In particular, we showed that, in our regime, we can model the transverse
profile of the BEC by a Gaussian function of width 𝜎. We found that using the right modu-
lation profile of the trap frequency, we are able to induce oscillations at frequency 𝜔𝑑 of the
transverse width. In first approximation, it means that the 1D coupling oscillates at 𝜔𝑑 . As
we shall see, such modulation excites well-defined opposite momentum modes.

3.A Bogoliubov-de Gennes equation
Following Robertson et al. (2017b), we decompose the field as

Ψ̂ = Ψ0(𝑟, 𝑡)
(
1 + 𝜙(𝑧, 𝑡)

)
(39)

where |𝜙|2 is small compared to 1. Here we treat the BEC as a c-number and not a quantum
operator: this is one of Bogoliubov’s approximations (Bogoliubov, 1947). We now insert the
field (39) in the many-body Hamiltonian (1). After integrating over the radial profile, we can
write the effective one-dimensional Hamiltonian for 𝜙 (Micheli, 2023)

Ĥ ′
1𝐷 =

∫ 𝐿

0
𝑑𝑧

[
ℏ2

2𝑚
∇𝜙† · ∇𝜙 + 𝑔1𝑛1𝜙

†𝜙 + 𝑔1𝑛1
2

(
𝜙2 + 𝜙†2 + 𝜙†2𝜙 + 𝜙†𝜙2 + 𝜙†2𝜙2

)]
(40)

where 𝑔1 = 𝑔/2𝜋𝜎2 is the effective one-dimensional coupling constant that could (and will)
depend on time. In this equation, we removed the BEC mean field contribution, this is why
we added a prime to the Hamiltonian (see the second chapter of Dalibard (2022)). Following
Robertson et al. (2017b), we assume periodic boundary conditions and assume the condensate
is homogeneous along 𝑧. This means that 𝑘 is a good quantum number. We decompose the
field 𝜙 in Fourier modes:

𝜙 =
1
√
𝑁

∑
𝑘∈2𝜋Z∗/𝐿

𝜙𝑘𝑒
𝑖𝑘𝑧 (41)

where the 𝜙𝑘 is the annihilation operator for an atom with momentum 𝑘 . These operators
satisfy the canonical commutation relations [𝜙𝑘 , 𝜙

†
𝑘′] = 𝛿𝑘,𝑘′ and [𝜙𝑘 , 𝜙𝑘′] = 0. The 𝑘 = 0

mode is removed as it corresponds to the BEC mode.
The (second) Bogoliubov approximation (Bogoliubov, 1947) consists in neglecting the

interaction terms involving more than two atoms from the non-condensed part. In equation
(40), we only keep terms that are second order or less in 𝜙: the Hamiltonian is of second
order. In particular, this means that the equations of motion are linear. Such approximation
requires the interaction strength not to be large and the number of non-condensed atoms to be
negligible, with respect to the number of condensed particles. Indeed, the BEC is treated as
an infinite reservoir of particles i.e. a true coherent state. From this second order Hamiltonian,
we derive the equation of motion for the field 𝜙𝑘 and 𝜙†𝑘 , called the Bogoliubov-de Gennes
equation

𝑖ℏ𝜕𝑡

(
𝜙𝑘

𝜙†−𝑘

)
=

(
ℏ2𝑘2
2𝑚 + 𝑔1𝑛1 𝑔1𝑛1
−𝑔1𝑛1 − ℏ2𝑘2

2𝑚 − 𝑔1𝑛1

) (
𝜙𝑘

𝜙†−𝑘

)
. (42)
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3.B Bogoliubov transformation

The Bogoliubov-de Gennes equation that we derived is not straightforward to solve as it mixes
two different modes 𝜙𝑘 and 𝜙†−𝑘 . The general idea of Bogoliubov transformation is to find a
basis (𝑏𝑘 , 𝑏†𝑘 , 𝑏−𝑘 , 𝑏

†
−𝑘) such that the Hamiltonian can bewritten as a sum of 𝑏†𝑞𝑏𝑞 terms3. The

Bogoliubov transformation maps the atom operator 𝜙𝑘 to the collective excitation operator 𝑏𝑘 ,
also called quasi-particle operator. This transformation is given by

(
𝜙𝑘

𝜙†−𝑘

)
:=

(
𝑢𝑘 𝑣𝑘
𝑣𝑘 𝑢𝑘

) (
𝑏𝑘
𝑏†−𝑘

)
. (43)

This transformation must preserve the bosonic commutation rules: [𝑏𝑘 , 𝑏𝑘′] = 𝛿𝑘,𝑘′ . It is
called a symplectic transformation that satisfies |𝑢𝑘 |2 − |𝑣𝑘 |2 = 1. The 𝑢𝑘 and 𝑣𝑘 coefficients
are given by

𝑢𝑘 , 𝑣𝑘 = ±

√
ℏ2𝑘2/2𝑚 + 𝑔1𝑛1

2ℏ𝜔𝑘
± 1

2
(44)

where

ℏ𝜔𝑘 =

√
2𝑔1𝑛1

ℏ2𝑘2

2𝑚
+

(
ℏ2𝑘2

2𝑚

)2
(45)

is the energy associated to each quasi-particle mode 𝑘 . Here, we recall that 𝑔1𝑛1 = 𝑚𝑐2𝑠 so
that replacing it in Eq. (45), we recover the usual form commonly used in the literature for the
dispersion relation. In this quasi-particle basis, the Bogoliubov-de Gennes equation is given
by

𝑖𝜕𝑡

(
𝑏𝑘
𝑏†−𝑘

)
=

(
𝜔𝑘 −𝑖𝜕𝑡𝜔𝑘/2𝜔𝑘

−𝑖𝜕𝑡𝜔𝑘/2𝜔𝑘 −𝜔𝑘

) (
𝑏𝑘
𝑏†−𝑘

)
. (46)

Dispersion relation

The energy of a quasi-particle at momentum 𝑘 is ℏ𝜔𝑘 , defined in Eq. (45). This dispersion
can be probed using Bragg diffraction. It was measured by Steinhauer et al. (2002) and is
reproduced in Figure 16.

• At low momentum 𝑘 , the energy is linear 𝜔𝑘 = 𝑐𝑠 |𝑘 |, where the sound speed is 𝑐𝑠 =√
𝑔1𝑛1/𝑚. This part of the dispersion relation is called the phonon branch.

• At high momentum, the dispersion relation is quadratic and shifted with an offset
𝑔1𝑛1/𝑚. This part is called the particle-like branch.

The healing length 𝜉 = ℏ/𝑚𝑐𝑠 represents the boundary between phonon-like and particle-
like excitations. In this work, we excite quasi-particles with 𝑘 ≲ 𝜉−1, which are not strictly
phonons. These have been referred to as such in the literature. Although I have attempted to
replace the term with “quasi-particles,” I occasionally retain the “phonon” terminology.

3This can be found in the fourth chapter of Pitaevskiĭ and Stringari (2016), the second of Dalibard (2022) or
Castin (2001) for example.
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Figure 16: The Bogoliubov dispersion relation measured with Bragg diffraction. Left: dis-
persion relation of a BEC probed with Bragg diffraction. Solid line is equation (45) in the
LDA approximation and the dashed line is the the free-particle spectrum. The inset is a zoom
at low 𝑘: the dispersion relation is indeed linear. Right: as left but the free particle energy
ℏ2𝑘2/2𝑚 was subtracted. The constant value at high 𝑘 is a signature of the mean field shift
𝑔1𝑛1/𝑚. ©Figure from Steinhauer et al. (2002).

What about a non-homogeneous gas ? When the gas is not uniform, the dis-
persion relation (45) is no longer exact. When the trapping is harmonic, the dis-
persion relation can be derived within the local density approximation. In the
3D Thomas-Fermi regime, the sound speed 𝑐𝑠 depends then on the momentum,
ranging from 0.68

√
𝜇/𝑚 for low 𝑘 to 0.76

√
𝜇/𝑚 for large 𝑘4 (Zambelli et al.,

2000). The solid line in Figure 16 takes into account this LDA approximation.

A Bogoliubov transformation creates particles from vacuum

We first consider the case where 𝜔𝑘 is time-independent: the time evolution of 𝑏𝑘 and 𝑏†−𝑘 are
uncorrelated. The quasi-particles behave as a gas of non-interacting bosons and their number
distribution follows the Bose-Einstein statistics

〈𝑏†𝑘𝑏𝑘〉 =
1

𝑒ℏ𝜔𝑘/𝑘𝐵𝑇 − 1
. (47)

We now turn to the case where the interaction 𝑚𝑐2𝑠 = 𝑔1𝑛1 is time-dependent: it is character-
ized by the interaction constant 𝑔 (𝑖𝑛)

1 for 𝑡 → −∞ and 𝑔 (𝑜𝑢𝑡 )
1 for 𝑡 → +∞. This interaction

constant defines the speed of sound 𝑐𝑠, which we will use to define the system’s basis. For a
given mode 𝑘 , both the Bogoliubov coefficient and the mode energy ℏ𝜔𝑘 depend on 𝑐𝑠. This
means, in particular, that the ground state of the system changes with 𝑐𝑠. The mapping of the
system from the in basis to the out basis depends on the rate of change of 𝑐𝑠.

Adiabatic change: If the interaction constant changes slowly with respect to the phonon
frequency 𝜔𝑘 , that is 𝜕𝑡𝜔𝑘/𝜔𝑘 � 𝜔𝑘 , the system will adiabatically follow the ground state
defined by each phonon basis. In particular, if we assume the system is initially at zero temper-
ature in the ground state |0(𝑖𝑛)〉, it means that the system will adiabatically follow the ground
state and be mapped to |0(𝑜𝑢𝑡 )〉.

4This result agrees and extends the sound speed value in an anisotropic BEC derived by Zaremba (1998) and
that we discussed in section 1.B: the factor 1/

√
2 ∼ 0.7 is somehow a mean of the low 𝑘 sound speed value and

the high 𝑘 value.
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Sudden change: If the interaction constant changes suddenly from the phonon point of
view, the ground state of the initial state is projected onto the new phonon basis. This means
that at 𝑡 = 0+, the state of the system is the ground vacuum state of the in basis evaluated in
the out basis.

𝑛(𝑜𝑢𝑡 )𝑘 = 〈0(𝑖𝑛) | 𝑏†(𝑜𝑢𝑡 )𝑘 𝑏 (𝑜𝑢𝑡 )
𝑘 |0(𝑖𝑛)〉 (48)

If we introduce (𝑢′𝑘 , 𝑣′𝑘) the Bogoliubov coefficients5 that map the in basis to the out basis, we
find that

𝑛(𝑜𝑢𝑡 )𝑘 = (|𝑢′𝑘 |2 + |𝑣′𝑘 |2) 〈𝑏
†(𝑖𝑛)
𝑘 𝑏 (𝑖𝑛)

𝑘 〉 + |𝑣′𝑘 |2 (49)

where the initial number of quasi-particles 𝑛(𝑖𝑛)𝑘 = 〈𝑏†(𝑖𝑛)𝑘 𝑏 (𝑖𝑛)
𝑘 〉 is given by equation (47).

However now, even if the initial population vanishes (zero temperature), the mean number of
phonons in the out basis is not zero: particles were created out of vacuum. The vacuum of
the in basis is different from that of the out basis hence projecting one onto the other results
in particle creation. Experimentally, this can be done by abruptly turning off the interactions.
In this case, the initial state of the system, expressed in the phonon basis, is projected onto
the atom basis 𝜓𝑘 . For this specific transformation, the coefficients (𝑢′𝑘 , 𝑣′𝑘) in Eq. (49) are
simply the Bogoliubov coefficients (𝑢𝑘 , 𝑣𝑘) given in Eq. (44). The non-condensed part of the
atoms, that is the second part of Eq. (49), is called quantum depletion. It is composed of pairs
of (𝑘,−𝑘) entangled atoms that were recently observed by Tenart et al. (2021). On the other
hand, the first term of Eq. (49) is called the thermal depletion.

In the following, we will rapidly change the interaction strength (with respect to 𝜔𝑘) but
keep describing the system in the phonon basis.

3.C Controlling and observing non-separability of phonons in a 1D Bose
gas

This section reviews the theoretical advances that have been made the past ten years to control
and observe non-separability of phonons in a 1D Bose gas.

Parametric creation of phonons

Experimentally, we do not have a direct control of the interaction strength 𝑔1 = 𝑔/2𝜋𝜎2 (hence
the sound speed 𝑚𝑐2𝑠 = 𝑔1𝑛1). We rather control indirectly the width of the BEC 𝜎 through
the transverse trapping frequency. Although we do not have the ability to change it abruptly,
we can (theoretically) force its oscillation at any frequency, see section 2.C. This means in
particular that 𝜔𝑘 (𝑡), defined in Eq. (45), can be computed from the evolution of 𝑚𝑐2𝑠 through
the one of 𝜎. Starting from an initial thermal state at time 𝑡𝑖𝑛, the evolution of the phonon
operator is determined by the Bogoliubov-de Gennes equation (46). The evolution of these
operators is given by the following system (Busch et al., 2014)

(
𝑏𝑘 (𝑡)
𝑏†−𝑘 (𝑡)

)
= ©«𝛼𝑘 (𝑡)𝑒

−𝑖
∫ 𝑡

𝑡𝑖𝑛
𝜔𝑘𝑑𝑡

′
𝛽★𝑘 (𝑡)𝑒

−𝑖
∫ 𝑡

𝑡𝑖𝑛
𝜔𝑘𝑑𝑡

′

𝛽𝑘 (𝑡)𝑒
𝑖
∫ 𝑡

𝑡𝑖𝑛
𝜔𝑘𝑑𝑡

′
𝛼★
𝑘 (𝑡)𝑒

𝑖
∫ 𝑡

𝑡𝑖𝑛
𝜔𝑘𝑑𝑡

′
ª®¬
(
𝑏𝑘 (𝑡𝑖𝑛)
𝑏†−𝑘 (𝑡𝑖𝑛)

)
(50)

5The Bogoliubov coefficients associated to this change of basis are related to the usual Bogoliubov coefficients
(44) of the in and out base 𝑢′

𝑘
= 𝑢

(𝑖𝑛)
𝑘

𝑢
(𝑜𝑢𝑡 )
𝑘

− 𝑣
(𝑖𝑛)
𝑘

𝑣
(𝑜𝑢𝑡 )
𝑘

and 𝑣′
𝑘
= 𝑣

(𝑖𝑛)
𝑘

𝑢
(𝑜𝑢𝑡 )
𝑘

− 𝑢
(𝑖𝑛)
𝑘

𝑣
(𝑜𝑢𝑡 )
𝑘

.
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Figure 17: Evolution of the number of phonons (52) (left) and the entanglement witness Δ
(54) (middle) according to equation (50) as a function of time. Right: number of phonons
𝑛±𝑘 (52) and correlation |𝑐𝑘 | (53) as a function of the phonon speed. When the dashed red
correlation curve lies above the occupation green solid curve, the state is entangled. The
parametric excitation consists of 4 oscillations of the trapping frequency with a 3% amplitude
at resonance and an additional 9 breathing periods. The initial temperature is 𝑘𝐵𝑇 = 0.7𝑚𝑐2𝑠
and the driving frequency is the breathing frequency.

where 𝛼𝑘 (𝑡𝑖𝑛) = 1 and 𝛽𝑘 (𝑡𝑖𝑛) = 0 and their time evolution is given by

¤𝛼𝑘 =
¤𝜔𝑘

2𝜔𝑘
𝛽𝑘𝑒

2𝑖
∫ 𝑡

𝑡𝑖𝑛
𝜔𝑘𝑑𝑡

′

¤𝛽𝑘 =
¤𝜔𝑘

2𝜔𝑘
𝛼𝑘𝑒

−2𝑖
∫ 𝑡

𝑡𝑖𝑛
𝜔𝑘𝑑𝑡

′
.

(51)

When 𝑚𝑐2𝑠 is constant, so are 𝛼𝑘 and 𝛽𝑘 . The phonon operators 𝑏𝑘 and 𝑏†−𝑘 are decoupled and
oscillate with opposite frequency ±𝜔𝑘 . When 𝑚𝑐𝑠 changes, it mixes these two modes with
opposite frequency: quasi-particles are produced. We assume the initial state is thermal so that
the correlation between the opposite momentum modes vanishes i.e. 〈𝑏𝑘 (𝑡𝑖𝑛)𝑏𝑘− (𝑡𝑖𝑛)〉 = 0.
The number of quasi-particles at 𝑘 is given by

𝑛𝑘 = 〈𝑏†𝑘𝑏𝑘〉 = |𝛽𝑘 |2 + 𝑛(𝑖𝑛)𝑡ℎ

(
|𝛼𝑘 |2 + |𝛽𝑘 |2

)
(52)

where the time dependence of 𝛼𝑘 and 𝛽𝑘 was omitted to simplify notation. The time variation
of the sound speed acts as a two-mode squeezer and here again, particles are produced from
vacuum. When the initial state is thermal, it is not only the vacuum fluctuations that seed the
final state but also the thermal fluctuations: the final state is a two-mode squeezed thermal
state. The correlation between the two modes (𝑘,−𝑘) is given by

𝑐𝑘 := 〈𝑏𝑘𝑏−𝑘〉 = 𝛼𝑘𝛽
★
𝑘 + 2𝛼𝑘𝛽

★
𝑘𝑛

(𝑖𝑛)
𝑡ℎ . (53)

We finally introduce Δ := 𝑛𝑘 − |𝑐𝑘 |, whose negativity assesses non-separability of the state6
(Campo and Parentani, 2005)

Δ = −(|𝛼𝑘 | − |𝛽𝑘 |) |𝛽𝑘 | + 𝑛(𝑖𝑛)𝑡ℎ
( |𝛼𝑘 | − |𝛽𝑘 |)2 . (54)

An example of parametric creation of phonons is shown in Figure 17 for a gas with initial
temperature 𝑘𝐵𝑇 = 0.7𝑚𝑐2𝑠 . Here, the excitation frequency is twice the trap frequency: at the
breathing mode. On the left panel is plotted the number of phonons as a function of time, for

6We will go through the details of entanglement and entanglement witnesses in the next section.
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Figure 18: Quasi-particle population with momentum 𝑘 as a function of time. The interaction
strength is modulated at frequency 𝜔𝑑 = 2𝜔𝑘 to produce quasi-particles and then switch off
on a duration 𝜏 after a delay 𝑡′. Different curves refer to different delays 𝑡′ that range over one
period, in the quasi-particle frequency units 𝜔𝑘/2𝜋. On the left panel, 𝜏 = 2𝜋/𝜔𝑘 and on the
right, 𝜏 = 3 · 2𝜋/𝜔𝑘 .

different modes 𝑘 . We observe an exponential creation of phonons for the mode 𝑘 = 0.89𝜉−1

while the two others are not resonant with the amplification process. The middle panel shows
the evolution of Δ, whose negativity assesses non-separability of the state. For the resonant
mode, the entanglement increases with time i.e. with the squeezing parameter. On the right
panel is shown the number of (𝑘,−𝑘) phonons 𝑛±𝑘 (52) and their correlation |𝑐𝑘 | (53) after
the total duration. We observe that the process is resonant for narrow mode bandwidth around
a resonant mode 𝑘𝑟𝑒𝑠, which is determined by the oscillation frequency of the BEC width Ω:
it is the mode for which 𝜔(𝑘𝑟𝑒𝑠) = Ω/2 where 𝜔 is the dispersion relation.

Process efficiency and resonant wave-vector

Busch et al. (2014) show that two dimensionless numbers mainly govern the efficiency of the
creation process. Assuming the speed of sound is modulated with an amplitude 𝑎 at frequency
𝜔𝑑 , the production of phonons with momentum 𝑘 is governed by the number of oscillations
𝑁 and the resonance parameter 𝑅𝑘

𝑅𝑘 :=
4

𝑎𝜔𝑑
(2𝜔𝑘 − 𝜔𝑑). (55)

The phonon creation process is exponential if |𝑅 | < 1. In fact, this resonance parameter is
simply the first resonance tong at half the driving frequency, without damping term.

Measuring in the phonon basis

Measurements will be experimentally performed after a time-of-flight: atoms are measured
rather than collective excitations. As we saw in section 3.B, the phonon vacuum corresponds
to pairs of entangled atoms: the “atom” basis is related to the “phonon” basis by a Bogoli-
ubov transformation. In this work, we aim to measure the phonon state which means that the
mapping from the phonon basis to the atom basis should be adiabatic.

To better illustrate this phenomenon, we use our theoretical model and modulate the sound
speed 𝑚𝑐2𝑠 as follows:
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• For 𝑡 ∈ [0, 6𝜋/𝜔𝑘], we modulate the sound speed at frequency 𝜔𝑑 = 2𝜔𝑘 . This means
we excite the quasi-particles during 6 periods. During this stage, we expect to paramet-
rically excite quasi-particles with momentum 𝑘 .

• For 𝑡 ∈ [6𝜋/𝜔𝑘 , 6𝜋/𝜔𝑘 + 𝑡′], we keep the sound speed constant. During this stage, the
Bogoliubov modes evolve with their relative phase at ±𝜔𝑘 . We will vary 𝑡′ over one
period, in units of the phonon frequency.

• At 𝑡 = 6𝜋/𝜔𝑘 + 𝑡′, we switch off interactions with a tanh profile, on a typical duration 𝜏.
When the value of 𝑚𝑐2𝑠 = 0, this means that there are no interactionsphonons anymore
and the quasi-particle basis corresponds to the atomic basis. Depending on the value of
𝜏, the mapping from the initial quasi-particle basis onto the atom basis can be adiabatic
(𝜏 � 𝜔−1

𝑘 ) or instantaneous (𝜏 � 𝜔−1
𝑘 ).

The insets of Figure 18 shows the evolution of 𝑚𝑐2𝑠 . At all times, we follow the number of
quasi-particles with momentum 𝑘 in the eigenbasis of the system defined by 𝑚𝑐2𝑠 . We show
in Figure 18 this population as a function of time for two values of 𝜏: short on the left and
longer on the right. When there are interactions (left of the plot), the eigenbasis of the system
is the Bogoliubov quasi-particle basis. Once interactions are switched off (right of the plot),
the natural basis of the system is the atomic basis.

The different curves in each subplot of Figure 18 refer to different values of 𝑡′ over 1
period (in phonon frequency unit 2𝜋/𝜔𝑘). After the modulation, the number of quasi-particles
is 1.5. However depending on the delay 𝑡′, we observe that the final number of atoms with
momentum 𝑘 varies: the final plateau of each curve is different. We also observe that the
difference between the curves of the left subplot are greater than the one of the right subplot.

In fact, the final number of atoms with momentum 𝑘 oscillates as a function of 𝑡′ with
frequency 2𝜔𝑘 . This oscillation is shown in the inset of Figure 19. To understand the origin of
this oscillation, we evaluate the number of particles in the atom basis just after the modulation

𝑛𝑘 = 〈𝜙†𝑘𝜙𝑘〉 = |𝑢𝑘 |2 〈𝑏†𝑘𝑏𝑘〉 + |𝑣𝑘 |2 〈𝑏†−𝑘𝑏−𝑘〉 + |𝑣𝑘 |2

𝑢𝑘𝑣
★
𝑘 〈𝑏−𝑘𝑏𝑘〉 + 𝑣𝑘𝑢

★
𝑘 〈𝑏

†
−𝑘𝑏

†
𝑘〉 .

(56)

Here 𝑢𝑘 and 𝑣𝑘 refers to the Bogoliubov coefficients between the atomic basis and the eigen-
quasi-particles basis defined in Eq. (44). In equation (56), the first line is the same as Eq. (49).
However, in the previous scenario, the second line was zero due to the absence of correlation.
Here, we squeezed the two modes during 6 periods hence this term is not zero. The terms
〈𝑏−𝑘𝑏𝑘〉 and 〈𝑏†−𝑘𝑏

†
𝑘〉 interfere constructively and destructively with frequency 2𝜔𝑘 . When

the mapping from the quasi-particle basis to the atom basis is adiabatic, the Bogoliubov coef-
ficients of this transformation are 𝑢𝑘 = 1 and 𝑣𝑘 = 0. The oscillation is suppressed and one
measures the “right” number of quasi-particles. The quality of this mapping depends on 𝜏 i.e.
the adiabaticity of the transformation.

To further study this simple model, we show in Figure 19, the final atomic population as
a function of the switch off duration. The solid line shows the mean and the shaded area the
amplitude of the oscillation with respect to 𝑡′. In the limit 𝜏 → ∞, the mapping from the
quasi-particle basis to the atom basis is perfect, and the number of atoms matches the phonon
number. To have a good mapping of the quasi-particle basis to the atom basis, the interactions
must be switched off on a timescale which is larger than the typical quasi-particle timescale
2𝜋/𝜔𝑘 . On the right panel of Figure 19, we show the average and amplitude of the oscillation
of Δ, the entanglement criterion.
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Figure 19: Asymptotic value of the population 𝑛𝑘 and the non-separability criterion Δ𝑘 in the
atom basis. Solid line is the means of the state and the shaded region shows the amplitude of
the oscillations as a function of 𝜏.

The transverse expansion of the cloud: an adiabatic mapping “for free”?

In the experiment, the interactions are not switched off instantaneously. Even though the trap
is opened abruptly, the cloud expands as 𝜎0

√
1 + 𝜔2

⊥𝑡
2. This means that the density (hence

the sound speed) decrease as 1/(1 + 𝜔2
⊥𝑡

2). In the context of Bragg diffraction, Tozzo and
Dalfovo (2004) studied how a collective excitation is mapped to an atom. In their work, they
show that a collective excitation is mapped to a “witness” atom for wave-vector 𝑘 so that
𝑘𝑎⊥ > 0.57. We see here that the natural transverse expansion of the cloud adiabatically maps
the quasi-particle basis for free for sufficiently large momentum (𝜔𝑘 > 𝜔⊥).

This problem was further studied by Robertson et al. (2017b), also focusing on the transfer
of the non-separability of the state. For quasi-particle at momentum 𝑘 ∼ 𝜉−1, the authors
found that abruptly switching off the trap is not adiabatic enough. While they advocate for an
adiabatic opening as slow as the experiment will allow, they show that switching off the trap
in a time 𝜏 ∼ 1.5𝜔−1

⊥ adequately reduces the effect of this change of basis.

Phonon-phonon interactions: a phenomenological decay rate

The Bogoliubov-de Gennes model that we described does not take into account the damping
of the quasi-particles. The influence of a damping was studied by Busch et al. (2014). To
model it, the authors use a phenomenological damping rate Γ𝑘 � 𝜔𝑘 which decreases 𝑛𝑘 and
𝑐𝑘 by Γ𝑘d𝑡 during d𝑡. Main conclusions of their model follow.

• A large value of Γ𝑘 can prevent the state to be nonseparable.
• With their model, a non-zero Γ𝑘 cannot explain the disappearance of entanglement once
established. In other words, if the gain of the process is sufficiently large and turns the
state to a non-separable state, the state cannot become nonseparable because of Γ𝑘 . This
is due to the fact that both the correlation 𝑐𝑘 and the population 𝑛2 decrease at the same
rate Γ𝑘 .

• However, the authors introduce the notion of entanglement visibility to explain that a
sufficiently large value of Γ𝑘 can prevent the measurement of the non-separability of
the state.

A good example to illustrate this notion of visibility is to consider a two-mode squeezed

7We have 𝑘𝜉 = 𝑘𝑎⊥ (1 + 4𝑎𝑠𝑛1)1/4 /
√
2𝑎𝑠𝑛1 ∼ 𝑘𝑎⊥ in our case.

47



CHAPTER I. PARAMETRIC CREATION OF QUASI-PARTICLES

thermal state. The population 𝑛 and correlation 𝑐 of such state can be written as

𝑛𝑘 = 2𝑛𝑡ℎ + (2𝑛𝑡ℎ + 1)sinh2𝑟, 𝑐𝑘 = (2𝑛𝑡ℎ + 1)sinh𝑟cosh𝑟 (57)

where 𝑟 is the squeezing parameter and 𝑛𝑡ℎ the initial thermal population. This state is entan-
gled if and only if the squeezing parameter is sufficiently large i.e. if 𝑒2𝑟 > 1 + 2𝑛𝑡ℎ. If we
measure the normalized second order correlation function of this state, we have

𝑔 (2)
𝑘,−𝑘 = 1 + |𝑐𝑘 |2

𝑛2𝑘
. (58)

If the state is entangled, 𝑔 (2) > 2. However, if both 𝑐𝑘 and 𝑛𝑘 are too large, one could have
that 𝑛𝑘 < |𝑐𝑘 | without being able to resolve it. The correlation function approaches 2, and it
might not be possible to distinguish whether it is above or below 2.

The decay rate introduced by Busch et al. (2014) was phenomenological. However, re-
cently, Micheli and Robertson (2022) derived an analytical formula for the decay rate of Bo-
goliubov quasi-particles in a quasi-BEC. They test the validity of their analytical formula
comparing it to numerical simulations and found a good agreement in the particle-like branch
(𝑘𝜉 > 2). We will further discuss this decay rate in the fifth chapter, section 2.D, when we
will measure the growth rate of the phonon occupation. The value of their decay rate validates
a posteriori the weak dissipation Γ𝑘 � 𝜔𝑘 hypothesis of Busch et al. (2014).

Decoherence and beyond Bogoliubov effect

As we said, the decay rate does not capture decoherence processes: it cannot turn an entangled
state to a separable state. In fact, within the Bogoliubov-de Gennes approach, the interactions
between longitudinal phonons are not taken into account. In our model, the number of created
quasi-particles increases exponentially. At some point, their number cannot be negligible with
respect to the number of condensed particles, and we expect the Bogoliubov approximation
to break-down, because of quasi-particles interaction. Moreover, the back-reaction of these
phonons on the BEC is also neglected within the Bogoliubov approach: the BEC is treated as a
classical field hence an infinite reservoir. Such approximation is no longer valid when number
of created quasi-particles is large. To investigate such effects, numerical simulations were
conducted by Robertson et al. (2018). Interaction between phonons are taken into account by
solving an effective 1D Gross-Pitaevskii equation using the truncated Wigner approximation
(TWA). To evaluate the back-reaction of the phonons on the amplitude of the oscillation, the
authors use a self-consistent method. The energy associated to the oscillation of the BECwidth
𝜎 is evaluated using an effective potential for 𝜎 that we wrote in Eq. (35). The decrease of
the BEC oscillation is computed arguing that the total energy (longitudinal phonons + BEC
oscillations) is conserved. Note the damping of this BEC oscillation due to quasi-particle
creation and its treatment is similar to the damping of the inflaton field.

This thesis manuscript focuses however on the early times and on the non-separability
effects. We are thus more interested in the decoherence effects shown in Figure 20, for which
the back reaction of the phonon occupation can be neglected, according to the authors. In
this figure, reproduced from Robertson et al. (2018), the second order correlation function is
plotted as a function of the momentum 𝑘 . Each curve represents 𝑔 (2)

𝑘,−𝑘 at different times from
early (top left panel) to late times (bottom right).

Initially, the state is at thermal equilibrium. After just a few oscillations of the BEC width,
the state (𝑘,−𝑘), for which 𝑘𝑎⊥ ∼ 1 becomes non-separable (black dashed-dotted curve) and
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Figure 20: Normalized second order correlation function as a function of 𝑘 , in unit of the
transverse oscillator length 𝑎⊥. In each plot, the curves are time-ordered as follows: (solid
green), dotted red, dashed blue, solid black, (dot-dashed black). ©Figure from Robertson
et al. (2018)

entanglement last for some oscillation. Starting from 12 oscillations, the entanglement visibil-
ity is lost, but the authors do not expect the state to be non-separable. With these numerics, the
authors argue that the loss of visibility is due to the method used to compute 𝑔 (2) (they perform
a moving average of 𝑔 (2) over neighbors 𝑘). They checked that it is not decoherence effects
that are responsible for this decrease. The authors explained that it is after ∼ 17 oscillations
that non-linearities play a role and are responsible for the effective loss of non-separability.

Figure 21 shows evenmore clearly how entanglement can bemaskedwhenmeasured using
𝑔 (2) . Here, we show the second order correlation function of the resonant modes (𝑘𝑟𝑒𝑠,−𝑘𝑟𝑒𝑠)
as a function of time. The 1D parameter of the gas is 𝑎𝑠𝑛1 = 1.25 and the temperature of
𝑘𝐵𝑇/𝑚𝑐2𝑠 = 0.91. The amplitude of the modulation of 𝑔1 is 0.2 in panel (a) and 0.5 for panel
(b). Yellow circles are independent numerical simulations using the TWA. For clarity, the
error bars are not shown, but they are of same order of the dispersion of the points. Solid red
line is the prediction of Bogoliubov theory without dissipation while the dashed dotted blue
curve takes into account the damping rate of Micheli and Robertson (2022).

We see that the points from the TWA go slightly above 2, but this deviation is not very
significant. On the right of panel (b), we also see that the TWA numerics deviate from 2 at late
time. On this panel, a small window exists between 2 and 4 oscillations where entanglement
can be revealed.
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Figure 21: The normalized second order correlation function of the resonant mode as a func-
tion of time for a modulation amplitude of 0.2 (panel a) and 0.5 (panel b). ©Courtesy of
Amaury Micheli.

Summary In this section, we use the Bogoliubov approximation to derive the
Bogoliubov-de Gennes equation that model the pair creation process. Such an
approximation treats the BEC as a classical field and neglects quasi-particles in-
teraction. We also introduce Bogoliubov transformations that allow, when the
system is stationary, to treat Bogoliubov quasi-particles as independent harmonic
oscillators. When the interaction strength oscillates at frequency 𝜔𝑑 , opposite
momentum modes with wave-vector 𝑘𝑟𝑒𝑠 are squeezed. We observe an exponen-
tial creation of quasi-particles at 𝑘𝑟𝑒𝑠 such that 𝜔(𝑘𝑟𝑒𝑠) = 𝜔𝑑/2, a well studied
mechanism known as a Faraday wave. When the temperature is low enough,
the modes (𝑘,−𝑘) are expected to be non-separable. However, detecting such
entanglement can be non-trivial, even though the state is strongly non-separable.

50



Chapter II

Quantifying entanglement of
two-mode Gaussian states

Central to this thesis is the detection of entanglement. In the last chapter, we introduced
Δ𝑘 =

√
𝑛𝑘𝑛−𝑘 − | 〈𝑎𝑘𝑎−𝑘〉 | and explained that negativity of this quantity assesses entangle-

ment. In the experiment, we do not have access to the anomalous correlation term 〈𝑎𝑘𝑎−𝑘〉:
this quantity does not conserve the number of particles. On the other hand, we measure any 𝑁-
body correlation function. When the state is Gaussian, the measurement of these correlation
functions can be expanded as a sum of two-field correlation functions. The theory we used
to describe our system involves time-dependant second order in creation and annihilation op-
erator Hamiltonian that preserves Gaussianity of the state. Here we therefore discuss how to
probe entanglement of Gaussian states with a single particle detector (or at least a detector
that can resolve many-body correlation functions). In particular, if the Gaussian two-mode
state is centered, the normalized two-body correlation function is given by

𝑔 (2)
𝑘,−𝑘 =

〈𝑎†𝑘𝑎
†
−𝑘𝑎𝑘𝑎−𝑘〉
𝑛𝑘𝑛−𝑘

= 1 + | 〈𝑎𝑘𝑎−𝑘〉 |2
𝑛𝑘𝑛−𝑘

+
| 〈𝑎†𝑘𝑎−𝑘〉 |

2

𝑛𝑘𝑛−𝑘
(59)

which was expanded using Wick theorem. If we assume that the last term in this equation
is zero, it means that the second order correlation function is in one-to-one correspondence
with the measurement of the pure correlation term | 〈𝑎𝑘𝑎−𝑘〉 |. This chapter aims to discuss
such assumption. In fact, we will show that this assumption might not be needed to detect
entanglement. We also aim to discuss other correlation witnesses that have been used to claim
entanglement: the violation of the classical Cauchy-Schwarz inequality and the observation
of relative number squeezing. For our discussion, we will use Gaussian state formalism.

The first section of this chapter will be devoted to the introduction to the Gaussian state
formalism, which is a convenient toolbox to describe our state (Cerf et al., 2007). We will
then devote a section to entanglement, starting with a discussion on the difference between
mode entanglement and particle entanglement. We will define the PPT criterion and its gen-
eralization by Simon, the logarithmic negativity and other entanglement witnesses. The third
section is devoted to relative number squeezing and the Cauchy-Schwarz inequality. Those
two quantities quantify correlations (entanglement?) and are widely used within the commu-
nity. We aim here to investigate under which conditions they can assess mode entanglement.
The last section of this chapter is devoted to the application of the generalized PPT criterion
for thermal Gaussian states. Central to our journey, we demonstrate that the measurement of
the second and fourth order correlation functions allow one not only to assess entanglement
but also to quantify it.
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What we knew, what is new ? The first and second sections of this chapter
are a literature review: we introduce Gaussian states and some entanglement
criteria/witnesses. The third part of this work discusses the notion of particle and
mode entanglement, as well as the range of applicability of the classical Cauchy-
Schwarz inequality and relative number squeezing. It does not contain “new”
contributions and the discussion might seem trivial; however I did not find in
the literature a clear explanation why those quantities could or could not witness
mode entanglement. In that sense, the discussion is original. The last section
is the major theoretical contribution of this thesis. It demonstrates how 2- and
4-body correlation functions can be used to quantify the entanglement of thermal
Gaussian states.

1. Gaussian states

The theoretical study of Gaussian states is abundant in the literature: their general and mathe-
matically rigorous introduction is beyond the scope of this thesis. In this section, I introduce
the key properties of two-mode Gaussian states. Subsection 1.A recalls some key properties
of the density matrix operator and subsection 1.B the Wigner function. Subsection 1.C intro-
duces the Gaussian state formalism which will be used in the rest of this chapter, especially the
second section and the fourth one, which are the main theoretical results from this work. Sub-
sections 1.D and 1.E recalls usual single mode and two-mode states and transformations. The
last subsections present usual states and transformations. Subsection 1.F provides references
to compute the 𝑁-mode probability distribution of Gaussian states.

1.A Density matrix of a quantum state

In this first subsection, we review key properties of the density operator 𝜌 that we will use
throughout this chapter. We will use the properties required by a density operator to derive
bounds on the covariance matrix of a Gaussian state.

Definition - Density matrix
The density operator 𝜌 defines a quantum state. It must be a Hermitian operator, positive
semi-definitea with trace 1.

aA positive-definite matrix 𝑴 is such that for any non-zero vector 𝑥, the real quantity 𝒙⊺𝑴𝒙 is strictly
positive. A positive semi-definite matrix requires just positivity of this quantity (it allows zero value).

In particular, if a matrix 𝜌 has a negative eigenvalue, it cannot represent a quantum state. A
pure state can be written as 𝜌 = |𝜓〉 〈𝜓 |: it is a projector. The purity of an arbitrary quantum
state is 𝑝 = Tr(𝜌2). It is 1 for a pure state and smaller than 1 for mixed states.

Definition - Expectation value of an operator
The expectation value of any operator 𝐴 is given by

〈𝐴〉𝜌 = Tr(𝜌𝐴) = 〈𝐴〉 (60)

where we will omit the bracket subscript 𝜌 in the following.
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Theorem - Cauchy-Schwarz inequality
Because the density matrix of a quantum state is semipositive definite, it implies that for
any operator 𝐴 and 𝐵, it is always true that the following Cauchy-Schwarz inequality is
satisfied (Horn and Mathias, 1990; Robertson, 2021)

|Tr(𝜌𝐴†𝐵) |2 = | 〈𝐴†𝐵〉 |2 ≤ 〈𝐴†𝐴〉 〈𝐵†𝐵〉 (61)

Note that this inequality is always true and is never violated. As we shall see after, the so-
called “violation of the classical Cauchy-Schwarz inequality” as an entanglement witness is
different from this inequality. It refers to the violation of the latter normally ordered inequality.

1.B The Wigner function

The Wigner function 𝑊 (𝑥, 𝑝), introduced by Wigner (1932), represents the quasiprobability
distributions of the state in the phase space (𝑥, 𝑝).

Definition - Wigner function
The Wigner function of a state 𝜌 is defined as (Leonhardt, 2010)

𝑊 (𝑥, 𝑝) = 1

2𝜋

∫
𝑒𝑖 𝑝𝑦/ℏ 〈𝑥 − 𝑦/2|𝜌 |𝑥 + 𝑦/2〉 d𝑦. (62)

Remark - The Wigner function: a quasiprobability distribution function
The Wigner function is quasiprobability function as its integral over 𝑥 (resp 𝑝) gives the
probability distribution of the state in 𝑝 (resp 𝑥)

〈𝑥 |𝜌 |𝑥〉 =
∫

𝑊 (𝑥, 𝑝)d𝑝

〈𝑝 |𝜌 |𝑝〉 =
∫

𝑊 (𝑥, 𝑝)d𝑥
(63)

and is often referred to as a quasi-probability distribution. The reason is that the projec-
tion along any axis (𝑥, 𝑝) gives the probability distribution along this axis. Wigner functions
can be measured using homodyne detection measurement as proposed by Vogel and Risken
(1989). The first experimental measurement of a Wigner function was realized a few years
later by Smithey et al. (1993), who measured the vacuum state |0〉 and a squeezed vacuum
state1. Their experimental measurement is reproduced in the first subplot of Figure 22. After
this pioneering measurement, more and more complex states were measured: Lvovsky et al.
(2001), Ourjoumtsev et al. (2006a), and Cooper et al. (2013) respectively measured the one,
two, and three photon Fock states before producing and measuring cat states (Ourjoumtsev
et al., 2006b) 2.

What is the Wigner function of the vacuum ? TheWigner function definition (62) involves
the wave-function of the vacuum state that can be deduced by the definition of the annihilation

1Note also the measurement of the Wigner function of an atomic wave after a double-slit by Kurtsiefer et al.
(1997) with... metastable helium atoms!

2For a review of the “Production and applications of non-Gaussian quantum states of light”, see Lvovsky et al.
(2020).
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Figure 22: Wigner function reconstructed from experimental data. Sub-figure (1) represents
the first measured Wigner distribution by Smithey et al. (1993) of a squeezed state (left, a-
c) and of a vacuum state (right, b-d). The squeezed state is elliptical (squeezed in the X
quadrature) compared to the vacuum state whose shape is circular. Sub-figure (2): Wigner
distribution of a Be+ ion in the Fock state |1〉 measured by Leibfried et al. (1996) and (3) of
free-propagating photons in the Fock state |2〉 by Ourjoumtsev et al. (2006a). The Wigner
functions of (1) are Gaussian while (2) and (3) are obviously not Gaussian. The negative
value taken by the Wigner function is a signature of the quantumness of the state, that can-
not be mimic by any classical-like state. ©Figure from Smithey et al. (1993), Leibfried et al.
(1996) and Ourjoumtsev (2007).

𝑎 = (𝑥 + 𝑖𝑝)/
√
2 operator. Indeed, the action of the latter on the vacuum gives 0 and noting

that 𝑝 = 𝑖𝜕𝑥 in the 𝑥 representation, the vacuum wave-function 𝜓0(𝑥) satisfies (𝑥 + 𝜕𝑥)𝜓0 = 0,
i.e. it is Gaussian. Inserting 𝜓0 in equation (62) leads to theWigner distribution of the vacuum
state

𝑊0(𝑥, 𝑝) =
1

𝜋
exp

(
−𝑥2 − 𝑝2

)
(64)

that is Gaussian. As we shall see, Gaussian states are transformed into other Gaussian states
by second order transformations, hence their simple Wigner function simplifies their study. In
fact, the Wigner function of a state is just a way to describe this state, and we can recover the
expectation value of any operator from its Wigner function. To do so, we need to introduce
the Weyl transform of an operator.

Definition - Weyl transform
The Weyl transform of an operator 𝐴 is defined by (Weyl, 1950)

𝐴(𝑥, 𝑝) =
∫

𝑒−𝑖𝑦 𝑝/ℏ 〈𝑥 + 𝑦/2| 𝐴 |𝑥 − 𝑦/2〉 (65)

where the similarity with the definition of theWigner (62) appears clearly. Here, we expressed
the operator 𝐴 in the 𝑥 basis but it is possible also to express it in the 𝑝 basis, simply by flipping
the role of 𝑥 and 𝑝 and the sign in the exponential (Case, 2008). The average value of any
operator 𝐴 over a state 𝜌 is then given by the phase-space integral of the product of theWigner
function𝑊𝜌 of this state and the Weyl transform of the operator 𝐴

〈𝐴〉 =
∫

𝑊𝜌 (𝑥, 𝑝)𝐴(𝑥, 𝑝)d𝑥d𝑝. (66)

For example, the Weyl transform of the projector |𝑥〉 〈𝑥 | is simply 𝑥. An other example is the
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Weyl transform of the projector on the Fock basis | 𝑗〉 〈 𝑗 | (Leonhardt, 2010)

𝑊 𝑗 (𝑥, 𝑝) =
(−1) 𝑗
𝜋

𝑒−𝑥
2−𝑝2L 𝑗 (2𝑥2 + 2𝑝2) (67)

where L 𝑗 are the Laguerre polynomials.

1.C Gaussian states

Hamiltonians of second order in creation and annihilation operators are central in physics.
It is for example the case of the BCS3 model for superconductivity or the Bogoliubov theory
discussed in the last chapter (see Section 3.A). AGaussian state that evolves under such Hamil-
tonian remains Gaussian. The vacuum, thermal states and coherent states are Gaussian: this
means that the evolution of those states under second order hamiltonians are also Gaussian.
This motivated the detailed study of Gaussian states and the description of their evolution.

Gaussian states are only defined by their first and second moment: a state of 𝑁 Gaussian
modes is characterized by its first moment vector 𝝁 and its covariance matrix 𝝈, defined in
(68). The size of the vector is 2𝑁 and the covariance matrix is 𝑁 × 𝑁 . However, because
of the canonical commutation rules and the Heisenberg uncertainty relation, this matrix be-
longs to the so-called symplectic group 𝑆𝑝(2𝑁,R) with size 𝑁 (2𝑁 + 1) (Arvind et al., 1995).
The Gaussian state formalism is therefore quite practical as it avoids working with an infinite
Hilbert space (for example the Fock basis {|𝑛〉}) but rather with 𝑁 (2𝑁 +3) parameters (degree
of freedom for the covariance matrix and the mean vector).

Literature references This section is an aggregate of many references. Among
them, the comprehensive description of Gaussian states offered in the book by
Serafini (2017) was highly utilized. The Analog Gravity in Benasque lecture
notes by Brady (2023) were also fundamental in my comprehension of Gaussian
formulism. In the same vein but more concise, the review articles by Weedbrook
et al. (2012), Adesso et al. (2014), and Braunstein and van Loock (2005) pro-
vide a really good overview of the literature. I also used and recommend the
pedagogical article by Case (2008), which introducesWigner functions and Weyl
transforms for pedestrians. Note finally the excellent note by Brask (2022) that
summarizes well the topic. From a mathematical perspective, the review article
by Arvind et al. (1995) provides a complete and rigorous overview of the key
properties of the real symplectic group.
For shorter references, many articles provide nice summaries. Among them, Ser-
afini et al. (2004a) and Pirandola et al. (2009) introduce well the progress made in
the early 2000s. The article by Brady et al. (2022) pedagogically introduces sym-
plectic circuits as a tool to model multi-mode scattering events in analog gravity.
Martin et al. (2023) focuses on the comparison of entanglement criteria and de-
rives analytic expressions for the effective squeezing parameter and purity for a
noisy or lossy two-mode squeezed thermal state.

In the following, we will group the canonical operator as 𝒓 = (𝑥1, 𝑝1, ..., 𝑥𝑁 , 𝑝𝑁 ), with a
special focus on 𝑁 = 2-mode systems. Here, 𝑥 and 𝑝 are related to the creation and annihilation

3BCS stands for Bardeen–Cooper–Schrieffer, the three scientists that devlopped the “Microscopic Theory of
Superconductivity” (Bardeen et al., 1957).
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operators 𝑎 𝑗 = (𝑥 𝑗 + 𝑖𝑝 𝑗)/
√
2. The first moment vector and the covariance matrix of the state

read (Serafini, 2017)
𝜇𝑖 = 〈𝑟𝑖〉 ; 𝜎𝑖, 𝑗 = 〈{Δ𝑟𝑖 ,Δ𝑟 𝑗}〉 (68)

where Δ𝑟𝑖 = 𝑟𝑖 − 〈𝑟𝑖〉 and the Poissonian bracket {, } was used as a shortcut to define
the anti-commutator {𝐴, 𝐵} := 𝐴𝐵 + 𝐵𝐴. Note that in the community, the definition of the
covariance matrix differs depending on the value of ℏ : here we follow the notation of Serafini
(2017), but one should be careful when using formulae from the literature. As explained in
the introduction of the arxiv version of Weedbrook et al. (2012), “there is no consensus about
the value of the variance of the vacuum, with common choices being either 1/4 (ℏ = 1/2),
1/2 (ℏ = 1) or 1”. This means that depending on the notation, the covariance matrix might be
defined with a factor 1/2. Throughout this chapter, we have in particular

• ℏ = 1,
• 𝑎 𝑗 = (𝑥 𝑗 + 𝑖𝑝 𝑗)/

√
2

• 𝜎𝑖, 𝑗 = 〈{Δ𝑟𝑖 ,Δ𝑟 𝑗}〉.
With these conventions, theWigner function of a Gaussian state is simply given by (Brady,

2023)

𝑊 (𝒓) = 1

𝜋𝑁
√
Det[𝝈]

exp
[
−(𝒓 − 𝝁)⊺𝝈−1(𝒓 − 𝝁)

]
. (69)

and the bosonic commutation relations are

[
𝑟𝑖 , 𝑟 𝑗

]
= 𝑖Ω𝑖, 𝑗 , 𝛀 =

𝑁⊕
𝑘=1

𝛀1 =
©«
𝛀1

. . .

𝛀1

ª®®¬ , 𝛀1 =

(
0 1
−1 0

)
, (70)

where 𝛀 is called the (N-mode) symplectic form. A Gaussian transformation is a quantum
transformation that preserves Gaussianity of the state. Simon et al. (1987) showed that Gaus-
sian unitary transformations can be written as a combination of a displacement 𝒅 ∈ R4 and a
symplectic transformation 𝑺 ∈ S𝑝(2𝑁,R). The mean and the covariance matrix of the state
is thus transformed as

𝝁 → 𝑺𝝁 + 𝒅, 𝝈 → 𝑺𝝈𝑺⊺ . (71)

Definition - Symplectic group and transformations
The group of the real symplectic matrices S𝑝(2𝑁,R) is defined as the real matrices of
size 2𝑁 × 2𝑁 that satisfy (Arvind et al., 1995)

𝑺𝛀𝑺⊺ = 𝛀 (72)

As we shall see, we can bring the covariance matrix to a normal form (which is diagonal, see
Williamson decomposition) using symplectic transformations.

Not all symmetric matrices can represent a quantum state. Indeed, a quantum state must
respect the canonical commutation relations and be semi-positive definite. Simon et al. (1994)
showed that those two conditions can be recast in the following compact form, called the
Schrödinger-Robertson inequality or the bona fide condition.
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Theorem - Schrödinger-Robertson inequality or bona fide condition
Any covariance matrix 𝝈 that represents a positive bosonic quantum state must respect
the following bona fide condition

𝝈 + 𝑖𝛀 ≥ 0. (73)

The purity 𝑝 of the state can also be computed from the covariance matrix

𝑝 = Tr(𝜌2) = 1
√
det𝝈

(74)

When 𝑝 = 1, the state is pure, and it is said mixed when 𝑝 < 1.
It is possible to decompose the covariance matrix on normal modes, that is a basis in which

the system is split into 𝑁 decoupled degrees of freedom. Such a transform is often referred as
Williamson decomposition.

Theorem - Williamson decomposition
Williamson (1936) showed that, for any symmetric positive-definite matrix 𝝈, there ex-
ists a symplectic transformation 𝑺 ∈ S𝑝(2𝑁,R) such that

𝝈 = 𝑺
𝑁⊕
𝑗=1

(
𝜈 𝑗 0
0 𝜈 𝑗

)
𝑺⊺ (75)

where 𝜈 𝑗 > 0 are the symplectic eigenvalues of 𝝈.

Note here that the matrix is not diagonalized in the sense that it is not a change of basis i.e.
𝑺−1 ≠ 𝑺⊺. Furthermore, the bona fide condition (73) applied to the normal mode decomposed
covariance matrix 𝝂 implies

𝝂 + 𝑖𝛀 =
𝑁⊕
𝑗=1

(
𝜈 𝑗 𝑖
−𝑖 𝜈 𝑗

)
≥ 0 (76)

and therefore that all symplectic eigenvalues of the covariance matrix of a quantum state must
be greater than 1.

For a two-mode Gaussian state 𝜌𝐴𝐵 whose covariance matrix is

𝝈 =

(
𝑨 𝑪
𝑪⊺ 𝑩

)
(77)

the Williamson form is 𝜈−I2 ⊕ 𝜈+I2 where the symplectic spectrum was shown by Serafini
et al. (2004b) to be given by

𝜈± =

√
Δ ±

√
Δ2 − 4det𝝈
2

Δ := det𝑨 + det𝑩 + 2det𝑪. (78)

In terms of those quantities, the bona fide condition (73) can be rewritten as (Pirandola et al.,
2009)

𝝈 > 0 det𝝈 ≥ 1 Δ ≤ 1 + det𝝈 (79)

Last but not least, Brask (2022) provides us that by tracing out the system to focus on a single
mode, we can assess the properties of the local displacement and covariance matrix. The
following statement is extracted from his paper:
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Figure 23: Schematic comparison between Hilbert space and phase space pictures for N -
mode Gaussian states. ©Table from Adesso et al. (2014)

Theorem - Tracing out
For the two-mode Gaussian state 𝜌𝐴𝐵 with mean vector (𝒓𝐴, 𝒓𝐵) and covariance matrix
(77), the reduced state 𝜌𝐴 (respectively 𝜌𝐵) of subsystem 𝐴 (resp. 𝐵) is also Gaussian
with displacement 𝒓𝐴 and covariance matrix 𝑨 (resp. 𝒓𝐵 and 𝑩).

1.D Single mode Gaussian states and single mode transformations
The expression of usual Gaussian operations can be found in many reviews article and text-
books, see Weedbrook et al. (2012) for example. They can be divided into passive and active
transformations. Passive transformations preserve the value of Tr(𝝈), i.e. they preserve the
mean energy of the system while active transformations do not preserve it. The interested
reader might refer to Adesso et al. (2014) for a more mathematical description of the differ-
ence between passive and active transformations.

The vacuum state: the covariance matrix of the vacuum is the identity, and it is centered
on the origin of the phase space (𝒓 = 0).

𝝁 = (0, 0) 𝝈 = I2 𝜌𝑣𝑎𝑐 = |0〉 〈0| (80)

Coherent states: the covariance matrix of a coherent state (displaced vacuum state) is also
the identity but is not centered on the phase space origin.

�̂� (𝛼) = exp(𝛼𝑎† − 𝛼∗𝑎) ⇐⇒ 𝝁 →
√
2(<(𝛼),=(𝛼)) + 𝝁 (81)

leaving the covariance matrix unchanged. If the average population of a coherent state is 𝑛, a
coherent state lies on a circle in the phase space of radius

√
2𝑛 =

√
2|𝛼 |

𝝁 =
√
2𝑛(cos 𝜃, sin 𝜃) 𝝈 = I2 |𝛼〉 = exp

(
−|𝛼 |2/2

) ∑
𝑖

𝛼𝑖

√
𝑖!
|𝑖〉 (82)
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Figure 24: Wigner function (top raw) and photon number distribution (second raw) of one
mode Gaussian states. From left to right: the vacuum state has 0 mean population while the
coherent state, the thermal state and the single-mode squeezed vacuum state were chosen so
that their mean population is 2. The last column represents a general squeezed (𝑟 = 0.5),
rotated (−𝜋/5) and displaced (𝑥 = −2) Gaussian state with purity 𝑝 = 0.5 < 1. The mean pho-
ton population is also 2. ©The photon number distribution were computed using the Walrus
library (Gupt et al., 2019).

Thermal states: thermal states are not pure states, their purity is 𝑝 = 1/(2𝑛 + 1) where 𝑛 is
the mean photon population. They are centered on the phase space origin, but their covariance
matrix is the identity multiplied by 2𝑛 + 1

𝝁 = (0, 0) 𝝈 = (2𝑛 + 1)I2 𝜌𝑡ℎ (𝑛) =
∑
𝑖

𝑛𝑖

(𝑛 + 1)𝑖+1 |𝑖〉 〈𝑖 | (83)

Single-mode squeezed states: A single mode squeezing operator is an active transformation
and is parametrized by the squeezing parameter 𝑟

𝑆 = exp
[
𝑟 (𝑎2 − 𝑎†2)/2

]
↔ 𝑺(𝑟) =

(
𝑒−𝑟 0
0 𝑒𝑟

)
(84)

generates a squeezed vacuum state when acting on the vacuum (Yuen, 1976)

𝝁 = (0, 0) 𝝈 = 𝑺(2𝑟) 𝜌0(𝑟) =
1

√
cosh 𝑟

∑
𝑖

√
(2𝑖)!
2𝑖 𝑖!

tanh 𝑟 𝑖 |2𝑖〉 〈2𝑖 | (85)

Phase shift: a single mode rotation by an angle 𝜑/2 in phase space is a passive transfor-
mation and reads

𝑈 = exp(𝑖𝜑𝑎†𝑖 𝑎𝑖) ↔ 𝑹(𝜑) =
(
cos 𝜑/2 − sin 𝜑/2
sin 𝜑/2 cos 𝜑/2

)
(86)

General one-mode Gaussian state: Any pure Gaussian state can be generated with
squeezing, rotation and displacement operators acting on the vacuum, i.e one can characterize
any one mode Gaussian state with four numbers (𝑥, 𝑝, 𝜑, 𝑟). The most general form for a (non
necessary pure) Gaussian state is therefore the following

𝝁 = (𝑥, 𝑝) 𝝈 =
1

𝑝
𝑹(𝜑)𝑺(2𝑟)𝑹⊺ (𝜑) (87)
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where 𝑝 is the purity of the single mode state 𝑝 = 1/
√
det𝝈.

Noise and loss channels: the usual way to take into account the non-unit efficiency of de-
tectors is by mixing the state on a beam-splitter with the environment. For pure loss channels,
the environment is simply the vacuum. The action of a pure loss channel parametrized by 𝜂
i.e. the efficiency of the detector, is given by (Barbosa et al., 2011)

𝝁′ =
√
𝜂𝝁 𝝈′ = 𝜂𝝈 + (1 − 𝜂)I2 (88)

Noisy channels can also be parametrized by a noise parameter, often noted Δ that changes the
covariance matrix according to (Martin et al., 2023)

𝝈′ = 𝝈 + ΔI2 (89)

1.E Two-mode Gaussian states and transformations
Thermal state: a two-mode thermal Gaussian state can be parametrized by two different
thermal occupation 𝑛1 and 𝑛2. Its covariance matrix is given by

𝝁 = (0, 0, 0, 0) 𝝈 =

(
(2𝑛1 + 1)I2 0

0 (2𝑛2 + 1)I2

)
(90)

and the purity of this state is 𝑝−1 = (2𝑛1 + 1) (2𝑛2 + 1).
Beam-Splitter: is a transformation that mixes the two modes and is quite useful to model

an interferometer with Gaussian states. It writes (Brady et al., 2022)

𝑺𝐵𝑆 (𝜃) =
©«
cos 𝜃 0 sin 𝜃 0
0 cos 𝜃 0 sin 𝜃

− sin 𝜃 0 cos 𝜃 0
0 − sin 𝜃 0 cos 𝜃

ª®®®¬ (91)

Noises and pure losses: each subsystem might undergo different pure loss channel. In
this case, the covariance matrix is transformed as (Barbosa et al., 2011)

𝝁′ = 𝑳𝝁 𝝈′ = 𝑳(𝝈I4)𝑳 + I4, 𝑳 =

(√
𝜂1I2 0
0

√
𝜂2I2

)
(92)

The same could apply for noisy channels, see Serafini et al. (2004a) for which one can define
the noise on channel 1 and the noise on channel 2, particularly relevant in the frame of quantum
information to take into account the transmission channel.

Two-mode squeezed state: a two-mode squeezer is defined by a squeezing parameter 𝑟

𝑆2(𝑟) = exp[𝑟 (𝑎𝑏 − 𝑎†𝑏†)/2] ↔ 𝑺(𝑟) =
(
cosh 𝑟I2 sinh 𝑟𝝈𝑧

sinh 𝑟𝝈𝑧 cosh 𝑟I2

)
(93)

where 𝝈𝒛 is the Pauli matrix diag(1,-1). When the two-mode squeezing operator acts on the
vacuum, one obtains a two-mode squeezed vacuum state

|TMSv〉 (𝑟) =
√
1 − tanh2 𝑟

∑
𝑖

(tanh 𝑟)𝑖 |𝑖, 𝑖〉 (94)

whose covariance matrix reads

𝝈TMSv(𝑟) =
(
cosh 2𝑟I2 sinh 2𝑟𝝈𝑧

sinh 2𝑟𝝈𝑧 cosh 2𝑟I2

)
. (95)
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The variance of the quadrature difference or sum vanishes in the limit 𝑟 → ∞ as

𝑉 (𝑥𝑎 − 𝑥𝑏) = 𝑉 (𝑝𝑎 + 𝑝𝑏) ∝ 𝑒−2𝑟 . (96)

This state is often referred as an EPR state, for Einstein-Podolski-Rosen because it exhibits
perfect correlations between subsystem 𝑎 and 𝑏. In experiments however, one never deals with
zero temperature systems and the temperature of the environment must be taken into account.
A thermal squeezed state is therefore a thermal state (91) that has been squeezed (93)

𝝈TMSth = 𝑺𝝈th𝑺
⊺ = (1 + 2𝑛𝑒)𝝈TMSv(𝑟) (97)

where 𝑛𝑒 is the temperature environment that we take equal for the two subsystems for sim-
plicity.

1.F Joint probability distribution
The covariance matrix defines the state entirely. In principle, it is possible to obtain the proba-
bility distribution of the particle number P(𝑛, 𝑚), namely the probability of having 𝑛 particles
in mode A and 𝑚 particles in mode B. In practice, projecting a Gaussian state onto the Fock
space is not trivial. A priori, this distribution can be computed from the Weyl transform of the
Fock basis projectors |𝑖〉 〈𝑖 |, as given in equation (67). For our system, it reads

P(𝑛, 𝑚) ∝
∫

d𝒓 𝑊𝑛 (𝑟1, 𝑟2)𝑊𝑚(𝑟3, 𝑟4)𝑒−
∑

𝑖, 𝑗 (𝑟𝑖−𝜇𝑖 )𝜎−1
𝑖 𝑗 (𝑟 𝑗−𝜇 𝑗 ) (98)

which is neither analytical nor easy to evaluate. In fact, the analytical expression for the joint
photon-number distribution was first derived for a displaced but pure two-mode squeezed
state by Caves et al. (1991). For a mixed state, Dodonov et al. (1994a) started by deriving
the photon distribution for a single-mode state. Finally, Dodonov et al. (1994b) extended
this result to a general N-mode Gaussian mixed state of light. The latter formula involves
“diagonal multidimensional Hermite polynomials” (Berkowitz and Garner, 1970; Kok and
Braunstein, 2001). Fortunately, this has been implemented in a Python package named The
Walrus by Gupt et al. (2019). Also, note the existence of Qugit, a Python package to simulate
the evolution of Gaussian states developed by Brandão et al. (2022), but it does not currently
implement the routine to obtain the joint particle distribution.

Summary This section introduced Gaussian states, that can be fully character-
ized by their first and second moment, the covariance matrix (68). Any covari-
ance matrix that represents a quantum state must satisfy a bona fide condition, the
Schrödinger-Robertson inequality (73). It requires its (symplectic) eigenvalues
to be reater than 1. This inequality is fundamental in the next sections, to assess
the non-separability of Gaussian states.
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Figure 25: Joint probability distributions of different two-mode Gaussian states. A) Two-
mode squeezed vacuum state with squeezing parameter 𝑟 = 1.3 and detected with a 100%
efficiency detector. A pure TMSv has non zero elements on the diagonal and 0 elsewhere.
B) Two-mode squeezed vacuum state detected with a detector that has 50% efficiency: the
distribution exhibits non-diagonal elements. C) Two-mode squeezed (𝑟 = 1) thermal (𝑛𝑖𝑛𝑡ℎ =
0.4) state. The initial thermal population broadens the diagonal distribution. D) Two-mode
thermal state (𝑛𝑡ℎ = 2.8) with no correlations. This state is completely symmetric and exhibits
no correlations at all. ©Distributions obtained using the Walrus library (Gupt et al., 2019).

2. Entanglement criteria review

The word “entanglement” was introduced by Schrödinger (1935) as “not one but rather the
characteristic trait of quantum mechanics”. Experimental observation of entanglement was
then made possible through the violation of a Bell inequality, introduced by Bell (1964) and
reformulated by Clauser et al. (1969) as the CHSH inequality. Such inequality paved the
way towards the observation of entanglement with experimental systems by Clauser (1974)
and Aspect (Aspect et al., 1981, 1982b,a), leading to the so-called first and second quantum
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revolution (Dowling and Milburn, 2003).
For pure states, there is an equivalence between entanglement and a violation of a Bell

inequality (Gisin, 1991; Gisin and Peres, 1992). If we consider non-pure states (mixed state),
this is no longer true. For example, there are states that can be used for teleportation (and are
thus entangled) but do not violate a Bell inequality (Popescu, 1994). For mixed state, Werner
(1989) introduced the notion of “non-separability” to refer to entangled states: entanglement
and non-separability are thus synonyms.

The following of this section focuses on entanglement criteria and witnesses. In the sub-
section 2.A, we define entanglement from the non-separability definition of Werner (1989).
We then define the widely used PPT (Positive Partial Transpose) criterion and its generaliza-
tion for Gaussian states (gPPT) in subsection 2.B. This part is central as the fourth section
of this chapter relies on it. Subsection 2.C introduces the logarithmic negativity (LN) as an
entanglement quantifier. We then briefly review in part 2.D other criteria and witnesses that
are commonly used in work related to this thesis.

2.A Separability definition

The definition of separable states is due to Werner (1989): “A state of a composite quantum
system is called classically correlated if it can be approximated by convex combinations of
product states, and Einstein-Podolsky-Rosen correlated otherwise”.

Definition - Separability
Considering a bipartite system of two modes 1 and 2, a quantum state describing it is
separable if and only if it can be expressed in the form

𝜌 =
∑
𝑗

𝑝 𝑗𝜌 𝑗1 ⊗ 𝜌 𝑗2 (99)

where 𝑝 𝑗 ≥ 0, 𝜌 𝑗1 and 𝜌 𝑗2 are the density matrices of subsystem 1 and 2. Any non-
separable quantum state is entangled.

For example, the density matrix of an uncorrelated two-mode thermal state is 𝜌 = 𝜌𝑡ℎ,1⊗ 𝜌𝑡ℎ,2
where 𝜌𝑡ℎ is the density matrix of a thermal state (83).

Furthermore, following Gühne and Tóth (2009), we make the distinction between an en-
tanglement criterion which is a necessary and sufficient condition for the (non) separability of
the state, and an entanglement witness which only assesses that, above a threshold, the state is
non-separable. It is often reported that entanglement depends on the partition i.e. the subsys-
tem we are considering. In this work, as we aim to measure particles in the (𝑘,−𝑘) basis, the
partition is clear, and we will refer to the entanglement between those two modes. Note also
that it was reported by Sperling et al. (2019) the existence of a family of quantum states that is
“entangled for arbitrary mode decompositions”, invalidating my previous statement. The state
they consider is such that it is a “superposition of nonparallel and non-orthogonal modes”.

|Ψ〉 =
√
2 |2, 0〉 + 𝜆 |1, 1〉√

2 + |𝜆 |2
(100)

where 𝜆 ≠ 0. This state is highly non-Gaussian and is beyond the discussion of this thesis.
Indeed, as we saw, a Gaussian state can always be diagonalized by Williamson’s theorem
which means that, in this partition, the modes are separable.
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From the separability definition, it is obvious that a fock state |Ψ𝑇𝐹〉 = |𝑛, 𝑛〉 is not en-
tangled while a two-mode squeezed state is. The Fock state is not entangled in the sense that
the modes 𝑘 and −𝑘 are not entangled. However, it is known that a Fock state enables one to
achieve Heisenberg-limited interferometry measurement (Sahota and Quesada, 2015). It was
also shown to outperform the (mode entangled) two-mode squeezed state in many configura-
tions (Marolleau et al., 2024). For some authors, this apparent lack of non-classicality results
from second quantization hiding entanglement. As pedagogically introduced by Morris et al.
(2020), in first quantization, the |1𝑒, 1 𝑓 〉 state, in which we have one particle in state 𝑒 and one
particle in state 𝑓 , is written

|𝜓𝑇𝐹〉 =
| 𝑓 〉1 |𝑒〉2 + |𝑒〉1 | 𝑓 〉2√

2
. (101)

Here, this state seems entangled because we labeled by 1 and 2 the indistinguishable particles
and symmetrized the state. Such entanglement arising from particle exchange symmetrization
is a nonsense for other authors and there are not yet a consensus on its nature (Köhnke et al.,
2021). This paradox led therefore to the development of many definitions of entanglement
(Modi et al., 2012) or new approaches to write states (Compagno et al., 2018), as reviewed by
Benatti et al. (2020). Correlations arising from particle exchange symmetry are for example
referred to by Morris et al. (2020) as “particle entanglement”. Even though particle entangle-
ment was shown to be “a useful and consistent resource”, in the following, we will focus on
mode entanglement i.e. states that do not satisfy equation (99) unless otherwise stated.

2.B The positive partial transpose criterion

Definition for arbitrary quantum state

In a pioneering work, Peres (1996) derived “a simple algebraic test, which is a necessary
condition” for the separability of the state. This necessary condition was shown to be also
sufficient for a 2x2 or 2x3 system by Horodecki et al. (1996) but not for 2x4 or 3x3 states
by Horodecki (1997). Here, nxm refers to the size of the Hilbert space of each system. For
example, the 2x3 refers to entanglement between a subsystem of size two and another one
of size 3 (a spin 1/2 and spin 1). The criterion consists in checking if the partial transpose
of the density matrix is positive or not. Writing the density matrix as 𝜌𝑚𝜇,𝑛𝜈 such that latin
indices refer to sub-system 1 and greek indices to sub-system 2. We define the partial transpose
operation as

(𝜌𝑚𝜇,𝑛𝜈)⊺2 := 𝜌𝑚𝜈,𝑛𝜇 (102)
which only exchanged the greek indices of the later matrix i.e. transposed the subsystem 2.

Theorem - PPT criterion
The partial transpose of a density matrix of a separable state is positive. If the system is
a 2x2 or 2x3 system, if the partial transpose of the state is positive, the state is separable.

Proof. For a separable density operator, the partial transpose operation is given by

𝜌 =
∑
𝑗

𝑝 𝑗𝜌 𝑗1 ⊗ 𝜌 𝑗2 ↔ 𝜌⊺2 =
∑
𝑗

𝑝 𝑗𝜌 𝑗1 ⊗ 𝜌
⊺
𝑗2 (103)

The matrices 𝜌⊺𝑗2 are non-negative matrices with unit trace: they are legitimate density matri-
ces for a quantum state. This implies that the density matrix 𝜌⊺2 is also a legitimate density
matrix. The proof for the necessary condition can be found in Horodecki et al. (1996).

□
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Simon says: it is entangled !

The PPT criterion is not a priori a criterion for a two-mode continuous variable system as it is
a∞×∞ system (and∞ > 3). However, Simon (2000) and Duan et al. (2000) showed that this
entanglement witness is an entanglement criterion, that is a sufficient and necessary condition.
This criterion is therefore often referred as GPH criterion, for Generalized Peres-Horodecki or
gPPT for generalized PPT criterion. In the following, we keep the same notations as the one
we used in the last section and we write

𝒓 =
©«
𝑥1
𝑝1
𝑥2
𝑝2

ª®®®¬ , 𝝈 =

(
𝑨 𝑪
𝑪⊺ 𝑩

)
(104)

where the matrix 𝑨 describes subsystem 1, 𝑩 subsystem 2 and 𝑪 the correlation between the
two modes. With this notation, Simon (2000) showed the bona fide condition (73) can be
recast in a simple inequality4

Theorem - Bona fide condition by Simon
The covariance matrix 𝝈 of a quantum state written as in equation (104) must respect
the bona fide condition (73) 𝝈 + 𝑖𝛀 > 0 that writes

det[𝑨] + det[𝑩] ≤ det[𝑨]det[𝑩] + (1 − det[𝑪])2

− Tr (𝑨𝛀1𝑪𝛀1𝑩𝛀1𝑪
⊺𝛀1) .

(105)

The PPT criterion requires the density matrix of the partial transposed state not to be posi-
tive to ensure entanglement. For a Gaussian state, this means that the covariance matrix does
not respect the bona fide condition (105). How does the covariance matrix change under the
partial transpose operation? Here again, Simon (2000) provides a remarkable interpretation
of the partial transpose operation, interpreting it as “a mirror reflection in the Wigner phase
space”. Formally, under a partial transpose operation, the Wigner distribution is transformed
as

𝑊 (𝑥1, 𝑝1, 𝑥2, 𝑝2)⊺2 = 𝑊 (𝑥1, 𝑝1, 𝑥2,−𝑝2) (106)

In terms of matrices, the partial transpose corresponds therefore to multiplication by 𝚲 =
diag(1, 1, 1,−1). The covariance matrix of the partially transposed state reads therefore

(𝝈)⊺2 = 𝚲𝝈𝚲 =

(
𝑨 𝑪𝝈𝒛

(𝑪𝝈𝒛)⊺ 𝝈𝒛𝑩𝝈𝒛

)
(107)

where 𝝈𝒛 is the third Pauli matrix diag(1,-1). PPT criterion states that a state is separable
if and only if its partial transpose is positive. When plugging the covariance matrix of the
partially transposed state, in the bona fide condition (105), it justs flips the sign of the term
det𝐶. Last but not least, Simon (2000) demonstrates that the generalized PPT criterion is not
only sufficient but also necessary.

4When comparing inequality (105) to the one derived by Simon (2000), there is a factor 1/4 that differs which
is due to the covariance matrix definition (1/2 factor).
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Theorem - gPPT criterion by Simon
A Gaussian quantum state is separable if and only if P− ≥ 0 where

P− :=det𝑨det𝑩 + (1 − |det[𝑪] |)2 − det𝑨 − det𝑩
− Tr (𝑨𝛀1𝑪𝛀1𝑩𝛀1𝑪

⊺𝛀1)
(108)

The difference between Eq. (105) and (108) lies in the absolute value |det[𝑪] |. Especially,
any non-separable Gaussian state must respect the bona fide condition (105) while violating
(108). In some sense, there is only a little place for entanglement.

Remark - Entanglement depends on the partition basis
Here, the quantity P− depends on local symplectic invariants, which do not change under
local transformation. However, we saw in the last section 1.C with Williamson decom-
position (75) that it is always possible to decompose the covariance matrix on normal
modes, that is a basis in which the state is made of two independent modes. It highlights
the fact that entanglement depends on the basis, the choice of the partition. In a different
basis, a two-mode squeezed state is simply two one-mode squeezed states. In this work,
the partition is clear: subsystem 𝐴 refers mode −𝑘 and subsystem 𝐵 to mode 𝑘 .

Note that our discussion here relies on Gaussian states: the gPPT criterion derived is no
longer necessary for non-Gaussian states.

2.C Logarithmic negativity
Deeply connected to the PPT criterion is the so-called logarithmic negativity (LN). It was
shown by Vidal and Werner (2002) to be a faithfull measure of entanglement because “it does
not increase under local manipulations of the system”. This is particularly relevant in the
frame of quantum communication (Plenio and Virmani, 2005) in which the theory of entangle-
ment tries to understand “how well mixed quantum states can be converted to pure maximally
entangled states and vice versa, by means of “free” physical operations that do not increase en-
tanglement” (Wang and Wilde, 2020). This criterion is equivalent to the PPT criterion hence
it is an entanglement criterion for bipartite quantum states. Also, LN was shown to be an
entanglement monotone (Plenio, 2005) i.e. it can be used to measure entanglement and not
only assess it. Starting from a thermal state, LN increases with the squeezing parameter while
it decreases with the noise. In this regard, it enables one to identify in a physical process what
causes entanglement, what destroys it and how much (Brady et al., 2022).

Theorem - Logarithmic negativity criterion
The logarithmic negativity, defined as

𝐸N (𝜌) := log2 | |𝜌⊺2 | |1 , | |𝐴| |1 := tr(
√
𝐴†𝐴) (109)

that is the logarithm of the trace norm of the partial transpose of the density matrixa is
an entanglement witness.

aHere ⊺2 refers to the partial transpose operation over sub-system 2.

Proof. The trace norm of an operator is the sum of the absolute value of its eigenvalues. For
any quantum state 𝜌, the sum of its eigenvalues is 1 and since it is semi-positive, that is all its
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eigenvalues are positive or zero, the sum of the norm of its eigenvalues is also 1. Mathemati-
cally, if we write the eigenvalues of 𝜌 as 𝜈𝑖 , we have

Tr(𝜌) = 1
𝜌 ≥ 0

→
∑

𝑖 𝜈𝑖 = 1
∀𝑖, 𝜈𝑖 ≥ 0

→
∑
𝑖

|𝜈𝑖 | = 1 (110)

If the partial transposed state 𝜌⊺2 is not positive, it has a negative eigenvalue. The partial
transpose operation preserves the trace, therefore the sum of the eigenvalues of 𝜌⊺2 is also
1. However, this means that the sum of the absolute value of the eigenvalues is larger than 1.
Therefore, the logarithmic negativity of this quantity is positive.

Tr(𝜌⊺2) = 1
𝜌⊺2 ≥ 0

→
∑

𝑖 𝜈𝑖 = 1
∃𝑖, 𝜈𝑖 < 0

→
∑
𝑖

|𝜈𝑖 | > 1 → 𝐸N (𝜌) > 0 (111)

□

For Gaussian states, the logarithmic negativity can be easily computed from the covariance
matrix.

Theorem - Logarithmic negativity for a two-mode Gaussian states
For a Gaussian state, Adesso et al. (2004) showed that the smallest eigenvalue of the
partial transpose of the covariance matrix 𝜈± “completely qualifies and quantifies the
quantum entanglement of a Gaussian state 𝝈”. The logarithmic negativity is

𝐸N (𝝈) = max [0,− log2 𝜈−] , 𝜈± =

√
Δ̃ ±

√
Δ̃2 − 4det𝝈
2

(112)

where Δ̃ := det(𝑨) + det(𝑩) − 2det(𝑪) is a local symplectic invariant of the (partial
transposed) covariance matrix.

The state is entangled if and only if 𝜈− ≥ 1 or equivalently Δ̃ ≤ 1 + det𝝈.
Note that the bona fide condition for 𝝈 implies also that Δ ≤ 1+det𝝈 (see equation (79))

For a two-mode squeezed vacuum state, the logarithmic negativity is given by

𝐸N [|TMSv〉 (𝑟)] = 2𝑟

log 2
(113)

i.e. the logarithmic negativity increases with the squeezing parameter. We recover the fact
that this state is always entangled for positive 𝑟 . For a two-mode thermal state with initial
population 𝑛𝑒 (97), the logarithmic negativity is given by (Brady et al., 2022)

𝐸N = max
(
0,− log2

(
(1 + 2𝑛𝑒)𝑒−2𝑟

))
(114)

which shows that LN increases with squeezing and decreases with the temperature environ-
ment. Entanglement vanishes if 1+2𝑛𝑒 > 𝑒2𝑟 . Given that the number of noise quanta is given
by the Bose-Einstein distribution 𝑛𝑒 = 1/(𝑒𝜔/𝑇𝑒 − 1), it is often introduced the squeezing
temperature that is the temperature that satisfies

𝑛𝑠 =
1

𝑒𝜔/𝑇𝑠 − 1
, 𝑛𝑠 = sinh2 𝑟. (115)

The state is entangled if the environment temperature is lower than twice the squeezing tem-
perature (Brady, 2023)

𝑇𝑒 < 2𝑇𝑠 . (116)
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Figure 26: Variation of entanglement witnesses as a function of the environment noise. (a)
Quantity P− from Simon (2000) defined in equation (108), which is negative for entangled
states. (b) Logarithmic negativity (109) and (c) the quantity Δ that will be described in the
next section. This figure exhibits quite well the fact that the logarithmic negativity is an en-
tanglement monotone and therefore a good quantifier of entanglement compared to the two
other criteria. ©Figure inspired from Brady et al. (2022).

Figure 27: Schematic picture of the set of all states and the set of separable states as nested
convex sets and two witnesses,𝑊 (1) and𝑊 (2) . The red lines represent the hyperplanes where
the witnesses fail to detect entanglement. Obviously, the first witness is finer than the second
one. ©Figure from Gühne and Tóth (2009).

2.D Other (non-hermitian) entanglement witnesses

Since not all quantum states are Gaussian, other entanglement witnesses were derived to better
capture entanglement. Much work focus on reviewing the existing entanglement criteria and
witnesses. For a complete review, the interested reader might refer to the work by Horodecki
et al. (2009) or Gühne and Tóth (2009). In this subsection, we focus on the Campo-Parentani
criterion and its generalizations.

This criterion enables one to assess the separability of the state under some hypothesis. It
seems that it was first introduced by Campo and Parentani (2005) when studying the mode
decoherence to “describe the primordial fluctuations in inflationary scenarios”.

Theorem - Campo-Parentani criterion - Δ criterion
Defining Δ = 〈𝑛1〉 〈𝑛2〉 − | 〈𝑎1𝑎2〉 |2 and assuming 〈𝑎1𝑎1〉 = 〈𝑎2𝑎2〉 = 0 and 〈𝑎†1𝑎2〉 = 0,
a centered Gaussian state is entangled if and only if

Δ < 0. (117)

The proof for this criterion can be found in the appendix of Busch et al. (2014), but it will be
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a special case of the criterion we will derive in section 4.E. Note that when the nullity of the
condition listed above is not fulfilled, Δ is still an entanglement witness (Adamek et al., 2013).
Indeed, it was shown by Hillery and Zubairy (2006) that

Theorem - Hillery-Zubairy witness
For any positive integer 𝑚 and 𝑛, a separable state must satisfy the condition

〈𝑎𝑚1 𝑎𝑛2〉 ≤
√
〈(𝑎†1)𝑚𝑎𝑚1 〉 〈(𝑎

†
2)𝑛𝑎𝑛2〉 (118)

The proof of this witness can be found in Hillery and Zubairy (2006) or in Adamek et al.
(2013). Note also that the Hillery-Zubairy entanglement witness is a special case of the two-
mode entanglement criterion defined by Shchukin and Vogel (2005).

Theorem - Shchukin-Vogel criterion
A quantum state is separable if and only if all the determinants

𝐷𝑁 =

��������������

1 〈𝑎1〉 〈𝑎†1〉 〈𝑎†2〉 〈𝑎2〉 . . .

〈𝑎†1〉 〈𝑎†1𝑎1〉 〈𝑎†21 〉 〈𝑎†1𝑎
†
2〉 〈𝑎†1𝑎2〉 . . .

〈𝑎1〉 〈𝑎21〉 〈𝑎†1𝑎1〉 〈𝑎1𝑎†2〉 〈𝑎1𝑎2〉 . . .

〈𝑎2〉 〈𝑎1𝑎2〉 〈𝑎†1𝑎2〉 〈𝑎†2𝑎2〉 〈𝑎22〉 . . .

〈𝑎†2〉 〈𝑎†2𝑎1〉 〈𝑎†2𝑎
†
1〉 〈𝑎†22 〉 〈𝑎2𝑎†2〉 . . .

...
...

...
...

...
. . .

��������������
(119)

are nonnegative that is
∀𝑁 : 𝐷𝑁 ≥ 0. (120)

This formulation is quite powerful as Simon’s criterion is now a special case of this criterion,
namely, it requires the 𝐷5 determinant to be negative.

Remark - Other entanglement witnesses from the covariance matrix
Even when a state is not Gaussian, the covariance matrix elements of the quantum state
can be used to find the finest witness. For example, Hyllus and Eisert (2006) developed
an open source numerical routine to provide the user the best entanglement witness to
look at given the covariance matrix of the bipartite state. More recently, Gessner et al.
(2017) introduced a “multi-mode squeezing coefficient to characterize entanglement in
N-particle CV system” from the covariance matrix, that applies also for non-Gaussian
states. Zhang et al. (2021) also reported a “hierarchy of sufficient and necessary condi-
tions for the PPT” of bipartite quantum states.

69



CHAPTER II. QUANTIFYING ENTANGLEMENT OF TWO-MODE GAUSSIAN STATES

Summary In this section, we first defined entanglement and explain that, al-
though there is a consensus on the notion of mode entanglement, it is still not
the case for particle entanglement. Focussing now on mode entanglement, we
defined the Positive Partial Transpose operation and showed that it is an entan-
glement witness. In the case of 2x2 and 2x3 system, this witness is a criterion
i.e. it is not only sufficient but also necessary. This statement holds for two-
mode Gaussian states. We then introduced the logarithmic negativity as a faith-
ful entanglement quantifier. It is defined for any quantum state, but we gave
its expression for a two-mode Gaussian state. In the last section, we introduce
the Campo-Parentani criterion noted Δ. It allows one to assess Gaussian state
entanglement under some hypotheses. We also saw that this quantity is still an
entanglement witness relaxing some of those assumptions, as shown by Hillery
and Zubairy.
However, the witnesses we introduced are either not hermitian operators or they
require themeasurement of the full density matrix. In other words, they cannot be
measured with our single particle detector. In the next section, we will introduce
two quantities, the normalized variance and the Cauchy-Schwarz ratio. They are
hermitian and can be measured using a single particle detector: can they witness
mode entanglement ?

3. On the Cauchy-Schwarz inequality and the normalized vari-
ance

We consider here the violation Cauchy-Schwarz inequality and the normalized variance as
“witness candidates”. They are particularly interesting because they have sparkedmuch debate
and controversy within the community. We discuss the range of applicability of these criteria
and check numerically if they can be considered as entanglement witnesses or not.

3.A Relative number squeezing

Definition - Normalized number difference - normalized variance - relative number
squeezing
We define the normalized relative number variance between two modes 𝜉 as

𝜉2 :=
〈Δ𝑛2〉 − 〈Δ𝑛〉2

〈𝑛1 + 𝑛2〉
(121)

where Δ𝑛 := 𝑛1 − 𝑛2 is the number difference operator. When the normalized variance
of a state drops below 1, we will say that such a state exhibits a sub-shot-noise variance
or is relative number squeezed.

Indeed, in (121), the numerator is the relative number variance and the denominator is the
sum of the population. If we consider a two-mode squeezed state |Ψ〉 ∼ ∑

𝑖 𝛼
𝑖 |𝑖〉𝑘 |𝑖〉−𝑘 , its

normalized variance 𝜉 is null and if the detector has an efficiency 𝜂, the normalized variance
will be equal to 1 − 𝜂.
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Remark - Poissonian and thermal distribution.
The number variance of a state that exhibits single-mode Poissonian statistics 𝑝 (coherent
state) and a thermal statistics 𝑡ℎ (thermal state) are

〈𝑛2𝑝〉 − 〈𝑛𝑝〉2 =𝑛𝑝,

〈𝑛2𝑡ℎ〉 − 〈𝑛𝑡ℎ〉2 =𝑛2𝑡ℎ + 𝑛𝑡ℎ .
(122)

where 𝑛𝑝 and 𝑛𝑡ℎ refer to the mean of the distribution. This means in particular that
the normalized number difference between two incoherent modes with the same mean
population and Poissonian or thermal statistics are

𝜉𝑝, incoh = 1, 𝜉𝑡ℎ, incoh = 1 + 𝑛𝑡ℎ . (123)

In the 2000s, many BECs experiments reported the observation of number squeezing in BECs
(Orzel et al., 2001; Gerbier et al., 2006). Among them, Estève et al. (2008) split a BEC in a
double well and resolve the atom number in each well to demonstrate sub-shot-noise variance
(121). In the case of spin squeezing, experiments rapidly demonstrated useful entanglement by
showing phase sensitivity greater than the standard quantum limit (Gross et al., 2010; Lücke
et al., 2011). A few years later, the same authors reported entanglement between two spatially
separated atomic modes was (Lange et al., 2018; Fadel et al., 2018; Kunkel et al., 2018).

Other authors observed relative number squeezing between two momentum modes
(Jaskula et al., 2010; Bücker et al., 2011). In their work, they do not claim entanglement
which is quite understandable as a system of massive entangled particles is precisely the
original EPR paradox. For those systems, a violation of Bell inequalities has not yet been
observed, even thought promising experiment paved the way (Dussarrat et al., 2017; Thomas
et al., 2022). In response to this observation and possible conclusions on entanglement,
Finke et al. (2016) designed a classical model with the same physics at play, for which
they observed sub-Poissonian variance. In their work, authors highlight the fact that the
observation of sub-shot noise variance is not a proof of entanglement. In the next section, we
will numerically test under what circumstances normalized variance and Cauchy-Schwarz
inequalities fail to be faithful entanglement witnesses.

3.B Classical Cauchy-Schwarz inequality violation: a mode entanglement
witness ?

Definition - Cauchy-Schwarz ratio
We define the Cauchy-Schwarz ratio CS as (Walls and Milburn, 2008)

CS :=
G12√
G11G22

, G𝑖 𝑗 := 〈: 𝑛𝑖𝑛 𝑗 :〉 (124)

where the two dots “:” within the braket refers to normal order operators (Castin, 2011).
Observation of CS > 1 will be referred to as violation of the classical Cauchy-Schwarz
inequality.
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Remark - On the importance of normal ordering
Without the normal ordering on the denominator of the Cauchy-Schwarz ratio, we always
have

〈𝑛1𝑛2〉 <
√
〈𝑛21〉 〈𝑛22〉 (125)

because of the real Cauchy-Schwarz inequality (61). Violation of the classical Cauchy-
Schwarz inequality is only permitted by the fact that 〈: 𝑛21 :〉 = 〈𝑛21〉 − 〈𝑛1〉 i.e. by com-
mutation rules. This is why we refer to CS > 1 as a violation of the classical Cauchy-
Schwarz inequality.

In quantum optics, the violation of the classical Cauchy-Schwarz inequality is recognized
as a signature of the quantumness of the system (Reid and Walls, 1986). However, experi-
mental observation of violation of the Cauchy-Schwarz inequality in cold atom experiments
(Kheruntsyan et al., 2012; Steinhauer, 2014, 2016) led to many criticisms concerning the con-
clusion on the non-separability of the state. Using Wick’s theorem5 and assuming 〈𝑎2𝑖 〉 =
〈(𝑎†𝑖 )2〉 = 0,

G12 =𝑛1𝑛2 + | 〈𝑎1𝑎2〉 |2 + | 〈𝑎1𝑎†2〉 |
2,

G11 =2𝑛
2
1,

G22 =2𝑛
2
2,

(126)

so that the Cauchy-Schwarz ratio reads

CS =
1

2

(
1 + | 〈𝑎1𝑎2〉 |2

𝑛1𝑛2
+
| 〈𝑎1𝑎†2〉 |2

𝑛1𝑛2

)
. (127)

If one assumes that the last term in this equation is null, observing CS > 1 implies | 〈𝑎1𝑎2〉 |2 >
𝑛1𝑛2 which implies entanglement. This is the proposal of Steinhauer (2015) and DeNova et al.
(2014). However, violation of the classical Cauchy-Schwarz inequality cannot be considered
as an unambiguous proof for mode entanglement because of the above assumption. This is
for example discussed by Nova et al. (2015).

Another drawback was pinpointed by Finke et al. (2016). When measuring the atom num-
ber through the intensity of a fluorescence signal, one has access to the intensity of the signal
𝐼 𝑗 . Averaging this intensity over realizations gives the mean atom number 〈𝑛 𝑗〉 = 𝐼 𝑗 after
proper calibration. Here the bar means average over many realizations. When one evaluates
the Cauchy-Schwarz ratio, the denominator is therefore defined as 𝐼2𝑗 − 𝐼 𝑗 which means that
the bosonic commutation rules are put by hand. As underlined in the remark above, it is this
subtraction and the commutation rules that allows one to witness CS > 1.

Remark - Link between relative number squeezing and the classical Cauchy-Schwarz
inequality
Under the same hypothesis we have made, we can link the Cauchy-Schwarz ratio and
the relative number squeezing

𝜉2 = 1 + 2
√
G1G2

1 − CS
𝑛1 + 𝑛2

+
𝑛21 + 𝑛22 − 2𝑛1𝑛2

𝑛1 + 𝑛2
, (128)

5Wick’s theorem will be defined in the next section 4.A.
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which emphasizes that

1. when the populations are equal, relative number squeezing and the classical
Cauchy-Schwarz violation are equivalent,

2. when the populations are different, the term on the right is positive: it is possible
to observe a violation of the classical Cauchy-Schwarz inequality but not relative
number squeezing. In other words, relative number squeezing is in this case harder
to observea,

3. CS ≤ 1/max(𝑛1, 𝑛2), which is required by the real Cauchy-Schwarz inequality
(61), implies that we do have 𝜉2 > 0.

aThis is only true because we assume we have a centered Gaussian state for which Wick’s theorem
applies. In other words, relative number squeezing is harder to observe only when the statistics are thermal,
i.e.〈𝑛2〉 = 2𝑛2 + 𝑛. It is not the case for a displaced state i.e. a coherent state.

Conclusion: We can link a violation of the classical Cauchy-Schwarz inequality and mode
entanglement when

1. the state is Gaussian,

2. the state is centered 〈𝑎𝑖〉 = 〈𝑎†𝑖 〉 = 0,

3. each thermal mode is not squeezed: 〈𝑎2𝑖 〉 = 〈(𝑎†𝑖 )2〉 = 0,

4. the coherence between the terms is zero 〈𝑎1𝑎†2〉 = 0,

3.C Cauchy-Schwarz inequality and particle entanglement

As we saw, only strict assumptions allow one to link the classical Cauchy-Schwarz inequality
violation and mode entanglement. A different route is suggested by other authors, assuming
the so-called superselection rule (SSR).

Definition - Superselection rule
The superselection rule (Wick et al., 1952) is that a state of massive bosons cannot have a
fluctuating number of particles. It must be diagonal in the total number operator basis 𝑁
i.e. [𝜌, 𝑁] = 0. This implies that the most general quantum state for a system of identical
bosonic particles (photons or atoms) can only be of the form (Dalton et al., 2017)

𝜌 =
∞∑

𝑁=0

∑
𝜙

𝑃𝜙,𝑁 |𝜙𝑁 〉 〈𝜙𝑁 | , |𝜙𝑁 〉 =
∑
𝑖

𝐶𝑁
𝑖 |𝑁 𝑖〉 (129)

where |𝜙𝑁 〉 is a quantum superposition of states |𝑁 𝑖〉, labelled by 𝑖, which involves
exactly 𝑁 particles.
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Theorem - Cauchy-Schwarz violation witness
Both for a system with a fixed or fluctuating number of particles, it was shown byWasak
et al. (2014) that defining two (arbitrarily chosen) regions 𝑋𝑎 and 𝑋𝑏 and defining

G (2)
𝑖 𝑗 :=

∫
𝑋𝑖

d𝑟
∫
𝑋 𝑗

d𝑟 ′ 〈Ψ̂†(𝑟)Ψ̂†(𝑟 ′)Ψ̂(𝑟)Ψ̂(𝑟 ′)〉 (130)

and

CS :=
G (2)
𝑎𝑏√

G (2)
𝑎𝑎 G (2)

𝑏𝑏

, (131)

violation of CS ≤ 1 implies particle entanglement.

The proof for this witness can be found in the previous reference. It relies on SSRs. Note that a
twin-Fock state does violate this criterion: it is therefore particle entangled as we discussed in
the previous section (Killoran et al., 2014). As the second order correlation function decreases
when the population decreases, the Cauchy-Schwarz ratio converges to 1 when the number of
particles increases. This is in contradiction with the potential utility of the state: the bigger the
twin-Fock state is, the more useful the state is for interferometry measurement. In this sense,
the quantity CS does not increase with the usefulness of the state (Wasak et al., 2016).

3.D Numerical test to check mode entanglement

In this section, we come back to mode entanglement. We saw that the Cauchy-Schwarz in-
equality and the normalized variance are faithful mode entanglement witnesses under (some)
hypotheses. Here, we would like to relax the hypothesis that the coherence term 〈𝑎1𝑎†2〉 is
null and check numerically if this relaxation prevents C𝑆 from being a faithful entanglement
witness. Our procedure is the following and is summarized in Figure 28 (a). We represent the
space of separable and non-separable states with different projections (𝑥 and 𝑦 axis) and we
plot the hyperplane of three different witnesses (C𝑆 ,𝜉 andΔ). Our goal is to push entanglement
witnesses to their limit. Importantly, an entanglement witness can fail to detect entanglement
but must never falsely claim that a state is entangled when it is not. Somehow, a (faithful)
entanglement witness has sworn to the (holy) entanglement criterion (judge) that it will never
lie. Geometrically, this means that the hyperplane defined by an entanglement witness must
never cut the separable region.

In Figure 28, we focus on relative simple quantum states : two-mode squeezed on a thermal
seed or on a single mode squeezed thermal state. In Figure 29, we push forward and test
Gaussian states that I did not build from a physical process (I do not have a protocol to create
them). Still they exist and should be considered.

Description: the blue color-scale represents the logarithmic negativity i.e. it quantifies
entanglement. The bluer, the more entangled. The white region filled with grey dots is the
region where lie separable states. The separable region is split from the entanglement region
by the solid black curve that is the gPPT criterion. The dashed-dotted pink curve is the Δ quan-
tity from the Campo-Parentani witness. The dashed blue and orange dotted curves represent
respectively the Cauchy-Schwarz ratio (131) and the normalized variance (124).

On the three panels represented in Figure 28, we do not observe any witness curve in
the separable region. This means that, so far, the possible entanglement witnesses cannot be
rejected.
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Figure 28: (a) Scheme of our procedure: we project the space of separable states along differ-
ent directions and make sure entanglement witnesses never cut this space. (b-d) Comparison
of the accuracy and faithfulness of entanglement witnesses. White region with grey dots is
the separable region, surrounded by the gPPT criterion (solid black). On (c), the normalized
variance (orange dotted) fails more often than the other to detect entanglement. On (d) all
witnesses are not really sensitive to detect entanglement. However, witnesses do not enter the
separable space: they do not lie and cannot be rejected.

On the y-axis of the panel (b) lies the squeezing parameter and the initial thermal seed
on the x-axis. On this panel, all curves lie on the PPT curve, which means that the witnesses
are all correct and accurate. On the panel (c), the two-mode squeezing parameter 𝑟 is fixed,
however the initial thermal seed is changed and is different for each mode: the thermal seed is
the same only on the diagonal. Here, the normalized variance is much less accurate as it fails
to detect entanglement when the population between the two modes strongly differs. This is
what we remarked from equation (128): the normalized variance is less accurate when there
is population imbalance between the two modes. The last plot was used as a benchmark to
probe the robustness of the witnesses. On the y-axis lies the strength 𝑟𝐼 of the single-mode
squeezer that was applied to mode 1, while the x-axis represents the two-mode squeezing
parameter (applied after the one mode squeezing operation). Here, all witnesses fail to detect
entanglement accurately, but none of them lies in the separable region. Note that in the last
panel, | 〈𝑎1𝑎†2〉 | ≠ 0 which means that remarkably, while the Cauchy-Schwarz ratio fails to
detect entanglement, it does not lie.

To push the limit of the Cauchy-Schwarz bounds, we now focus on states where
| 〈𝑎1𝑎†2〉 | ≠ 0. In Figure 29, we work with a mean number of particles: 0.2 on the left subplot
and 2.2 on the right subplot (taken equal for both modes) and change the correlation between
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Figure 29: Failure of the Cauchy-Schwarz ratio CS (dashed blue) and the normalized variance
𝜉 (dotted orange) to reliably witness entanglement. For these plots, the population was kept
constant (𝑛 = 0.2 on the left and 𝑛 = 2.2 on the right) while the correlation between the modes
was changed, namely | 〈𝑎1𝑎2〉 | on the 𝑥 axis and | 〈𝑎1𝑎†2〉 | on the 𝑦 axis. Depending on the
value of these operators, the state can be separable (on the left) or entangled (on the right).

the modes: | 〈𝑎1𝑎2〉 | on the x-axis and | 〈𝑎1𝑎†2〉 | on the y-axis. These values are bounded:
the grey region on the plot corresponds to an unphysical region where the Gaussian state does
not satisfy the bona fide condition (105). The witnesses were prolonged in this region, but
this does not mean they should be rejected. Here again, the gPPT criterion splits the space in
two: separable states lie on the left, and entangled states lie on the right of the map.

On the left panel, the normalized variance and the Cauchy-Schwarz ratio lines are inside
the separable region. This is problematic because it means they incorrectly identify a non-
entangled state as entangled. In this sense, they cannot be considered as mode entanglement
witnesses when we relax the | 〈𝑎1𝑎†2〉 | ≠ 0 hypothesis. However, when the population is
greater, we observe that they do not lie anymore: they are inside the entangled region. This is
a taste of the next section: we will demonstrate that C𝑆 is a faithful entanglement witness for
sufficiently large population.

On the other hand, the Campo-Parentani witness Δ is represented by the (vertical) dashed-
dotted pink line and lies entirely in the entangled region. It is not surprising as Δ was (mathe-
matically) demonstrated to be a faithful entanglement witness. Here we observe again that it
misses detecting the entanglement of some states, even if this region is small. This is expected,
as one of the conditions for it to be a criterion is when | 〈𝑎1𝑎†2〉 | ≠ 0.

Summary In this section, we defined and studied the normalized variance and
the Cauchy-Schwarz ratio CS . The latter was shown to be a particle entanglement
witness, and we showed that under some assumptions, it is also a mode entangle-
ment witness. However, once one of the assumptionswas relaxed (| 〈𝑎1𝑎†2〉 | ≠ 0),
the Cauchy-Schwarz ratio incorrectly identified a separable state as entangled,
making it impossible to rely on with certainty. When the population was higher,
we observed that they no longer lie in the separable region. Could they be more
reliable in this case? As we shall see, for sufficiently high populations, they are:
this will be the topic of the next section. Indeed, as Chris uses to say:
“But there’s got to be something, I mean, it’s hard to beat the shot noise!”
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4. Assessing the degree of entanglement of thermal Gaussian
states with 2- and 4-body correlation functions

In this section, we explain how the second order correlation function can be used to witness
entanglement and separability. We also show that if one has access to the fourth order cor-
relation function, it is possible to assess the non-separability of the state. In other words, we
show that the measurement of the populations and the second and fourth order correlation
functions provides an entanglement criterion for thermal Gaussian states. Finally, we show
that this measure gives access to the symplectic spectrum of the state and therefore quantifying
entanglement, using the logarithmic negativity for example.

4.A What information can correlation functions say about the covariance
matrix ?

Theorem - Wick-Isserlis theorem
For a Gaussian state with zero mean, the expectation value of any operator reads (Wick,
1950; Isserlis, 1918)

〈𝑏1𝑏2...𝑏𝑁 〉 =
∑

binary contractions
〈𝑏1𝑏𝛼〉 〈𝑏𝛽𝑏𝛾〉 ... 〈𝑏𝜁 𝑏𝜔〉 (132)

and is zero if the number of operators is odd.

The proof for this theorem and a nice discussion on its non applicability for the BEC con-
densed mode can be found in Castin (2011). In particular, the Wick theorem under this form
only applies to zero mean Gaussian states and therefore not for coherent states (displaced vac-
uum states). With a micro-channel plate, we measure the mode occupancy and any 𝑛 order
correlation functions. We also measure the normal ordered field operators6 in the sense of
Glauber (1963b). Especially, we have access to the mode population and the second order
correlation functions

𝑛𝑖 := 〈𝑎†𝑖 𝑎𝑖〉 , 𝑔 (2)
𝑖 𝑗 :=

〈𝑎†𝑖 𝑎
†
𝑗𝑎𝑖𝑎 𝑗〉

〈𝑎†𝑖 𝑎𝑖〉 〈𝑎
†
𝑗𝑎 𝑗〉

. (133)

We now assume the state has zero mean, i.e. we do not treat the 𝑘 = 0 condensed mode. With
that assumption, we introduce the following (complex) quantities

𝛼𝑖 := 〈𝑎2𝑖 〉 𝑐 := 〈𝑎1𝑎2〉 𝑑 := 〈𝑎1𝑎†2〉 . (134)

Those quantities fully determine the covariance matrix which reads

𝑨 =

(
2𝑛1 + 1 + 2R(𝛼1) 2I(𝛼1)

2I(𝛼1) 2𝑛1 + 1 − 2R(𝛼1)

)

𝝈 =

(
𝑨 𝑪
𝑪⊺ 𝑩

)
𝑩 =

(
2𝑛2 + 1 + 2R(𝛼2) 2I(𝛼2)

2I(𝛼2) 2𝑛1 + 1 − 2R(𝛼2)

)

𝑪 =

(
2R(𝑐 + 𝑑) 2I(𝑐 − 𝑑)
2I(𝑐 + 𝑑) 2R(−𝑐 + 𝑑)

)
,

(135)

6We describe the measure with a micro-channel plate reproducing Glauber’s work in the fourth chapter.
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where I(𝑥) and R(𝑥) refers to the imaginary and real parts of 𝑥. Using Wick expansion, one
can show that the second order correlation functions is

𝑔 (2)
𝑖𝑖 = 2 + |𝛼𝑖 |2

|𝑛𝑖 |2
. (136)

In other words, if one finds that the second order correlation function is two, this implies that
𝛼𝑖 = 0. In the following, we will assume this is the case. This assumption is motivated by
the fact that it is what we expect from the Hamiltonian seen in the first chapter. It is also
observed experimentally: it was reported in different configurations (but still with the same
physics at play) by other authors (Dall et al., 2013; Perrier et al., 2019; Hercé et al., 2023).
This assumption greatly simplifies the covariance matrix which reads

𝑨 = (2𝑛1 + 1)I2 𝑩 = (2𝑛2 + 1)I2

𝑪 =

(
2R(𝑐 + 𝑑) 2I(𝑐 − 𝑑)
2I(𝑐 + 𝑑) 2R(−𝑐 + 𝑑)

)
.

(137)

We can now consider the second-order cross correlation function

𝑔 (2)
12 =

𝑛1𝑛2 + |𝑐 |2 + |𝑑 |2
𝑛1𝑛2

. (138)

If we assume 𝑑 = 〈𝑎1𝑎†2〉 = 0, i.e that we directly measure the pure correlation term |𝑐 |, an
observation of 𝑔 (2)

12 > 2 implies entanglement. The 𝑑 = 0 assumption implies we exactly
measure Δ: this is the Campo-Parentani criterion, defined in section 2.D. In section 4.B, we
relax the 𝑑 = 0 assumption and show that that the second order correlation function still
witnesses entanglement.

4.B The second order correlation function to probe non-separability
As introduced in the first section, because 𝜌 is positive definite, the Cauchy-Schwarz inequal-
ity (61) implies that ∀𝐴, 𝐵, | 〈𝐴†𝐵〉 |2 ≤ 〈𝐴†𝐴〉 〈𝐵†𝐵〉. We can use this inequality with 𝑎1
and 𝑎2 to show that (Robertson, 2021)

|𝑑 |2 = | 〈𝑎1𝑎†2〉 |
2 ≤ 𝑛1𝑛2

|𝑐 |2 = | 〈𝑎1𝑎2〉 |2 ≤ 𝑛1𝑛2 + 𝑛1

≤ 𝑛1𝑛2 + 𝑛2.

(139)

We can express the modulus of 𝑐 as a function of the second order correlation function (138)

|𝑐 |2 = (𝑔 (2)
12 − 1)𝑛1𝑛2 − |𝑑 |2 (140)

From the Cauchy-Schwarz inequality (139), we have |𝑑 |2 < 𝑛1𝑛2 which means that

|𝑐 |2 ≥ (𝑔 (2)
12 − 2)𝑛1𝑛2 (141)

If 𝑔 (2) > 3, this means that |𝑐 |2 > 𝑛1𝑛2 and therefore that the state is entangled. As a conclu-
sion, 𝑔 (2) > 3 implies entanglement. This bound is however really constraining: for an ideal
two-mode squeezed vacuum state, the second order correlation function is 2 + 1/𝑛 where 𝑛 is
the population of one mode. Therefore, this 𝑔 (2) > 3 bound allows us to witness entanglement
only for low population i.e. for 𝑛 < 1.
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The defect of this entanglement witness is due to the fact that the increase we took for |𝑑 |
is the highest possible: 𝑛1𝑛2. We also assumed that a non-zero value of 𝑑 cannot participate
in the non-separability. We now find a more constraining bound on |𝑑 | to derive the following
“𝑔 (2) entanglement witness”.

Theorem - g2 entanglement witness
Assuming that the state is Gaussian with zero mean (〈𝑎𝑖〉 = 0) and that |𝑎21 | = |𝑎22 | = 0a

the two-mode state 1-2 is entangled if 𝑔 (2)
12 is slightly above 2. In particular,

• if 𝑛1𝑛2 ≥ 1/2, then 𝑔 (2)
12 > 2 is a sufficient condition,

• if 𝑛1𝑛2 < 1/2, the threshold for 𝑔 (2)
12 is shifted and the sufficient condition for

non-separability reads

𝑔 (2)
12 > 2 + 1/2 − 𝑛1𝑛2

2𝑛1𝑛2 + 𝑛1 + 𝑛2 + 1/2 . (142)

aHere again I want to stress that this is not only an assumption: it can be checked experimentally.

Proof. As we assumed the state is Gaussian, the gPPT criterion assesses the non-separability
of the state. It is entangled if and only if Simon’s quantity P− defined in equation (108) is
negative (Simon, 2000). In our case, this quantity reads

P− = 16

[
(1 + 𝑛1) (1 + 𝑛2)(𝑛1𝑛2 − |𝑑 |2 − |𝑐 |2)

+
(
1

2
− 𝑛1𝑛2

) (
|𝑑 |2 + |𝑐 |2

)
+ (|𝑐 |2 − |𝑑 |2)2 − 1

2

��|𝑐 |2 − |𝑑 |2
��] .

(143)

In this expression, we grouped the terms involving the sum |𝑑 |2+ |𝑐 |2: they are known through
the value of 𝑔 (2)

12 = 1 + (|𝑐 |2 + |𝑑 |2)/𝑛1𝑛2. The a priori unknown quantity is the difference
|𝑐 |2 − |𝑑 |2. This proof consists of showing that this value is bounded and that it cannot be
arbitrarily large: this quantity cannot change too much the sign of P−.
As stated in equation (139), the value of |𝑐 |2 and |𝑑 |2 are bounded by 𝑛1𝑛2 + 𝑛1 and 𝑛1𝑛2.
Here we consider that 𝑛1 ≤ 𝑛2 without loss of generality, not to make the discussion more
cumbersome. We can therefore define 𝛿 such that��|𝑐 |2 − |𝑑 |2

�� := 𝛿𝑛1𝑛2, 𝛿 ∈
[
0, 1 + 1

𝑛2

]
. (144)

With that notation, the entanglement criterion P− reads

P− = 16𝑛1𝑛2

[
(1 + 𝑛1) (1 + 𝑛2)(2 − 𝑔 (2)

12 )

+
(
1

2
− 𝑛1𝑛2

) (
𝑔 (2)
12 − 1

)
+ 𝛿

(
𝑛1𝑛2𝛿 −

1

2

)]
.

(145)

Assume the sum of the first line is negative: the state is entangled if the last term 𝛿(𝑛1𝑛2𝛿 −
1/2) is not too large. The question we are interested in here is: what is the highest value of
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𝛿(𝑛1𝑛2𝛿 − 1/2) so that P− is negative without it and positive when taking it into account. We
look for an upper bound for 𝛿(𝑛1𝑛2𝛿 − 1/2).

We first prove that we can take 𝛿 ≤ 1 by absurdity. Let’s assume a state is such that P− ≥ 0
and 𝛿 > 1. The latter condition implies from (144) that either |𝑐 |2 > 𝑛1𝑛2 or |𝑑 |2 > 𝑛1𝑛2.
This second possibility is impossible because of the Cauchy-Schwarz inequality (139). We
therefore must have that |𝑐 |2 > 𝑛1𝑛2. This last inequality implies that the state is entangled
as it is the Hillery-Zubairy witness. Inequality P− is not only sufficient but necessary for
entanglement: it must therefore be negative. We conclude that it is not possible to have a state
for which 𝛿 > 1 and P− ≥ 0 and we can restrict our analysis to 𝛿 ∈

[
0, 1

]
.

The maximum of the quantity 𝛿(𝑛1𝑛2𝛿−1/2) depends on the population. We are therefore
left to distinguish two cases, depending on the population 𝑛1𝑛2.

If 𝑛1𝑛2 < 1/2, the last parenthesis of equation (145) is always negative thus an upper
bound for P− is obtained for 𝛿 = 0. Negativity of the first two lines implies negativity of
P− and therefore non-separability. A bit of algebra leads then to the critical value in equation
(142) for the second order correlation function 𝑔 (2)

12 to ensure non-separability.
If 𝑛1𝑛2 > 1/2, this last term might increase P− and we must consider the case where it

could be maximal, that is when 𝛿 = 1. When doing so, the two last lines simplify and factorize
as

P− ≤ 16𝑛1𝑛2

[
(1 + 𝑛1)(1 + 𝑛2)

(
2 − 𝑔 (2)

12

)
+

(
𝑛1𝑛2 −

1

2

) (
2 − 𝑔 (2)

12

)]
.

(146)

We see that we have a positive term that is multiplied by 2 − 𝑔 (2)
12 . We conclude that in this

case, 𝑔 (2)
12 > 2 implies non-separability.

□

In Figure 30, we represented the threshold value for 𝑔 (2) given by equation (142). This thresh-
old reaches 3 in the limit of vanishing population: we recover the threshold discussed in the
introduction.

Consequence on the Cauchy-Schwarz inequality The shift of the 𝑔 (2) non-
separability bound shifts as well the Cauchy-Schwarz ratio CS bound. For a
population larger than 0.7, the observation of CS ≥ 1 does not need to assume
anymore the vanishing coherence of the 〈𝑎1𝑎†2〉 term. For a lower population, the
bound of the non-separability threshold is just increased as half of equation (142)
i.e. the bound for CS shifts from 1 to 1.5.

4.C The second order correlation function to probe separability

We can also take advantage that P− is an entanglement criterion to derive a bound for 𝑔 (2)
12

to ensure separability of the state. The derivation will exactly follow the proof of the 𝑔 (2)

non-separability witness, but this time in finding decrease for 𝛿 so that P𝑠 is positive.
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Figure 30: Critical value for the second order correlation function to assess non-separability
and separability of the bipartite state 1-2. The maroon dashed curve corresponds to the separa-
bility witness: any state lying below this curve is separable. The solid green curve and the area
above represents a region where states are entangled. In between these two curves, it is not
possible to assess the separability of the state using only the population in each modes and the
second order correlation function. The un-physical limit corresponds to a value of 𝑔 (2) greater
than the one of a two-mode squeezed state. It is 2 + 1/𝑛 where 𝑛 is the mode population.

Theorem - g2 maximal bound for separability
Assuming that the state is Gaussian and that 〈𝑎𝑖〉 = 〈𝑎2𝑖 〉 = 0, the two-mode state 1-2 is
separable if 𝑔 (2)

12 is slightly below 2. Especially,

• if 𝑛1𝑛2 ≤ 1/4, then 𝑔 (2)
12 < 2 is a sufficient condition,

• if 𝑛1𝑛2 ≥ 1/4, the threshold for 𝑔 (2)
12 is shifted and the sufficient condition for

separability reads

𝑔 (2)
12 < 2 − (1 − 4𝑛1𝑛2)2

8𝑛1𝑛2(1 + 2𝑛1)(1 + 2𝑛2)
. (147)

which asymptotically reaches 1.5.

Proof. The proof follows the same recipe as the one for the 𝑔 (2) entanglement witness. The
difference is that we now look for a lower bound for P−. The minimum of the P− polynomial
is reached for 𝛿 = 1/4𝑛1𝑛2. The value for the separability lower bound is bounded by 2,
which is the value when 𝑑 = 0. As a result, 𝛿 is bounded by 1. We are therefore left with the
following values for 𝛿:

• if 𝑛1𝑛2 ≤ 1/4, the lower bound for the gPPT criterion is obtained by replacing 𝛿 by 1
in equation (145) which leads immediately to the critical value of 2 for 𝑔 (2)

12 .
• if 𝑛1𝑛2 ≥ 1/4, the minimum is reached for 𝛿 = 1/4𝑛1𝑛2. Inserting this value in equa-
tion (145) leads after some algebra to the critical value for the second order correlation
function given by equation (147).

□
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Figure 31: Colormap of 𝑔 (2) for Gaussian states in the (𝑐, 𝑑) plane for different mean pop-
ulation (see title). The grey region represents unphysical Gaussian states. Black solid curve
is the gPPT criterion, brown dashed line the 𝑔 (2) separable witness threshold and the blue
dashed-dotted curve is the non-separability witness threshold.

4.D Graphical resolution of the 𝑔(2) witness
Figure 31 provides a graphical illustration of the separable and non-separable bounds. We
represent the second order correlation function on the (𝑐, 𝑑) map at fixed population. The
color encodes the value of 𝑔 (2) and the solid black curve is the gPPT criterion. On the left
of the figure lie separable states and on the right entangled states. The grey region represents
unphysical states. The form of the 𝑔 (2) curves (solid dashed green and dashed brown) drawn
gives a glimpse of the behavior of iso-𝑔 (2) curves on this plan. We can interpret the different
regimes (small and high populations) in terms of convexity of the gPPT curve in the (|𝑐 |, |𝑑 |)
plane, and compare it to the convexity of the iso-𝑔 (2) curves. When the population is low (top
panel), the iso-𝑔 (2) curves are more convex than the gPPT curve. As a result, the threshold
value of 𝑔 (2) to certify entanglement is given by the value of 𝑔 (2) at the top corner, for which
𝑑 ≠ 0. For higher population - bottom right panel C - we observe that the gPPT curve is more
convex than the iso-𝑔 (2) . It is therefore the value at the bottom of the graph that fixes the
minimum value for 𝑔 (2) . In this case, entanglement is certified by 𝑔 (2) > 2.
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4.E Second and fourth order correlation function as an entanglement cri-
terion

It was proposed by Clément (2022) to use the fourth order correlation function to retrieve more
information and assess the (non)-separability of the state. The cross four-body normalized
correlation function is given by

𝑔 (4)
12 ≡

〈: (𝑎†1𝑎1)2(𝑎
†
2𝑎2)2 :〉

〈𝑎†1𝑎1〉
2 〈𝑎†2𝑎2〉

2

= 4

[
1 +

(
|𝑑 |2 + |𝑐 |2

)2
𝑛21𝑛

2
2

+ 4
|𝑐 |2 + |𝑑 |2

𝑛1𝑛2
+ 2

|𝑑 |2 |𝑐 |2

𝑛21𝑛
2
2

]
.

(148)

Surprisingly, it involves non-only the sum of the square modulus of 𝑐 and 𝑑 but also their prod-
uct, which might allow one to access both values. Having information about the individual
values for |𝑐 |2 and |𝑑 |2 would therefore allow us to completely characterize the separability of
the state. While powerful, this method might not be relevant for photonic experiments: mea-
suring the fourth order correlation function requires the use of two beam-splitters combined
with four single photon avalanche photo-diodes that are quite expansive. In this case, a com-
plete tomography of the state seems more appropriate. However, this might be relevant for
atom counting experiments in which one can often count precisely several particles per mode
while measuring the full tomography of the state is less common.

Definition - The Bona fide function
As we saw in the first section, any Gaussian state must respect the bona fide condition
(105). In our particular case where a state is characterized by its mean population (𝑛1,
𝑛2) and its correlation (𝑐, 𝑑). It is therefore practical to define the following function

P+(𝑛1, 𝑛2, 𝑐, 𝑑) =(1 + 𝑛1)(1 + 𝑛2) (𝑛1𝑛2 − |𝑐 |2 − |𝑑 |2)

+
(
1

2
− 𝑛1𝑛2

) (
|𝑑 |2 + |𝑐 |2

)
+ (|𝑐 |2 − |𝑑 |2)2 − 1

2

(
|𝑑 |2 − |𝑐 |2

)
.

(149)

Any Gaussian state whose covariance matrix is of the form (135) must satisfy
P+(𝑛1, 𝑛2, 𝑐, 𝑑) ≥ 0.

A couple of remarks that will help in understanding the 𝑔 (2)/𝑔 (4) criterion. First, note the
difference between P− defined in eq. (143) and P+ in (149): the absolute value in the third
line disappears. This means that an entangled quantum state will exhibit P+ ≥ 0 while having
P− < 0. Second, note that P− ≤ P+. As a result, if a state is entangled, it implies that |𝑐 | > |𝑑 |.
The three conditions P− < 0, |𝑐 | < |𝑑 | and P+ ≥ 0 are incompatible: as discussed by Simon
(2000), a entangled quantum state must have det𝐶 < 0.

We now prove the following theorem.
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Theorem - g2 and g4 criterion
Assuming that the state is Gaussian and that 〈𝑎𝑖〉 = 〈𝑎2𝑖 〉 = 0, the measure of the popula-
tion of each mode as well as the second and fourth order correlation functions 𝑔 (2) and
𝑔 (4) provide an entanglement criterion. We define

𝛽2± =
𝑛1𝑛2
2

𝑔 (2)
12 − 1 ±

√
2 + 8

(
𝑔 (2)
12 − 1

)
+ 3

(
𝑔 (2)
12 − 1

)2
−
𝑔 (4)
12

2

 . (150)

The state is entangled if and only if P+(𝑛1, 𝑛2, 𝛽−, 𝛽+) < 0. In particular, if the state is
non-separable, it is then characterized by

| 〈𝑎1𝑎2〉 | = 𝛽+ | 〈𝑎1𝑎†2〉 | = 𝛽− . (151)

Proof. From the 𝑔 (4) expression in equation (148), the fourth order correlation function in-
volves not only the sum |𝑑 |2 + |𝑐 |2 but also the product |𝑑 |2 |𝑐 |2. We can therefore obtain the
value of |𝑐 | and |𝑑 |, using 𝑔 (2) and 𝑔 (4) through the system

|𝑐 |2 |𝑑 |2 =
𝑛21𝑛

2
2

2

[
𝑔 (4)
12

4
−

(
𝑔 (2)
12 − 1

)2
− 1 − 4

(
𝑔 (2)
12 − 1

)]
|𝑐 |2 + |𝑑 |2 = 𝑛1𝑛2

(
𝑔 (2)
12 − 1

)
.

(152)

This system has a priori two indiscernible solutions for |𝑐 | and |𝑑 |, and we introduce the
following quantity

𝛽2± =
𝑛1𝑛2
2

𝑔 (2)
12 − 1 ±

√
2 + 8

(
𝑔 (2)
12 − 1

)
+ 3

(
𝑔 (2)
12 − 1

)2
−
𝑔 (4)
12

2

 . (153)

There are two possible candidates for the value of (𝑐, 𝑑) that are (𝛽+, 𝛽−) and (𝛽−, 𝛽+). The
outcome of our measurement is therefore either the (family of) quantum states characterized
by (𝑛1, 𝑛2, 𝛽+, 𝛽−) or the one characterized by (𝑛1, 𝑛2, 𝛽−, 𝛽+). Here, the term that come first
in the parenthesis refer to the value of 𝑐 and the one that comes after to the value of 𝑑. I added
“family” in parentheses because our measurement does not completely characterize the state:
we do not measure the phase of 𝑐 and 𝑑. However, for thermal states, the phase does not
appear in the bona fide condition and in the measure of the entanglement7. This is why I will
drop the absolute value of 𝑐 and 𝑑 to lighten the notations.

Before accepting one candidate, we must check that it is physically acceptable, i.e. that it
satisfies the bona fide condition (105). In our case, it writes using the quantity P+(𝑛1, 𝑛2, 𝑐, 𝑑)
we defined above, in equation (149). Last but not least, we remark that each solution is the
partial transpose of the other:

𝜌
⊺𝐵
(𝑛1,𝑛2,𝛽+,𝛽− ) = 𝜌 (𝑛1,𝑛2,𝛽− ,𝛽+ ) . (154)

To clarify, let’s distinguish between the different scenarios. Because 𝛽+ > 𝛽−, we have that
P+(𝑛1, 𝑛2, 𝛽+, 𝛽−) ≥ P+(𝑛1, 𝑛2, 𝛽−, 𝛽+), which makes only three cases to distinguish.

7Note that this is no longer true if the covariance matrix of subsystem 𝐴 or subsystem 𝐵 is not diagonal, i.e. if
〈𝑎2𝑖 〉 ≠ 0.
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• If P+(𝑛1, 𝑛2, 𝛽−, 𝛽+) ≥ 0. We cannot distinguish between the two states: they both
respect the bona fide condition. However, we know the state is separable because the
partial transpose of this state does respect the bona fide condition.

• If P+(𝑛1, 𝑛2, 𝛽+, 𝛽−) ≥ 0 and P+(𝑛1, 𝑛2, 𝛽−, 𝛽+) < 0. It means that the only solution is
the state defined by |𝑐 | = 𝛽+ and |𝑑 | = 𝛽−. The density matrix of its partial transposed
is also negative, which means the state is entangled.

• If both P+ and P− are negative, there are no solutions. Either the state is non-Gaussian
or one of the hypothesis is not satisfied (the state is slightly displaced or not purely
thermal).

The last option is impossible with our hypothesis: it means that the sign of P+(𝑛1, 𝑛2, 𝛽−,
𝛽+) completely determines the separability of the state, which ends the demonstration.

□

Quantifying entanglement

Some authors discussed the need to better quantify entanglement rather than just a yes/no
answer (Isoard et al., 2021). Herewe briefly explain that with ourmethod, we have access to all
the symplectic invariants that allows us to compute the logarithmic negativity, and therefore to
quantify entanglement8. From the values of (𝑔 (2) , 𝑔 (4) ), we compute 𝛽±. Using the 𝑔 (2)/𝑔 (4)

criterion, we know that:
• Either the state is separable, whichmeans that the logarithmic negativity is null: 𝐸N = 0.
• Or the state is entangled and is characterized by |𝑐 | = 𝛽+ and |𝑑 | = 𝛽−. We there-
fore have the values of all the local symplectic invariants of the partially transposed
covariance matrix: det𝑨, det𝑩, det𝑪, and det𝝈. We can compute the value of its
smallest eigenvalue 𝜈− using eq. (112) and, consequently, the logarithmic negativity
𝐸N (𝝈) = − log2 𝜈−.

Relating the 𝑔 (2)/𝑔 (4) criterion to the 𝑔 (2) witness

In the proof of the 𝑔 (2) theorem, we wrote the expression of 𝛽± in Eq. (153). This quantity
is the value of |𝑐 |2 and |𝑑 |2 hence 𝛽± must be real and positive. This implies that the fourth
order correlation function is bounded from above so that 𝛽± ∈ R

𝑔 (4)
12 ≤ 16𝑔 (2)

12 + 6
(
𝑔 (2)
12 − 1

)2
− 12. (155)

and from below to ensure 𝛽− ≥ 0

𝑔 (4)
12 ≥ 16𝑔 (2)

12 + 4
(
𝑔 (2)
12 − 1

)2
− 12 (156)

The two later conditions are needed to ensure that 𝛽± exists. A deviation from of these bounds
would imply that either the state is non-Gaussian state or the local correlation is not exactly
29, which invalidates expression (148) for the fourth order correlation function.

Because of these bounds, it is better to parametrize the fourth order correlation function
with 𝜃 ∈ [0, 1] so that we can write the fourth order correlation function as

𝑔 (4)
12 = 16𝑔 (2)

12 + 4
(
𝑔 (2)
12 − 1

)2
− 12 +

(
𝑔 (2)
12 − 1

)2
× 2𝜃 (157)

8Note that the symplectic spectrum also allows to compute another entanglement quantifier, the Quantum
Discord, see Adesso and Datta (2010) for example.

9This is because we used the fact that 𝑔 (2)11 = 𝑔
(2)
22 = 2 to derive the equation on 𝑔 (4)12 .
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Figure 32: Entanglement 2D plane of the state for a state with an average population of 0.4
(left) and 0.9 (right). On the 𝑥-axis lies the second order correlation function and on the 𝑦 axis
the 𝜃 parameter defined in eq (157). The separable and non-separable regions are split by the
gPPT criterion (dotted black line). The solid green (dashed brown) vertical line represents the
entanglement (separable) 𝑔 (2) threshold. The un-physical region is shown in grey.

so that the 𝛽± is given by

𝛽2± = 𝑛1𝑛2(𝑔 (2)
12 − 1) 1 ±

√
1 − 𝜃

2
. (158)

When 𝜃 = 0, that is when the fourth order correlation function takes its minimum value,
this implies that either 𝑐 or 𝑑 is null. On the opposite, when the fourth order correlation
function takes its maximum value, this means that |𝑐 | = |𝑑 |. We now fix the value of the
population to 0.4 and 0.9 to study in Figure 32 the entanglement in the (𝑔 (2) , 𝜃) plane. First
we observe there are still un-physical regions on these maps. Indeed, the bounds on 𝑔 (4) that
we derived are just algebraic bounds that imply consistency of our reasoning. They do not
take into account the bona fide condition. The grey regions in Figure 32 is a consequence of
this bona fide condition. It emphasizes that the bounds on 𝑔 (4) are stricter. In fact, it is these
stricter bounds that permitted us to derive the 𝑔 (2) bound to witness entanglement.

As previously, we need to discriminate the case where the population is higher than 0.7 or
smaller.

• When 𝑛1𝑛2 < 0.5 (left subplot of Figure 32 ), the 𝑔 (2) threshold to assess entanglement
is higher than 2. For a 0.4 population it is 2.21. Second, we know also that for such low
population, a second order correlation function below 2 implies separability of the state.
Those two lines are respectively sketched on the plane as solid and dashed vertical lines.
In the tight region where the 𝑔 (2) witness is not sufficient, the fourth order correlation
function gives the answer. We represented the border between the two regions with a
dotted black line. In this case (low population)e, we see that at fixed 𝑔 (2) a lower 𝜃
ables one to jump from the separable region to the entangled region. This means that
the value of |𝑑 | must be as small as possible. In this case, |𝑑 | does not contribute to the
bi-partite entanglement.

• When 𝑛1𝑛2 > 0.5, (right subplot of Figure 32), the 𝑔 (2) threshold to assess entanglement
equal to 2. The reasoning here is different from the previous one: a higher value of 𝜃,
i.e. a higher value of 𝑔 (4) ables to pass from the separable to the entangled region. In
this case, |𝑑 | contributes to the non-separability.
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When 𝑔 (2) lies above the non-separability threshold (142), 𝜃 cannot take any value in the
[0, 1] interval. It is bounded from above by the un-physical region. As the second correlation
function increases, it goes to 0 and vanishes in the limiting case where 𝑔 (2) = 2+1/𝑛: this cor-
responds to a pure two-mode squeezed vacuum state. In this case, the fourth order correlation
function must take its lower value.

4.F Finite efficiency effects
So far, I have not discussed the effect of pure losses, which might be significant given that a
micro-channel plate has a rather small detection efficiency (approximately 50%, see the fourth
chapter’s section 3.D). As we saw in section 1.E, losses are represented by a beam splitter
with transmittance √𝜂 that mixes each mode with the vacuum, where 𝜂 is the efficiency of the
detector.

It must be emphasized that a beam splitter, being a passive transformation, cannot produce
entanglement (Weedbrook et al., 2012). Consequently, if the state after the beam splitter is
entangled, the state before it must also be entangled. In our case, we are interested in determin-
ing whether the state before the detector is entangled, and therefore, we need to correct for the
effects of finite efficiency. For thermal states, the effect of non-perfect detection efficiency
results in multiplying 𝑛1, 𝑛2, |𝑐 |, and |𝑑 | by 𝜂.

How losses affect entanglement depends strongly on the nature of the entanglement: it is
known for example that a two-mode squeezed thermal state remains entangled after a pure loss
channel (Scheel et al., 2001). In general, any state that violates the Campo-Parentani witness
Δ before a pure loss channel remains non-separable after (simply because Δ is proportional
to the detection efficiency hence it does not change its sign). Some other states are however
more fragile. In the literature, Barbosa et al. (2011) divide states in three categories : robust,
partially robust and fragile states, showing that the effect of losses is not trivial.

In this manuscript, we are interested in the physics before the detector, eventually by re-
moving it influence10.

Taking into account losses on the 𝑔 (2) witness

The threshold on 𝑔 (2) depends on the population, hence the detection efficiency. The mea-
sure of the second order correlation function does not depend on losses while the measured
population does. This means that if we measure a population 𝑛𝑑𝑒𝑡 , we should compare the
criterion to the threshold value for 𝑛𝑑𝑒𝑡/𝜂, where 𝜂 is the detector efficiency. Geometrically,
this corresponds to a shift to the right on the 𝑥 axis of Figure 30. One could say that taking
into account efficiency facilitate the probe of entanglement: but I would answer that a pure
loss channel does reduce entanglement and can even destroy it.

For a two-mode squeezed vacuum state, the second order non-normalized correlation
function is 𝐺 (2)

12 = 2𝑛20 + 𝑛0 where 𝑛0 is the number of particles in the state. After detec-
tion, we measure the same value of the normalized correlation function, but we measure
a population 𝑛𝑑𝑒𝑡 = 𝜂𝑛0. This means that the non-normalized correlation function reads
𝐺 (2)

12 = 2𝑛2𝑑𝑒𝑡 + 𝑛𝑑𝑒𝑡/𝑛0. If we define the correlation strength as 𝐺 (2)
12 − 𝑛1𝑛2, this means

that the initial correlation of the state is 𝑛0 while the measured one is only 𝜂𝑛0: a pure loss
channel decreases the correlation.

10This is not the case for example of people that want to distribute quantum states across long distances. In their
case, they want to quantify entanglement after fiber transmission.
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Figure 33: Logarithmic negativity of the state as a function of the population for a fixed value
of 𝑔 (2) = 1.8 and 𝑔 (4) (see legend). The state is entangled when the logarithmic negativity is
strictly positive. At fixed value of (𝑔 (2) , 𝑔 (4) ), the population cannot be arbitrary large: the
length of the curve of each panel (see the span of the 𝑥-axis) is different.

Taking into account losses on the 𝑔 (2)/𝑔 (4) criterion

The effect of losses on the 𝑔 (2)/𝑔 (4) criterion is more subtle than for the 𝑔 (2) witness. Note
however that the measurement of both correlation functions do not depend on the efficiency
of the detector. In the general case, as for the other witness, taking into account the efficiency
can be necessary to reveal entanglement. As I did not find a simple way to illustrate the
dependance of the criterion with the efficiency, I will just provide an example.

Let’s assume we measure 𝑔 (2) = 1.8. To ensure 𝛽± ∈ R+, the fourth order correlation
function must lie in the interval [19.36, 20.64]11. On Figure 33, we consider the case where
we measured 19.37 (top left), 20 (top right), 20.3 (bottom left) and 20.63 (bottom right). Each
plot represents the logarithmic negativity of the state as a function of the population. As in the
𝑔 (2) entanglement witness, when correcting the measured population, we shift on the curve,
and we might reveal entanglement. Note however that for a fixed value of the fourth order
correlation function, the population cannot be too large. The x-axis reflects the population
of the state that is compatible with (𝑔 (2) , 𝑔 (4) ) : the x-axis of each subplot is different. The
limiting case is when 𝑔 (4) goes to its minimal value which means that 𝛽− = 0 (top left). In
this case either 𝑐 or 𝑑 is null, and the state is never entangled (but is always physical) as
𝑔 (2) = 1.8 < 2.

We now assume we measure a population of 0.8, with a 50% efficiency detector: the
population of the state is therefore 1.6. According to the 𝑔 (2) entanglement witness, this means
that we are in the question mark zone of Figure 30. The fourth order correlation function
measurement will give us the answer.

• Case where 𝑔 (4) = 19.37 : with such low fourth order correlation function, this means
that 𝑐 or 𝑑 is small and that no matter the population of the state, the state is (almost)
never entangled. In the limit where 𝑔 (4) takes it smaller value, this also mean that the
population of the state can be arbitrary large (in this plot, we restricted the population to
105 but it is not the limit). Here we can safely say that the state is separable: we cannot

11As an experimentalist, I must say that this is interval (frightfully) small.
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distinguish 𝑐 and 𝑑.
• Case where 𝑔 (4) = 20 : the fourth order correlation function is now higher, which means
that 𝑐 and 𝑑 are closer, still quite different. Here we observe that for such correlation, a
state big enough (population larger than 2) would be entangled. For a population of 1.6,
the logarithmic negativity is zero here which means the state is separable.

• Case where 𝑔 (4) = 20.3 : with a higher value of the fourth order correlation function,
the population threshold for non-separability shifts. If the population of the state is 0.8,
the state is separable while for a population of 1.6, it ise entangled. Here we see that
the pure loss channel of the detector destroyed the entanglement. If one takes it into
account, this means that the state before the detector (the one we want to characterize)
is entangled.

• Case where 𝑔 (4) = 20.63 : the value of 𝑔 (4) approaches its highest value which means
that |𝑐 | ∼ |𝑑 |. The population cannot be arbitrary large here and it is not possible for a
state to exhibits this correlation and to have a population higher than 1.4.

We therefore saw that the measurement of the fourth order correlation function allows to
distinguish the problematic cases where the 𝑔 (2) witness cannot. However, this function lies
in a rather small interval which might be difficult to resolve experimentally.

4.G Conclusion

In this section, we showed that it is possible to demonstrate the entanglement of thermal Gaus-
sian states with 2- and 4-body correlation functions. In this sense, our reasoning is in line
with Schweigler et al. (2017), who characterize their system via correlation functions. They
showed a deviation of the fourth order correlation function from its connected part. To make
a long story short, they emphasize a non-Gaussian state using 𝑔 (4) . Our work is somehow a
complement as we use 𝑔 (4) to assess the non-separability of the Gaussian state.

Other theoretical works suggested different strategies to assess and quantify entanglement
in analog gravity setups. Finazzi and Carusotto (2014) proposed an experimental scheme to
measure all the terms of the covariance matrix. The idea is to measure the state by coupling
it to a cavity and measuring the photon field at the output. This work was motivated by the
system set up by Brennecke et al. (2008). This is also the stance taken by Finke et al. (2016),
who propose to measure “additional observables, including noncommuting ones, e.g., density
and phase fluctuations.”

In the case of a stationary field12, the measurement of the density-density correlation func-
tion was shown by Robertson et al. (2017b) to be sufficient to assess the non-separability of
the state. This correlation function oscillates in time, and the non-separability criterion lies in
its amplitude. In this case, the “noncommuting” paradox was solved elegantly: if the density
perturbations 𝛿𝑛−𝑘 (𝑡) and 𝛿𝑛𝑘 (𝑡) commute, it is not the case for 𝛿𝑛−𝑘 (𝑡) and 𝛿𝑛𝑘 (𝑡′) i.e. at
different times. To measure the amplitude of the oscillation, one needs to measure the density-
density correlation at different times, hence noncommuting observables.

Here, in line with Robertson et al. (2017a), our claim is that we do not need to measure
noncommuting observables to establish the non-separability of thermal Gaussian states. How-
ever, it must be clearly stated that there are drawbacks to our reasoning: we assume the state
to be Gaussian. It is this fundamental assumption that allows us to derive such a simple entan-
glement witness. Without measuring the Wigner function of the state, this assumption is hard
(impossible) to prove experimentally. One would need to show that all correlation functions

12One can think of a squeezing Hamiltonian that could be turned on and off for a given amount of time. It is the
case for example for Hawking radiation in an inhomogeneous fluid.
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Figure 34: Left: Probability distribution of coherent (violet dots) versus thermal (green
crosses) states with a fixed mean number of particles of 4. Each symbol and color repre-
sent a different combination of the displacement (coherent part) and width (thermal part) of
the Gaussian Wigner function, ranging from a relative fraction of thermal state of zero (purple
dots, fully coherent state) to 1 (green crosses, fully thermal state). Middle: same as on the left
but with a logarithmic 𝑦-scale. Right: second-order correlation function as a function of the
fraction of thermal particles. The symbols of the left subplots are also shown on this plot.

have vanishing non-connected contributions. Such a hypothesis can, however, be checked for
consistency within the error bars and the range accessible by the experiment.

Still assuming a centered Gaussian function, we also considered un-squeezed thermal
states, i.e., states whose local second-order correlation functions (136) are equal to 2. If this
is not observed experimentally (or assumed), the consequences are the following:

• It invalidates the 𝑔 (2) witness. Indeed, the expression of the quantity P− that we wrote
in (143) is no longer correct. It will now contain a non-trivial dependence on both the
amplitude and the phase 〈𝑎𝑖〉2. With a single-particle detector, this amplitude can be
measured but not the phase. This means that one must write P− from scratch, maximize
it with respect to the unknown phase, and bound it with respect to the coherence term
|𝑑 |.

• It invalidates the expression of the fourth-order correlation function (148) that contains
these terms. For example, one term is 〈(𝑎†1)2〉 〈(𝑎

†
2)2〉 〈𝑎1𝑎2〉

2, which contains the rel-
ative phase between the covariance matrix terms.

Physical meaning of 〈𝑎2𝑖 〉 ≠ 0 A thermal state for which 〈𝑎2𝑖 〉 ≠ 0 is a squeezed
thermal state. In the context of analog gravity, it is for example proposed by
Agullo et al. (2022) to send squeezed thermal light on an optical analog to a
white-black hole pair. They show that the entanglement generated by the analog
black-hole horizon was enhanced hence easier to detect.

Another assumption of this work should be emphasized: we assumed working with ther-
mal Gaussian states, i.e., states with zero mean. Finke et al. (2016) set up a classical (wave)
model that mimics the correlation (variance and Cauchy-Schwarz) observed in experiments.
The probability distribution of each mode can, in principle, discriminate between a coherent
state and a thermal state, and therefore the probability distribution of a displaced thermal state.
In Figure 34, we represent the probability distribution of four states with a mean number of
particles of 4. We parametrize those states by the thermal fraction (see legend), setting the dis-
placement to keep the number of particles fixed. The fully coherent state (0/3) is represented
in purple dots and the fully thermal state in green crosses (3/3). In between, states are thermal
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displaced states. The middle subplot is the same as the left one with a logarithmic 𝑦-scale. In
these two plots, it is easy to distinguish a fully coherent state from a thermal state. However,
the difference between a state that is mostly thermal but with still a bit of coherence (2/3 of
thermal population, “+” symbols) is not very different from a state that is fully thermal (“x”
symbols): the two curves overlap, and we cannot distinguish one from the other. On the right
subplot of Figure 34, the second-order correlation function is shown as a function of the frac-
tion of thermal particles. As expected, it ranges from 1, the value for a fully coherent state, to 2
for a fully thermal state. The imperceptible difference between the two “most thermal” states
of the right subplot (2/3 and 1 in the legend) is more visible. The second-order correlation
function is a better witness to ensure the state is thermal. This is not surprising: rare events
(number of particles larger than 20) are not represented on Figure 34 but have a strong weight
on the calculation of the second-order correlation function.

Summary In this section, we showed that it is possible to probe the non-
separability of a zero-mean thermal Gaussian state. Measuring both the fourth
and second order correlation function allows to completely quantify entangle-
ment. The measurement of the second order correlation function can be suffi-
cient to only witness non-separability. As a result, the classical Cauchy-Schwarz
threshold is shifted depending on the population of the state if the nullity of the
coherence term between the mode is not assumed. We finally discussed the draw-
backs of this result that only applies for purely thermal Gaussian states.
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Chapter III

Bose-Einstein condensation of
metastable Helium

This chapter goes through the -not that - fast production of a Bose-Einstein condensate with
metastable helium. The first section briefly reviews the cooling procedure towards a mag-
netic trap. We start by introducing the atomic properties of helium (Sec. 1.A) and our source
of metastable helium (Sec 1.B). We then describe in section 1.C our magneto-optical trap, that
is transferred into a cloverleaf magnetic trap (Sec. 1.D). The second section describes the op-
tical dipole trap loading in section 2.A and evaporation ramp in section 2.C. We finally report
on the highly improved stability of the BEC loading in section 2.D, which is a key ingredient
to measure opposite momentum correlations. The third section introduces Bragg diffraction.
This lattice was set up to realize an atomic interferometer (Lopes et al., 2015; Dussarrat et al.,
2017) and we use in section 3.D the recent technological developments to perform a momen-
tum selective deflector by shaping the Bragg impulsion. The fourth section is dedicated to the
description of the BEC properties by three methods: time-of-flight expansion in section 4.A,
the speed of the parametrically excited sidebands in section 4.B and the Bragg spectroscopy
of the BEC in section 4.C.

What we knew, what is new ? The metastable helium experiment I worked on
during my thesis is the oldest French BEC still in activity: it needed a facelift
to get back on tracks. All the lasers used in this work were changed (cooling,
Raman/Bragg and dipole trap). The sequencer was also changed: the details of
its operation are left in the appendix. This replacement and the writing of all the
driver took a non-negligible time of this work. The watercooling pipes of the
room were also changed, and we faced vacuum issues during months. One led
us to replace the metastable helium source. Some work was done on the optical
setup but no major change. I also worked on the shaping of the laser pulses to
realize a momentum selective atomic interferometer, but this project was mainly
investigated and developed by Charlie Leprince (2024), who was a PhD student
with whom I worked on the experiment for my entire PhD thesis. A publication
is in preparation on these results (Leprince et al., 2024).
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1. From helium to a magneto-optical trap of metastable he-
lium

1.A Atomic properties

Spectroscopy

The experimental work in this manuscript focuses on the use of one atomic species: 4He. A
nice property of helium is the existence of a metastable state 23𝑆11 often also noted He*, with
a 2-hour lifetime (Hodgman et al., 2009). A nice feature of this 23𝑆1 state, which I will refer
to in the manuscript as the ground state, is its high internal energy. It is sufficiently high
to tear out an electron from a metallic plate. We can therefore detect it electronically : we
will go through the detection scheme in the next chapter. As one can see in Figure 35, the
internal structure of helium is quite simple which makes it a great candidate to test quantum
electrodynamics calculations and extracting fundamental constants. This is for example the
research topic in the LaserLab Amsterdam group van der Werf et al. (2023) or The CREMA
Collaboration et al. (2023).
In our experiment, we only use the 23𝑆1 − 23𝑃2 transition to perform the laser cooling, and
we use the 23𝑆1 − 23𝑃0 transition for the Raman transfer and the Bragg diffraction laser.

Collisions and losses

Atom losses can occur in three ways:

1. One-body collisions: 𝐻𝑒∗ + 𝑋 → 𝐻𝑒 + 𝑋+ + 𝑒− or 𝐻𝑒𝑋+ + 𝑒− namely a collision with
an atom of the background gas. As our vacuum gauge cannot measure less than 10-10
mbar, we use the atom cloud to check the vacuum : its lifetime is expected be to be
around 40s in the magnetic trap.

2. Two-body Penning collisions: 2𝐻𝑒∗ → 𝐻𝑒+2 + 𝑒− or 𝐻𝑒 + 𝐻𝑒+ + 𝑒−. They are char-
acterized by a rate 𝛽 which depends on the polarizability. The unpolarized loss rate is
10-10 cm3/s while it is decreased by four orders of magnitude when atoms are polarized
as expected by Shlyapnikov et al. (1994) and measured by Nowak et al. (2000) and later
by Seidelin et al. (2004). This makes it possible to condense metastable helium, for
which the density is around 1013 at/cm3 with a 1 s lifetime (Robert et al., 2001). The
interested reader will find a much more detailed discussion of Penning losses in the first
chapter of Browaeys (1999). As we shall see in the next subsection, two-body losses
are enhanced in the presence of resonant light hence it is very important to seal off the
optical table in order to prevent resonant light from entering the science chamber.

3. Three-body collisions are associated with the decay rate of 3 × 10−27cm6/s and was
computed and measured by the two previous references. As long as the density does

1Let me say a few words about the Russell-Saunders notation to label the electronic levels. The convention
used in this manuscript is 𝑛2𝑆+1𝐿 𝑗 where 𝑛 ; 𝑆 is the spin which can take only two values since helium has two
electrons. For parahelium, 𝑆 is null and both electrons have opposite spins |↑↓〉 while 𝑆 is 1 for orthohelium |↑↑〉.
𝐿 is the total orbital angular momentum vector for all electrons, with spectroscopic notation 𝑆 for single, 𝑃 for
principal, 𝐷 for diffuse and 𝐹 for fundamental. 𝐽 is the total angular momentum vector for all electrons, which
satisfies J = S + L. Its value must therefore range between |𝐿 − 𝑆 | and 𝐿 + 𝑆. The three later letters label a level
while specifying the magnetic quantum number 𝑚 𝑗 will pinpoint the state. 𝑚𝐽 can take 2𝐽 + 1 values, ranging
from −𝐽 to 𝐽.
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Figure 35: The left hand-side of the figure gives some energy levels of helium. Atoms are
excited with a plasma discharge from the fundamental state 11𝑆0 to the metastable state 23𝑆1,
to which we refer to as the fundamental state. Indeed, its decay time to the true fundamental
state is much larger than an experiment cycle. The transition we work with is the 23𝑃0,1,2

transition around 1083 nm. The transition between 23𝑆1 and 23𝑃2 is used to cool down atoms
and the transitionwith 23𝑃0 to performRaman andBragg transitions. ©Figure fromMarolleau
(2022).

not exceed 1013 at/cm3, this loss can be neglected. This is no longer the case for a
Bose-Einstein condensate.

Elastic collisions are characterized by the scattering length 𝑎 = 7.512(5) nm precisely
measured by Moal et al. (2006). Note that, sadly, helium does not have any Feshbach reso-
nances.
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Figure 36: Left: Scheme of the source, inspired from Rooijakkers et al. (1996). A strong
electric field is apply between the metallic needle and the skimmer. Helium is guided to the
discharge location, through a plastic pipe, connected to the other part of the source with a
swagelock connector. The glass tube makes sure the discharge occurs between the needle and
the skimmer and not any other part of the vacuum chamber and is glued to the boron nitride
cylinder. Helium atoms are then guided through the 500 µm hole in the liquid nitrogen cooled
boron nitride. The nitrogen cooling decreases the atom speed from 2.6 to 1.2 km/s. One can
understand with this scheme that the source is quite a fragile part of the experiment as a quite
heavy metallic part pushes a 1 mm thick glass tube, itself glued to the boron nitride. Right:
photo of the source taken in December 2022 that matches the left scheme. The connection
between the plastic helium pipe and the source was changed after it burned due to discharges
in the helium pipe. I would like to point that the large pile of disgusting glue is no longer
present. The interested reader can refer to the technical appendix for more details about the
source changes.

1.B Design of the metastable helium source
The first step of the experiment is to create a plasma of helium to excite a fraction of the gas
to the metastable state 23𝑆1. This is done in a first vacuum chamber (1.7 · 10−7/2.5 · 10−5
mbar without/with helium) with the scheme describe in Figure 36. A helium plasma is created
using a strong electric field between a metallic needle (in black and attached to the swagelok
connector in Figure 36) and the skimmer (on the left). Out of the total number of atoms
leaving the discharge, only a fraction of 10−5 − 10−4 are in the metastable state: this source is
therefore not very bright (Vassen et al., 2012). Furthermore, atoms that escape the discharge
have a large speed of 2.6 km/s. Such speed would require a Zeeman slower of 7 m! Right
after the discharge, the atoms must pass into a boron nitride cylinder cooled down with liquid
nitrogen. The cylinder hole is sufficiently small to ensure atoms collide to the wall and are
cooled down. During my PhD, we had to replace the source twice: I therefore provide much
more details about its installation in the appendix.

This source of metastable helium is not very convenient: it must be cooled with liquid
nitrogen. We use a bottle per day which costs now 10 k€ per year and prevents us to let the
experiment running during the night. Wang et al. (2021) reported optical excitation of 81Kr
with UV lamps. However, the energy required for krypton is 10 eV (120 nm), smaller than
the one for helium (20 eV, 60 nm)2.

2Note also that Zheng-Tian Lu reported they spent 3 years working on the different UV lamps in order to
optimize the excitation.
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Figure 37: The left picture was taken in February 2024 when the source was not discharging
anymore with the skimmer but with the flange (inside the plastic tube that brings helium).
Middle: photos taken on January, 20th of 2023 after installing a new source. After some
days, the source was much less bright because the discharge charred the glass, giving it a
black hue. The right plot represents the thermal dilatation coefficient of copper and boron
nitride as a function of temperature. For the copper, ref [1] refers to Gassot et al. (1999) and
[2] to UltimHeat (1962) while boron nitride coefficients were extracted from various sellers
websites, which provide information for high temperatures only (above 25 °C). One can show
that a 12 mm copper diameter at room temperature decreases by 0.03 mm when cooled at 77
K and the retraction of boron nitride can be neglected regarding the copper one.

1.C Magneto-optical trap

Transverse molasses and Zeeman slower

The quite divergent atom flux that escapes from the source at roughly 1.3 km/s is then colli-
mated with a 1.8Γ red-detuned transverse molasses3 that increases the He* intensity flux by a
factor of 10-20 (Labeyrie et al., 1999). At this point, the atomic flux enters the Zeeman slower
for which the maximal deceleration that can be achieved is given by 𝑎𝑚𝑎𝑥 = Γℎ/2𝑚𝜆 where
Γ and 𝜆 are the linewidth and wavelength of the transition. The minimum length 𝐿𝑚𝑖𝑛 of the
Zeeman slower depends then only on the speed of the atomic jet 𝐿𝑚𝑖𝑛 = 𝑣2𝑗𝑒𝑡/2𝑎𝑚𝑎𝑥 . With
the 23𝑃 transition, the maximal deceleration is 4.7 · 105𝑚/𝑠2 which corresponds to a minimal
Zeeman slower length of 1.5 m for a nitrogen cooled flux of helium4.

3The transverse molasses beams are elliptical with waist 49mm×11mm with roughly 90 mW per beam. As the
actual setup is not highly stable, it was proposed a scheme on the 22/03/2021 to change it.

4Using the 33𝑃 transition at 389 nm would increase a lot the maximum deceleration and keeping the same
Zeeman length, it would allow the cooling of the source with water rather than liquid nitrogen. Indeed, when
cooling atoms with water rather than liquid nitrogen, Labeyrie (1998) measured 1950 ± 500𝑚/𝑠 atomic speed at
the exit of the source, which could be slowed down using our 2.3 m Zeeman slower. Sadly, the 23𝑆−33𝑃 transition
is not close. A MOT of helium with a 389 nm laser was previously realized by Tychkov et al. (2004). They took
advantage of a 389 nm laser to increase the density, but they still used the 1083 nm transition in order to obtain
larger loading rate.
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Figure 38: Experimental apparatus. The source of metastable helium atom describe in Fig-
ure 36 is located on the left. As the outgoing atom flux is quite divergent, a 2D transverse
molasses (TM) deflects it so that a reasonable fraction of the atoms reaches the science cham-
ber, after the 3 m long Zeeman slower (ZS). The cooling steps are performed in the science
chamber on the right. The different beams we use are represented by the three different colors.
The vertical dipole trap (green) enters from the top window while the 1064nm pair creation
lattice (blue) enters from bottom and top windows at 7 degrees from the vertical direction.
©Figure from Marolleau (2022).

Compressed magneto-optical trap and optical molasses

The Magneto-Optical Trap (MOT) is loaded during 1.5 s with three retro-reflected −38Γ red-
detuned lasers5. In a MOT, atoms are unpolarized hence one would expect Penning losses
characterized by a rate coefficient of 10-10 cm3/s. However, a rate of 10-7cm3/s was reported
by Bardou et al. (1992), underlying light-assisted collisions. The closer to resonance the light
is, the higher the population of the excited state. The Penning collision rate between two
atoms in the fundamental state is much lower than when one of them is in an excited state.
This means that inelastic collision are enhanced in the presence of resonant light. In order
to keep the loss rate low, one needs to keep the excited population low so that the MOT laser
should be as red detuned as possible (Browaeys et al., 2000). The interested reader should refer
to Browaeys (1999) for more complete and detailed explanation of the light-assisted collision.
Typically, 3(2) ×108 are loaded, this number being deduced from a camera recently calibrated
by Lamirault (2023).

At the end of the MOT, we ramp the frequency closer to resonance and decrease the in-
tensity of the laser to increase the density of the cloud, whose temperature is approximately
200 µK at this stage. We finally perform an optical molasses in which the cloud temperature

5The waist of the MOT beams are 20.2(5) mm (26/11/2021) and the available power is roughly 35 mW at 100
MHz (16/01/24 for the AOM double pass efficiency). The first QControl MOT was obtained on the 22/04/2021
with the old laser diode and on the 01/07/2021 with the new cooling laser.
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Figure 39: Drift of the optimal MOT frequency from 2020 to 2024, in units of the linewidth
Γ of the transition (1.6 MHz). The shape of the markers represent the laser we used and the
color the sequencer. The grey dash line represents the greatest frequency difference that we
can achieve because of the acousto-optic modulator minimal frequency (80 MHz). When we
changed the laser, we switched the laser frequency from 2×116 MHz to 2×110 MHz to have
more power during the imaging. Indeed, it is the same AOM that produces MOT and imaging
beams and its efficiency decreases rapidly between 110 and 120 MHz.

decreases towards 60 µK, that should be compared to the 40 µK Doppler temperature for he-
lium6.
During my work at the laboratory, we had anomalous stability issues : on winter 2020, we
were not even able to have a proper MOT on a daily basis. We decided at this point to change
many possible instability sources on the experiment, starting with the cooling laser and the se-
quencer. The cooling laser was a 2MHz diode that was replaced by a NKT PhotonicsKoheras
ADJUSTIK – single-frequency fiber lasers with a linewidth smaller than 20 kHz. After this
change, there was no observed increase in the absolute number of atoms, but the stability of
the experiment was highly improved. Concerning the sequencer, we replaced the home-made
sequencer named gus by a brand new Adwin Pro II sequencer together with the QControl3
program to control it. The details about the program are left within the appendix, sections
2.A-2.D. Figure 39 represents the daily used MOT frequency: I think it provides a glimpse of
the time it took us to converge toward a stable situation regarding the MOT parameters. As
mentioned earlier, the further we are from resonance, the larger the number of atoms. The de-
tuning from resonance is larger at the bottom of the graph and the gray dashed line represents
the maximal detuning accessible on our setup. This maximal detuning was not chosen higher
because it is a trade-off between two usages of the same AOM (that is used both for imaging
the cloud and the MOT).

1.D Magnetic Trap

After the optical molasses, a magnetic trap is turned on (Nowak et al., 2000). Atoms being
unpolarized during the MOT, they are pumped towards the trapped magnetic sub-level𝑚 𝑗 = 1
by a short and intense 𝜎+ polarized laser pulse. The trap geometry is a Ioffe-Pritchard type
trap hence we have the ability to set the minimum value of the magnetic field called the bias 𝐵0

(minimum value of the field) as well as the curvature. This allows to realize a Bose-Einstein
condensate in a magnetic trap (Robert, 2001).

6Contrary to other species such as alkaline-earth atoms, helium does not exhibit sub-Doppler cooling therefore
it is a nice toy model to highlight the 3D Doppler theory (Dalibard, 2015). This was studied a few years ago by
Chang et al. (2014) with the other metastable helium machine of the group.
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Remark - Technical remark
The electrical currents used to produce themagnetic trap are quite high: 200A. Therefore,
the diodes and IGBTsamust bewater-cooled. They are connected to the coldwater circuit
that is common to the entire laboratory. On some days, the pressure at the entrance of our
lab is too low to allow us to cool properlyb. Thismotivated us to switch our cooling circuit
from series to parallel to increase the water flux, which sadly did not help as expected.
The magnetic coils must also be cooled: they are cooled with a dedicated chiller that
was installed in 2023. More details and measurements about the water-cooling of the
experiment are provided in the appendix section 3.C.

aThe IGBTs, Insulated-Gate Bipolar Transistors, allow switching off suddenly the magnetic trap and the
diodes protect the current power supplies.

bThis cooling issue is quite annoying, and I never found its origin. Some days, we observe that the
pressure drops suddenly. When sending e-mails to the laboratory, no one reported a change in their mea-
surement/procedure and the water pressure at the top of the building was each time reported “normal” by
the infrastructure service.

The magnetic trap cooling in our experiment has been extensively reviewed recently byMarol-
leau (2022); hence I will not dwell on the subject. At each step of the cooling, the trap is
compressed by decreasing the bias. The two cooling steps consist of:

• 1D Doppler cooling: a 1D retro-reflected beam is applied on the cloud along its elon-
gated direction. This step lasts 0.6 seconds with low power close to resonance (Schmidt
et al., 2003). We obtain 2(1) × 108 atoms at 130(10) µK.

• RF evaporation: A radio-frequency wave un-traps the hotter atoms from the trap
(Browaeys et al., 2001). The final value of the RF frequency fixes the depth of the trap
and hence the temperature of the cloud. Typically, to load a dipole trap, we get a 43(3)
µK cloud with 5(3) × 107 atoms.

Summary We are able to cool down 5 × 107 helium atoms to a few dozen µK
using a 1.5 s magneto-optical trap and a 2.2 s magnetic trap.

2. Bose-Einstein condensation in an optical dipole trap

2.A Optical dipole trap
For the past few years, the dipole trap has not been very cooperative in our experiment. It
started back in 2017 when the team chose to change the dipole trap laser to use more power
and be able to load a hotter cloud for stability reasons. It was decided to buy a 30 W laser
from Keopsys7. Sadly, after many delays, the new laser never delivered the expected power
and was restrained to 20 W. During my thesis, it broke three times8, and we finally bought a
new one from the IPG company9.

7Continuous 1550 nm 30 W Erbium laser sold under reference CEFL-TERA.
8Note however that the customer service of Keopsys was really quick to repair the product the two times I

asked for.
9Model No ELR-30-1550-LP, serial PL2241259 delivers indeed 30 W at 1550.584 nm with 0.226 nm. The

beam diameter (1/e2) is 3.632 mm with a far field divergence full angle of 0.54 mrad. Beam quality is 𝑀2 = 1.02,
laser is linearly polarized with 21.1 dB polarization extinction ratio. The output power was measured to be 30 W.
The laser was bought 27.5 k€ and surprisingly, the price we paid was the same as the one on the 2016 quote. The
command was passed on July, 11th and the product arrived on September, 07th 2022, which is quite fast.
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Figure 40: Left: Dipole trap setup: the vertical beam has a waist of 40.5(2) µm and the
horizontal 109 µm. The vertical dipole trap hits the protective shield on the MCP not do
damage it. The Raman transfer kicks the atoms so that they do not hit the protective copper
plate. Right: depth of the dipole trap as a function of the vertical position for 4W (top) and
0.7 W (bottom). The shaded vertical line represents the minimum of the trap, that shifts when
the power changes.

However, when the dipole trap laser works, it works... on fire ! Indeed, the vertical beam
arm hits (and heats) the micro-channel plate that burned... twice ! To overcome this issue, we
placed a shield on the top of the MCP that reflects back the laser. This requires therefore to
deflect the cloud when the trap is released so that the MCP detects the atoms. This is done
during the Raman transfer. An entire section is dedicated to this shield installation on the
chapter dedicated to the MCP.

The dipole trap is formed of two arms: one vertical and one horizontal. The vertical trap
has a waist of 40.5(2) µm and the horizontal waist is 108(2) µm10 (Partridge et al., 2010).
The dipole trap is loaded from a 45 µK magnetic trap: only 10% of the atoms are trapped
(3 × 106). We use 4 W, which means the initial depth of the trap is 140 µK. Once loaded, the
temperature of the trapped cloud is 20(2) µK, still above the condensation temperature of 3
µK. We therefore need to decrease the height of the trap. The latter is fixed on the vertical
axis: the depth of the trap is a trade-off between the laser power and the gravity gradient.

On the right of Figure 40 is shown the depth of the trap as a function of the vertical position
for a 4 W laser (top) and a 0.7 W laser (bottom). When the power decreases, the depth of the
trap decreases, but the center of the trap changes too: this is represented by the shaded vertical
line on the figure. As we will see in subsection 2.C, the evaporation ramp must be smooth
enough not to push the cloud.

10The measurement of the vertical waist using 3 techniques is explained in the appendix. The horizontal beam
waist was also measured, in agreement with the value reported by Perrier (2020).
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2.B Raman transfer

As mentioned earlier, the atoms must be polarized to decrease the inelastic collision rate and
obtain a Bose-Einstein condensate. Since these atoms are sensitive to magnetic fields, they
are deflected by residual magnetic fields during their 308 ms time-of-flight towards the MCP.
Therefore, we need to transfer them to the 𝑚 𝑗 = 0 state when the trap is switched off. This
internal state transfer is achieved using two laser beams in a Raman configuration that induces
a two-photon transition. The laser is blue-detuned (600 MHz) from the 23𝑆1−23𝑃0 transition,
with one beam being 𝜎− polarized and the other being 𝜋 polarized11. Since the two lasers
do not co-propagate, they impart a velocity kick to the atoms of 2ℎ/𝜆𝑚 sin 𝜃 = 42.5 mm/s.
This allows us to deflect the cloud during its free fall so that it does not hit the MCP12: after
a 307 ms time of flight, the atoms are shifted by 11.5 mm, as shown in Figure 41. Note that
Van Der Beek et al. (2020) used a similar trick to install a vertical lattice on their setup: they
displaced their MCP from the center and kicked the cloud during its free fall with a magnetic
field pusher rather than a laser pulse.

The Raman transition consists of a short and intense laser pulse13 of 13 µs that transfers
97(2)% of the cloud. This duration is chosen so that the number of remaining atoms in the
𝑚 = 1 state is minimal on Rabi oscillation on the right subplot of Figure 41.

2.C Dipole trap evaporation ramp

Once the dipole trap is loaded, the power of the laser is decreased to perform the last evapo-
ration ramp. In order to obtain a BEC, one must decrease the trap potential in order to keep
the elastic collision rate high (so that the evaporation ramp is efficient) while having a low
inelastic collision rate. In practice, the ramp duration is 1.3 seconds and the ramp parameters
have an impact on the atom number of the final BEC.
The trapping laser is vertical; hence, when the power of the trap decreases, the position of the
minimum shifts due to gravity. Depending on the dynamics of the ramp, the position of this
minimum exhibits different trajectories. For an exponential power ramp, we characterize the
ramp time-dependence as a function of the decay rate 𝛼:

P𝑙𝑎𝑠 (𝑡) = P𝑚𝑖𝑛 + (P𝑚𝑎𝑥 − P𝑚𝑖𝑛)
𝑒−𝛼𝑡/Δ𝑡 − 𝑒−𝛼

1 − 𝑒−𝛼
(159)

where P𝑚𝑎𝑥/𝑚𝑖𝑛 is the power of the laser and Δ𝑡 the duration of the ramp. The evaporation
ramp of the laser power is shown on the left panel of Figure 42. When 𝛼 = 1, the ramp is a
straight line (solid pink curve) and when 𝛼 is higher, the power is more exponentially damped
(dashed dotted green).
On the right panel of Figure 42 is shown the position of the minimum of the trap of the center
of the cloud as a function of time. The 𝛼 = 1 solid pink curve exhibits a sharp angle at the
end of the evaporation ramp. This means that the velocity of the minimum of the trap is not

11The Raman 1 𝜎− polarized beam waist is 2.5-2.9 mm and the Raman 2 𝜋 polarized 4-4.7 mm (measured on
the 29/03/2023). The Raman 1 being linearly polarized, its intensity should be twice the intensity of the Raman 2
beam. This means that, roughly, beam power should be the same.

12This kick configuration was installed after the second hole appeared on the MCP, in January 2020. Note how-
ever that there is a small angle along the vertical direction of the two beams, resulting in (not so) small momentum
transfer downward of 5 mm/s. A measure can be found on the 02/07/2024.

13This 𝜋 pulse is used since September 2023. Before, the Raman transfer was performed using a frequency
ramp that adiabatically transferred the atom from the 𝑚 𝑗 = 1 to the 𝑚 𝑗 = 0 state, that is called a Landau-Zener
transition (Zener and Fowler, 1932).
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Figure 41: Raman transfer of the atoms. A & B) Scheme of the experimental Raman setup.
Two beams 𝜎− and 𝜋 polarized transfer the atoms from the 𝑚 = 1 state to the magnetically
insensitive 𝑚 = 0 state. During this transfer, the atoms are kicked to the side of the MCP
that is not covered by the shield. C) Rabi oscillation: the non-transferred atoms are sensitive
to residual magnetic fields in the vacuum chamber. The cloud is deformed and most of the
atoms do not hit the MCP. Only a small fraction of them is detected. The cloud is also so
stretched that this 𝑚 = 1 cloud does not saturate the MCP, which is not the case of the m=0
BEC. This makes it possible to count precisely the number of remaining atoms in the m=1
state as a function of the laser pulse duration. The latter should be short and intense to avoid
velocity selection on the x-axis. Indeed, the damping of the oscillation is due to the different
resonant frequency for each momentum. On the graph, the higher number of points around
the first minimum allows for precisely determining the duration that transfers the most atoms.
©Left scheme from Leprince (2024).

continuous, which might induce an oscillation of the cloud. On the opposite, the 𝛼 = 8 dashed
dotted green curve is smoother.

In order to ensure that the evaporation ramp does not induce any oscillation of the cloud,
we perform the following experiment. We fix the value of the evaporation ramp to 1.2 s and
perform the evaporation ramp (159) with 𝛼 = 1 (respectively 𝛼 = 8). We then scan the hold
time in the trap after the evaporation ramp, from 500 to 600 ms. The arrival time of the cloud
on the detector is proportional to the in-trap velocity of the cloud at the moment the cloud is
released. If the evaporation ramp induces an oscillation of the cloud, the arrival time of the
cloud should exhibit an oscillation too. The arrival time of the BEC as a function of the hold
time in the trap is shown in the inset of the left panel of Figure 42, as pink circles for 𝛼 = 1 and
green squares for 𝛼 = 8. We observe a strong oscillation of the cloud when 𝛼 = 1, while for
the 𝛼 = 8 case, if the oscillation still exists, it is indiscernible from the shot-to-shot variations.

2.D Stability of the BEC

The estimation of the stability of the dipole trap is the following. We produce roughly one or
two hundreds BECs and record the arrival time of each BEC. We define the stability of the
BEC as the standard deviation of the arrival time distribution. For a single vertical dipole trap,
Bonneau (2011) reported a stability of 100 µs, which corresponds to 1 mm/s in in-trap velocity.
This value should be compared to the size (in speed) of the Bogoliubovwave-function: roughly
0.5(2) mm/s. It means that the shot-to-shot instabilities prevent one from measuring cross-
correlations. In the appendix and sixth chapter, section 1.C, we show that instabilities can lead
to spurious correlation. This poor value is one of the reason that pushed the team to install a
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Figure 42: Comparison of different evaporation ramp. Left: exponential decrease of the laser
power as a function of time according to equation (159). Each curve corresponds to a different
decay rate, from 𝛼 = 1 in solid pink to 𝛼 = 8 in dashed-dotted green. The legend is shown on
the right panel and is common to both plots. The right subplot represents the position of the
minimum of the trap i.e. the trajectories of the center of mass of the cloud. For low values
of 𝛼, the trajectory exhibits a sharp angle at the end of the evaporation, causing oscillations
of the cloud. This behavior can be observed on the inset of the left panel which represent the
arrival time of the BEC on the detector as a function of the hold time in the trap. For 𝛼 = 1,
the cloud oscillates at the trap frequency while this oscillation seems suppressed for 𝛼 = 8.

second laser beam to work in a cross dipole trap14. The stability in this new crossed dipole
trap was then improved to 40 µs (0.4 mm/s) (Lopes, 2014). More recently, the value of 30 µs
(0.3 mm/s) was achieved (Marolleau, 2022). Here we report a stability of 10(5) µs15, which
corresponds to 0.10(5) mm/s in speed. Such improvement is due to the adiabatic extinction of
the magnetic trap when we transfer it to the dipole trap, a good optical alignment between all
lasers and the shape of the evaporation ramp. The stability in the single dipole trap was highly
improved: from 100 µs, it reached 10(5) µs hence the same stability as the crossed dipole trap.
The fact that the laser power available is higher than in 2012 might also help as we load a
much hotter trap: we are less sensitive to the fluctuations of the magnetic trap position.

Remark - Technical note
An oscilloscope was added to one of theMCP channel with a low pass filter to register the
analog signal. This allows to precisely measure the arrival time of the BEC and recenter
the arrival time of different cycles to further improve the resolution from the shot-to-shot
fluctuations.

SummaryWe are able to obtain a Bose-Einstein condensate in a crossed dipole
trap in approximately 9 seconds. By optimizing the evaporation ramp, we re-
duced the shot-to-shot fluctuations of the BEC arrival time fluctuations to 0.01
ms. Such stability is a key ingredient to study opposite momentum correlations.

14This change also permitted to have a trap in many configurations, from the 1D regime to the 3D one. The
description of the BEC and its properties will be done later.

15The stability along x and y was measured to be 1.3 and 1 mm/s respectively. Experiment performed on the
23/05/2024.
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3. Bragg diffraction
As we shall see in the next chapter, when an atom enters a channel of the detector, it triggers
an electronic cascade. However, it takes a few milliseconds for the channel to re-charge back
and be able to detect another atom. In our case, the BEC and the pairs are separated by approx-
imately 1 ms. If the atom of the pair that arrives first is unaffected by the saturation, this is not
the case of the one that arrives after the BEC. The solution would be to remove the BEC, or
to kick it upwards so that it arrives after the pairs. This section introduces Bragg diffraction
which will allows us to do so.

The pulse-shaping techniques reported here were initially developed to realize a 2-particle
4-modes interferometer to perform a Bell test using massive particles entangled in momentum
(Leprince et al., 2024). In this work, we take advantage of this state-of-the-art atomic inter-
ferometer to simply “kick-off” the BEC outside the region of interest. I participated in the
experimental implementation and characterization of this set-up, but this project was mainly
investigated by Leprince (2024), to which the interested reader is referred for further details.

3.A Introduction
Consider an atom illuminated by two lasers 1 and 2, characterized by their electric field 𝐸 𝑗

their frequency 𝜔 𝑗 , with a relative half-angle that we note 𝜃𝐵. As illustrated in Figure 43,
the two lasers interfere and create a periodic potential along the vertical direction 𝑧. The two
lasers are detuned by 𝛿𝜔𝑙𝑎𝑠 = 𝜔1 − 𝜔2, creating a standing light wave that scatters atoms.

Bragg diffraction can be seen as a two-photon process where the atoms absorb one photon
from a laser and re-emits it in a stimulated way into the second one (Martin et al., 1988). This
interpretation is easily understood with the scheme on the right panel of Figure 43. The atom
absorbs a photon from one laser (labeled 1, yellow) and re-emits it in the second laser (labeled
2, red). When the lasers do not co-propagate but have an angle 2𝜃𝐵, the atom is kicked by a
momentum 𝑘𝑏 = 22𝜋

𝜆 sin 𝜃𝐵.
On the experiment, the Bragg speed was measured to be 𝑣𝑏 = ℏ𝑘𝑏/𝑚=49.58(3) mm/s.

The corresponding wavevector is 𝑘𝑏=3.145(2) µm-1 and the associated recoil frequency is
𝜔𝑏 = ℏ𝑘2𝑏/2𝑚 is 12.41(3) kHz. The lattice is not perfectly aligned on the vertical direction
but experiences a (relatively) small angle along x of 0.08(3)° and 0.04(2)° along y.

Formally, the dipole atom-light interaction is characterized by the Rabi frequency ℏΩ 𝑗 :=
− 〈𝑔 |d̂ · E|𝑒〉. Here, d̂ represents the reduced atomic dipole of the transition 𝑔 → 𝑒 between the
ground state 23𝑆1 and the excited state 23𝑃0. When the lasers are far detuned from resonance,
the population of the excited level can be neglected16. The Hamiltonian of the system can
then be written using the two-photon Rabi frequency

Ω𝑅 =
Ω1Ω★

2

2Δ
(160)

and the Bragg wavevector 𝑘𝑏 = 22𝜋
𝜆 sin 𝜃𝐵. As we shall see, the Rabi frequency Ω𝑅 plays

a central role in determining the different regimes of the light-matter interaction. The laser
beam waists are sufficiently large (4 mm) compared to the cloud (200 µm) to assume that the
Rabi frequency does not depend on space. For a non-interacting gas, the Hamiltonian that
drives the transition is (Leprince, 2024)

Ĥ =
𝑃2

2𝑚
− ℏ|Ω𝑅 |

2

(
𝑒𝑖𝑘𝑏 �̂�−𝑖𝜙 (𝑡 ) + 𝑒−𝑖𝑘𝑏 �̂�+𝑖𝜙 (𝑡 )

)
(161)

16The full derivation of the adiabatic elimination of the excited state can be found in Perrier (2020).
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Figure 43: A) Experimental scheme of the laser setup. Two lasers with a 2.8 mm waist inter-
fere at the position of the cloud, creating a standing wave whose speed is set by the frequency
difference between the two. The lattice interfringe is 2 µm, that is much smaller than the size
of the BEC wave-function which is typically a hundred of µm. B) Illustration of the two-
photon process. The two 𝜋 polarized lasers are detuned from the 23𝑃0 level by Δ=800 MHz.

where 𝜙(𝑡) = 𝛿𝜔𝑙𝑎𝑠𝑡 + 𝜑 is the phase difference between the lasers at 𝑧 = 0. Here, 𝑒±𝑖𝑘𝑏 �̂� are
translation operators that couple momentum states 𝑒±𝑖𝑘𝑏 �̂� |𝑝〉 = |𝑝 ± ℏ𝑘𝑏〉.

3.B Resonant two-photon transfer

First, a priori, the Hamiltonian (161) couples an infinite number of momentum states
{|𝑝 + 𝑛ℏ𝑘𝑏〉}𝑛∈𝑍 . In practice, if the value of the Rabi frequency, that defines the coupling
strength, is low enough, we can restrict the analysis to a two level system {|𝑝〉 , |𝑝 + ℏ𝑘𝑏〉}.
Such hypothesis requires the Rabi frequency to be much smaller than the recoil frequency.
Leprince (2024) showed numerically that a factor of 4 is enough to suppress the influence
of the other levels. He also discusses other regime for which other levels must be taken into
account (Béguin et al., 2022). In this work, we will use low enough Rabi frequencies (lower
than 3 kHz) so that we couple only two different momentum classes.

Second, by tuning the frequency difference between the two lasers, one can tune the ve-
locity classes that are resonant with the momentum transfer. In order to couple momentum
class |𝑝〉 with |𝑝 + ℏ𝑘𝑏〉, the frequency difference of the lasers must be

𝛿𝜔𝑙𝑎𝑠 (𝑝) =
𝑘𝑏
2𝑚

(ℏ𝑘𝑏 − 2𝑝) (162)

Figure 44 shows the atomic momentum distribution after the Bragg pulse for a non-resonant
detuning (left) and a resonant one (right). The right panel of the figure represents the number
of transferred atoms as a function of the laser detuning. At fixed laser detuning 𝛿𝜔𝑙𝑎𝑠, the
momentum class that is resonant with the two-photon process is the one for which 𝑝 satisfies
equation (162). The BEC initial state is |𝑝 = 0〉: it is therefore resonant with the two-photon
process for 𝛿𝜔𝑙𝑎𝑠 = ±ℏ𝑘2𝑏/2𝑚. In the case of a positive detuning, the BEC is transferred to
the |𝑝 = +ℏ𝑘𝑏〉. If the detuning is negative, the atoms are coherently transferred to the |−ℏ𝑘𝑏〉
state. Still, if the detuning is not exactly the one given by (162), a transfer can still happen. To
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Figure 44: Left: Density of the momentum distribution of the cloud after the Bragg transition.
The colorscale represents the atomic density, the darker being the denser. On the first picture,
the frequency difference is not set to address the 𝑣𝑧 = 0 BECmode. On the second picture, the
detuning is resonant with the BECmode and the zero momentummode has been transferred to
−𝑣𝑏 = −50 mm/s. Right: number of detected atoms as a function of the laser detuning. Each
dot is the number of atoms for a single realization. We clearly observe that the resonance is
around -14 kHz. The solid line is the expected transfer efficiency for a 1.7 kHz 𝜋-pulse who’s
height has been adjusted. ©Theoretical profile courtesy of Ch. Leprince.

estimate it, we write the detuning as

𝛿 = 𝛿𝜔𝑙𝑎𝑠 −
𝑘𝑏
2𝑚

(ℏ𝑘𝑏 − 2𝑝) (163)

When 𝛿 = 0, the process is at resonance. However if 𝛿 ≠ 0, the transfer might occur if the Rabi
frequency is large enough, that is if 𝛿/Ω𝑅 < 1. Note however that the transfer will be less
efficient and oscillate faster. This off-resonance process explains why the resonance curve on
Figure 44 is not a Dirac function: its width is given by the Rabi frequency.

3.C Rabi oscillations: chi va piano, va sano e va lontano
As we saw, the characteristic frequency for the two-photon transfer is the Rabi frequency Ω𝑅

(160). When the laser difference frequency is at resonance with one mode 𝑘 , atoms coherently
transfer between states |𝑘〉 and |𝑘 + 𝑘𝑏〉 with frequencyΩ𝑅. When the momentum class is not
perfectly at resonance, that is 𝛿 defined by equation (163) is not exactly zero, the oscillation
frequency between the two classes and the transfer efficiency is lower. The probability P for
an atom to be transferred reads

P(𝑡) = Ω𝑅

Ω
sin2(Ω𝑡/2), Ω =

√
Ω2

𝑅 + 𝛿2. (164)

This is illustrated by the left panel of Figure 45 in which the coherent oscillation of two mo-
mentum classes is represented. The blue circles represent the oscillation of the resonant class
while the red squares represent those of an off-resonant class speed. Off-resonant momentum
classes oscillate faster with a smaller amplitude which is expected from equation (164). Ex-
perimentally, the oscillation frequency of the resonant class gives access to the Rabi frequency
(and therefore the intensity of the beams). From Figure 45, we measure the value of 1.21(2)
kHz.
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Figure 45: Left: Number of transferred atoms from the BEC 𝑘 = 0mode to the 𝑘 = −𝑘𝑏 mode.
Here the resonant frequency is -14 kHz. Right: ratio of the transferred population between
two momentum modes as a function of time. The blue circles represent the oscillation of the
resonant 𝑘 = 0momentum class while the red squares represent an off resonant velocity class
centered at 1.5 mm/s (which represents a 0.8 kHz detuning). The resonant class oscillates at
1.21(2) kHz, which gives the Rabi frequency. The off resonant class oscillates at 1.42(2) kHz,
which is consistent with the expected oscillation frequency (164). We observe a damping of
the Rabi oscillation for which the typical decay time is 12(5) ms. ®Data taken on the 24/04/23.

This coherent Rabi oscillation illustrates also the possibility to deflect an atomic beam, by
lightening the cloud for a duration 𝑡 = 𝜋/Ω𝑅. Such pulse is called a 𝜋-pulse and a mirror or
deflector. It is also possible to transfer atoms with a 1/2 probability and therefore to realize a
beam-splitter with a 𝜋/2 light pulse (Berman and Bian, 1997). In the next subsection, we will
optimize this 𝜋-pulse to only deflect the BEC.

Equation (164) does not take into account the obvious damping of the oscillation observed
on Figure 45. This damping has two origins. The first one is due to the integration volume.
Each individual momentum class |𝑝〉 oscillates at its own frequency given by equation (164),
where 𝛿 ∝ 𝑘𝑏𝑝/𝑚. Physically, we need to define the size of the mode |0〉 and the mode |−𝑘𝑏〉:
they cannot be infinitely thin. This choice of integration volume is a trade-off between the
noise (the smaller the volume, the smaller the population) and the dephasing. For a volume
Δ𝑣, the frequency difference will be 𝑘𝑏Δ𝑣. In our configuration and for a Δ𝑣 = 1mm/s which
is the one of Figure 45, the frequency difference is 500 Hz.

Another contributing factor is the spontaneous emission. With the intensity that is used
to produce Figure 45, Leprince (2024) estimated the spontaneous decay time to 22 ms. This
value is consistent with the one we observe17.

17Note that I am writing this paragraph after Eric Cornell’s talk at the ICAP24 conference, where he reported
the observation of an astonishing coherence time of 8 seconds (Wang et al., 2024). Afterward, he mentioned that
“because the theoretical coherence time is 20 seconds, [his] students should not be satisfied until they would have
reached it”. Nevertheless, here we only aim to get rid of the BEC, hence a coherence time of a few tens of ms is
clearly enough.
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Figure 46: Left: reflectivity profile of constant light pulse for different Rabi frequencies
Ω𝑅 = 1.5 kHz (solid green), 2.5 kHz (dashed orange) and 5 kHz (dashed dotted violet). Right:
reflectivity profile for sinc shaped pulses with the same mean Rabi frequency. The color and
styles corresponds to the one of the left panel. ©Code courtesy of Ch. Leprince.

3.D Mirror, Mirror on the wall, who’s the fairest of them all?

In the next chapter, section 3.C, we show that the BEC saturates the detector which degrades
the observation of the second pair. We therefore aim to transfer the BEC 𝑣 = 0 mm/s peak
while keeping the 𝑣 = ±10 mm/s pairs untouched. From now on, we will therefore use pure
deflector (𝜋-pulses, or mirror) and study which Rabi frequency allows us to only deflect the
BEC. To characterize the reflectivity properties, we will use the notion of reflectivity profile,
which gives the probability to deflect each momentum class. The reflectivity profile for differ-
ent Rabi frequencies is shown on the left panel of Figure 46. One can see that the smaller the
Rabi frequency (the longer the light pulse), the smaller the width in momentum of the Bragg
deflector. The reflectivity profile of the smallest Rabi frequency (1.5 kHz) has a good width
to transfer entirely the BEC. However, it exhibits small wings: the reflectivity is not null for
the ± 10 mm/s velocity class. This means that we would also deflect the pairs which is, of
course, not what we look for.

A Fourier-like analogy offers a good picture to optimize the reflectivity profile. Even
though it is not totally correct, one can think of the reflectivity profile in momentum (hence in
detuning) to be the Fourier transform of the light pulse (in time). For the constant pulses we
considered so far (the laser intensity is constant), the reflectivity profile looks like a cardinal
sine, whose width is fixed by the duration of the pulse.

With that analogy in mind, it is therefore natural to think of a time-dependent Rabi fre-
quency whose shape could be a cardinal sine so that the reflectivity profile is a square. This
is what we realized experimentally. However, a cardinal sine is negative while the intensity
of a laser field cannot be negative. To overcome this issue, we time modulate the intensity
of the field as the absolute value of the cardinal sine. The sign of the cardinal sine is then
defined by detuning the phase of one laser by 𝜋 each time the sinc is negative. Here again,
more details about the experimental scheme are provided in Leprince (2024). Even though the
instantaneous Rabi frequency Ω𝑅 (𝑡) now depends on 𝑡, we can still define an average Rabi
frequency Ω̄𝑅. This quantity defines the intensity and phase profile of the lasers, hence the
width of the reflectivity profile of the pulse. We therefore use the following profile for the
Rabi frequency:

Ω𝑅 (𝑡) = Ω̄𝑅sinc
[
Ω̄𝑅 (𝑡 − 𝑇/2)

]
(165)
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Figure 47: Reflectivity profile of different pulse shapes. (a) constant Rabi frequency, (b) sinc
shape and (c) reburp. Circles show experimental measurement and lines are the theoretical
curve, with no fit parameter. ®July & August 24. ©Theoretical profile courtesy of Ch. Lep-
rince.

where Ω̄𝑅 is the “equivalent” Rabi frequency and𝑇 the duration of the pulse, the laser intensity
being null elsewhere. Here, the equivalent Rabi frequency Ω̄𝑅 is the Rabi frequency of the
equivalent constant 𝜋 pulse that corresponds to this sinc-shaped pulse. Notewe also introduced
another parameter, which is the duration of the pulse 𝑇 . It must be greater than 2𝜋/Ω̄𝑅 so that
the Rabi frequency is sometimes negative. The duration is typically 2 ms for the reflectivity
profile shown in Figure 46. On the right panel, we see that the wings of the reflectivity profile
around ±10 mm/s are removed for the 1.5 and 2.5 kHz Rabi frequencies, compared to the
constant pulse scenario. This means we can safely remove the BEC while keeping the pairs.
We also observe on Figure 46 that the reflectivity profile is flatter at the center and its edges
are sharper.

One can see, however, that the reflectivity profile of the sinc pulse is not a perfect square-
like function. This is because our Fourier analogy is not accurate when the transferred popu-
lation becomes larger than typically 10%. More exotic, yet still analytical, pulse shapes were
developed and recently implemented in our experiment. Figure 47 shows the measurement of
the reflectivity profile for different pulses. Panel (a) and (b) are constant and sinc type pulses
with a 1.88 kHz Rabi frequency. Panel (c) represents the reflectivity profile of a so-called
reburp pulse18 (McDonald and Warren, 1991; Geen and Freeman, 1991; Luo et al., 2016).
Markers represent the experimental points and the solid line the theoretical profile with no
adjustable parameter. The small bounces visible on the reflectivity profile of Figure 46 are
suppressed due to the integration volume 𝛿𝑉𝑧 . We clearly see here that the reflectivity profile
is null at ± 10 mm/s for the sinc and reburp pulses. This means that we can definitely remove
a major part of the BEC while keeping the sidebands untouched.

18The name rRE-BURP stands for Refocusing Band-Selective Pulse with Uniform Response and Phase. It

is defined in terms of a Fourier series as ΩR (𝑡) = ΩM

[
𝐴0 +

∑
𝑛=1

𝐴𝑛 cos(𝑛ΩS𝑡)
]
for 0 ≤ 𝑡 ≤ 2𝜋/ΩS, where

ΩS = 2𝐴0ΩM and the 𝐴𝑛 coefficients, experimentally implemented up to the 15th order.
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Summary This section introduces Bragg diffraction as a tool to get rid of the
saturation of the BEC. By shaping the lasers intensity and the phase difference
between them, we are able to realize sharp deflectors to remove the BEC without
affecting the pairs.

4. Measuring the BEC properties
The main disadvantage of our experiment is our inability to measure precisely the atom num-
ber in the BEC. This is due to the saturation of the detector, that we discuss in the next chapter,
especially section 3.C. Second, we detect the BEC after a 307 ms time-of-flight hence we
cannot measure the in-situ size of the cloud. It is worth emphasizing that knowing the prop-
erties of the BEC is fundamental to compare with theory. In this subsection, we use three
different methods to recover the properties of our gas. In part 4.A, we measure the size of the
BEC after the 307 ms time-of-flight and assess its in-situ properties from the evolution of the
wave-function. In subsection 4.B, we recover the speed of sound measuring the momentum
of the two-sidebands excited at parametric resonance. In subsection 4.C, we probe the in-situ
mean field using the Bragg beams we introduced in the last section. This section re-uses the
notations and the description of the BEC introduced in the first chapter, section 1.A.

4.A From its size after a time-of-flight

Castin-Dum expansion

When the trapping frequencies are known, the in situ measurement of one of the Thomas-
Fermi radius allows one to recover all the gas properties. In our setup, we do not have access
to the in situ density due to a poor optical resolution. We therefore measure the size of the BEC
after a 307 ms time-of-flight, the time during which atoms fall onto the detector. Castin and
Dum (1996) showed that, within the Thomas-Fermi approximation, the initial wave-function
Ψ0 expands as

Ψ0(𝑟, 𝑧, 𝑡) ∝ Ψ0(
𝑟

𝜆⊥(𝑡)
,

𝑧

𝜆𝑧 (𝑡)
, 0) (166)

where, at zeroth and second order in 𝜔𝑧/𝜔⊥, the evolution of the scale factors are

𝜆⊥(𝑡) =
√
1 + 𝜔2

⊥𝑡
2

𝜆𝑧 (𝑡) =1 +
𝜔2

𝑧

𝜔2
⊥

(
𝜔⊥𝑡 arctan𝜔⊥𝑡 − ln

√
1 + (𝜔⊥𝑡)2

)
.

(167)

Protocol and results

We produce a typical BEC in a cross dipole trap with frequencies of𝜔⊥/2𝜋 =1050(50) Hz and
𝜔𝑧/2𝜋 =30(5) Hz. To measure the transverse radius, we use the reconstructed data along the𝑌
direction. We fit the histogram for each shot with a Gaussian function and an inverted parabola,
as shown on the right panel of Figure 48. Equation (167) links the measured radius to the in
trap one. From the Gaussian width 𝜎

𝑔𝑎𝑢𝑠
⊥ , we recover the BEC properties described in the

Gaussian Ansatz description and from the Thomas-Fermi radius, we recover the properties
of the BEC in the 3D cigar-shape regime. In both regimes, the radial profile depends on
the longitudinal position. Here we are integrating over the longitudinal axis: the measured
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Figure 48: Fit of the density profile of the BEC after a time of flight. Left: the density profile
is recorded with an oscilloscope plugged directly on the MCP. The density profile is adjusted
with an inverted parabola (dashed blue) and an inverted parabola squared (dashed dotted red).
Middle: Fit of the transverse density profile using a Thomas-Fermi profile (dashed dotted red)
or a Gaussian (dashed blue). The left panel is a single shot signal and the middle is averaged
over 15 realizations. Experiment realized on the 11/04/2024. Right: relative difference be-
tween the radius of the integrated profile and of the transverse profile at 𝑧 = 0. The integrated
profile is smaller up to a few percents. This is not so negligible as thermodynamics quantities
scale with the radius to the power 4-5.

Table III.1: Bose-Einstein Condensate properties derived from the measurement of the size
of the cloud after a 307 ms time of flight. The estimation of the errors takes into account of
the 1000 measurements and the errors on the trap frequencies. Each line uses a different fit.
The first one the Thomas-Fermi radius along the elongated direction 𝑍3𝐷 given by equation
(8). The second line is the transverse Thomas-Fermi radius fitted using equation (6). The last
line is derived using the width from the Gaussian Ansatz (16). ®April, 11th of 2024.

Measure µ (kHz) 𝑎𝑠𝑛1 Nat (103) L (µm) R(µm)
𝑍3𝐷 1.8(6) 0.7(2) 12(9) 200(20) 2(1)
𝑅𝑇𝐹
⊥ 1.95(9) 0.95(5) 15(2) 200(10) 2.7(3)

𝜎
𝑔𝑎𝑢𝑠
⊥ 2.0(2) 0.7(3) 10(4) 150(40) 2.2(5)

transverse size is therefore smaller. Right panel of Figure 48 shows the relative difference
between both profiles as a function of 𝑎𝑠𝑛1. Even though the difference is about 5%, this
uncertainty changes the BEC properties of the order of the statistical uncertainties that are
reported here. This can be understood by the fact that 𝑎𝑠𝑛1 varies as the fourth power of the
widths in the Gaussian Ansatz.
In the vertical direction (time), one has to make sure that the BEC does not saturate the detector.
The atomic flux is recorded with an oscilloscope to prevent the saturation of the electronics
and a Bragg deflector was used that prevent the MCP channel saturation. Because we do not
observe phase fluctuations, the BEC properties are recovered assuming that we are in the 3D
cigar shaped regime or the Gaussian Ansatz. The measurement is performed over 1000 shots
and the uncertainties are a combination of statistical dispersion and the measured uncertainty
on the trap frequencies.

Note however that this method has a severe drawback: when we turn off the trap, the
Raman transition changes the atomic state for 𝑚 = 1 to 𝑚 = 0. This changes the scattering
length from 7 to 5 nm (Lopes, 2014).
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Figure 49: Fit (red) of the ±𝑘 𝑝ℎ momentum distribution (green). The fit function is a double
Gaussian function to which is added a thermal part (zero centered Gaussian) and a Heaviside
function that ables one to take into account the leakage phenomenon.

4.B From the quasi-particle excitations

Method

The speed of sound can also bemeasured by changing the trap frequency so that the BEC enters
into a breathing mode at 2𝜔⊥. It excites two Bogoliubov modes (𝜔⊥,±𝑘 𝑝ℎ). Repeating the
experiment enables to distinguish clearly and fit the phonon peaks. The relation between the
momentum 𝑘 𝑝ℎ and the excitation energy ℏ𝜔⊥ is given by the Bogoliubov dispersion relation,
characterized by the sound speed

𝑐𝑠 =
1

𝑘 𝑝ℎ

√√√
𝜔2
⊥ −

(
ℏ𝑘2𝑝ℎ
2𝑚

)2
. (168)

The speed of sound gives then the value of 𝑎𝑠𝑛1 (at the center of the trap) which completely
characterized the gas properties.
The center of the peaks are fitted using a double Gaussian (one for each peak) to which we
add another large and zero centered Gaussian to take into account the temperature. We finally
add a Heaviside step function to take into account the leaking atoms’ phenomenon. To obtain
low temperatures, the trap final’s depth is quite small, and we observe that atoms continuously
leak from the trap. This can be seen on the asymmetry of the density profile in Figure 49: the
negative side of the momentum distribution (atoms that arrive first on the detector) has an
offset, which is not the case of the positive one.

Results

Wemeasure the speed difference between the two excitations to be 9.1(1) mm/s fromwhich we
deduce a speed of sound of 10.5(6). From the speed of sound, one can recover the properties
of the gas in the different regime. Results are given in Table III.2. The different descriptions
do not give the same result, but this is expected as they are valid in different range. With all
descriptions, the 𝑎𝑠𝑛1 parameter is not far from 1 which means the gas is neither in the 3D
Thomas-Fermi cigar nor in the 1D mean field regime. The Gaussian Ansatz yields 𝑎𝑠𝑛1 =
1.3(1) and the generalized crossover 𝑎𝑠𝑛1 = 1.0(1): the difference is not huge regarding the
error bars. The number of atoms is therefore around 15 − 20 · 103 and the BEC length is a
bit lower than 200 µm. The temperature of the gas is measured to be 30 nK and it should be
compared to 𝑚𝑐2/𝑘𝐵 = 53(6) nK.
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Table III.2: Bose-Einstein Condensate properties derived from the speed of sound value for
the different theories (chemical potential, 1D density, atom number and BEC length). The trap
properties were 30(5) Hz along the vertical direction and 1.05(5) kHz in the transverse plane.
The phonons were excited at resonance with a momentum of 9.1(1) mm/s, which gives a speed
of sound of 10.5(6) mm/s. The measured temperature was 30 nK that should be compared to
the chemical potential minus its zero point energy that is 𝑚𝑐2 = 53(6) µK . Dataset taken on
the 11th, April of 2024 (051).

Theory µ (kHz) 𝑎𝑠𝑛1 Nat (103) L (µm)
3D cigar 2.2(2) 1.1(1) 19(3) 200(10)
1D mean field 2.2(2) 0.5(1) 8(1) 160(30)
Gaussian
Ansatz

2.6(2) 1.3(1) 21(3) 190(50)

Generalized
crossover

2.3(2) 1.0(1) 14(2) 170(30)

4.C By measuring the in situ mean field

Expected mean-field shift on the quasi-particle branch

The two Bragg laser beams that we use to deflect the BEC can also be used in the trap. In
this scenario, the description we gave of the laser-matter interaction is no longer correct: the
atomic interactions must be taken into account. In fact, this two-photon process was widely
used to probe the properties of the BEC. The first spectroscopy of a Bose-Einstein condensate
was realized by Stenger et al. (1999). Authors observed a shift of the resonance frequency
compared to the dilute case that is due to the interactions: the resonance shift gives access
to the chemical potential, both in the particle and the phonon branches (Stamper-Kurn et al.,
1999). The 𝑘-dependance of this resonance shift was then used by Steinhauer et al. (2002) to
measure the excitation dispersion relation. The width of this Bragg resonance was also used
by Richard et al. (2003) to probe the coherence length in a really elongated BEC. Here we
aim to use the line-shift of the resonance to measure the chemical potential hence the atom
number.

Our configuration, that we introduced in the apparatus chapter, is sketched on the inset of
Figure 50: the Bragg wave-vector is 3 µm-1 while the healing length is a typically less than 1
µm19. This means that the probed excitation lies on the particle branch. When the gas does
not interact, the resonance to transfer the BEC mode |𝑝 = 0〉 is 𝜈0 and is fixed by the Doppler
shift ℎ𝜈0 = ℏ2𝑘2𝑏/2𝑚. For an interacting BEC, there is an additional line-shift which is due to
the interactions. On the particle-like branch, Stamper-Kurn et al. (2001) showed its expression
is given by

Δ𝜈 = 𝜈 − 𝜈0 = 𝑔 〈𝑛〉𝐵𝐸𝐶 =
1

𝑁

∫
𝑔𝑛2(r)dr. (169)

The frequency difference is given by the product of the interaction constant time the atomic
density evaluated in the ground state of the system: the BEC. Within the Thomas-Fermi
regime, this integral is

Δ𝜈𝑇𝐹 =
4𝜇

7ℎ
(170)

19The sound speed we measure is typically 11 mm/s and the Bragg velocity is 50 mm/s. We have therefore
𝑘𝑏𝜉 ∼ 5, where 𝜉 is the healing length of the BEC.
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Figure 50: Left: Number of diffracted atoms as a function of the detuning between the two
laser beams. The circle are experimental points on a single shot and the solid line is a Gaussian
fit centers on 13.3 kHz. The uncertainty is associated to the fit uncertainty. The vertical
blue line indicates the expected value for a non-interacting gas. Right: expected mean field
detuning as a function of the 𝑎𝑠𝑛1 parameter. In the Thomas Fermi regime, the chemical
potential is given by 2ℏ𝜔⊥

√
𝑎𝑠𝑛1 and the detuning is expected to be 4𝜇/7ℎ (green dashed

line). The dashed-dotted red line is proportional the 3𝜇/7ℎ detuning expected by the 1D
calculation (171). The solid line is the numerical integration of the expected detuning in the
Gaussian regime (172). The horizontal grey line is the measured detuning from the left panel
that intersects the Gaussian line at 𝑎𝑠𝑛1 = 1.3.

and this linear dependence was shown to be accurate by Stenger et al. (1999).
Result: The spectroscopy resonance is shown on the left panel of Figure 50. On the 𝑦 axis

lies the number of diffracted atoms as a function of the laser detuning. The Doppler shift at
12.41(3) kHz is represented with the blue vertical line. We fit the resonance with a Gaussian
curve centered at 13.30(3) kHz. This corresponds to a shift of Δ𝜈=0.89 kHz. From equation
(170), we deduce that the chemical potential is 1.6 kHz.

Conclusion: In equation (170), we described the gas in the Thomas-Fermi approximation.
Such hypothesis should be a posteriori checked. In the 3D cigar-shape regime, the chemical
potential is linked to 𝑎𝑠𝑛1 taken at the center of the trap through 𝜇 = 2ℏ𝜔⊥

√
𝑎𝑠𝑛1. The

Thomas-Fermi approximation is valid for 𝑎𝑠𝑛1 � 1. The transverse trap frequency is 1 kHz,
hence 𝑎𝑠𝑛1 = 0.9. For such low density, the Thomas-Fermi approximation is expected to
break down.

History repeats: 3D is not 1D

Our situation here looks like what happened in the late 90’s, when the sound speedmeasured by
Andrews et al. (1997) was lower by a factor

√
2 than the expected. To explain such difference,

Zaremba (1998) averaged the density over the transverse axis of the elongated BEC to derive
the speed of sound of the one-dimensional excitations. The transversely integrated density
being of course smaller than the peak density, the effective 1D speed of sound is smaller
(Pitaevskiĭ and Stringari, 2016). In the Thomas-Fermi approximation, the local excitation
energy 𝑚𝑐2(r) = 𝑔𝑛(r). For an axial excitation in an elongated system we have 𝑔1𝑛1 = 𝑚𝑐2𝑠 .
It makes sense therefore to evaluate integral (169) using the one dimensional density 𝑛1 and
the effective 1D coupling constant.

ℎΔ𝜈′ =
1

𝑁

∫
𝑔1𝑛

2
1(𝑧)d𝑧 (171)
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where 𝑔1𝑛1 = 𝑚𝑐2𝑠 , and 𝑐𝑠 is the local speed of sound of the axial excitations. For a cigar
BEC, this 1D integral is 3𝜇/7. The difference with the previous formula is small: we replaced
the “4” by a “3”. This leads to a chemical potential of 2.1 kHz and a 1D parameter 𝑎𝑠𝑛1 ∼
1. Still this value is quite low to ensure validity of the Thomas-Fermi approximation. In
this intermediate regime, we should use the Gaussian Ansatz to describe our cloud. We can
compute the expected shift by evaluating the integral (169)

Δ𝜈 =
𝑔

𝑁ℎ

∫
1

𝜋𝜎2

𝑛21(𝑧)
𝜋𝜎2

𝑒−2𝑟
2/𝜎2

dr =
1

𝑁ℎ

∫
𝑔1𝑛

2
1d𝑧. (172)

With this description, the 3D integral of 𝑔𝑛2 is the same as the 1D integral of 𝑔1𝑛21. I did not
find an analytical expression for this integral. Still, a numerical integration is possible and is
shown on Figure 50. The solid blue line of the right panel of Figure 50 represents the expected
detuning from equation (172) as a function of the value 𝑎𝑠𝑛1(0). Here we observe that for a
0.9 kHz shift (grey line), we expect 𝑎𝑠𝑛1=1.3. This result is in agreement with the other one
found with the speed of sound method in section 4.B.

SummaryWe used three different methods to recover the atomic density: time-
of-flight expansion, Bogoliubov excitation spectrum, and in situ spectroscopy.
We showed that the parameter 𝑎𝑠𝑛1, which describes the regime of the gas, was
close to 1. It indicates that the gas is neither described by the 1D mean field
regime nor by the 3D cigar-shape regime. Within the Gaussian Ansatz formalism,
we measured the 1D parameter to be 𝑎𝑠𝑛1 = 1.3(1), indicating that the number
of atoms20 is roughly twenty thousand and the chemical potential is 2.6(2) kHz.
The typical temperature is 30 nK and should be compared with 𝑚𝑐2/𝑘𝐵 = 53(6)
nK for a speed of sound of 10.5(6) mm/s.

20For a gas in a trap (30 Hz, 1 kHz) and a parameter 𝑎𝑠𝑛1 (0) = 1.3, the parameter we introduced in the BEC
description section parameter have the following value. The 𝑎𝑠𝑛1 averaged value is 𝑎𝑠𝑁/𝐿 = 0.8, 𝜒 = 20, and
the peak atomic density is typically 3 · 1013 at/cm3. The BEC length is 180 µm while the correlation length is
larger than 1 mm which means we do have a BEC and not a quasi-BEC. The healing length is 1.1 µm and the BEC
width typically 2.5 µm. The gas is indeed far from the Lieb-Liniger regime as 𝛾 = 3 · 10−5
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Chapter IV

The microchannel plate to probe
momentum correlations

The main advantage of using metastable helium lies in the ability to detect individual atoms.
We therefore dedicate this chapter to the description of our detector, the MicroChannel Plate
(MCP) and the delay lines. In the first section, we explain how the detector works (section
1.A) and allows to reconstruct the position and the arrival time of single atoms (section 1.B).
We describe in particular the details of the reconstruction program. In the second section, we
detail the installation of a shield that protects the MCP, which was heated by the vertical laser.
The last section models the MCP as 𝑁 parallel on-off detectors. We also emphasize the limits
of the detector: the maximum number of particles that can be detected in section 3.B and the
saturation issues in section 3.C.

What we knew, what is new ? The installation of the shield to protect the MCP
was done in the early stage of my work in the laboratory. Its side effect on the
detectivity led us to work on and change the reconstruction program that are
described here.

1. MCP detection principle
This section introduces theMCP operation: a metastable helium atom colliding a surface takes
off an electron which is accelerated by a strong electric field. Collisions in the channel trigger
an electronic cascade. The signal then propagates into two perpendiculars delay lines placed
below the MCP and is digitized. The atom position and impact time on the detector can then
be reconstructed.
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Figure 51: Left: Scheme of a MCP and pictures of the two types of MCP send by Hamamatsu.
The new generation of funnel type MCPs has a greater open-air ratio which increases the
probability for the electron to trigger an electronic cascade. This type of MCP was installed
on our experiment by Marolleau (2022). Middle: principle of the electronic cascade triggered
by an incoming atom : the teared out electron is accelerated by an electric field of 1.3 kV/mm
and is expected to takes off an other electron when colliding in the channel. Repeating this
process, a single electron is converted into an electronic cascade. Right: the tilt 𝜃 of the
channel forces an incoming atom to collide on the surface and set also the time precision.
Indeed the time uncertainty depends on the channel size and tilt as well as on the atom velocity
𝑣 as Δ𝑡 = 𝑑/𝑣 tan 𝜃. ©Hamamatsu Photonics and Marolleau (2022).

1.A From a metastable atom to an electronic signal

A metastable helium atom generating an electronic cascade

When a He* atom hits the inconel1 surface of the MCP, the probability it takes off an electron
is expected to be around 50-70 % (Vassen et al., 2012). The teared out electron must then enter
the channel and triggers an electronic cascade, as it is accelerated by a strong electric field of
1.3 kV/mm.

In order to increase the probability for the electron to stay in the channel and be accelerated,
the open-air ratio, surface covered by channels over the total surface of theMCP, was increased
from 50% to 90%, as illustrated in Figure 51. When an atom enters a channel, as the latter is
tilted, it can take off an electron at the beginning of the channel or after a maximal distance
ℎ = 𝑑/tan 𝜃 where 𝜃 = 20 is the tilt angle of the channel and 𝑑 = 12 µm is the diameter of the
channel. As the MCP is located 45 cm below the science chamber, the helium velocity when
they enter a channel is roughly 3 m/s hence the MCP geometry gives a lower bound for the
time resolution of 5 µs.

Signal propagation in the delay lines

Above theMCP are installed two perpendicular delay line : a signal triggered by the electronic
cascadewill then propagates along the two delay lines, on both direction. The line being coiled,
the velocity at which the pulse propagates in the transverse direction is not the speed of light,
but the speed of light divided by the loop number. The number of loops is 100 in our case,
which gives an effective velocity of 1 mm/ns. The transverse velocity along each axis are
slightly different as it is 1.02 mm/ns along x and 1.13 mm/ns along Y. This value depends
on the manufactured delay lines. Once the signal exited the delay line, it is amplified with a

1Inconel is a nickel-chromium-based superalloy “often utilized in extreme environments where components
are subjected to high temperature, pressure or mechanical loads” (Wikipedia).
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Figure 52: Propagation and amplification of the electronic cascade into a time quadruplet.
The signal generated by the electronic cascade propagates without dispersion through the delay
line. The later being coiled, the transverse velocity of the pulse is not the speed of light but
1 mm/ns. The signal of each channel is then amplified and digitized by the CFD and TDC
(see text for description). The computer collects then a list of arrival time on each channel
𝑋1, 𝑋2, 𝑌1 and 𝑌2. ©Left figure courtesy of David Clément (2019).

gain of 80 and digitized by the constant fraction discriminator (CFD) and the time-to-digital
discriminator (TDC), as illustrated in Figure 52.

The Constant Fraction Discriminator

The role of the CFD is to produce an analog gate signal whose leading edge does not depend
on the amplitude of the incoming pulse.

The CFD analog chain: constructs the so-called analog monitor signal. To do so, it
splits the signal in two, characterized by the fraction 𝑓𝑐, whose recommended value is 0.35.
This value is the one set on our experiment. The first part of the signal is passed through a
2 ns delay line, which should be compared with the typical width of a pulse, a few ns2. The
second signal is inverted. The analog monitor signal is then the sum of those two signals
𝐴𝑚𝑜𝑛 (𝑡) = 𝑓𝑐𝐴𝑖𝑛 (𝑡) − 𝐴𝑖𝑛 (𝑡 − 𝜏). This is represented by the first CFD inset of Figure 52.

The CFD digital circuit generates a digital pulse from the analog monitor signal and the
input signal. The parameters to tune the properties of the CFD output are the Threshold and
the Walk level. The analog gate generated signal is positive if the two following conditions
are met:

1. the input signal 𝐴𝑖𝑛 must be above the threshold value (set by the user),

2. the analog monitor signal 𝐴𝑚𝑜𝑛 (𝑡) is greater than the Walk level Z.

Those two conditions are represented in the right CFD inset of Figure 52.
2In the CFD Manual, RoentDek suggests the following to set the delay line value: “If the pulse rise time RT is

defined as the time from reaching 10% to 90% of the signal maximum, the delay shall be equal or smaller (50-80%)
than this rise time RT, depending on the CFD fraction ratio f. For small CFD fractions (<0.5), a thumb rule for
an appropriate CFD delay D is D = RT (1-f).” This value was set on 07/07/2022 in our experiment.
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The time-to-digital discriminator

The analog gate signal generated by the CFD is then digitized by the TDC, based on a Field
Programmable Gate Array (FPGA) chip developed by R. Sellem and D. Heurteau within the
Paris-Saclay University. It can work up to a rate of 4.1 MHz per channel, with an elementary
coding step of 120 ps and a resolution of 62(3) ps (Nogrette et al., 2015). I will not provide
further details on how the TDC works and refer the interested reader to the previous reference
or to Marolleau (2022) and Cayla (2018). We assume for the following that the TDC sends a
list of digitized times per channel to the computer.

1.B Reconstruction of individual particles
We now move on to the description of the reconstruction algorithm that identifies atoms from
the list of times sent by the TDC. The first step of the reconstruction algorithm is the so-called
demuxing operation3, which consists of sorting elements by time and by channel. The second
step is to discriminate which times can match an atom and gather times by quadruplets. As I
neither studied not study nor modify the first step of this program, the interested reader should
refer to Marolleau (2022) for detailed explanations. Here, I will focus on the reconstruction
part, assuming the program starts with four sorted lists of times X1, X2, Y1, and Y2, one for
each channel.

Timing conditions that must satisfy a reconstructed atom

When an atom triggers an electronic fountain, one should obtain four times 𝑡𝑋1, 𝑡𝑋2, 𝑡𝑌1, and
𝑡𝑌2. Note that all these events should be close enough. In the terminology introduced by
Schellekens (2007), the events should belong to the same time-bulb, which is visually rep-
resented in light green in Figure 53. In other words, the time difference between each time
should be lower than the propagation time 𝑡𝐷 along the entire MCP diameter 𝐷:

∀𝑖, 𝑗 , |𝑡𝑋𝑖 − 𝑡𝑋 𝑗 | < 𝑡𝐷 ; |𝑡𝑋𝑖 − 𝑡𝑌 𝑗 | < 𝑡𝐷 ; |𝑡𝑌𝑖 − 𝑡𝑌 𝑗 | < 𝑡𝐷 (173)

This will be useful not to try all quadruplets in the algorithm. The time difference between
the X delay lines gives the position of the atom on the X axis and so for the Y axis. Indeed,
the position of the detected atom depends only on the velocity of the propagation signal along
each delay line :

𝑋 =
𝑐𝑥,⊥
2

(𝑡𝑋1 − 𝑡𝑋2) , 𝑌 =
𝑐𝑦,⊥
2

(𝑡𝑌1 − 𝑡𝑌2) (174)

where 𝑐𝑥,⊥ = 1.02 mm/ns is the velocity of the signal along the X axis and 𝑐𝑦 = 1.13 mm/ns
along the Y axis. Those values depend on each delay line but should be the same, with 10%
construction tolerance.
The position of the detected atoms must be on the MCP and one must therefore have

𝑋2 + 𝑌2 ≤ 𝐷2/4. (175)

The total length of the wires being constant, the time it takes for the signal to go through it
should be constant too. The propagation time through the X delay line should be equal to the
one along Y (up to a constant) and therefore the quantity 𝑆

𝑆 ≡ 𝑡𝑋1 + 𝑡𝑋2 − 𝑡𝑌1 − 𝑡𝑌2 ∼ 𝐶𝑠𝑡 (176)
3This name refers to a demultiplexer (demux), which is a digital circuit that takes a single input signal and

routes it to one of several output lines, based on a set of control signals (selectors).
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Figure 53: Scheme of the reconstruction algorithm. We loop over the X1 channel and test all
quadruplets in the X1 time-bulb, represented in light green in the figure. In the example above,
there are three candidates. Among those quadruplets, we select those who fulfill conditions
(173), (175) and (177) to the potential atoms list. Here, 𝑄243 and 𝑄244 felt on the MCP but
only the offset of 𝑄244 was within the authorized range. Once we reconstructed all potential
atoms, atoms are extracted from this list, but making sure that a single time is not involved in
two different quadruplets.

should be conserved. In practice, the offset is not constant but depends on the location
on the MCP. This was already the case with the previous MCP and electronics generation
(Schellekens, 2007), and it was reported in other setups (O. Jagutzki et al., 2002). Each new
detector must be calibrated to have a reference map of the local offset value 𝑆𝑟𝑒 𝑓 (𝑋,𝑌 ). We
will describe the calibration of the detector in the next section 2.B. Once calibrated, any atom
candidate that will be reconstructed must satisfy the condition

|𝑡𝑋1 + 𝑡𝑋2 − 𝑡𝑌1 − 𝑡𝑌2 − 𝑆𝑟𝑒 𝑓 (𝑋,𝑌 ) | < 𝜖𝑆 (177)

where 𝜖𝑆 is small compare to 𝐷. It is 6 time units, compared to the 700 time units diameter of
the MCP.

Description of the reconstruction algorithm

From a technical perspective, the algorithm was developed in C++. Its execution time is typ-
ically a few hundred milliseconds, much shorter than an experimental cycle (10 seconds),
allowing for real-time reconstruction. The first algorithm to account for the atoms’ impact
positions was implemented by Schellekens (2007) and improved by Perrin (2008). It was
rewritten from scratch by Amodjee (2020) when the new electronics developed by Nogrette
et al. (2015) were installed. Since summer 2022, the program has been monitored with Git
and stored in a public GitLab repository.

In addition to the algorithm currently running on the experiment’s computer, it is now
possible to re-run the reconstruction algorithmwith different parameters using the heliumtools
re-reconstruction module4.

The reconstruction algorithm pseudo-code is written in Program 54. We loop over one
channel, here 𝑋1 = [𝑎, ...], and select all events on the tree other channels in the time window
[𝑎 − 𝐷, 𝑎 + 𝐷]. For all quadruplet in this window event, we test conditions (175) and (177)
i.e. if the atom candidate is on the MCP and if its offset is near the reference value 𝑆𝑟𝑒 𝑓 (𝑋,𝑌 ).
If yes, we add it to the list of potential atoms, which is not the definitive list of atoms. We
then sort this potential atoms list by their offset difference value and loop over the elements
of the list, the different candidates. We do not want a single time signal to reconstruct two
different atoms. Therefore, we accept a candidate only if each time that define its location is

4This is possible if the raw data are saved. We do not save all data on a daily basis because of the memory
usage. In 2023, we saved all data resulting in a 610 Go folder. We decided to save raw data only when needed.
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not already in the atom list. Because the list was ordered by offset difference value, it means
that we give the priority to small offset discrepancy.

D = 80 # diameter of the MCP, in TDC time unit
type X1, X2, Y1, Y2 = list #of ordered times
possible_atoms = [] # empty list
while X1.is_not_empty():

a = X1.begin()
# Suppress elements that will never be used since X1 is time

ordered↩→

{X2, Y1, Y2}.suppress_all_events_before(a - D)
selected_events = {[a], X2, Y1, Y2}.select_all_events_before(a+D)
for each quadruplet Q = {a, b, c, d} in selected_events:

^^I bool test1 = is_the_atom_on_MCP(Q)
^^I bool test2 = is_offset_zero(Q)

if test1 & test2 :
possible_atoms.append({a, b, c, d})

X1.pop(a)
# We sort the potential atom list by their offset value
# to iterate over the potential_atom list
possible_atoms = sort_by_absolute_offset_value(possible_atoms)
atoms = []
# Test all candidate: we do not want the same time
# to reconstruct 2 different atoms
for candidate in possible_atoms:

is_true_atom = True
for i in range(4):

time_Xi = candidate[i]
# check that each time of the atom is not
# already in the atom list
if candidate.is_in(atoms[:,i]):

is_true_atom=False
if is_true_atom:

atoms.append(candidate)

Figure 54: Pseudo-code of the reconstruction

Summary This section went through the detection process of single atoms: the
latter provokes an electronic cascade that generates four impulsions, propagating
through delay lines. The arrival time of each signal is then digitalized by a TDC
and saved onto a computer. A posteriori (but in real time compare to the experi-
ment cycle that is 10s), an algorithm sorts out the digital times to reconstruct the
position and impact time of individual particles.
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Figure 55: Left: Dark signal of the detector reported by Jaskula (2010). The MCP map is
acquired during 11 s and signal is due to the “ambient light reaching the detector through the
upper viewports”. On the right subplot, the dipole trap was turned on for several seconds to
heat the plate before it is switched off for the acquisition. We observe a clear effect of the
laser on a 3 cm region. Note that with the Hamamatsu model, the dark current is much lower
and can be explained by residual ions in the vacuum chamber. Middle: evolution of the hole
radius of the MCP on the 28th of January, 2020. Time is in cycle unit, typically 10 seconds.
The dipole trap is off for the first 6 seconds and then ramped from 0 to 1.8 W in 500 ms, kept
for 600 ms at maximum power and damped to 0.5 W in 4 seconds. Right: Position of BEC
after it was kicked by the Raman transfer. Blue is the original position of the BEC, orange is
the one after the first Raman beam was tilted and the dark one is the one after both Raman
beam were tilted with respect to the Y axis. Because of optical access, it is not possible to
increase this angle.

2. Protection and analysis of our MCP

2.A Protection of the detector

The MCP under fire: genesis of the problem

Our BEC geometry is cigar-shaped in the vertical direction and this trap is created using a
tightly focused vertical laser and a shallow horizontal beam. After RF evaporation, the mag-
netically trapped cloud is transferred to the dipole trap through the single vertical beam. This
vertical geometry is such that the laser beam hits and heats the detector, on a scale of 1 cm2.
When installed in 2009, the teammade sure that the 1W dipole trap heating effect on the MCP
was not a problem (Jaskula, 2010), even thought they observed an effect on the dark current
as shown in Figure 55. Upon changing the dipole trap laser source, the increased power of 4
W did not damage the detector. The latter was burnt in 2019 when exposed to 4W for the total
duration of the experimental cycle5, rendering it unable to detect atoms any longer in this 1
cm2 region. The new MCP model installed in 2019 developed by Hamamatsu, was expected
to have a better quantum efficiency (Marolleau, 2022). It turns out that its resistance to heat
was also lower hence it was also burnt in January 2020 with a 3.5 W beam ramping to 0.5 W
in 4 seconds.

5The ODT beam was kept on during the MOT and magnetic trap steps in order to keep hot AOMs so that the
laser power at the moment the trap is loaded was nice.
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The team in hot water: choice of the shield solution

The possibilities to overcome this issue were the following.

1. Change the geometry to have a cigar shaped BEC in the horizontal direction.

2. Perform the evaporation in the horizontal axis.

3. Use two vertical beams going through the two windows at 7 degrees.

4. Use a single beam at 7 degrees and incline all optical lattices (optical dipole trap, 1064
lattice beams, Bragg diffraction beams).

5. Add a shield on the MCP to protect it and modify the Raman transition to deflect atoms
so that they do not hit this protection.

We are primarily focused on one-dimensional physics along the elongated direction. The
first option implies that both the BEC and the pairs reach the MCP simultaneously. However,
in the existing setup, we frequently observe MCP saturation. This occurs when the particle
flux is excessively high (Nogrette et al., 2015) which is typically the case when a BEC reaches
the detector, causing the electronics to lag and potentially compromising the arrival time on
each channel6. The second option was tested and a cloud was successfully loaded but the
density and oscillations frequencies were not high enough to obtain a BEC (Amodjee (2020),
Marolleau (2022)). Among the third and fourth option, the fourth is better as the third one mix
the horizontal and vertical confinement. In the context of DCE modulation, modulating the
trap width for the DCE project would be more difficult with this setup. The rationale behind
choosing the fifth option is not entirely clear to me. At that time, the shield solution was
anticipated to be relatively straightforward as the Raman beams were already set to deflect the
atomic beam. The idea to place this shield on a mechanical shutter (NASA, 2003) was rapidly
put aside because of the complexity of adding such a mechanical piece under vacuum. Note
that is exists also MCPs with a hole , typically used in particle physics to let a high flux going
through the detector. This option is not available with an 8 cm diameter MCP. It was therefore
decided to install a non-removable shield. In retrospect, I am now convinced that the fourth
option would have been a better choice7, but I do not remember it was an option at that time.

In the literature, another experiment needed the MCP not to be placed just under the trap.
Van Der Beek et al. (2020) installed a vertical lattice to measure gravity while measuring the
interference pattern with anMCP. They moved theMCP beside and deflected the atomic beam
with a magnetic coil. This is not a problem when measuring a flux of particles. This magnetic
solution is however not possible for us. The free fall of m=1 atoms is affected by residual
magnetic field of the vacuum chamber. Furthermore, we want a good precision on the impact
position of particles and need a really high stability and I do not expect a magnetic gradient to
be really precise.

6Note however that I am not sure if the saturation would still apply if the BEC is horizontally elongated. An in-
trap cigar-shape BEC turns into a pancake after time of flight. This means that the detection duration of the cloud
would be much longer: some tens of ms to be compared to less than 1 ms in this work. For a twenty thousands
atoms BEC, this would mean that the flux would be of the order of

7We manufactured mechanical piece and ordered the material to process to this tilt of the experimental setup.
Such modification is however quite important and would need at least one month of work (if everything goes well,
which is quite rare). We decided to wait for nice experimental result before starting such modification.
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Figure 56: Pictures of the pastille that was installed on the detector to prevent the laser burning
the MCP. A & B) Picture of the pastille during its installation on the MCP. The white piece
is made of ceramic in order to isolate the pastille from the -2kV ring. C) Photography of the
pastille taken from the top of the vacuum chamber, through an infrared viewfinder. The dipole
trap laser, colored in red, is switched on a fewms at low power and is superposed to the picture
of the MCP, lit by a flashlight. The pink dashed curve represents the copper part of the pastille
that reflects more than 90% of the laser power. D) Gain map of the old Burle MCP on the
testing bench shined with UV photons, before we installed id on the experiment. The shield
effect did not seem to have side effect. E) Gain map of unpolarized helium atoms. The green
dashed circle represent the region where the BEC and the pairs are detected. One can see
that the pastille seems to have no effect in this region. F) Gain map of the pastille when only
non-magnetic atoms hit the detector : they do not cover in a uniform way the pastille because
they are released from a few µK cloud. Installation of the pastille was done in December 21
and January 22.

Lending an ear to the detector: shield installation

The first version of this shield or pastille was made of a stainless steel arm holding a 1550
nm treated mirror that was cut. When installed under vacuum, the coating came off and we
decided to replace the mirror by a simple diffusive copper piece. The copper piece diameter
is therefore 2.54 mm, cut at 5 mm from the center. It is tilted with respect to the vertical axis
by 7 degrees, so that the beam is not reflected towards the atoms. Its resistance to temperature
was tested in September 2021, on a dedicated bench: illuminating it continuously with a 1 W
laser, the temperature stabilized around 60 °C after a few hours under 10-7 mbar. The shield
was exposed with UV photons and revealed no side effect, even with the laser turned on as
represented by the image D of Figure 56.

In October, the shield was installed in the vacuum chamber, and we soon noticed its impact
on the gain map. Nearby atoms were disrupted, particularly around the corner, causing the
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formation of ears structure, named also les zoreilles in French, as illustrated in image E of
Figure 56. The arm shield being attached to the -2.6 kV anode, we thought that this effect
was due to the voltage difference between the shield and the MCP front, whose voltage is near
0 V. We decided, therefore, to ground it, isolating the shield from the -2.6 kV metallic ring.
This can be seen in the image A of Figure 56 where the metallic arm is attached with a peek
ceramic piece. This had no effect on the ears. The ears effect was in finemagnetic : the image
F of Figure 56 represents a 𝑚 = 0 cloud sufficiently hot to cover the entire surface of the MCP.
The ears seem no longer present. It turns out that one can still see a small effect on the atomic
density.

2.B Offset and resolution map of the detector

Procedure

As introduced in the previous section, the quantity 𝑆 = 𝑡𝑋1 + 𝑡𝑋2 − 𝑡𝑌1 − 𝑡𝑌2, called the offset,
should be conserved. This quantity should be even zero if the propagation time were equal,
the CFD of each time channel exactly the same and the propagation perfect in the line. In
practice, it is not equal to zero but also depends on the location on the detector. To realize
this offset map or gradient map, we expose the MCP to a really low flux of atoms in order not
to saturate the detector8 so that the atom number is decreased by a factor ten. We must also
change the reconstruction algorithm. In this case, we do not take the reference offset map. We
impose however more strict conditions to ensure that the quadruplet matches the signal of an
atom: we require to reconstruct an atom that the quadruplet should be the unique candidate in
its time-bulb.
We will use the following convention.

• The unit of this section is the time unit (t.u.) of the TDC (120 ps). It should be compared
with the time diameter of theMCP, the time it takes for an electronic signal to propagates
through the delay line. This is approximately 80 ns and depends on the delay line. The
ratio of the two gives 666. It is half the number of pixels due to the TDC digitalization.
Note that this is much smaller than the number of channels of the MCP along one axis.

• As the TDC returns integers, in order not to lose precision, the X time position is defined
as 𝑡𝑋1 − 𝑡𝑋2: we do not divide per two as in equation (174). The same remark applies
for Y.

• We neither divide by the propagation time as in (174). The discrepancy between the two
delay lines explains why the shape of the MCP in Figure 57 is not round.

In order to have many statistics per pixel, the results shown below are the outcome of a
few tens of hours experiment.

8This is done by turning off the transverse molasses and decreasing the MOT loading duration.
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Figure 57: Top: gain and offset maps of the detector after the shield installation. The left map
represents the number of shots used to compute the offset map. The right panel represents the
mean of the offset distribution per pixel. Bottom: the offset distribution for four pixels of
the detector. The pixel locations are represented with markers on the blue gain map. Data
obtained in July 22 and analyzed with the heliumtools mcp_map module.

Results: the not so constant offset map

For each detected atom, we record its position and its offset. The number of atoms per pixel
is shown on the left panel of Figure 57: it is typically a few hundreds. The map was acquired
with unpolarized atoms hence we clearly see the ugly ears at the corner of the shield. For each
pixel of the detector, we have an offset distribution 𝐷𝑆 (𝑋,𝑌 ). Typical distributions for four
pixels is shown in the bottom row of Figure 57. The location of the pixel is shown by colored
dots on the blue map. We see that the distributions are not centered exactly at the same value:
the first distribution is shifted compared to the third one. It reflects that the offset quantity
is not a constant but depends on the location on the detector. Because of the definition of
the offset, the offset value can only take pairs of integers. We observe that the width of the
distribution is typically 2 or 3 bins, which means it is 2-4 time units.

From the distribution 𝐷𝑠 (𝑋,𝑌 ) associated to each pixel, we can define a local mean value
𝑆(𝑋,𝑌 ) that is the mean of the offset distribution. The right panel of Figure 57 represents the
2Dmap of this mean: it is called the offset map. It is also referred to as gradient as we observe
that the offset drifts along the MCP from 0 (right bottom corner) to 60 t.u. (top left): the offset
is a local offset. This offset map is then used in the reconstruction program on a daily basis to
compare a quadruplet candidate to the tabulated offset.
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Figure 58: Resolution map of the detector. The left figure is just the standard deviation of
the offset distribution for each pixel. The right subplot is the standard deviation of the filtered
distribution. For each pixel for which we took out points that were outside the median ± 10
TDC time-steps. This filter removed 1.3% of the shots. Data obtained in July 22 and analyzed
with the heliumtools mcp_map module.

Results: the resolution map

Figure 58 shows the standard deviation of the offset distribution for each pixel. The left panel
is the standard deviation of the distribution for each point. The map seems to exhibit a high
inhomogeneity: similar works carried out by Marolleau (2019) or Cayla (2018) did not reveal
such inhomogeneities. Furthermore, we observe many “hot” pixels (darker color) revealing
a really high standard deviation. When looking closely to the histograms of those hot pixels,
we found anomalously high or low values. A closer look to the right marron histogram of
Figure 57 reveals an offset value of -55 t.u., while the majority is around 45. It is those
anomalous values that are responsible for the strong inhomogeneities of the map.

We are interested in the width of the distribution, hence we should get rid of this anomalous
values. This is done by filtering the data that are not “near” the local mean offset 𝑆(𝑥, 𝑦):

𝐷𝑠 (𝑋,𝑌 ) =
{
𝑠 ∈ 𝐷𝑆 (𝑋,𝑌 ) : |𝑠 − 𝑆(𝑋,𝑌 ) | < 10

}
(178)

The resultingmap is shown on the topmiddle panel of Figure 58 in red. The variation of the
resolution is much smoother and closer to the value reported by Marolleau (2019). However,
we still observe an effect of the shield near acute angles. The area of interest is depicted with a
black dashed circle: it is where the BEC arrives. On the top right is represented the distribution
of the standard deviation of the pixels of the interest area. In this region, the offset standard
deviation is 𝜎𝑠𝑡𝑑 = 1.4(2) t.u. This value is in agreement with 1.1(2) t.u., the value measured
by Marolleau (2022) on the same MCP, with the same electronics, but with UV photons and
without the shield.
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Discussion on the resolution of the detector

The spatial resolution of the detector was measured by Nogrette et al. (2015) using a grid and
looking at the point spread function on the detector. They showed that the measured quantity
was linked to the offset distributionwidth𝜎𝑠𝑡𝑑 . Indeed, the later quantity gives a good estimate
of how much we are sure that the atom did hit the detector at the position (𝑋,𝑌 ) and not at
the position (𝑋 + 𝛿𝑋,𝑌 + 𝛿𝑌 ). Let’s recall the process: the electronic cascade excites the
delay line on which an electronic pulse propagates. The width of the pulse is a few ns from
which we extract an “official time”. When the pulse shape is “clean” and always the same,
we can expect the TDC to be accurate in determining the center of the pulse9. Ultimately, the
precision is fixed by the timing step of the TDC of 120 ps. We can therefore introduce 𝜎𝑇 ,
the uncertainty associated to the ability to discriminate the center of the pulse. Assuming the
offset uncertainty is associated to the uncertainty 𝜎𝑇 for each channel10 (𝑋1, 𝑋2, 𝑌1, 𝑌2), we
write the uncertainty on 𝜎𝑆 as

𝜎𝑆 =
√
𝜎2
𝑋1 + 𝜎2

𝑋2 + 𝜎2
𝑌1 + 𝜎2

𝑌2 = 2𝜎𝑇 . (179)

The transverse resolution of the detector can then be deduced from the transverse velocity of
each delay line (174) and the measured uncertainty associated to the offset

𝜎𝑥 =
𝑐𝑥,⊥

2
√
2
𝜎𝑆 𝜎𝑦 =

𝑐𝑦,⊥

2
√
2
𝜎𝑆 (180)

Table IV.1 reports the RMS width of the offset distribution from the literature in which all
authors use the same electronics. Depending on the reference, the MCP studied was from the
brand Burle or the same as the one we use (from Hamamatsu). We observe that the standard
deviation of the offset distribution on the new Hamamatsu MCPs is smaller by a factor of
5. This is at first surprising as the transverse resolution is mainly due to the electronics. A
possible explanation for this improvement is that the new MCPs triggers a cleaner electronic
pulse on the delay lines. This makes the TDC operation more efficient, and we approach the
final limit of the transverse resolution, that is the time step of the TDC.

During the reconstruction process, the offset of quadruplet candidates is compared to the
reference offset. The standard deviation reported in Table IV.1 provides us the typical value
to which this difference should be compared. In the program, we allow typically a deviation
of 5 time units. This also gives us the in-plane resolution of our detector. From (179), we see
that the transverse resolution is 60 µm.

When the non-uniform offset is no longer stable over time: strange drift of the
offset reference

Before going to the next section, I would like to emphasize a weird drift that was observed
on the experiment. After the realization of the offset map, we realized that the mean offset
exhibited a slow drift on the order of a month. This was never noticed before: the offset map
was never used on a daily basis. This drift can be observed in Figure 59 where we plot the
offset mean value of the detected atoms for various dates. This drift is significant with respect

9We can draw a parallel with a Gaussian fit here: when the experimental signal is clean enough, one can
extract the center of a Gaussian with a precision much higher than the width of the Gaussian. However, when the
experimental signal is dirty and the shape changes at each repetition, the precision will be much lower.

10In their work, they changed the incoming particle flux and the acquisition time, namely the TDC. Those two
parameters have an effect, but it is much smaller than the noise associated to the detection time of each channel.
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Table IV.1: Comparison of the value measured in the literature for the transverse resolution
of the detector. Note that the values from Cayla (2018) are not stricly reported in the text of
his thesis. The value reported here was extracted from a colored resolution map. The factor of
2 that differs with the two other reference can be linked to the definition of resolution/offset
that I misunderstood. In the other work, the quantity that I refer to as 𝜎𝑠𝑡𝑑 is clearly the RMS
width.

Reference MCP type Incoming flux Offset std �̄�𝑠𝑡𝑑

(t.u.)
Offset std �̄�𝑠𝑡𝑑

(µm)
Nogrette et al.
(2015)

Burle UV 7.7(4) 920(50)

Cayla (2018) Burle UV 3.3(5) 400(60)
Marolleau
(2022)

Burle UV 6(1) 720(120)

Marolleau
(2022)

Hamamatsu UV 1.1(2) 130(20)

This work Hamamatsu Atoms 1.4(2) 170(20)

to the tolerance of the offset deviation, which is typically 5 t.u. We found no explanation to
this observation. After July 2023, the TDC threshold were changed making impossible the
comparison with the data represented here. Note however that a CFD was changer due to a
failure a few months after and might be the responsible for this drift. During the year 2024,
we did not witness such drift.

Summary This section reported the installation of a shield to protect the MCP.
Such device strongly affects the gain map, especially atoms with a magnetic mo-
ment. We also reported the measurement of the quantity called the offset to cali-
brate the detector. We then discussed the transverse resolution of the detector.

3. Physical description and limits of the detector

3.A Model of the MCP
In quantum optics, theory of single photo-detection is due to Glauber (1963b) in a seminal
paper called “The Quantum Theory of Optical Coherence”. In his work, he shows that single-
photon detector measure the normal ordered fields hence are quite adapted to measure (normal
ordered) correlation functions. We reproduce part of this work in Figure 60: the notation 𝐸 (−)

correspond to our (atomic) creation operator 𝑎† and 𝐸 (+) matches the annihilation operator 𝑎
while |𝑖〉 refers to the initial (atomic) field. All the machinery developed within the quantum
optics community can be applied to our detection scheme. In particular, theory of photo-
electron counting, further developed by Glauber (1963a) and Kelley and Kleiner (1964), can
be applied to our measure.

It should also be emphasized that single particle detection is not a Gaussian operation
(Sasaki and Suzuki, 2006). A particle-number-resolving detector projects the measured mode
𝑖 of a (Gaussian or not Gaussian) state on a non-Gaussian 𝑛-particle Fock state |𝑛〉𝑖 (Lvovsky
et al., 2020). The non-Gaussian operation of our detector could be studied using the tools
developed by Hloušek et al. (2021) as performed by Grygar et al. (2022) with photons. This
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Figure 59: Offset drift between 2022 and 2023. For each date, we gather atoms detected on
the region of interest on which is detected the BEC. We then computed the distribution of the
offset deviation : the offset minus the reference offset. The left panel represent the distribution
of four different distribution of offset distribution at different times. Each subplot represent
a month since the realization of the offset map in July 2022: the first, in blue, is centered at
0 as it was done at the moment of the offset map. The second one, orange, was acquired a
few month after and already presented a significant drift. The two other plots represent the
offset distribution after 6 and 12 months. Right plot: box-plot of distributions over time. The
green bar represents the median, the blue box the 1st and 3rd quartiles, and the black ends
are calculated using 1.5 times the inter-quartile range (the distance between the 1st and 3rd
quartile). We have added the mean in red.

would however require a better imaging system to infer the properties of the BEC.

3.B Maximum number of particle per mode
In Figure 60, we represented the MCP as an assembly of 𝑁 ∼ 107 independent detectors as
if each micro-channel could work in parallel. However, all micro-channels are connected to
the same electronics which prohibits the detection of “simultaneous” events. Here, we aim
to describe how many particles per mode one can detect. We first need to describe the size
of the input state: the atomic wave-function we aim to measure is localized on a size which
is roughly given by the BEC size. We naively model the collective excitation by a Gaussian
wave-function 𝜓0 ∝ 𝑒−𝑧

2/2𝜎2
0+𝑖𝑘𝑧 where ℏ𝑘 is the momentum of the quasi-particle and 𝜎0 is

the typical width of the wave-function. Left panel of Figure 61 shows that the typical width
of our Gaussian wave-function can be related to the BEC length. Due to Heisenberg relation,
the initial width of this wave-packet in momentum is �̃�0 = 1/𝜎0. When the trap is switched
off, the wave-packet expands and the typical size of the wave-packet is given by (Le Bellac,
2007)

Δ𝑥 =
1
√
2

√
1

�̃�2
0

+
ℏ2�̃�2

0 𝑡
2

𝑚2
=

1
√
2

√
𝜎2
0 + ℏ2𝑡2

𝑚2𝜎2
0

∼ ℏ𝑡
√
2𝑚𝜎0

. (181)

On the right panel of Figure 61, we show the typical size of the wave-function when it
reaches the detector as a function of the initial BEC length11. Typically, we observe that after

11First note that the size of the wave-function is not the size of the 𝑘 = 0 BEC, whose size is broadened by
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Figure 60: Left: model of the detector as 𝑁 independent single particle detectors. The atomic
wave-function is delocalized over all the detectors but only one “clicks” when an atom is
detected. Right top: reproduction of Glauber (1963b) and his “Gedankenexperiment” exper-
iment to measure the 𝑛𝑡ℎ order correlation function. Right bottom is an optical analog to
measure the n=8th order equal time correlation function. For photons, the wave-function must
be broadened using beam-splitters and many single photon detectors (SPDs). One could also
extend the photon path at each beam splitter to detect it with the same SPD to lower the cost
of the setup (Krishnaswamy et al., 2024). For an atomic momentum microscope the wave-
function expansion during the time of flight is such that the wave-packets expands “for free”.

Figure 61: Left: In situ density of the cloud. The blue solid curve represents the density profile
of a BEC in the local density approximation, which is almost a Thomas-Fermi profile. The
orange dashed curve represents a Gaussian whose width is 𝜎/

√
2. The collective excitation is

delocalized over the BEC at 𝑡 = 0. Right: typical width of a single mode given by equation
(181) as a function of the initial BEC size. Note the prefactor is not expected to be correct
because of our too simple model.
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Figure 62: Left: the experimental setup. Right: detected atomic flux as a function of time.
The BEC is the central peak that arrives at 308 ms. We can see that when the atomic flux is
too high (higher than a few MHz), the electronics saturates. It causes the density to drop at
308 ms. The two insets represent the transverse profile of the side bands, that hit the MCP at
306.8 ms and 309.1 ms (blue shaded regions). A hole is visible on the second peak transverse
density profile: it is due to the saturation of individual micro-channels.

a 308 ms time-of-flight, the size of a mode is some hundred of microns. When they reach
the detector, atom move typically at 3 m/s. This means that a single mode of the atomic
wave-function is measured in 100 µs. The current electronic we use can “reconstruct three-
dimensional coordinates of particles at rates up to 3.2 MHz” (Nogrette et al., 2015). This
provides us that the atom number should be much lower than 300 atoms per mode. Within
the optical analog drawn in Figure 60, our setup is therefore equivalent to 300 single particle
detectors. The number of particle of the state we measure must be lower than this number of
single particle detector: Sperling et al. (2012b) showed that we should be able to detect a mode
with (just) a few particles12. Note however that for a thermal state with mean population 𝑛, the
variance is given by 𝑛 + 𝑛2. It means that we cannot fully resolve the full counting statistics
of a state with a mean number of particles higher than 10.

3.C Saturation
As we saw in the last chapter (see Section 4.A), there are typically a few tens of thousands of
atoms in a BEC.When released from the trap, atom-atom interactions cause the BEC to expand
and its aspect ratio to invert. The initial cigar-shape BEC turns into a pancake. After a 308
ms time-of-flight, the “pancake thickness” is typically a few hundreds of microns. It means
that some 104 atoms are detected within ∼ 0.3 ms. This flux is too high to count precisely
the number of atoms, and it saturates the electronics. The saturation is clearly illustrated in
Figure 62, at 308 ms: when the atomic flux exceeds the TDC maximal flux (a few MHz), the
signal drops to zero. This saturation does not affect the useful signal i.e. the correlated pairs
that arrive before and after the BEC, highlighted with the blue shaded area.

Another type of saturation however affects the signal we aim to measure. Once a
metastable helium atom triggered an electronic fountain, it takes a few ms for the channel to

interactions. Second, because of our (too) simple model, the mode size I refer to should be taken with caution as
the pre-factor are note correct. Still it provides a good estimate of the observed mode size as we shall see later.

12In their papers, authors show that “the number of on-off detectors 𝑁 must exceed the photon number by a
few orders of magnitude in order to sufficiently discriminate different Fock states”. In an extension of their work,
Sperling et al. (2012a) show that the measured counting statistics converges to the real statistics as 1/𝑁 .
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charge back and be able to re-detect another atom. The positive velocity side bands reach
the MCP only 1 ms after the BEC (around 309 ms). The two insets in Figure 62 show the
transverse density of the two sidebands. We observe a hole at the middle of the transverse
profile of the second peak: this is a result of the micro-channel saturation due to the BEC.
Central to the following of this work is our ability to deflect (only) the BEC to prevent this
saturation.

3.D Efficiency, tomography and conclusion
So far I did not mention the efficiency of the detector. It was estimated by Ténart (2021) to
be 53(2)% on a different experimental setup. This value has a simple explanation: when a
metastable atom tears off an electron, there is a 1/2 probability that the electron enters the
channel (Vassen et al., 2012). On our experiment, our less performant imaging system did
not allow such precise measurement. In the end of this manuscript, we use a self-consistent
method to find a 25(15)% efficiency and the relative number squeezing observed by Leprince
(2024) provides a lower bound of 15% on the quantum efficiency. Recently, Allemand et al.
(2024) performed the tomography of the detector, showing that it is indeed well described by
a binomial law, validating our toy model of Figure 60.

Due to the channel tilt (and not the coding step13), the time at which an atom tears out an
electron varies by ± 5 µs, see Figure 51. For a 3 m/s atom velocity, the longitudinal resolution
is therefore ± 15 µm. On the transverse plane, the measurement in Table IV.1 leads to a
resolution of ± 60 µm. In terms of in-trap velocity, this gives a resolution of 0.05 and 0.2
mm/s, in agreement with Hercé (2023).

Summary In this chapter, we introduced the MCP and the delay lines, that allow
us to reconstruct the 3D momentum distribution of the state. Even though the
shield that protects the detector influences the detection and covers partially the
MCP, it does not affect its resolution. The measured resolution (0.05 and 0.2
mm/s) is smaller than the mode size (1 mm/s and 10 mm/s) which allow us to
resolve each mode, for atom number smaller than a few dozens.

13Note that this totally disagrees with the “astonishing” resolution of 2 ns reported by Hodgman et al. (2017)
which allow them to “Solve the Quantum Many-Body Problem via Correlations Measured with a Momentum
Microscope”. Still, I hope our smaller resolution will not prevent us from Solving the Quantum Origin of the
Early Universe...
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Chapter V

Controlling the quasi-particle
creation

This chapter focuses on the pair creation process and its dynamics. In the first section, we
observe the breathingmode of the BEC (1.A), then implement the protocol proposed in section
2.C of Chapter 1 to drive oscillations at an arbitrary frequency 𝜔𝑑 . In subsection 1.C, we
measure the wave-vector of the detected quasi-particles as a function of frequency which allow
us to recover the Bogoliubov dispersion relation. The next section focuses on the exponential
pair creation process. We observe a strong oscillation of the atom number that we explain in
subsection 2.C. Such oscillation is due to the non-adiabaticity of the mapping from the phonon
basis to the atom basis that was introduced in the chapter 1, section 3.C. Subsection 2.D focuses
on the measurement of the growth rate. We observe a deviation from the theoretical growth
rate, which we interpret as the decay rate. Although these measurements are preliminary, they
align with the decay rate recently derived by Micheli and Robertson (2022) for a quasi-BEC.
Finally, in subsection 2.E, we present the saturation of the growth process, and in subsection
2.F, we report on an unexpected shift in the phonon wavevector.

What we knew, what is new ? The experiments reported in this chapter were
conducted as part of this PhD work and represent original research.

1. Measuring the Bogoliubov dispersion relation
We start this section 1.A by observing the BEC breathing mode. We then apply the protocol
of the first chapter to better control the oscillation of the BEC.

1.A Observation of the breathing mode of the BEC
Controlling the transverse oscillation of the BEC is central to this work. As an initial valida-
tion, we reproduce the experiment reported by Chevy et al. (2002) to observe the breathing
mode of the BEC. We achieve this by modulating the trap’s laser power for 8 cycles, near the
expected resonance around 2.05 kHz. Subsequently, we hold the BEC for an additional dura-
tion, varying from 1 to 4 ms, and detect the cloud on the MCP after a 308 ms time-of-flight.
Figure 63 displays four snapshots of the transverse density. Notably, the cloud width along
the anti-diagonal in the bottom left image is smaller than in the bottom right one. The right
panel shows the standard deviation of the BEC width along the diagonal (green triangles) and
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Figure 63: Breathing mode of the BEC: The laser power is modulated over 8 periods with a
relative amplitude of 8% at 2.05 kHz, close to the trap’s resonant frequency. After excitation,
the BEC is held in the trap for a duration 𝜏. Left: Snapshots of the cloud taken at 1.0, 1.1, 1.2,
and 1.3 ms. In the bottom-left image (1.1 ms), the cloud appears thinner than in the bottom-
right image (1.3 ms). Right: width of the BEC as a function of time. The first four data
points correspond to the images shown on the left. The different symbols represent different
directions: the yellow circles correspond to the anti-diagonal (thinnest direction at 1.1 ms),
while the green triangles represent the diagonal (widest direction).

the anti-diagonal (yellow circles) as a function of time. The error bars represent the deviations
from a few experiment repetitions. The breathing mode frequency is measured at 2.08(1) kHz,
which corresponds to twice the trap frequency. Depending on the configuration of the dipole
trap and the period at which the experiment is carried, the breathing mode frequency in the
following sections will range between 2 and 2.1 kHz.

For a transversely symmetric trap, one would expect the transverse density profile to be
symmetric as well. However, we observe that the BEC oscillations are larger along the anti-
diagonal than along the diagonal. This discrepancy can be seen in the left snapshots, but it is
more clearly visible in the right plot, where the oscillation amplitude differs by a factor of 2
between the two axes. There are two possible explanations for this discrepancy:

• Does the horizontal trapping laser break the transverse symmetry? The transverse trap-
ping due to the 𝑥-aligned horizontal laser differs in the 𝑥 and 𝑦 directions. However, its
contribution to the transverse potential is negligible compared to the vertical laser beam.
It changes the 𝑦-frequency by only 0.1% relative to the 𝑥-frequency. Furthermore, the
preferred axis for the BEC oscillation is at 45 degrees with respect to this symmetry.

• Are there optical aberrations in the vertical laser causing this discrepancy? Optical aber-
rations in the vertical laser could modify the trap symmetry. However, if this were the
case, we would expect to find another frequency at which the other axis of the BEC
enters a breathing mode. We did not find such a frequency.

As a conclusion, we clearly observe the breathing mode of the BEC even though we no-
ticed an unknown symmetry breaking of the collective oscillation. In the following part, we
focus on the axis that exhibits the highest oscillation.
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Figure 64: Width of the BEC as a function of time in the trap while the laser power is mod-
ulated at 3 kHz (left) and 1 kHz (middle and right). On the two first panels, the amplitude of
the excitation is 15% of the laser power while it is 35% on the third one. Second row: Fourier
transform of the first row. ®Data obtained on the 23rd of July 2024.

1.B Forcing the BEC oscillation

In the second section of the first chapter, we showed that we can force the BEC oscillation at
any frequency, by turning on slowly the modulation of the trap. In the theoretical proposal, we
used a low amplitude of modulation, which resulted in a variation of the BEC width of a few
percents. Experimentally, such small oscillation is indiscernible from the shot-to-shot noise:
the modulation amplitude must be higher.

Protocol: We modulate the transverse frequency of a BEC in a (30 Hz, 1.05 kHz) dipole
trap. The trap is modulated with a frequency different from the breathing mode frequency of
2.1 kHz. The modulation of the trap is turned on as proposed in the first chapter, Sec. 2.C
in equation (38), with a hyperbolic tangent function and a characteristic time 𝜏 = 3 ms. The
amplitude of the modulation is some dozen of percents of the final power of the dipole trap
i.e. it is sufficiently large to induce visible oscillation of the BEC width.

Result: The first row of Figure 64 represents the width of the BEC as a function of the
time in the trap. The excitation frequency is 3 kHz (first panel) and 1 kHz (second one) and
the amplitude of the modulation is 15% of the final laser power. On the last panel, the fre-
quency is 1 kHz, as in the middle one but the amplitude is 35%. The second row displays
the Fourier transform, of the first row, computed with zero padding and apodization. The
driving frequency is highlighted by a vertical shaded green line while the breathing frequency
resonance is shown in red.

Discussion: The “oscillations” of the first row of Figure 64 are less obvious than the one
displayed in Figure 63, they are quite noisy. The amplitude of the signal ranges from 2.8 to
3.2 mm while it ranged from 2.2 to 4.2 mm in Figure 63. Here, we need to look at the Fourier
transform of the signal to have information about its spectrum, as depicted in the second row.
In the first and second panels, we observe a peak that is slightly above the noise, at the driving
frequency highlighted with the green vertical bar (3 kHz on the left and 1 kHz in the middle).
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Figure 65: Excitation spectrum of the BEC. The intensity of the laser is modulated at different
frequencies, amplitude and duration. Left: raw data that shows the momentum distribution of
the gas for four different modulation frequencies. The position of the observed phonon peaks
are identified (green shaded vertical bars). Right: the excitation frequency as a function of the
phonon peak velocity. The color of the square points matches the color of the left histograms.
The other blue points lie either on the Bogoliubov dispersion relation curve (circles) or on a
narrow peak around 9.5 mm/s (triangles). ®Data obtained on May 23.

On the last panel, the amplitude of the modulation was increased to 35% of the laser power. In
this case, the Fourier component at the driving frequency clearly detaches from the noise, but
the breathing mode is also excited: the BEC oscillates at two frequencies. As a conclusion,
we see that it is not easy to force the oscillation of the BEC, or at least to measure that it is
the case, because of the shot-to-shot fluctuations. Also, we see that it is hard not to excite the
breathing mode when increasing the amplitude of the modulation.

1.C Exciting Bogoliubov modes to measure the dispersion relation
If the BEC perfectly oscillates at 𝜔𝑑 , so does the sound speed 𝑐2𝑠 = 𝑐2𝑠,0(1 + 𝐴 sin(𝜔𝑑𝑡)). To
directly relate sine variation of the BECwidth to sine variation of the sound speed, we assumed
here the amplitude of the modulation was small enough. This is not necessary the case, and it
will lead to the presence of different frequencies in the spectrum of 𝑐𝑠. Still, if we assume the
sound speed oscillates at 𝜔𝑑 , it excites two Bogoliubov modes at ±𝑘 such that 𝐸 (𝑘) = ℏ𝜔𝑑/2.
Here, 𝐸 (𝑘) =

√
𝜖2𝑘 + 2𝑚𝑐2𝑠𝜖

𝑘
is the energy of the Bogoliubov mode and 𝜖𝑘 = ℏ2𝑘2/2𝑚. By

tuning the oscillation frequency𝜔𝑑 , it is therefore possible to probe the Bogoliubov dispersion
relation.

Protocol: The experiment is carried out in a single vertical dipole trap (7 Hz, 1.5 kHz),
and the intensity of the laser is modulated at different frequencies. In this configuration, the
breathing mode frequency is 3 kHz. The experiment is repeated for various amplitudes and
durations of the modulation in order to observe pairs. The number of oscillations ranges from
10 near resonance to 50 away from resonance; the amplitude from 10% to 80%. For each
configuration, the momentum of the phonon peaks, if they are visible, is identified.

Results: The left panels of Figure 65 represent raw data for four different excitation fre-
quencies. They display the histogram of detected atoms as a function of their reconstructed
speed. The central peak corresponds to the BEC, and the two sidebands are the phonon peaks,
highlighted with green vertical bars. The right panel of the figure shows the modulation fre-
quency a function of the fitted phonon speed. The color of the four squares matches the color
of the plots on the left panel. The solid black curve represents the Bogoliubov dispersion re-
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lation for a sound speed of 16(2) mm/s. The other points are represented in blue triangle and
circles.

Interpretation: The experimental points of the dispersion relation can be split into two
groups: one lies on the Bogoliubov curve (blue circles), and the other one is a narrow peak
around 10 mm/s, regardless of the excitation frequency (blue triangles). The first group allows
us to recover the Bogoliubov dispersion relation as explained above. The second one is a
consequence of parametric resonance. Indeed, in the third section of the first chapter, we
saw that the number of created phonons with momentum 𝑘 is governed by the dimensionless
parameter 𝑅𝜔 (Busch, 2014).

𝑅𝜔 ∼ 4

𝐴𝜔

|2𝐸 (𝑘) − ℏ𝜔 |
ℏ𝜔

(182)

where 𝐴𝜔 is the relative amplitude of the Fourier component at frequency𝜔 of 𝑐2𝑠 . Here, 𝐸 (𝑘)
is defined as

√
𝜖2𝑘 + 2𝑚𝑐2𝑠𝜖

𝑘
i.e. the mode Bogoliubov energy before the modulation is turned

on. When 𝑅𝜔 is smaller than 1, the phonon creation process is exponential. In subsection
1.B, we saw that even though the BEC width is forced at frequency 𝜔𝑑 , the BEC tends to
oscillate at 2𝜔⊥,0. We have therefore a competition between phonons with momentum 𝑘⊥,0
so that 𝐸 (𝑘⊥,0) = ℏ𝜔⊥,0 and phonons with momentum 𝑘𝑑 such that 𝐸 (𝑘𝑑) = ℏ𝜔𝑑/2. The
most visible phonon peak will be the one for which the resonance parameter is the smallest.

The 𝑦-axis of Figure 65 shows the modulation frequency𝜔𝑑 . In some cases, we succeed in
exciting the driven Bogoliubov mode 𝑘𝑑 (round markers). However, in other cases (triangles),
the resonance parameter at 2𝜔⊥,0 exceeds 𝑅𝜔𝑑 , and we observe phonons whose momentum
𝑘⊥,0 is such that 𝐸 (𝑘⊥,0) = ℏ𝜔⊥,0.

Summary In this section, we observe the breathing mode of the BEC. We also
show that it is possible to force the BEC to breath at a defined frequency despite
the resonance mode. We force the BEC oscillation and succeed to observe the
Bogoliubov dispersion relation, despite the resonance due to the breathing mode.

2. Exponential creation of phonons

2.A Exponential creation of phonons
Within the resonant window, the number of created phonons is expected to be exponential. To
observe this exponential creation of phonons, we excite the 2.1 kHz breathing mode of the
BEC for 4 periods, with a laser amplitude of 20%. The cloud is then kept in the trap for an
additional duration, ranging from 2 to 6. The amplitude of the breathing is shown on the first
panel of Figure 66.

The number of phonons as a function of time is shown on the middle panel of Figure 66.
On the right panel is shown the histogram of the atomic density on grey scale as a function of
the atom speed (𝑦-axis) and the time 𝑁𝑜𝑠𝑐. For each slice the 𝑥-axis (each time), the color scale
shows the longitudinal density of the atomic signal. The horizontal black spot in the middle is
due to the BEC, whose signal saturates the color scale chosen to depict the phonon peaks. The
asymmetry of the BEC, with a higher density on the positive velocity side, is due to incorrect
settings of the Bragg deflector, whose frequency was misconfigured. This histogram helps to
visualize the width of the phonon peak, quite visible on the right of the graph. In particular,
we see that width of the peak is of the order of 1-2 mm/s, near the size of one mode. We now
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Figure 66: Left: oscillation of the BEC radius (top) and the effective 1D coupling constant
(bottom). The solid line is a sine fit with a 30% (top) and 50% (bottom) amplitude and gives
the breathing mode frequency of 2.08 kHz. Middle: Number of phonons created as a function
of time in the positive velocity peak (orange squares) and negative peak (blue circles). The
𝑦-axis is in log scale. Error bars represent the standard deviation over the square root of the
repetition number: the error on the measured population (see the appendix 4.C). Right: 2D-
histogram of the atom-density as a function of time. The box size chosen for the middle plot
is 0.8 mm/s centered on ±8.3 mm/s. The color-scale saturates the high density BEC and its
asymmetry is due to the Bragg deflector whose velocity selection was badly set and to the
saturation of the detector. ®Dataset taken on the 26th of July 24.

focus on the exponential growth of the phonon population. Following Micheli and Robertson
(2022), we fit the experimental data with the following function:

𝑛𝑘 (𝑡) =
(
𝑛(𝑖𝑛)𝑘 + (2𝑛(𝑖𝑛)𝑘 + 1)sinh

[
𝐺𝑘

2
(𝑡 − 𝑡0)

]2)
× [1 + 𝛼𝑘cos(2𝜋 𝑓 𝑡 + 𝜙)] . (183)

In the following, we will discuss the expected and measured value of those fit parameters.

2.B Initial thermal seed and initial time of the squeezing

The initial phonon population 𝑛(𝑖𝑛)𝑘 and the initial time 𝑡0 play somehow the role of the offset
and the amplitude in the exponential growth of phonons. The parameter 𝑛(𝑖𝑛)𝑘 in Eq. (183) is
the thermal population of phonons before the modulation: it is the thermal seed of the two-
mode squeezed state. We measure a 44 nK temperature which means that we expect an initial
thermal population of 𝑛(𝑖𝑛)= 0.5. Note however that this population is the number of atoms for
a single mode. Here, we use an integration volume of 1 mm/s along 𝑧, and 60 mm/s along 𝑥
and 𝑦. We find an initial thermal population of 3(1) and 2(2) atoms per mode for the negative
and positive peak, which is higher than the expected one. The fit results assume a 0.5 quantum
efficiency of the detector.

The second parameter 𝑡0 is the initial time of the squeezing. If the BECwas instantaneously
excited at 𝑁𝑜𝑠𝑐 = 0, it should be null. However, the excitation process last 4 periods hence we
can expect that 𝑡0 ranges from 0 to −4, in units of the breathing mode frequency 2𝜔⊥. Here,
we find that 𝑡0 = 0.4 ± 0.3𝑇𝑜𝑠𝑐 and 𝑡0 = 0.1 ± 0.6𝑇𝑜𝑠𝑐. This result is consistent with our
expectations.
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Figure 67: Number of atoms as a function of time when the trap is suddenly switch off (green
circle and dashed curve) or ramped down in 1.5 ms (pink square and dotted curve). The inset
shows the time profile of the trapping laser power. ®Data taken on the 09/09/24.

2.C Oscillation of the occupation number
The last term in (183) takes into account the oscillations of the measured population at twice
the frequency of the trap. Here, we observe a quite large amplitude of the occupation number
(around 50%), which is not expected in the phonon population. This oscillation is due to
the non-perfect mapping of the phonon field to the atomic field, that we discussed in the
first chapter, section 3.C If we write the phonon population in the in situ atom basis, we have1

𝑛(𝑎𝑡 )𝑘 (𝑡) = 𝑛(𝑝ℎ)𝑘 × ℏ2𝑘2/2𝑚 + 𝑚𝑐2𝑠
ℏ𝜔𝑘

[
1 − 𝑚𝑐2𝑠

ℏ2𝑘2/2𝑚 + 𝑚𝑐2𝑠
cos(2𝜔𝑘𝑡 + 𝜙)

]
. (184)

Numerical evaluation of the cosine pre-factor gives 0.7. The amplitude of the oscillation
in Figure 66 are only 0.50(3) and 0.55(5). The difference between those two values is due to
the expansion of the trap: the interactions are not abruptly switched off. The mapping between
the phonon and the atom basis is neither adiabatic nor instantaneous. As a result the oscillation
amplitude we observe are weaker. If it is not possible to switch faster the oscillations, we can
open adiabatically the trap in order to better map the phonon basis to the atomic basis. To
do so, we open the trap by ramping down the transverse confinement in 1.5 ms. The laser
trap power is shown in the inset Figure 67: see the pink dotted curve compared to the green
dashed one when the trap is suddenly switched off. On the main plot of Figure 67, we show
the number of atoms with this adiabatic opening (pink squares) and with the sudden opening
(green circles). We clearly see that the oscillation is less visible and almost suppressed, as
expected.

1To obtain this equation, we express the atomic field population in the phonon basis, as in equation (56). We
then use the phonon operator evolution during parametric amplification in equation (50). We then assume 𝛼𝑘 ∼ 𝛽𝑘
(see their definition in Eq. (51)): at late time, their modulus squared is sinh2 (𝐺𝑘 𝑡). We also assume the initial
thermal population for the 𝑘 and −𝑘 modes to be equal. Finally, we assume that

∫
𝜔𝑘d𝑡 ∼ 𝜔𝑘 𝑡 which is the term

that appears in the cosine. Consider that (𝑢𝑘 , 𝑣𝑘) are the Bogoliubov coefficient that map the phonon basis to
the atomic one, see eq (44). Within the bracket of (184), the constant term come from |𝑢𝑘 |2 + |𝑣𝑘 |2 while the
oscillation is due to 𝑢𝑘𝑣★𝑘 . In particular, it means that such oscillation does not appear in the phonon basis.
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2.D Growth rate of the phonon occupation

Theoretical growth rate

The third parameter of equation (183) is the growth rate 𝐺𝑘 . In absence of damping, Busch
et al. (2014) predict the growth rate to be

𝐺𝑡ℎ
𝑘 =

𝜔𝑘

2

𝑎

1 + 𝑘2𝜉2/4 (185)

where 𝑎 is the amplitude of the oscillation of the effective 1D coupling constant 𝑔1 ∝ 1/𝜎𝑥𝜎𝑦 ,
with 𝜎𝑖 the radius of the BEC along 𝑖. The bottom left panel of Figure 66 represents the
variation of the 1D coupling constant.

At first, to extract this value, I fitted with a sine function. However, the amplitude of the
modulation seemed underestimated. To better estimate it, we fit the product 𝜎𝑥𝜎𝑦 (𝑡). We
then compute the Fourier transform 𝑔1(𝜔) = 𝐹𝑇 (1/𝜎𝑥𝜎𝑦). We ectract then 𝑎 as the ratio
of the amplitude at the breathing frequency over the amplitude of the peak at zero frequency
𝑔1(2𝜔⊥)/𝑔1(0). Equation (185) also involves the product of 𝑘𝜉. To access this value, we
use the speed of the two phonon peak to recover the BEC properties, as explained in chap-
ter 3, section 4.B. In the end of this section, we however report on a shift of this peak. But the
dependance of the theoretical growth rate on the 1/1 + 𝑘2𝜉2/4 is weak and the difference due
to the shift is smaller than the uncertainty associated to 𝑎 extracted from 𝑔1𝐷 .

We expect a growth rate of 1.7(1) ms-1. From the fit of formula (183), we find a measured
growth rate of 1.39(4) ms-1 for the negative peak and 1.32(4) ms-1 for the positive one2. We
observe a quite large discrepancy between the theoretical value and the experimental one.

Measurement of the growth rate in different conditions

This experiment was repeated varying the amplitude of the modulation, hence the gain of the
process. Left panel of Figure 68 reports the fitted growth rate as a function of the theoretical
growth rate. The solid grey line is a 𝑦 = 𝑥 line as a guide to the eye. The closer the experimental
points to this line, the better the agreement between the experimental gain and (185). The blue
circles and orange square represent the growth rate of the negative and positive peaks. The
uncertainty along the 𝑦 direction is a combination of the uncertainty of the fit and the result
of the fit for various integration volumes. All points lie below the theoretical curve, and the
higher the growth rate, the higher the difference. On the right panel of Figure 68 is shown the
difference between the theoretical and the measured growth rate. Either the theoretical growth
rate is overestimated, or one should take into account the decay of the phonons.

The latter “slowing of the exponential growth” of phonons in a quasi-BEC via Beliaev-
Landau damping3 was actually predicted by Micheli and Robertson (2022). In their work, the
authors provide an analytical formula and write the corrected growth rate as

𝐺′
𝑘 = 𝐺𝑡ℎ

𝑘 − Γ𝑘 (186)

where the phonon decay rate is

Γ𝑘 =
𝑐𝑠
𝜉

𝑘𝐵𝑇

𝑚𝑐2𝑠

1

𝑛1𝜉
( 𝑓+(𝑘𝜉) + 𝑓− (𝑘𝜉)) (187)

2When varying the size of the integration volume, we do not observe the fitted rate to change more than within
the uncertainty bar. The uncertainty reported here takes into account both the uncertainty of the fit and the disper-
sion (when there is one) associated to the fit result for each integration volume.

3We introduced Landau and Beliaev damping in the first chapter, section 2.A.
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Figure 68: Left: Growth rate of the phonon number as a function of the theoretical growth
rate (185). The solid grey line is a 𝑦 = 𝑥 line as a guide to the eye. The blue circles and orange
squares represent the measured growth rate for the −𝑘 and +𝑘 peak. Horizontal error bars are
associated to the uncertainty on the oscillation of the effective 1D coupling constant. Right:
Difference between the theoretical growth rate and the measured one. The grey stars show the
decay rate (187). ®Datasets taken in July & September 2024.

and

𝑓±(𝑘𝜉) =
1

2

𝑘2𝜉2

(𝜔𝑘/𝑐𝑠𝑘)2
(𝜔𝑘/𝑐𝑠𝑘 ± 1/2)2

𝑣
𝑔𝑟
𝑘 /𝑐𝑠 ∓ 1

. (188)

Here 𝜔𝑘 = 𝜔⊥ is the Bogoliubov energy of the quasi-excitation and 𝑣
𝑔𝑟
𝑘 = d𝜔𝑘/d𝑘 is the

group velocity of the quasi-excitation at momentum 𝑘 . In addition to the gas 1D parameters
𝜉, 𝑐𝑠, numerical evaluation of Eq. (187) requires the temperature. Tomeasure the temperature,
we fit the tails of the momentum distribution. To have enough statistics, we concatenate data
with different excitation time. For two datasets, the “temperature” depends strongly on the
maximal excitation time used to measure the temperature. Indeed, as the system is far for
equilibrium, measuring the temperature can be misleading. The error-bars on the decay rate
measurement is mainly due to this uncertainty on the measure of the temperature.

We reported the value of the decay rate (187) on the right panel of Figure 68 as black
stars. The different values for each point are due to different experimental conditions, in both
the density of the BEC and the temperature (datasets were taken in different weeks and our
experiment lacks reproducibility). Here we do not observe a good agreement between (187)
and the measured decay rate.

First, the decay rate (187) was derived for quasi-BEC while we have a BEC. Even though
preliminary work and numerical simulations by Micheli and Robertson (2024) showed how-
ever that (187) could be extended to elongated BECs, further checks are needed. Second, we
never took into account the harmonic trap hence the fact that the BEC is not homogeneous
along 𝑧.

Our BEC is not a 1D gas : as introduced in the first chapter, Landau decay of Bogoliubov
excitations in 3D gases were also studied by Pitaevskii and Stringari (1997) as

Γ𝑘 =
27𝜋

17
𝜔𝑘 ×

2𝜋2(𝑘𝑏𝑇)4

45ℏ3𝑐5𝑠𝑚𝑛
(189)

where 𝑛 is the density. We reported this decay rate as black square on Figure 68. Because
of the fourth power dependance with the temperature, the error-bars are much bigger for two
points. We do not observe a better agreement with experimental points. Note that it was also
derived for homogeneous condensate.

143



CHAPTER V. CONTROLLING THE QUASI-PARTICLE CREATION

Figure 69: Left: number of detected atoms as a function of time in a integration volume of 3
mm/s. Right: 2D histogram plot of the atomic density as a function of time. ®Dataset taken
on the 04/09/24.

To conclude this part, as predicted by Micheli and Robertson (2022) we observed the
slowing down of the exponential growth. However, the decay rate that we measure is not
capture by the theoretical prediction. These results are however really preliminary and will
lead to further investigations, both experimentally and theoretically.

2.E Saturation of the phonon growth

In Figure 69, we show the evolution of the phonon population over a wider range than previ-
ously observed. We take an integration size of 2 mm/s, a bit larger than the 1.5 mm/s mode
size. Of course, the larger the integration volume, the larger the detected maximal population.
The right panel represents the 2D histogram of the momentum density as a function of time.

Pylak and Zin (2018) studied numerically (classical field simulations) the growth process.
In their work, they show that for a temperature of 30 nK, the phonon occupation population
is expected to saturate at a few hundred. Their theoretical expectation is coherent with our
observation. In a different study, Robertson et al. (2017b) showed that non-linear effects can
no longer be neglected when the phonon occupancy reaches the value 𝑛1/10𝛿𝑘 . Here, 𝛿𝑘 is the
momentum resonance width and 𝑛1 is the 1D density. In our configuration, this corresponds
again to a few hundreds of particles.

Within a linear stability analysis, de Valcarcel (2002) also studied the growth dynamics of
a mode. From his work, we obtain the expected saturation of the population which was also
derived by Liebster et al. (2023)

𝑁𝑚𝑎𝑥 = 𝑁0

√
𝐺2

𝑘 − Γ2
𝑘

𝑚𝑐2𝑠/ℏ
𝐸𝑘

5𝜖𝑘 + 3𝑚𝑐2𝑠
(190)

where 𝜖𝑘 = ℏ2𝑘2𝑝ℎ/2𝑚 is the phonon kinetic energy and 𝐸2
𝑘 = 𝜖2𝑘 + 2𝑚𝑐2𝑠𝜖𝑘 its energy. Here

𝐺𝑘 refers to the theoretical gain and Γ𝑘 the decay rate that we discussed above. We measure
𝐺𝑘 = 0.92(4) ms-1 using Eq. (185) and extract Γ𝑘 = 0.12(4) using the exponential growth fit,
shown as a solid line in Figure 69. Here again, the higher uncertainty comes from the BEC
atom number. We define the BEC properties using the phonon speeds which is in between 8
mm/s (short time) and 10 mm/s (long time). We estimate the maximal population to 420(50).
In Figure 69, we observe the atom number saturates around 150 (integration volume of 1.5
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CHAPTER V. CONTROLLING THE QUASI-PARTICLE CREATION

Figure 70: Left: atomic density at different times, from 2 ms (darkest color) to 6 ms (light-
est color). Right: Position of the peak density as a function of time. Each color/symbol
corresponds to different growth rate of Figure 68. ®Data taken on the 25/04/24 (left) and
September 2024 (right).

mm/s) and 200 (for a 2 mm/s integration volume). The difference between the two can be
explained by the efficiency of our detector, which ranges between 20% and 50%.

Conclusion: Different theoretical works expect a saturation of the phonon production
once the population reaches a few hundred quasi-particles. Here, we also observe such satura-
tion; however, a quantitative study seems complicated. First, the atom number approaches the
saturation limit of our detector, and second, our high uncertainty on the detection efficiency
clearly limits our knowledge.

2.F Shift of the density peaks

On the 2D histograms of Figure 66 and Figure 69, one can see that the two phonon peaks seem
to move apart. This subsection reports on such phenomena. On the left panel of Figure 70,
we show the momentum distribution at different times, ranging from 2 ms (dark green) to 6
ms (light green). We note that the width of the peaks increases with time and an asymmetry in
their broadening. Furthermore, the peaks maximum shift away from the BEC: the momentum
of the density maximum is smaller at short time (dark color) than at long time (light green).

Faraday waves in quantum gases were studied in other groups. The first work conducted
by Engels et al. (2007) studied the wave vector dependance with the excitation frequency, but
did not report on a shift in time of the wave vector. This study triggered many theoretical
works, especially by Nicolin et al. (2007) and Nicolin (2011). In their work, the authors per-
formed 3D Gross-Pitaevskii simulation of the system, focusing on the resonant wave vector
𝑘𝑟𝑒𝑠. However, neither do they report on a shift in time of 𝑘𝑟𝑒𝑠. They also provide raw images
of their numerical simulation at different time: based on these data, no drift is observed.

In his PhD thesis, Groot (2015) reports on such drift of 𝑘𝑟𝑒𝑠. In addition, he reports on
the “revival” of the Faraday wave: the spatial modulation appears then disappears before
reappearing again. Such revival was further studied byNguyen et al. (2019)who showed it was
related to the axial breathing mode of the BEC (lowest quadrupolar mode), whose frequency is
between

√
5/2𝜔𝑧 (3D cigar-shape) and

√
3𝜔𝑧 (1D Thomas-Fermi) (Stringari, 1996). However,

the authors do not report on a shift in time. Similar experiment was carried by Hernández-
Rajkov et al. (2021) with a molecular Fermi superfluid. In their work, they provide the time
evolution of the density Fourier spectrum. Clearly, even though the saturation of the colormap
of their figure does not allow a precise measurement, 𝑘𝑟𝑒𝑠 does not seem to shift in time.
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Faraday-like patterns were also studied on a 2D setup by Liebster et al. (2023). In their work,
the authors provide the Fourier transform of the density for different times: we observe on
their setup a shift of 𝑘𝑟𝑒𝑠4.

In the work of Groot (2015), the author relates the shift of 𝑘𝑟𝑒𝑠 to the axial breathing
mode of the BEC. In the left panel of Figure 70, we plot the speed of the resonant phonon
as a function of time. Each color and marker shows a different modulation strength hence
growth rate. If the shift is related to the trap frequency, the displacement should not depend
on the growth rate. On the data reported, the trap frequency is constant, and we observe a
different shift dynamics. Here, the speed of the peak displacement seems to depend on the
modulation strength. This pushes for a complementary explanation to this harmonic trapping
effect. Furthermore, this shift is also observed on the experiment conducted by Liebster et al.
(2023) in which the authors have a homogeneous BEC.

To conclude this section, the shift of these phonon peaks remains un-explained. To further
investigate this, it would be interesting to witness the revival of the Faraday pattern reported
by Nguyen et al. (2019).

Summary In this section, we observe the exponential growth of the phonon occu-
pation number, on almost two decades. We show that the growth dynamics is in
agreement with theoretical predictions. The measured growth rate, presented in
section 2.D, is smaller than the theoretical growth rate due to phonon interaction,
as predicted by Micheli and Robertson (2022). We also observe the saturation
of the growth dynamic. Here again, our result is in agreement with theoretical
predictions even though our setup is not well suited to measure such a high atom
number. In the last section 2.F, we report on the shift of the phonon peaks whose
origin remains unknown.

4This shift can be observed on the inset of their figure 2.b), but I was noticed by one of the authors, Elinor Kath.
They also do not (yet) have an explanation for this shift.
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Chapter VI

Observation of quasi-particles
entanglement

This chapter presents the main result of this work: the observation of non-separability of the
(𝑘,−𝑘) quasi-particle modes. We start this section with an analysis of the density of the dataset
that we use throughout this chapter. We then review the key aspects necessary to measure the
correlation signal: the deflection of the BEC, its stability and its influence on the correlation
signal, as well as the adiabatic opening of the trap to better map the phonon basis onto the
atomic one.

The second and third sections of this chapter use two differentmethods tomeasure the local
and cross-correlation signals. The first method computes what we call integrated momentum
correlations, by constructing a 3D histogram of atomic pairs between two large regions. In
this approach, we lose information about the specific momentum of the modes that contribute
to the correlation signal. The next section, however, retains the mode position, allowing for
the measurement of a well-defined momentum mode. Both methods yield similar results.

In the last section, we further study the statistics of each mode to verify they can be mod-
eled by a thermal Gaussian state. This is important to use the criterion derived in the second
chapter. We then measure the population and the 4-body correlation function. We conclude on
the observation of entanglement. We also discuss on the value of the relative number squeez-
ing and reconstruct the state taking into account the quantum efficiency of the detector that
we estimate around 25(10)%. Finally, we report on the measurement of the correlations via
the Cauchy-Schwarz ratio and relative number squeezing for various excitation durations.

What we knew, what is new ? The experiments reported in this chapter were
conducted as part of this PhD work and represent original research.
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Figure 71: Density profile of the pairs along 𝑣𝑧 , 𝑣𝑥 and 𝑣𝑦 on each panel. On panel (a),
the solid red line fits the pairs and the temperature as described in chapter 3, section 4.B. On
panels (b) and (c), the fit is Gaussian for which the standard deviation 𝜎 is given in the legend.
Yellow circles and blue squares refer respectively to the negative and positive velocity peaks.

1. Experimental method

1.A Density analysis
On the dataset we analyse throughout this chapter, we modulate the transverse trap frequency
by 20%during 4 oscillations at twice the trap frequency (2 kHz). We thenwait for an additional
delay of 3 periods (1.5 ms) before we ramp down the power of the trap in 1 ms. The density
profile of the detected atoms is shown in Figure 71. In panel (a), we show the density profile
along 𝑣𝑧 , in log scale. The red solid line is a fit that includes the excited quasi particles and
the tails of the distribution. The fit function was discussed in chapter 3, section 4.B. From this
fit, we extract a temperature of 49(1) nK. The Gaussian fits of the two peaks yields a standard
deviation of 0.85 and 0.80 mm/s. From their position around ± 11 mm/s, we estimate the
mean atom number of the BEC to 10 000. In particular, it means the ratio 𝑘𝐵𝑇/𝑚𝑐2𝑠 is 1.4. In
panels (b) and (c) of Figure 71, we show the transverse density profile along the 𝑣𝑥 and 𝑣𝑦
axis. Yellow circles and blue squares shows respectively the negative and positive velocity
peak profiles. The red dashed line and blue dashed-dotted line respectively are Gaussian fit
yielding to a standard deviation of 10-11 mm/s along 𝑣𝑥 and 8 mm/s along 𝑣𝑦 .

1.B Bragg deflection to prevent saturation
As discussed in section 3.C of the fourth chapter, the BEC saturates the detector which prevents
the detection of the second phonon peak. A solution to get rid of this saturation is to deflect
the BEC using a sharp and velocity selective Bragg pulse, introduced in the third chapter (see
Sec. 3.D). Once the trap is turned off, we deflect the BEC after a delay of 1 ms, by applying a 2
ms sinc shape mirror pulse, characterized by a 1.88 kHz Rabi frequency. Figure 72 shows the
reconstructed atomic flux recorded by the MCP: the thin and high peak at 312 ms corresponds
to the BEC while the peaks at 307 ms is the un-deflected part. More than 95% of the BEC
atoms have been kicked out from the region of interest. In Figure 71, the central peak shows
the remaining un-deflected atoms. We do not observe any saturation effect on the secondary
phonon peak, similar to the one presented in Figure 62.
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Figure 72: (a) The Bragg pulse deflects the BEC that arrives at 312 ms instead of 307 ms.
(b) Four single shot density profiles of an unstable acquisition, lifted vertically by 1 at/µs for
clarity. When the initial speed of the BEC fluctuates, it shifts the arrival time of the two pairs
and destroys the measurement of the (𝑘,−𝑘) correlation. ®October 2024 & June 2022.

1.C Stability of the BEC
We also aim to measure (𝑘,−𝑘) correlations: it means that we need to precisely reconstruct
the speed of each atom with an uncertainty much smaller than a mode size (typically 1 mm/s,
or less, this depends on the configuration). Figure 72(b) shows four different shots with a
high number of pairs. We see that at each shot, the position of the pairs shifts. This is due
to shot-to-shots fluctuations of the entire cloud. They can be measured using the arrival time
of the BEC. Is the “breathtaking” stability of 10 µs claimed in section 2.C enough to observe
(𝑘,−𝑘) correlations?

The BEC arrival time is measured using a dedicated low-pass oscilloscope which records
the MCP signal before the time-to-digital converter. It allows partially getting rid of the elec-
tronic saturation (the 5 MHz TDC saturation), but not the MCP channels saturation. Panels (a)
and (d) of Figure 73 show the BEC signal for four consecutive shots and two different datasets.
In the upper panel, the BEC stability is 50 µs while it is 10 µs for the lower panel.

In the following, we study the correlation map i.e. the 𝑔 (2) (𝑣1, 𝑣2) function where

𝑔 (2) (𝑣1, 𝑣2) =
#of indep. pairs at 𝑣1and 𝑣2

(#of atoms at 𝑣1) × (#of atoms at 𝑣2)
. (191)

We therefore need to define an integration size for which we consider that the speed of an
atom is 𝑣1. This integration volume is a 3D volume that we call voxel (we might sometime
also call it box). For the map presented below, this voxel size is 0.3 mm/s along 𝑣𝑧 and 80
mm/s along the transverse direction 𝑣𝑥 , 𝑣𝑦 . Panels (b) and (e) of Figure 73 respectively show
this 𝑔 (2) (𝑘1, 𝑘2) map for two different datasets. White color indicates absence of correlation;
the bluer, the stronger the correlation. Panel (f) was annotated with the different correlated
regions: 𝑔 (2)

++ and 𝑔 (2)
−− refer to the local correlations of the positive and negative peaks; 𝑔 (2)

+−
to the cross-correlation. The map is symmetric by construction about the diagonal.

On the diagonal lies the local correlation 𝑘1 = 𝑘2 and on the anti-diagonal, the cross-
correlation 𝑘1 = −𝑘2. Theoretically, we expect a thin line on the edges of the diagonal, as
𝑔 (2)
𝑘,𝑘 = 2 for thermal bosons (Jeltes et al., 2007). In the center, we however expect that 𝑔 (2)

𝑘,𝑘 = 1,
due to the Poissonian statistics of the BEC mode (Schellekens et al., 2005). We also expect
a bluer region in the top left and bottom right corners, in which lies the cross-correlation,
annotated by 𝑔 (2)

+− on Figure 73(f).
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Figure 73: Influence of the BEC stability on the correlation map for a 50 µs stability (top
panels) and a 10 µs stability (lower panels). (a-d) Signal of the BEC recorded with an oscil-
loscope plugged on the MCP for four successive shots. The zero corresponds here to 312 ms,
which is the time at which the Bragg deflected BEC hits the MCP. (b-f) Map of the second
order correlation function 𝑔 (2) . On panel (c) and (f), each atom speed has been rescaled using
the BEC arrival time. ®September & October 2024.

We observe that the map (b), for which the stability is 50 µs, is slightly scrambled compare
to (e) (10 µs stability). We observe the appearance of patterns. To further analyze this phe-
nomenon, we develop a numerical model inspired by Bonneau (2011) in the appendix, section
1.B. The idea of this model is to simulate the state that we detect, to add fluctuations and look
at how the fluctuations influence the correlations. The instability can be expressed in terms
of in trap BEC initial speed fluctuations: 50 and 10 µs represent 0.5 and 0.1 mm/s. They
should be compared to the mode size, which is typically 1 mm/s. When the instability is not
negligible with respect to the mode size, the correlation signal is artificially increased. This
is visible in the top right corner of panel(b) of Figure 73. In fact the effect of the instability
is more present in the region where the atomic density changes abruptly with 𝑘 , typically at
the edge of the phonon peaks. In the appendix, we show that the Cauchy-Schwarz ratio is less
sensitive to the influence of the instability: the reason is that it involves both the local and
cross correlation.

For the data we focus on, the stability is 10 µs. Nevertheless, to further improve the
reconstructed velocity distribution, we rescale the speed of each shot using the arrival time of
the BEC.
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Figure 74: Time profile of the laser power (a) and the sound speed 𝑚𝑐2𝑠 (b). The right plot
shows 𝛽, who’s square gives the number of quantua produced from vacuum due to the non-
adiabatic opening of the trap. In the limit where the interactions are instantaneously switched
off, it matches the quantum depletion. Each curve corresponds to a different ramp of 0 ms
(dashed), 1 ms (dotted) and 2.5 ms (dashed dotted) without excitation. The solid grey curves
corresponds to an excitation of 4% for 4 periods and a ramp of 1 ms.

1.D Adiabatic opening of the trap
As we saw in section 3.C of the first chapter, we want to measure the quasi-particle state.
As we measure atoms, it is important to map the quasi-particle basis onto the atom one: we
need to adiabatically switch off interactions. In the last chapter, section 2.C, we saw that the
natural expansion of the BEC is not adiabatic enough to well map the phonon basis onto the
atom basis. To slow down the density decrease, the transverse trapping laser power is ramped
down while keeping the vertical confinement. The laser ramp is shown in Figure 74(a) while
panel (b) shows the theoretical sound speed, proportional to the inverse of the square of the
BEC transverse size. The longer the ramp (dashed dotted orange), the slower the switch-off
duration. The right plot shows |𝛽𝑘 |21 as a function 𝑘 . It corresponds to the number of pairs
of the quantum depletion. When the interactions are slowly turned off, the number of quasi-
particles created from vacuum is largely decreased.

Due to remnant magnetic fields in the experiment vacuum chamber, we cannot turn off the
trap in a too long time. For the data presented here, the ramp duration is 1 ms. On Figure 74(c),
we see that the 1 ms curve (dotted) at 10 mm/s is close to the 2.5 ms curve (dashed dotted)
and more than one order of magnitude below the sudden shutdown (dashed). The grey curve
shows the number of atoms after a typical modulation. We conclude that for such ramp, we
are close measuring the phonon basis.

Experimentally, comparing different durations of this ramp is not straightforward. When
we ramp down the transverse laser power, the BEC keeps breathing for a longer duration than
if we instantaneously shut down the trap. This means that we still produce quasi-particles
hence we cannot really compare in density two durations of this laser power ramp. We need
to compare the effect on the correlation signal for which an entire day of acquisition is often
needed. This 1 ms choice could therefore be improved in the future.

1We defined |𝛽 |2 in equation (51), section 3.C of the first chapter.
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Figure 75: (a) Atomic density as a function of 𝑣𝑧 . We define two regionsΩ− (in blue) andΩ+
(in red) around the peaks in which we compute respectively local (Panels b and d) and cross
correlations (Panel c). The transverse integration is set to 30 mm/s (light circles) and 10 mm/s
(dark circles). ®Dataset taken on October 2024.

2. Probing correlations via momentum-integrated correla-
tions

We now turn to the analysis of the correlation and start with the momentum-integrated corre-
lation method.

2.A Method
Panel (a) of Figure 75 shows the density profile of the pairs. We select two opposite volumes
Ω± of size 7 mm/s along 𝑧, around each peak at ±11 mm/s. We compute local correlations in
each of these volumes and compute the cross correlation between them. The volume along the
𝑧-axis is highlighted by the shaded blue and orange area in Figure 75(a). To compute the corre-
lation function, we realize the 3D histogram of the velocity difference (local correlation) and
sum (cross correlation). To normalize this quantity, we compute the same 3D histogram mesh-
ing different cycles. We describe the code in section 4.B of the appendix (see also Schellekens
(2007) and Ténart (2021)). The bin size is set to 0.25 mm/s along 𝑣𝑧 and 3 mm/s along 𝑣𝑥 and
𝑣𝑦 . These values are smaller than the correlation length along each direction to fully resolve
it. In each volume Ω±, we compute the local correlation function

𝑔 (2)
𝑖𝑖 (𝜹𝒌) =

∫
Ω𝑖

〈𝑎†
𝒌
𝑎†
𝒌+𝜹𝒌𝑎𝒌𝑎𝒌+𝜹𝒌〉 d𝒌∫

Ω𝑖
𝑛𝒌𝑛𝒌+𝜹𝒌d𝒌

(192)

which is a 3D function. For a thermal state, we expect 𝑔 (2)
𝑖𝑖 (0) = 2 and the correlation to

decay over a scale given by the inverse size of the source (Gomes et al., 2006; Butera et al.,
2021). This in analogous to the Hanbury-Brown and Twiss experiment (Brown and Twiss,

152



CHAPTER VI. OBSERVATION OF QUASI-PARTICLES ENTANGLEMENT

Figure 76: Local correlation function of beam Ω− (blue circles) and Ω+ (orange triangles).
Lines are Gaussian fits with standard deviation 𝜎𝑥 = 30(5) mm/s and 𝜎𝑦 = 21(2) mm/s.

1956), in which the light intensity correlation function between two separated telescopes, gives
access to the size of the thermal source (a star in their case). On panels (b) and (d) of Figure 75,
we show the variation of 𝑔 (2)

𝑖𝑖 (𝜹𝒌) as a function of 𝛿𝑣𝑧 . In this case, we integrated over the
transverse direction, hence we show

𝑔 (2)
𝑖 𝑗 (𝛿𝑘𝑧) =

∬ Δ𝑘⊥

−Δ𝑘⊥
𝑔 (2)
𝑖 𝑗 (𝜹𝒌)

d𝛿𝑘𝑥d𝛿𝑘𝑦
(2Δ𝑘⊥)2

(193)

which depends on the transverse integration volume Δ𝑘⊥. In panels (b, c, d) of Figure 75, the
transverse integration is 30 mm/s (light circles) and 10 mm/s (dark triangles). The amplitude
of the correlation increases as Δ𝑘⊥ decreases but so does the noise.

In Figure 76, we show the transverse local correlation function 𝑔 (2)
±± (𝛿𝑘𝑥) (panel a) and

𝑔 (2)
±± (𝛿𝑘𝑦) (panel b). Lines are Gaussian fits yielding a correlation length of 30(5) mm/s along

𝑥 and 21 mm/s along 𝑦. We observe that the length of the transverse correlation is similar to
the transverse size of the cloud in Figure 71. It means that there is mainly a single mode along
the transverse direction. The population of the excited transverse levels is really low.

We define also the cross-correlation function2

𝑔 (2)
+− (𝜹𝒌) =

∫
Ω−

〈𝑎†−𝒌+𝜹𝒌𝑎
†
𝒌+𝜹𝒌𝑎−𝒌+𝜹𝒌𝑎𝒌+𝜹𝒌〉 d𝒌∫

Ω𝑖
𝑛−𝒌+𝜹𝒌𝑛𝒌+𝜹𝒌d𝒌

(194)

and show 𝑔 (2)
+− (𝛿𝑣𝑧) in panel (c) of Figure 75. Here also, the transverse integration is 30 mm/s

for the light grey circles and 10 mm/s for the black triangles.
2In fact, it does not change much if we replace the “+” sign of the cross correlation function by a “−” sign

along 𝑣𝑥 and 𝑣𝑦 . The signal goes even higher when choosing a − sign, which is what we do here.
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Figure 77: Amplitude of the local (a-b) and cross (c) second order correlation function. Solid
line is a fit using (198). Insets show the fitted width 𝜎𝑧 in (196) for 1 out of 3 points. We do
not observe significant change wen we decrease the transverse size.

2.B Measurement of the peak correlation value
Following Ténart (2021), we model the second order correlation function by a Gaussian

𝑔 (2)
𝑖 𝑗 (𝜹𝒌) = 1 + 𝜂𝑖 𝑗

∏
𝛼=𝑥,𝑦,𝑧

exp
(−𝛿𝑘2𝛼
2𝜎2

𝛼

)
(195)

where 𝜂𝑖 𝑗 is the peak value of the correlation function and𝜎𝛼 is the correlation length along the
direction 𝛼. After a transverse integrationΔ𝑘⊥, this means that the amplitude of the correlation
is

𝑔 (2)
𝑖 𝑗 (𝛿𝑘𝑧) = 1 + 𝜂𝑖 𝑗 (Δ𝑘⊥)exp

(−𝛿𝑘2𝑧
2𝜎2

𝑧

)
(196)

where the amplitude of the 1D integrated correlation is

𝜂𝑖 𝑗 (Δ𝑘⊥) =
𝜋𝜎2

⊥
2Δ𝑘2⊥

erf
(
Δ𝑘⊥√
2𝜎⊥

)2
. (197)

We therefore fit the integrated correlation function with a Gaussian function. Typical fits
are shown as solid lines in panels (b-d) of Figure 75. We report in Figure 77 the amplitude of
the local correlation 𝜂±± in panels (a-b) and the cross correlation 𝜂+− in panel (c) as a function
of the transverse integration Δ𝑣⊥. In the insets, we show that the width of the correlation 𝜎𝑧

does not vary much.
According to Eq. (197), we expect the amplitude of the correlation to vanish when the

transverse integration radius is much larger than the transverse correlation radius. Here, we
observe that the amplitude reaches a non-zero plateau value. This is due to the fact that the
gas is almost 1D and the signal is not washed out by other transverse modes, which are not
populated. We therefore adjust experimental data with the following function

𝜂𝑖 𝑗 (Δ𝑘⊥) = 𝐴
𝜋𝜎2

⊥
2Δ𝑘2⊥

erf
(
Δ𝑘⊥√
2𝜎⊥

)2
+ 𝐵 (198)

where 𝐴, 𝐵 and 𝜎⊥ are free parameters. The value of 𝐴 + 𝐵 gives access to the amplitude of
the correlation signal and the value of 𝜎⊥ to the transverse correlation width. The solid line
in Figure 77 shows the fit result and the shaded area the associated fit uncertainty.

Concerning the transverse correlation width, we find 𝜎⊥ =8(10) mm/s and 11(15) mm/s.
The uncertainties are quite large but these values are consistent with the transverse radius of
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Figure 78: Number of atoms (a), cross correlation (200) (b) and local correlation functions
(199) (c) as a function of the momentum. Voxel size is 0.7mm/s along 𝑣𝑧 and 80 mm/s along
𝑣𝑥 and 𝑣𝑦 . ®Same dataset as Figure 75.

the pairs (10(1) mm/s along 𝑣𝑥 and 𝑣𝑦). This is also coherent with the correlation radius along
𝑣𝑥 which is 12(1) mm/s and 𝑣𝑦 11(1) mm/s measured in a different dataset, as discussed in
section 1.C of the appendix.

The peak value of the correlation is given by the value of 𝐴 and 𝐵, which yields 𝑔 (2)
−− (0) =

1.98(5) and 𝑔 (2)
++ (0) = 1.93(4) for the local correlation functions and 𝑔 (2)

+− (0) = 2.2(1) for the
cross correlation.

Summary This section introduces momentum-integrated correlation. By con-
structing a 3D histogram of atomic velocity differences, we obtain a 3D function
that depends on the three momentum components 𝑣𝑥 , 𝑣𝑦 , and 𝑣𝑧 . We model the
correlation with a Gaussian function, which allows us to extract the peak value
of the correlation signal. We find 𝑔 (2)

−− (0) = 1.98(5) and 𝑔 (2)
++ (0) = 1.93(4) for

the local correlation. For the cross correlation, we find 𝑔 (2)
+− (0) = 2.2(1).

3. Probing correlations via momentum-resolved correlations

3.A Momentum-resolved correlations
In the previous section, we integrated over a large volume Ω± and lost information about
the position of the modes. Here, we take another point of view: we compute the second
order correlation functions between opposite modes, defined in voxels. The local correlation
function is defined by

𝑔 (2)
𝑖𝑖 =

〈(𝑎†𝑖 )2𝑎2𝑖 〉

〈𝑎†𝑖 𝑎𝑖〉
2

=
# of pairs

(# of atoms)2
(199)

and the cross-correlation by

𝑔 (2)
𝑖 𝑗 =

〈𝑎†𝑖 𝑎
†
𝑗𝑎𝑖𝑎 𝑗〉

〈𝑎†𝑖 𝑎𝑖〉 〈𝑎
†
𝑗𝑎 𝑗〉

=
# of pairs between i & j

(# in i)(# in j)
. (200)

Here, 𝑖 and 𝑗 refer to the mode position whose size is given by the voxel size. In Figure 78(a),
we plot the number of detected atoms in voxels of size (802 × 0.7) mm3/s3 as a function of
the momentum. The size of the box along 𝑧 is shown in panel (b) with the horizontal bar and
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Figure 79: (a) Number of atoms, (b) local correlation (199), (c) cross correlation (200) and
(d) fourth order correlation functions (201) as a function of the momentum. The dashed red
line in (c) is the non separability threshold from Eq. (142) assuming a 0.5 quantum efficiency
and the population in panel (a). ®Same dataset as Figure 75.

the square marker. Here, we show a solid curve for clarity reasons. However, it is made of
experimental points separated by 0.35 mm/s which means that there is a sliding average. The
blue solid curve shows the negative peak and the orange dashed one the positive peak. The
speed ranges from 3 mm/s to 14 mm/s and the density is peaked around 11 mm/s.

On panel (c) of Figure 78, we show the local correlation function (199) as a function of
𝑣𝑧 . The solid blue curve shows 𝑔 (2)

−𝑣𝑧 ,−𝑣𝑧 and the orange dashed curve 𝑔
(2)
𝑣𝑧 ,𝑣𝑧 .

• In the [2,5] mm/s range, we have amixture between thermal atoms and condensed atoms.
In this range, we expect the second order correlation function to be between 1 (coherent
BEC) and 2 (thermal depletion), as studied by Hercé et al. (2023). This matches our
observations.

• In the [5, 15] mm/s range, we expect to observe bosonic bunching, leading to a value of
𝑔 (2)
𝑘,𝑘 = 2. This is what we observe in the [10,13] mm/s region, where the Bogoliubov
pairs are excited, but the correlation does not reach this value for lower speed. This
is because the correlation value is only achieved when the voxel size approaches zero.
Here, the voxel size exceeds the mode size, so we do not expect to accurately measure
the true correlation value. In fact, this “momentum-resolved” correlation method does
not allow precise measurement of the value of the correlation when the population is
too low. The fact that it gives a value close to 2 in the region [10,13] is due to the fact
that a single Bogoliubov mode dominates the signal, and its high population suppresses
the contribution from other modes.

In panel (b) we show the cross-correlation function (200) for which we observe a clear
correlated signal at the peak density, around 11 mm/s.

In Figure 79, we zoom onto the correlated peaks. The voxel transverse size is decreased
to 30 mm/s to better capture the value of the correlation, while keeping a reasonable signal-to-
noise ratio. On the 𝑧 axis, the voxel size is kept at 0.7 mm/s, while the position of the voxel
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Figure 80: Local (a) and cross (b) correlation functions as a function of the voxel size along
𝑣𝑧 . Each hue and marker refer to the voxel transverse size that ranges from 60 to 20 mm/s
(see legend). In panel (a), blue and orange color refer respectively to the negative and positive
velocities. The position of the two modes are ±11 mm/s. ®Same dataset as Figure 75.

is changed by 0.1 mm/s per point. Each point of the curve is not independent: we perform a
sliding average. The marker in panel (c) shows the size of the voxel compared to the 𝑥-axis
range. In each plot, the line shows the mean value and the shaded area the standard deviation
of the distribution computed with bootstrap methods. The fact that the line is not so smooth
reflects also the uncertainty. As the raw data for each point is not independent, we compute
the mean value and the standard deviation over different bootstrap realizations.

Panel (a) shows the atom number in a single voxel of the negative (solid blue) and positive
(dashed orange) peaks. Panel (b) shows the single voxel second order local correlation function
(199). We observe that, within the large uncertainty bars, the value is compatible with 2.
Panel (c) shows the single voxel second order correlation function. The dashed red line shows
the non-separability threshold, see eq. (142) of chapter 2, section 4.B. This non-separability
thresholds depends on the population shown in panel (a) and on the detector’s 50% quantum
efficiency. We observe here that the correlation signal goes (almost) significantly above this
threshold value3. In the last panel (d) of Figure 79, we show in solid purple line the fourth
order correlation function

𝑔 (4)
𝑖 𝑗 =

〈(𝑎†𝑖 )2(𝑎
†
𝑗)2𝑎2𝑖 𝑎2𝑗〉

𝑛2𝑖 𝑛
2
𝑗

. (201)

The purple shaded area shows the standard deviation of 𝑔 (4) while the grey shaded area is its
theoretical algebraic bounds, based on the value of 𝑔 (2)

4
(
𝑔 (2)
12 − 1

)2
≤ 𝑔 (4)

12 − 16𝑔 (2)
12 + 12 ≤ 6

(
𝑔 (2)
12 − 1

)2
. (202)

that we discussed in the second chapter, section 4.E. Note however that the grey shaded area
takes into account the uncertainty of the second order correlation function : the width of the
curve is larger by a factor 4 compared to the theoretical interval 2(𝑔 (2)

12 −1)2. We observe here
that the fourth-order correlation function remains relatively close to this bound.

As we said, the value of the correlation is reached in the limit where the voxel size goes
to zero. In Figure 80, we keep the voxel position at 11 mm/s and progressively decrease

3Note however that this reasoning cannot really stand if we keep decreasing the voxel size to measure the value
of 𝑔 (2) : in the limit of vanishing size, the population goes also to zero. The correlation value obtained in this limit
should be compared to the threshold value for the state’s population, i.e., the population within the voxel size.
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the transverse voxel volume. Along 𝑣𝑧 we take a voxel length of 1.3 mm/s (equal to the
coherence length in momentum, shown in light color circles) and 0.9 mm/s (smaller). We
show the second order correlation function as a function of the voxel radius along 𝑣𝑥,𝑦 . On
panel (a), we show the local correlation function of the positive peak (orange colors) and
the negative peak (blue colors). The correlation signal remains compatible with 2, although
uncertainties are fairly large. When the transverse volume becomes too small (smaller than 10
mm/s here), we observe that the local correlation seems to decrease. This is due to a lack of
signal which is more dramatic for the auto-correlation than for the cross correlation. Indeed,
the auto-correlation measures the number of pairs within the same voxel.

On panel (b) we show the cross correlation function, which lies above 2, but not signifi-
cantly. When we decrease the transverse volume size, the correlation seems to increase but,
here again, not significantly. To better capture the value of the correlation signal in the limit
of vanishing voxel size, we will therefore integrate over 𝑣𝑧 in the next paragraph.

Before moving to the next paragraph, note that even though the second order correlation
function is not significantly above 2, the Cauchy-Schwarz ratio CS is significantly larger than
1. For example, for a transverse integration radius of 30 mm/s, we have CS =1.056(25) and
mean populations of 0.98(4) and 1.05(4).

3.B Integrating the momentum-resolved correlation

We show in Figure 81 the second order correlation function map 𝑔 (2) (𝑣𝑧1, 𝑣𝑧2). Panel (a)
shows the entire symmetric map with a voxel volume of (0.4 × 802) mm3/s3. Panel (b-d)
show a zoom on respectively the cross correlation, the negative peak auto-correlation and the
positive peak auto-correlation. Note that there is no sliding average here. On these maps, the
voxel length was reduced to 0.3 mm/s, much smaller than the mode size. To better capture
the correlation we integrate over ± 10 to ± 11.5 mm/s: this interval is highlighted in color on
each map.

Method 1

Protocol: we compute the number of pairs in a voxel of size 𝚫𝒗 = Δ𝑣𝑧×Δ𝑣𝑥×Δ𝑣𝑦 . We set the
value of Δ𝑣𝑧 , which is a compromise between our mode size (1.3 mm/s) and our stability (0.1
mm/s). It allows to fully resolve the correlation peak without washing out the cross-correlation
signal, which is sensitive to shot-to-shot fluctuations. We then define Ω± = [±10,±11.5]
mm/s, which is the region in which we will perform the integration. We therefore define the
1D local correlation function

𝑔 (2)
±± (𝛿𝑣𝑧) =

∑
𝑣𝑧1−𝑣𝑧2=𝛿𝑣𝑧

(𝑣𝑧1+𝑣𝑧2 )/2 ∈ Ω±

〈: 𝑛𝑣𝑧1𝑛𝑣𝑧2 :〉
/ ∑

𝑣𝑧1−𝑣𝑧2=𝛿𝑣𝑧
(𝑣𝑧1+𝑣𝑧2 )/2 ∈ Ω±

〈𝑛𝑣𝑧1〉 〈𝑛𝑣𝑧2〉 (203)

where 𝑛𝑣𝑧𝛼 is the number of atoms in a voxel of size 𝚫𝒗 at position 𝑣𝑧𝛼. The average 〈·〉 means
average over experimental realizations and the two normal ordering dots “:” refer to the fact
that 〈: 𝑛𝑣𝑧1𝑛𝑣𝑧2 :〉 counts the number of pairs between the two voxels. In other words, it counts
the number of coincidence counts between the two voxels. Geometrically, the integration
process consists in integrating along the diagonal of Figure 81. Symmetrically, we define the
1D cross-correlation function

𝑔 (2)
+− (𝛿𝑣𝑧) =

∑
𝑣𝑧1+𝑣𝑧2=𝛿𝑣𝑧

(𝑣𝑧1−𝑣𝑧2 )/2 ∈ Ω+

〈𝑛𝑣𝑧1𝑛𝑣𝑧2〉
/ ∑

𝑣𝑧1+𝑣𝑧2=𝛿𝑣𝑧
(𝑣𝑧1−𝑣𝑧2 )/2 ∈ Ω+

〈𝑛𝑣𝑧1〉 〈𝑛𝑣𝑧2〉 . (204)
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Figure 81: 2D map of the second order correlation function 𝑔 (2) (𝑣𝑧1, 𝑣𝑧2). Panel (a) shows
the entire map, which is symmetric over the diagonal. Panel (b-d) shows respectively a zoom
on the cross correlation function (bottom right corner of panel (a)), the negative peak auto-
correlation (bottom left of (a)) and the positive peak auto-correlation (top right corner of (a)).
Voxel size of 0.4 mm/s for (a) and 0.3 mm/s for (b-d). ®Same dataset as Figure 75.

where the normal ordering is no longer needed as the two voxels never coincide.
We show in Figure 82 these 1D correlation functions. Panel (a) shows the positive peak,

panel (b) the negative one and panel (c) the cross correlation. To shorten notations, we did

Figure 82: 1D local correlation function 𝑔 (2)
++ (panel a) and 𝑔 (2)

−− (panel b) defined in Eq. (203).
Panel (c) shows the cross correlation function 𝑔 (2)

+− defined in Eq. (204). ®Same dataset and
voxel size as Figure 81.
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Figure 83: Amplitude of the second order correlation function defined in (205) as a function
of the transverse size of the voxel. The insets show the width 𝜎𝑧 in mm/s. The 1D second
order correlation function were defined in Eqs. (203) and (204). Dashed line are a fit using
(206). ®Same dataset as Figure 82.

not write explicitly the dependence of 𝑔 (2)
±,± on the voxel size 𝚫𝒗. The size Δ𝑣𝑧 influences

the number of points i.e. our ability to resolve the correlation width and Δ𝑣𝑥,𝑦 = Δ𝑣⊥ is the
transverse integration volume. We do not change Δ𝑣𝑧 but we will decrease the transverse
integration volume to extract the value of the correlation in the limit where the voxel size
vanishes. In Figure 82, the transverse integration volume is 50 mm/s (light circles) and 25
mm/s (dark triangles). As previously, we fit the correlation with a Gaussian function

𝑔 (2) (𝛿𝑣𝑧) = 1 + 𝜂Δ𝑣⊥exp
(
−𝛿𝑣2𝑧/2𝜎2

𝑧

)
(205)

where 𝜂Δ𝑣⊥ is the amplitude of the Gaussian function that depends on the transverse integration
volume.

In Figure 83, we show the value of 𝜂Δ𝑣⊥ as a function of the transverse integration. A
value of 𝜂Δ𝑣⊥ of 1 means that the peak value of the local correlation is 2. The insets report the
value of the width of the Gaussian, 𝜎𝑧 , defined in Eq. (205). The fitted width depends slightly
on the transverse integration. The extracted amplitude of the local correlations (panels a and
b) are in remarkable agreement with the expected value of 1 for a thermal state (𝑔 (2)

±± = 2). On
panel (c), we show the extracted amplitude of the cross-correlation which goes significantly
above 1. The dashed line is an ansatz from inspired from section 2.B

𝜂𝑖 𝑗 (Δ𝑘⊥) = 𝐴
2𝜋𝜎2

⊥
Δ𝑘2⊥

erf
(

Δ𝑘⊥

2
√
2𝜎⊥

)2
. (206)

We find a transverse radius 𝜎⊥ of 23(1) mm/s, which is a factor 2 higher than in the previous
section. It leads to a peak value of 𝑔 (2)

+− = 2.25(5).
For the negative and positive peaks of the local correlations, this ansatz led to a value of

2.07(6) and 1.94(5) respectively. However, the fitted values of 𝜎⊥ deviate even more from the
correlation length, reaching 39(1) and 70(1) mm/s. Fit are shown with shaded dashed lines in
Figure 83.
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Figure 84: Amplitude of the second order correlation function defined in (205) as a function
of the transverse size of the voxel. The insets shows the width 𝜎𝑧 in mm/s. The 1D second
order correlation function were defined in Eqs. (203) and (204). ®Same dataset as Figure 82.

Method 2

In the previous method, we integrated over the numerator and normalized the correlation by
the integral of the density product, see Eqs. (203) and (204). It is also possible to directly
integrate over the normalized second order correlation function

𝑔 (2)
±± (𝛿𝑣𝑧) =

∑
𝑣𝑧1±𝑣𝑧2=𝛿𝑣𝑧

(𝑣𝑧1∓𝑣𝑧2 )/2 ∈ Ω±

𝑔 (2)
±± (𝑣𝑧1, 𝑣𝑧2). (207)

As before, we fit the with a Gaussian function and extract the width and the amplitude 𝜂±
of the Gaussian. Results are shown in Figure 84. We also fit the data using Eq. (206) which
leads to a peak value of 𝑔 (2)

−− = 1.93(8), 𝑔 (2)
++ = 2.00(6) and 𝑔 (2)

+− = 2.30(7).

Summary In this section, we measure the local and cross correlations of the two
phonon peaks. We measure the local correlation and cross correlation using two
techniques and show they are in remarkable agreement with 2. The average of the
two measurements gives 𝑔 (2)

−− = 2.00(8) for the negative peak and 𝑔 (2)
++ = 1.97(6)

for the positive peak. For the cross correlation, we find a value of 𝑔 (2)
+− = 2.27(7),

which significantly exceeds 2. These measurements are in agreement with the
ones measured in the previous section 2.B, using the momentum-integrated cor-
relation method. We also report on a violation of the integrated Cauchy-Schwarz
inequality, which is a signature of particle entanglement (Wasak et al., 2014).

4. Conclusion on entanglement
Our goal in this section is to draw conclusions about entanglement. To extract as much infor-
mation as possible about the state, we analyze various observables. We have already measured
the second-order correlation functions; now we examine the 4-body correlation function and
relative number squeezing. Additionally, we aim to confirm that the state is thermal so that
we can apply the criterion derived in Chapter 2.

In the previous sections, we measured the value of the local correlation function and
showed that it is compatible with 2. In the discussion in Chapter 2, section 4.G, we emphasized
that the derived criterion is valid only if the state is not displaced and 〈𝑎2𝑘〉 = 0. To further
confirm this, we examine the single-mode statistics. In the first part of subsection 4.A, we
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Figure 85: Full counting statistics of the sidebands. We plot the probability distribution func-
tion of the atom number. The yellow circles show the experimental statistics. The solid red
line and dashed blue line show the thermal and Poissonian distributions, calculated based on
the measured mean atom number with no free parameter. The inset shows the same data with-
out log scale. ®Same dataset as Figure 70 in chapter 5, section 2.F, 500 shots per panel, voxel
size of 0.6 and 80 mm/s.

show a good agreement with thermal statistics by using additional datasets to vary the mean
population of the state. We then compare the experimental distribution’s proximity to that of
a slightly displaced state, and we compute the 𝑁-body local correlation function to highlight
the dependence on thermal statistics.

In subsection 4.B, we measure the population of the state using the mode size given by
the width of the correlation functions. We can compare 𝑔 (2) to the smaller bound that assesses
entanglement, as discussed in the second chapter, section 4.B. We finally measure the 4-body
correlation function and discuss how its value influence the non-separability of the state. In
subsection 4.D, we discuss the influence of the non-unit quantum efficiency of the detector. In
this section, we also measure the normalized variance and compare it to the expected value.

Finally, we conclude in subsection 4.F on the presence of entanglement. We also report
measurements of the Cauchy-Schwarz ratio across various excitation durations. Initially, en-
tanglement is detected, but at later times, it is no longer observable.

4.A Full counting statistics of a single mode

Fock probability distribution

We begin by demonstrating our ability to fully resolve the statistical properties of an individ-
ual mode. Here, we analyze a different dataset in which the excitation duration was varied.
Figure 85 reports such probability distribution for four different mean populations. Our goal is
to emphasize that, whatever the population, the single mode statistic is always well-described
by a thermal statistics.

The statistical properties of thermal and coherent states are fully determined by their mean
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number of particles4: they are shown respectively with solid red and dashed blue lines5. Each
panel shows the probability distribution for a different excitation duration, hence a different
mean atom number. Regardless of the population, the probability distribution remarkably
agrees with a thermal distribution over three orders of magnitude. The limitation is in fact the
number of experimental repetitions.

Comparing the Fock probability distribution with a coherent state

Importantly, the criterion derived in the second chapter only applies for non-displaced Gaus-
sian states. To better quantify this, we parametrize the state by a fraction 𝑓𝑡ℎ, keeping its mean
population constant and writing the mean of the state and its covariance matrix as

𝝁 = 2
√
𝑛(1 − 𝑓𝑡ℎ)

(
cos 𝜃
sin 𝜃

)
, 𝝈 = (2𝑛 𝑓𝑡ℎ + 1)I2. (208)

Here the Fock distribution is not sensitive to the angle 𝜃 of the displacement. Themean number
of particles in the state is fixed, and we only change the relative fraction of coherent versus
thermal atoms 𝑓𝑡ℎ. When 𝑓𝑡ℎ = 0, the state is coherent, and when 𝑓𝑡ℎ = 1, the state is
thermal. To quantify the difference between the probability distribution of 𝜌 𝑓𝑡ℎ and 𝜌𝑒𝑥𝑝, we
evaluate the quadratic distance between the two distributions, normalized by the experimental
uncertainties. Note that the fraction 𝑓𝑡ℎ is insensitive to the detection efficiency6 𝜂, as it only
affects the mean population 𝑛𝑑𝑒𝑡 = 𝜂𝑛 and not 𝑓𝑡ℎ. This ensures that the analysis directly
probes the state’s relative displacement.

Panel (a) of Figure 86 shows the distance between the two distributions as a function of
the thermal fraction 𝑓𝑡ℎ. The positive mode is represented in orange and the negative mode
in blue. For the triangles, the longitudinal size of the voxel is larger than the mode size (2.7
mm/s). For the square and round markers, the voxel size is 0.7 mm/s, which is smaller than a
mode size.

We observe the maximum distance consistently occurs at 𝑓𝑡ℎ = 0. It means that the prob-
ability distribution is never well described by a fully coherent state, which was already clear
from Figure 85. However, we observe that the minimum for each curve occurs at different
thermal fraction 𝑓 𝑚𝑖𝑛

𝑡ℎ . Notably, for larger voxel sizes, the distribution is neither thermal nor
Poissonian and 𝑓 𝑚𝑖𝑛

𝑡ℎ ∼ 0.5. For such a voxel size, we might in fact counting several (thermal)
modes. As a result, the overall distribution departs from a simple thermal form, instead follow-
ing a multimode thermal distribution (Goodman, 2015). When the mean population per mode
𝑛 is the same, the probability distribution is known and is a function of 𝑛 and the number of
modes 𝑚. When 𝑚 = 1, one recovers the thermal distribution, but the probability distribution
tends to a Poissonian distribution as 𝑚 → ∞ (which directly relates to the central limit theo-
rem). This was experimentally studied by Perrier et al. (2019), using a multimode source of
two-mode squeezed states. This multimode effect is likely what we observe for these triangles
as the voxel size is larger than the mode size. When the transverse voxel size decreases to a
size similar to that of the mode, or smaller (circles and squares), the minima of the curves shift
towards 𝑓𝑡ℎ = 1. In this case, we probe the statistics of a single mode.

4A fully coherent state follows a Poissonian distribution 𝑃𝑐𝑜ℎ (𝑛) = 𝑛𝑛𝑒−𝑛/𝑛! and a thermal state a geometric
law 𝑃𝑡ℎ (𝑛) = 𝑛𝑛/(1 + 𝑛)𝑛+1. When the state is neither fully coherent nor fully thermal, an additional parameter
is required to fully characterize the state. This was for example shown in Figure 34 where we plotted different
probability distributions, changing the fraction of coherence of the state, the mean number of particles being fixed.

5These analytical probability distributions are plotted as continuous lines, although they are inherently discrete.
6See equation (88), a pure loss channel transforms 𝝁𝑑𝑒𝑡 =

√
𝜂𝝁 and 𝝈𝑑𝑒𝑡 = 𝜂𝝈 + (1 − 𝜂)I2.
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Figure 86: Left: distribution distance between the observed probability distribution and the
thermal fraction of the mean population 𝑓𝑡ℎ defined in (208). The distribution distance is
defined as

∑
𝑖 |𝑃

( 𝑓𝑡ℎ )
𝑖 − 𝑃 (𝑒𝑥𝑝)

𝑖 |2/Δ2𝑃𝑒𝑥𝑝
𝑖 where 𝑃𝑖 refers to the probability distribution of

the experimental and the displaced/thermal state define by 𝑓𝑡ℎ. Δ2𝑃𝑖 refers to the Poissonian
error on the experimental measurement. The color and shape of the markers refer to different
position and voxel size (see legend). Right: the 𝑛𝑡ℎ order correlation function as a function
of 𝑛, computed in a voxel of size Δ𝑣𝑧=0.7 and Δ𝑣𝑥,𝑦=30 mm/s for the negative (blue triangle)
and positive peak (red circles). The two markers have been slightly displaced on the 𝑥-axis
for readability. ®Same dataset as last section.

N-body local correlation function

However, in section 4.G of the second chapter, especially Figure 34, we showed that the prob-
ability distribution of a slightly displaced state is not really far from a thermal state. To further
verify the absence of coherence, we show in panel (b) of Figure 86 the 𝑛𝑡ℎ order normalized
correlation function 𝑔 (𝑛) up to the seventh order. As it can be seen in (209), the influence of
a non-zero 〈𝑎2𝑘〉 is more and more visible as 𝑛 increases. The solid line represents 𝑛!, which
is the expected value for a thermal state. Blue triangles and red circles respectively show
the correlation value for the negative and positive peaks. For the negative peak, a significant
discrepancy is observed for 𝑛 > 4. On the other hand, for the positive peak, we observe a
remarkable (and surprising) agreement. Indeed, we calculate the correlation function in a sin-
gle voxel with a 0.7 mean population. To determine 𝑔 (4) , we analyze coincidence counts that
involve at least 4 atoms simultaneously. For a thermal distribution and 1400 realization, the
expected number of cycles with at least 4 detected atoms is 40. It decreases to 7 cycles for
𝑔 (6) and only 3 cycles for 𝑔 (7) .

To assess entanglement, the criterion derived in the second chapter’s section 4.B requires
that the un-displaced Gaussian state also to satisfy 〈𝑎2𝑘〉 = 0. Using Wick expansion and
introducing7 𝛼𝑘 := 〈𝑎2𝑘〉 /〈𝑎

†
𝑘𝑎𝑘〉, one can show that

𝑔 (2)
𝑘,𝑘 = 2 + |𝛼 |2, 𝑔 (3)

𝑘,𝑘 = 6 + 9|𝛼 |2, 𝑔 (4)
𝑘,𝑘 = 24 + 72|𝛼 |2 + 9|𝛼 |4. (209)

Based on the error bars8 in Figure 86(b), the measurement of 𝑔 (2) is consistent with 2.0 with
an uncertainty of 0.1. We also have 𝑔 (3) = 6(1) and for the positive peak, 𝑔 (4)

𝑘𝑘 = 25(9). Using
7We use here a different notation than in the second chapter’s 4.A equation (134) as 𝛼 is now normalized to the

mean population.
8Error bars were evaluated with the bootstrap method.
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these uncertainties, we estimate that |𝛼 |2 < 0.1 using 𝑔 (2)
𝑘,𝑘 . We also have |𝛼 |2 < 1/9 using

𝑔 (3)
𝑘,𝑘 and |𝛼 |2 < 9/72 using 𝑔 (4)

𝑘,𝑘 . Here, all these measurements agree that |𝛼 |
2 < 0.1. In

the previous sections, we measured the local correlation with two methods, finding its value
consistent with 2.00 with an uncertainty of 0.05. Thus, we reasonably assume 〈𝑎2𝑘〉 = 0 in the
following analysis.

4.B Towards entanglement : measurement of the population
Our previous measurements showed that the 𝑘 and −𝑘 modes of the state are well described by
a thermal state. We can therefore use the theoretical work of the second chapter. We measured
a second order cross correlation function of 2.2(1) in section 2.B and 2.27(7) in section 3.B.
The mean value is therefore 2.24(7). Assuming the state is Gaussian, we showed that the state
is thermal; hence we can use Wick expansion to write

𝑔 (2)
𝑘,−𝑘 = 1 + (| 〈𝑎𝑘𝑎−𝑘〉 |2 + | 〈𝑎𝑘𝑎†−𝑘〉 |

2)/𝑛1𝑛2. (210)

First, if we assume that 〈𝑎𝑘𝑎†−𝑘〉 = 0, it means that the state is entangled as it implies
| 〈𝑎𝑘𝑎−𝑘〉 |2 > 𝑛1𝑛2 which is an entanglement witness9 (Hillery and Zubairy, 2006). If we
do not assume 〈𝑎𝑘𝑎−𝑘〉 = 0, we showed in the second chapter, section 4.B that the bound on
𝑔 (2) to certify entanglement shifts, depending on the state population.

From the correlation length that we measured in the previous sections 2.B and 3.B, we
define the voxel length to 1.5 mm/s to evaluate the population. Along 𝑣𝑥 and 𝑣𝑦 , we set the
size of the box using the correlation length evaluated in section 2.A: 30 mm/s along 𝑣𝑥 and
21 mm/s along 𝑣𝑦 . The size of the transverse box is therefore ∼ 3𝜎𝑥,𝑦 where 𝜎𝑥,𝑦 is the
fitted standard deviation of the sidebands (see section 1.A). This leads to a mean population
of 0.93(4) and 0.95(4) detected atoms. For this choice of boxes, we observe a violation of
the Cauchy-Schwarz inequality CS = 1.04(2) and relative number squeezing 𝜉2 = 0.92(4).
The value of the local correlation function computed in a single voxel is compatible with 2 as
𝑔 (2)
−− = 1.94(9) and 𝑔 (2)

++ = 1.98(12).
We show in Figure 87 the probability distribution of each mode. The probability distri-

bution is in excellent agreement with a thermal distribution (solid red line), which further
confirms the thermal statistics of each mode.

Using the entanglement witness derived in the second chapter, section 4.B and the mea-
sured population (which is greater than 1/

√
2) we observed 𝑔 (2)

𝑘,𝑘 > 2 which means that, as-
suming the state is Gaussian, it is entangled. We would like now to quantify this entanglement
using the logarithmic negativity. The author of the second chapter claimed that the measure-
ment of the two- and four-body correlation functions allow to quantify the entanglement of
the Gaussian state. We now proceed to such measurement.

9This was discussed in section 2.D of the second chapter.
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Figure 87: Full counting statistics of the dataset we analyze throughout this chapter, in a
voxel of length 1.5 mm/s. The transverse size is 4𝜎𝑥 , where 𝜎𝑥 is the Gaussian standard
deviation defined in section 1.A. The mean number of detected atoms is 0.93(4) and 0.95(4)
and the normalized variance between the modes is 0.92(4), the Cauchy-Schwarz ratio 1.04(2).
®Same dataset as last section.

Figure 88: (a) Fourth order correlation function defined in (212), as a function of 𝛿𝑣𝑧 . A
Gaussian fit yields a peak value of 𝑔 (4)

𝑘,−𝑘 = 26(4). (b) Extracted peak value of 𝑔 (4) (0) as a
function of the transverse integration. Here, we cannot decrease more the transverse integra-
tion to keep enough signal. The inset shows the fitted width of 𝑔 (4) (𝛿𝑣𝑧), in mm/s. ®Same
dataset as last section.

4.C Quantifying entanglement via the 4-body correlation function

Measurement of 𝑔 (4)

We now report on the measurement of the four-body correlation function, formally defined as

𝑔 (4)
𝑘,−𝑘 =

〈: 𝑎†2𝑘 𝑎†2−𝑘𝑎
2
𝑘𝑎

2
−𝑘 :〉

〈𝑎†𝑘𝑎𝑘〉
2 〈𝑎†−𝑘𝑎−𝑘〉

2
(211)

The procedure to measure it is the same as the one described in section 3.B. On panel (a)
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of Figure 88, we show

𝑔 (4)
+− (𝛿𝑣𝑧) =

∑
𝑣𝑧1+𝑣𝑧2=𝛿𝑣𝑧

(𝑣𝑧1−𝑣𝑧2 )/2 ∈ Ω+

𝑔 (4)
+− (𝑣𝑧1, 𝑣𝑧2). (212)

where Ω+ has been defined in Figure 81(b). From a Gaussian fit10, shown as a solid line in
Figure 88(a), we extract the peak value of 𝑔 (4) (𝛿𝑣𝑧 = 0) = 26(4) for this 40 mm/s transverse
integration volume. In Figure 88(b), we plot the fitted value of 𝑔 (4)

+− (0) as a function of the
transverse integration volume. For a thermal Gaussian state, the 4-body correlation function
is bounded, and we have

4
(
𝑔 (2)
𝑘,−𝑘 − 1

)2
≤ 𝑔 (4)

𝑘,−𝑘 − 16𝑔 (2)
𝑘,−𝑘 + 12 ≤ 6

(
𝑔 (2)
𝑘,−𝑘 − 1

)2
. (213)

This means the value of 𝑔 (4)
𝑘,−𝑘 is centered on a narrow interval of width 2(𝑔 (2)

𝑘,−𝑘 − 1)2. Given
the measured value 𝑔 (2)

𝑘,−𝑘 = 2.24(7), the fourth-order correlation function is predicted to fall
within [29.99, 33.07]. Taking into account the 0.07 uncertainty in the measurement of 𝑔 (2)

𝑘,−𝑘 ,
this interval becomes [28.20, 35.26]. These intervals are reported in the shaded green area of
Figure 88(b), between dashed and dotted curves.

First, we observe that the points lie near the minimal allowed value. Second, the uncer-
tainty on the measurement of 𝑔 (4)

𝑘,−𝑘 is larger than the interval in which we need to determine
its value, which makes impossible a reliable measurement. Here, the value of 𝑔 (4)

𝑘,−𝑘 is more
compatible with its minimal value.

Influence of 𝑔 (4)
𝑘,−𝑘 on the degree of entanglement

The measurement of 𝑔 (4)
𝑘,−𝑘 allows to discriminate the relative value between | 〈𝑎𝑘𝑎−𝑘〉 | and

| 〈𝑎𝑘𝑎†−𝑘〉 |. We reintroduce the notations of the second chapter, section 4.A and define

𝑐𝑘 := 〈𝑎𝑘𝑎−𝑘〉 , 𝑑𝑘 := 〈𝑎𝑘𝑎†−𝑘〉 . (214)

When 𝑔 (4) is close to its minimal value in Eq. (213), it means that either |𝑐𝑘 | � |𝑑𝑘 |, or |𝑑𝑘 | �
|𝑐𝑘 |. The fact that the second order correlation function is above 2 and that the population
is high makes impossible the second scenario: such state would not respect the bona fide
condition. We have therefore |𝑐𝑘 | > |𝑑𝑘 |. When 𝑔 (4)

𝑘,−𝑘 is close to its highest value, it means
that |𝑑𝑘 | ∼ |𝑐𝑘 |. In the second chapter, we also defined 𝜃 in Eq. (157) which is a normalized
quantity taking into account the value of 𝑔 (2)

𝑘,−𝑘 and 𝑔
(4)
𝑘,−𝑘 , that varies monotonically with 𝑔

(4)
𝑘,−𝑘 .

We show in Figure 89 the value of the logarithmic negativity as a function of 𝜃. The solid
purple line uses 𝑔 (2)

𝑘,−𝑘 = 2.24 and the dotted curves its lower and higher uncertainty. The line
stops at 𝜃 ∼ 0.3 due to the bona fide condition: for such high value of 𝑔 (2)

𝑘,−𝑘 and the measured
population, it is not possible for the value of |𝑑𝑘 | to be too high. The position of this region
depends on the value of 𝑔 (2)

𝑘,−𝑘 : the dotted curve for which 𝑔
(2) = 2.17 has a critical value for

𝜃 of ∼ 0.4 while it is 0.25 for 𝑔 (2)
𝑘,−𝑘 = 2.31. Our measurement of 𝑔 (4)

+− is more compatible with
𝜃 = 0. It is therefore more likely that the logarithmic negativity of the state is 0.4(1). We see
however from this figure that a non-zero value of 𝑑𝑘 cannot de-entangle our state. In fact, it
can only increase entanglement as seen here.

10For the fourth order correlation function, the offset is 4.
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Figure 89: Logarithmic negativity of the state for which 𝑔 (2) = 2.24(7) as a function of 𝜃. 𝜃
increases with the value of 𝑔 (4)

𝑘,−𝑘 .

The measurement of 𝑔 (4)
𝑘,−𝑘 indicates that it is more likely that 𝜃 = 0 hence that 𝑑𝑘 =

〈𝑎𝑘𝑎†−𝑘〉 = 0. In the next section, we take into account the efficiency of the detector to recon-
struct the state before the detector.

4.D Influence of the non-unit efficiency

We now assume that 〈𝑎𝑘𝑎†−𝑘〉 = 0, which is a reasonable assumption given our measurement
of 𝑔 (4)

𝑘,−𝑘 . Additionally, we assume the detected mean populations are identical and equal to
0.94. We now study the influence of the non-unit detection efficiency.

Parametrization of the state

Based on our simplifications, the state is simply parametrized by two numbers : 𝑐𝑘 and 𝑛𝑘 . In
the following, to lighten notations, I assume that 𝑐𝑘 is real and positive (it involves otherwise
the modulus of 𝑐𝑘). The second order correlation function that we measured is not affected by
losses and provides us the value of 𝑐 (𝑑𝑒𝑡 )𝑘 through the value of 𝑛(𝑑𝑒𝑡 )𝑘 = 0.94:

𝑐𝑘 = 𝑛𝑘

√
𝑔 (2) − 1 (215)

Effect of losses can be modelled by mixing each mode with the vacuum on a beam-splitter
with efficiency 𝜂. As seen in the second chapter, section 1.D it changes the covariance matrix
𝝈 → 𝜂𝝈 + (1 − 𝜂)I2. With our parametrization, effect of losses is even simpler:

𝑛𝑘 = 𝑛(𝑑𝑒𝑡 )𝑘 /𝜂 , 𝑐𝑘 = 𝑐 (𝑑𝑒𝑡 )𝑘 /𝜂. (216)

The state we describe is a two-mode squeezed thermal state. Physically, it is better to describe
it with two other numbers: the squeezing parameter 𝑟𝑘 and the initial (thermal) mode occu-
pancy 𝑛(𝑖𝑛)𝑘,𝑡ℎ. The covariance matrix of this state was also discussed in chapter 2, section 1.E.
Nonetheless, we can access the value of 𝑛(𝑖𝑛)𝑘,𝑡ℎ and 𝑟𝑘 through the value of 𝑐𝑘 and 𝑛𝑘 :

tanh(2𝑟𝑘) =
2𝑐𝑘

2𝑛𝑘 + 1
, 2𝑛(𝑖𝑛)𝑘,𝑡ℎ + 1 =

2𝑛𝑘 + 1

cosh(2𝑟𝑘)
. (217)
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Figure 90: (a) Mean population of the state taking into account the detection efficiency 𝜂 of
the detector. (b) Logarithmic negativity defined in Eq. (218), (c) initial thermal population
and (d) squeezing parameter defined in Eq. (217). The color and style of each curve match a
different value of the second order correlation function, given in panel (a).

and the value of the logarithmic negativity is given by

𝐸N = − log2

[
(2𝑛(𝑖𝑛)𝑘,𝑡ℎ + 1)𝑒−2𝑟𝑘

]
. (218)

In Figure 90, we plot some state properties as a function of the quantum efficiency of the
detector 𝜂, which range between 20 and 50%. Each curve represents a different value of the
second order correlation function, taken in the uncertainty range of 𝑔 (2) = 2.24(7).

Panel (a) shows the state mean population: the smaller the efficiency, the larger the mean
occupation of the reconstructed state. The markers show the position where each curve stops
for the corresponding value of 𝑔 (2) : the highest the value of 𝑔 (2) , the smallest the value 𝜂𝑚𝑖𝑛

for which our parametrization is physical. Indeed, for a given value of 𝑔 (2) , the Gaussian state
with the highest mean population that has this value of 𝑔 (2) is the two-mode squeezed vacuum
state. For this state, we have 𝑔 (2) = 2 + 1/𝑛. The minimal value of the efficiency is therefore
𝜂𝑚𝑖𝑛 = (𝑔 (2)

𝑘,−𝑘 − 2)𝑛(𝑑𝑒𝑡 )𝑘 . Hence, the larger 𝑔 (2)
𝑘,−𝑘 , the larger the minimal efficiency. With

𝑔 (2) = 2.24, we see that the quantum efficiency is at least 23%, and if we consider the lower
uncertainty, it is at least 17%.

Panels (b) and (d) of Figure 90 show respectively the logarithmic negativity and the squeez-
ing parameter 𝑟𝑘 . We observe that they monotonically increase with 1/𝜂. Here again, the
smaller the quantum efficiency, the larger the real state and the larger its correlations.

Even more interesting is the initial thermal population of the state, shown in panel (c).
From the temperature of 49 nK, measured in section 1.A, we expect the initial thermal popu-
lation to be 0.6. This means that we can find an estimate of the quantum efficiency using the
measured value of the correlation function and the population. The orange dotted curve for
which 𝑔 (2)

𝑘,−𝑘 = 2.31 does not intersect this value: it is likely that the second order correlation
function is smaller than this value. The other curves however intersect this 𝑛(𝑖𝑛)𝑘,𝑡ℎ = 0.6 value:
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Table VI.1: Degree of entanglement and detection efficiency depending on the value of the
second order correlation function assuming a 0.6 initial thermal population. 𝜂 refers to the
quantum efficiency of the MCP, 𝑟𝑘 to the squeezing parameter, 𝐸N to the logarithmic nega-
tivity, 𝜉2𝑘,−𝑘,𝜂 to the relative number squeezing that should be observe given 𝜂.

𝑔 (2)
𝑘,−𝑘 𝜂 𝑟𝑘 𝐸N 𝑛𝑘 𝜉2𝑘,−𝑘,𝜂
2.17 0.2 1.1 2.1 4.7 0.84
2.2 0.25 1.0 1.8 3.5 0.81
2.24 0.36 0.85 1.3 2.6 0.77

the 𝑔 (2)
𝑘,−𝑘 = 2.24 curve for 𝜂 = 0.36 and the 𝑔 (2)

𝑘,−𝑘 = 2.2 and 2.17 respectively for 𝜂 = 0.25
and 0.2.

Once known the quantum efficiency, we can recover the logarithmic negativity of the state
which is given in Table VI.1.

Surprisingly, we observe in table Table VI.1 that the degree of entanglement of the recon-
structed state increases when the detected second order correlation function increases. This is
in fact not so surprising if one thinks that 𝑔 (2)

𝑘,−𝑘 is unaffected by losses. The smaller 𝑔
(2)
𝑘,−𝑘 is,

the larger the mean population of the state (at fixed value of the initial population), hence the
larger the squeezing strength.

The value of 𝑛𝑘 and 𝑐𝑘 also fixes the expected value of the relative number squeezing
𝜉2𝑘,−𝑘,𝜂 = Var(𝑛−𝑘 − 𝑛𝑘)/(𝑛−𝑘 + 𝑛𝑘). Last column of Table VI.1 shows the theoretical value
of the detected normalized variance 𝜉2𝑘,−𝑘,𝜂

𝜉2𝑘,−𝑘,𝜂 = 1 − 𝜂 + 𝜂𝜉2𝑘,−𝑘 . (219)

It was shown by Jaskula et al. (2010) that the value of the normalized variance is more accurate
when the integration volume is large (which is the opposite of the correlation signal). If we
increase the voxel size to 3 mm/s along 𝑣𝑧 and 80 mm/s along 𝑣𝑥,𝑦 , we measure a normalized
variance of 0.83(1). According to Table VI.1, this value is compatible with a second order
correlation function of 2.24(7) as it corresponds to 𝑔 (2)

𝑘,−𝑘 = 2.18. Nonetheless, doing so, we are
also counting thermal modes that contributes to increase the measured normalized variance.

4.E Two-mode Fock probability distribution

Still assuming 𝑑𝑘 = 0, the value of 𝑔 (2)
+− and the population completely characterize the state.

In particular, we can compute the expected two-mode probability distribution and compare
it to experimental data. Figure 91 compares the measured state (left) and the expected one
(right) given the measured populations and a correlation value of 𝑔 (2) = 2.2 (I choose 2.2
due to the last measurement of the variance). We observe a good agreement between the
two distributions. From the quantum efficiency of the detector, we can even model the Fock
probability distribution of the state. It is a two-mode squeezed thermal state with 𝑟𝑘 ∼ 1
and 𝑛(𝑖𝑛)𝑡ℎ = 0.6. It corresponds to the probability distribution that we would measure with a
100% quantum efficiency. We show this probability on the bottom panel of Figure 91. On this
probability distribution, we clearly show the pronounced diagonal which is a characteristic of a
two-mode squeezed state. For a two-mode squeezed vacuum state, this two-mode probability
distribution lies only on the diagonal. When there is a thermal seed, the diagonal is broadened.
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Figure 91: Two-mode probability distribution as a function of the number of particles in mode
1 𝑛1 and mode 2 𝑛2. Left panel shows experimental data; Right panel shows the state model
by a Gaussian TMSth state for which 𝑔 (2) = 2.2 and a detected population of 0.92. Bottom
panel shows the 2D distribution of the same state before detection (before the beam-splitter
that models the losses). ©Theoretical distributions obtained using the Walrus library (Gupt
et al., 2019).

4.F Conclusion
In this final section, we investigated deeper the single mode statistics to further check that
it behaves like a thermal state. Such verification is important to use Wick theorem and use
the theoretical work of chapter 2. In the second section we measured the population of the
state. From the measured population and the value of the second order correlation function,
we assess that the state is entangled. This is the major result of this PhD thesis.

In the next section, we measured the fourth order correlation function. This measurement
is compatible with a value 𝑔 (2) = 2.24(7), even though the error-bars are quite large. This
measurement is also slightly more compatible with the lower value of the 𝑔 (2) uncertainty
i.e. 2.17. Finally, the 4-body correlation function is compatible with the fact that 〈𝑎𝑘〉 = 0,
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Figure 92: Evolution of the normalized variance (right) and the Cauchy-Schwarz ratio (right)
as a function of the detected population. The red horizontal line on the right subplot indicates
the limit for relative number squeezing. On the right plot, the red lines show the bound on
the threshold value for the Cauchy-Schwarz ratio derived in chapter 2. The dashed line does
not take into account the quantum efficiency and the solid line account for a 25% quantum
efficiency. ©Data taken in April 2024.

which is expected from theory. In the last section, we further checked the consistency of
our reasoning and, knowing the initial thermal population, we showed that our state is well-
modeled by a two-mode squeezed thermal state with parameter 𝑟𝑘 = 1.0 and initial thermal
population 0.6, detected with a 0.25 quantum efficiency. We also measured a normalized
variance of 0.83(1). All measurements agree that

1. the state is entangled,

2. the state that we detect has a logarithmic negativity of 0.4(1),

3. if we take into account a 25(10)% quantum efficiency, the squeezing parameter of the
reconstructed state is 1.0(7). The corresponding logarithmic negativity is 1.8(9).

A future direction for this experiment is to monitor entanglement throughout the paramet-
ric creation process, i.e., by varying the excitation duration. Currently, we have not quantified
entanglement through logarithmic negativity for each dataset as we have done in this chap-
ter. However, we assessed the degree of violation of the classical Cauchy-Schwarz inequality
(CS > 1) and the relative number squeezing. These results are presented in Figure 92 as a
function of the detected population.

Assuming the state is Gaussian and thermal, themeasurement of the Cauchy-Schwarz ratio
and the population allow witnessing entanglement. Above the red line in Figure 92, the state
is entangled due to the lower bound on 𝑔 (2) that we adapted for CS . The state is also particle
entangled without any hypothesis, as shown by Wasak et al. (2014).

These data were collected across various experimental configurations over different weeks.
In Figure 93, we rescaled the different excitation processes to align them on a common 𝑥-axis
representing time. We used the dataset with filled markers in Figure 93 as a reference. In this
particular experiment, we excited the gas with a modulation amplitude of 8% for 8 periods
at the 2 kHz breathing mode. After the excitation, we then let an additional delay ranging
from 4 to 12 periods (2 to 6 ms), during which the BEC continued breathing and excited pairs
of quasi-particles. The time axis in Figure 93 thus refers to this additional delay. To align
other experimental points, we calculated the theoretical growth rate based on the properties of

172



CHAPTER VI. OBSERVATION OF QUASI-PARTICLES ENTANGLEMENT

Figure 93: Evolution of the normalized variance (right) and Cauchy-Schwarz ratio (right) as
a function of the excitation time. The filled markers has been taken on the same day and serve
as a reference to define the excitation duration. ©Data taken in April 2024..

each excitation process (amplitude, number of excitations, and additional delay) along with
the specific BEC properties of each dataset.

At short time, the state is entangled (or at least particle entangled). At later time, entangle-
ment is lost, or we fail to detect it.

Summary In this chapter, we report on the observation of entangled quasi-
particles. We show that the 𝑁-body correlation function of the single mode is
well-described by a Gaussian thermal state up to the 7th order. We measure the
mode mean population to be 0.93(4) and 0.95(4). It means that the measurement
of the cross-correlation functions 𝑔 (2)

𝑘,−𝑘 = 2.2(1) and 2.27(7) in the previous
sections 2.B and 3.B. From the 𝑔 (2) entanglement witness derived in the sec-
ond chapter, we can already conclude on the non-separability of the state. The
measured value of the 4-body correlation function 26(4) is compatible with the
measured value of 𝑔 (2)

𝑘,−𝑘 . Futhermore, even though the uncertainty of this mea-
surement is large, the value we obtain is more compatible with 〈𝑎𝑘𝑎†−𝑘〉 = 0. We
therefore estimate the logarithmic negativity of the detected state to be 0.35(15).
Modeling our state with a two-mode squeezed thermal state, we take into account
the quantum efficiency of our detector, and with a sef-consistent reasoning that
uses the initial thermal occupation, we estimate the quantum efficiency of the
detector to 25(10)%. This value is consistent with the minimal relative number
squeezing reported by Leprince (2024) on a multi-mode two-mode squeezed vac-
uum state. This self-consistent reasoning yields a squeezing parameter of 1.0(7)
and a logarithmic negativity of 1.8(9) for the bi-partite quasi-particle state. Fi-
nally, we report on the observation of the violation of the Cauchy-Schwarz in-
equality and relative number squeezing as a function of the excitation duration.
The quantumness of the state is lost after 4 ms.
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This thesis reports on the observation of the production and entanglement of quasi-particles
pairs in a time-modulated Bose-Einstein condensate (BEC). To summarize the content of the
manuscript without repeating the introduction, we take here the historical perspective of this
PhD.

1. Conclusion

The first year of my PhD was dedicated to experimental work focused on repairing the He★
BEC apparatus. After a year of modifications, we obtained our first BEC in a crossed dipole
trap in March 2022. Just a few weeks later, we produced our first pairs of atomic (entangled?)
particles using a blue-detuned lattice, a technique well-established within the team (Bonneau
et al., 2013). Although this did not constitute new scientific results, it marked a teammilestone:
for the first time in four years, we successfully produced pairs over a long acquisition time.
However, the extended period of machine downtime, along with numerous technological up-
grades (including changes to the detection process), interrupted the transmission of knowledge
between PhD students. This meant that we could not directly benefit from prior expertise in
data analysis and existing efficient code. Following the good practices introduced by Python
enthusiasts Alexandre and Quentin, we developed heliumtools, a collaborative Python module
that is object-oriented, efficient, and user-friendly.

The first experiment resembling the Dynamical Casimir Effect (DCE) was conducted in
June 2022, and I presented these first experimental results at the Optique Nice conference. At
that time, the stability of the BEC arrival time was not yet sufficient to observe clear opposite-
momentum correlations. Our progress in both data analysis and the fast cooling of He★ to
degeneracy were stopped in the end of 2022. We encountered new technical issues among
which a vacuum leak that took fivemonths to fully resolve. As “les emmerdes, ça vole toujours
en escadrille”, the dipole trap laser failed soon after (though this was quickly fixed). Once
these issues were resolved, we focused on the Bragg interferometer and shaping the pulses,
exploring a variety of configurations, which are detailed in the manuscript of Charlie Leprince
(2024). A publication has been submitted to present these results (Leprince et al., 2024). In
May 2023, we gathered two weeks of DCE data. Although the correlation signal did not
reach the expected value, this period marked the successful measurement of the Bogoliubov
dispersion relation. These results were presented at the Analog Gravity summer school and
conference that I attended in Benasque, Spain.

After this conference, we shifted our focus and began a series of Hong-Ou-Mandel atomic
interferometry experiments in the summer of 2023, varying the input state properties of the
interferometer and adjusting the pulse shapes for the mirror and beam-splitter. This successful
series led to our first Bell inequality test in October 2023. Unfortunately, this attempt did not
yield the expected oscillations in the Bell parameter. Returning briefly to the DCE project, we
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observed relative number squeezing in November 2023. However, the position and size of the
pinholes that filter out unwanted modes needed to be well-adjusted in order to observe this
sub-shot-noise signal. Following a relatively minor series of breakdowns and upgrades in the
winter of 2024, we dedicated a full month to DCE-like experiments in the spring of 2024. We
observed a reproducible and clear violation of the classical Cauchy-Schwarz inequality and
relative number squeezing which led us to start to write an article.

We therefore ask ourselves: can relative number squeezing and/or violation of the classical
Cauchy-Schwarz inequality enable us to draw conclusions about entanglement? This question,
along with the preparation of this manuscript, led me to explore these correlation witnesses in
greater detail, as well as the distinction between particle entanglement andmode entanglement.
Violation of the classical Cauchy-Schwarz inequality has been shown to serve as a particle
entanglement witness, while in this work, we focus on uncovering mode entanglement.

Turning to mode entanglement, I focused on the hypothesis 〈𝑎𝑘𝑎†−𝑘〉 = 0. One possible
way to test this assumption is by implementing an atomic interferometer that mixes the 𝑘
and −𝑘 modes. The output of the interferometer oscillates with an amplitude given by the
modulus of this coherence term. However, this approach would require adjusting the Bragg
beams angle, which is not straightforward due to optical access constraints. Furthermore, the
team’s primary objective remains the realization of a (second) Bell test, for which the beams
angle must remain unchanged. While drafting the “entanglement” chapter of this manuscript,
I delved into Gaussian state formalism - first introduced to me during the 2023 Benasque
summer school. This study led first to the derivation of the 𝑔 (2) bound to assess entanglement,
and then to the 𝑔 (2)/𝑔 (4) criterion, which are now at the core of the second chapter of this
work. A publication is in preparation on this result.

In the data we collected, the violation of the Cauchy-Schwarz inequality was permitted
by a decrease of the local correlation function, rather than an increase above 2 of the cross-
correlation function. After completing the initial chapters of this manuscript, I returned to the
experiment. We began by investigating the growth process, which highlighted a strong align-
ment with theoretical predictions. Furthermore, the pronounced oscillation in atom number
during exponential growth indicated that mapping the phonon basis to the atom basis relying
only on the natural transverse expansion was insufficient. Consequently, we implemented the
adiabatic opening of the trap, which, combined with meticulous experimental preparation to
ensure stability, allowed us to reveal mode entanglement in October 2024. A publication is in
preparation on these results.

2. Outlooks
Our proof for non-separability lies on the assumption that the state is Gaussian. If this is not
the case, Wick theorem does not apply, and we are unable to relate correlation functions to
mode entanglement. Some critics might argue that the Gaussian assumption is too strong,
as non-locality with massive particles entangled in external degrees of freedom has yet to
be demonstrated. A natural outlook of this work is therefore to wonder if this pair creation
process could lead to an experimental violation of Bell inequalities.

Such experiment à la Aspect requires the use of 2 × 2 modes i.e. a product of two-mode
squeezed state |𝜓𝑘,−𝑘〉 ⊗ |𝜓𝑘′ ,−𝑘′〉. With photons, this experiment was realized by Rarity and
Tapster (1990). With atoms, such violation was not yet evidenced even though two experi-
ments gave preliminary promising results (Dussarrat et al., 2017; Thomas et al., 2022). In
order to use the source we described in this manuscript for such experiment, we need to im-
prove two important elements.
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Figure 94: 𝑔 (2) correlation map after long time and strong excitation process.

• The interferometer described in the previous references requires a product of two-mode
squeezed states. With our pair creation process, this could be in principle possible by
modulating the trap power with two frequencies 𝜔1 and 𝜔2. This would result in the
parametric excitation of two modes (𝑘1,−𝑘1) and (𝑘2,−𝑘2) such that 𝜔(𝑘1) = 𝜔1/2
and 𝜔(𝑘2) = 𝜔2/2. However, given the difficulties reported in chapter 5 to excite a
well-controlled Bogoliubov mode, this option seems unreasonable.

• The Bell inequality derived with this specific Mach-Zenhder interferometer involves
4-modes but only two-particles. It means that the probability to have 4 particles in the
interferometer must be really low: the mean population of the two-mode squeezed states
must be lower than 0.14 atoms per mode. In this work, the initial thermal population
is 0.6 i.e. even before squeezing, the state population is too large. The momenta of
the two-mode squeezed states must therefore be much larger than 𝜉−1 so that the initial
thermal seed is negligible.

One possibility to overcome these problems is to take advantage of the already installed
blue-detuned lattice to parametrically excite Bogoliubovmodes (Krämer et al., 2005; Lellouch
et al., 2017).

Future work will also investigate deviations from Bogoliubov-de Gennes theory. Specif-
ically, when driving the system further out of equilibrium, we observe correlations between
Bogoliubov modes. A typical example is shown in Figure 94. In the density profile, a strong
peak appears at 𝑘 = ±9 mm/s and a smaller one around 2𝑘 = ±18 mm/s. Such secondary
resonance is expected in periodically driven systems at frequency 𝜔𝑑 , where Floquet analysis
reveals a series of resonances 𝑛𝜔𝑑/2 for 𝑛 ∈ R. Microscopically, assuming a linear disper-
sion relation, this excitation process is explained by the annihilation of two excitations with
momentum 𝑘 and the creation of excitations with momentum 2𝑘 . The presence of such ex-
citations has already been reported in the literature (Nguyen et al., 2019; Hernández-Rajkov
et al., 2021); however, it would be valuable to track the growth of correlations between dif-
ferent modes. Such correlations naturally raise the question of whether the state is multimode
entangled and how to reveal it.
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This appendix contains experimental details of the experiment. The first section contains
additional information related to the core of the manuscript. The second one reports on the
change of our sequencer and is intended to be a guide for future PhD students. The next section
contains technical information that had no interest to figure in the main text but should not be
lost. Finally, the last section focuses on the correlation codes.

1. General appendix

1.A Detecting particle entanglement of spin-1/2 systems
During this thesis, we asked our-self many questions about how to detect entanglement. Many
entanglement criteria were derived to detect spin squeezing. Among them, Tóth et al. (2007)
derived a class of entanglement witnesses among which one involves commuting observables
that are accessible with our detector. Hyllus et al. (2012) derived later a recipe to generalize
these spin squeezing criteria that are defined with system with fluctuating number of particles.
I am now a bit skeptical on the applicability of this criterion to our state, but I think that this
work (even though I did not participate much in it) should not be lost as it could be useful. Note
that a similar approach was used by Krešić et al. (2023) to detect entanglement, but authors
do not provide their derivation.

Extension of a practical entanglement witness for fluctuating number of particles

When one deals with a two mode system, one can describe the properties of the quantum state
as a fictitious spin-1/2 defining

𝐽𝑧 =
1

2
(𝑎†𝑎 − 𝑏†𝑏), 𝐽𝑥 =

1

2
(𝑎†𝑏 + 𝑏†𝑎), 𝐽𝑦 =

1

2𝑖
(𝑎†𝑏 − 𝑏†𝑎) (220)

where 𝑎 and 𝑏 are the annihilation operator of each mode. This was for example used by
Estève et al. (2008) to describe the two-mode properties ot a double-well BEC. This is conve-
nient because many entanglement criteria have been derived for spins system. Furthermore,
many of them involve variance and/or mean of the 𝐽′𝑖 operators, rendering there experimental
calculation quite easy. Still, in order to measure the expectation value or its square of 𝐽𝑥,𝑦 ,
one needs to mix the two modes and therefore in our case an interferometer. However, the
sum of the square of the 𝑥 and 𝑦 angular momentum has a quite simple expression:

𝐽2𝑥 + 𝐽2𝑦 −
𝑁

2
= 𝑎†𝑎𝑏†𝑏 = 𝑛𝑎𝑛𝑏 . (221)

This means in particular that this quantity can be measure with a particle detector. Among the
(many) criteria in the literature, it turns out that one does involve this sum.

179



Appendix

Theorem - An Optimal Spin Squeezing Inequality
Considering an ensemble of 𝑁 qubit states, the violation of the following inequality im-
plies entanglement (Tóth et al., 2007)

〈𝐽2𝑖 〉 + 〈𝐽2𝑗 〉 −
𝑁

2
≤ (𝑁 − 1) (Δ𝐽𝑘)2 (222)

where 𝑖, 𝑗 , 𝑘 can take any permutation of 𝑥, 𝑦, 𝑧.

The left hand-side on (222) is nothing but the right hand-side of (221). Here however, the
number of atoms 𝑁 is fixed. This criterion is of particular interest for a single-particle detector
as

𝐽2𝑥 + 𝐽2𝑦 −
𝑁

2
= 𝑎†𝑎𝑏†𝑏 = 𝑛𝑎𝑛𝑏, (223)

i.e. the criterion is accessible experimentally. However, the latter witness is defined for a fixed
number of particles. It was also shown by Hyllus et al. (2012) how spin-squeezing parameters
can be extended to systems with a fluctuating number of particles. This was derived recently
by Boiron (2024).

Theorem - Tóth-Boiron entanglement witness
Consider a system of 𝑁 = 𝑛𝑎 + 𝑛𝑏 bosons in two modes 𝑎 and 𝑏. Defining the quantity

W𝐵 := Var(
√
𝑛𝑎 + 𝑛𝑏 − 1

𝑛𝑎 − 𝑛𝑏
2

)/〈𝑛𝑎𝑛𝑏〉 (224)

if a state violate the inequalityW𝐵 ≥ 1, it is particle entangled.

Proof. We use the superselection rule and write the density operator as

𝜌 =
∑
𝑛

𝑄𝑛𝜌𝑛,
∑
𝑛

𝑄𝑛 = 1, 0 ≤ 𝑄𝑛 ≤ 1 (225)

We define the operator 𝐴 = 𝑃
√
𝑁 − 1𝐽𝑧𝑃 where 𝑃 = 1 − |00〉 〈00| is a projector so that the

square root in the definition of 𝐴 is always defined. We have therefore

〈𝐴〉 =
∑
𝑛

𝑄𝑛 〈𝐴〉𝑛 =
∑
𝑛≥1

𝑄𝑛

√
𝑛 − 1 〈𝐽𝑧〉𝑛 (226)

with 〈Ô〉𝑛 = Tr(𝜌𝑛Ô). The Cauchy-Schwarz inequality leads to

〈𝐴〉2 =
(∑

𝑛

𝑄𝑛 〈𝐴〉𝑛

)2
≤

∑
𝑛

𝑄𝑛 〈𝐴〉
2
𝑛 (227)

and therefore

Var(𝐴) =
∑
𝑛

𝑄𝑛 〈𝐴2〉𝑛 −
(∑

𝑛

𝑄𝑛 〈𝐴〉𝑛

)2
≥

∑
𝑛

𝑄𝑛

(
〈𝐴2〉𝑛 − 〈𝐴〉2𝑛

)
. (228)

Given that at fixed 𝑛, the value of Var(𝐴) = (𝑛 − 1)Var(𝐽𝑧), we have that

Var(𝐴) ≥
∑
𝑛>0

𝑄𝑛 (𝑛 − 1)Var(𝐽𝑧) (229)
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We now apply the entanglement criterion from equation (222) for each 𝑛 with 𝑥 and 𝑦 on the
left-hand side and 𝑧 on the right-hand side. This implies that for any separable states, the
following inequality must hold

Var(
√
𝑛𝑎 + 𝑛𝑏 − 1

𝑛𝑎 − 𝑛𝑏
2

) ≥
∑
𝑛

𝑄𝑛 〈𝐽2𝑥 + 𝐽2𝑦 −
𝑛

2
〉
𝑛

(230)

which is equivalent to

Var(
√
𝑛𝑎 + 𝑛𝑏 − 1

𝑛𝑎 − 𝑛𝑏
2

) ≥
∑
𝑛

𝑄𝑛 〈𝑛𝑎𝑛𝑏〉𝑛 = 〈𝑛𝑎𝑛𝑏〉 . (231)

□

Obviously, a Fock state violates this inequality as it violates the Cauchy-Schwarz inequality.
If we apply stricto-sensu the criterion to a two-mode squeezed state with mean population 𝜈,
one has Boiron (2024)

W𝐵 = (1 − 𝜂) 2𝜈

1 + 2𝜈
< 1. (232)

As the variance, this criterion is sensitive to the efficiency 𝜂 of the detector. However, is
always smaller than one hence this criterion seems robust to a pure loss channel on a two-
mode squeezed vacuum state.

Discussion

The main question is now: can we apply this criterion to our system ?
In the derivation of the witness, we used the superselection rule: this means we assumed

that a superposition of different number states is not possible. In some sense, I think one must
however be careful: this rule must be applied to the entire space of the system. Here, we
applied the superselection rule on the system 𝐴 ∪ 𝐵: this is correct if 𝐴 ∪ 𝐵 = Ω where Ω
represents all the states accessible to the system. This is the case for example if 𝐴 and 𝐵 are
the (only) two levels of a spin or if 𝐴 and 𝐵 are the two wells of trap (Estève et al., 2008).
Suppose now the entire Hilbert state is a 3 level system for each particle, labeled 𝐴, 𝐵 and 𝐶.
This could be for example a spin 1 system or our system if one consider the BEC, the 𝑘 and
the −𝑘 mode. Applying the superselection rule to the subsystem 𝐴 ∪ 𝐵 means that there are
no particles that are on a coherent superposition of 𝐴 ∪ 𝐵 and 𝐶. This is in contradiction with
how we theoretically describe our state as it is a two-mode squeezed state. I would therefore
say that we cannot apply this criterion to our state.

Numerical tests

For the rest of this section, we will check numerically if W𝐵 could be a (mode) entangle-
ment witness for Gaussian states. Sadly, I did not succeed in expressing generally W𝐵 as a
function of the covariance matrix, rendering it impossible to demonstrate if it can be an entan-
glement witness. It can however be computed using the projection of the density matrix on
the Fock basis, the joint probability distribution that we introduced in the first section of the
second chapter. We adopt here the same procedure that we have done in section 3.D of the
second chapter.

In Figure 95, we represented the variations of W𝐵 for various states. The squeezing pa-
rameter is kept constant but the initial thermal population is changed. On the 𝑥 axis is the
initial population of mode 1, and the different colors represent the initial population in mode
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Figure 95: Comparison of possible entanglement witnesses. The left panel represents the
logarithm negativity as a reference, the middle panel the normalized variance, and the right
panelW𝐵. The squeezing parameter is 𝑟 = 0.14, chosen so that the particle number is not too
high for computational reasons. On the 𝑥 axis of each curve lies the initial thermal population
of mode 1, and curve colors represent the initial population in mode 2. The state is entangled
at first (low initial thermal population in mode 1) and then becomes separable when the initial
thermal population is too high. The middle panel represents the normalized variance, which
might witness entanglement when below 1. The light vertical bars split the 𝑥 axis between
entangled (left) and separable (right) states with the same colors. For some of the states rep-
resented here, the joint probability distribution was extracted, making it possible to compute
both the normalized variance and W𝐵. The normalized variance value extracted from the
joint distribution is represented through the round markers. As they all lie on the curves, we
conclude that the distribution was extracted with a sufficiently good cutoff. On the right panel
is represented the quantity W𝐵 from equation (224). When the initial population of mode 2
is low, W𝐵 detects entanglement: the blue dots lie below the red line. However, it ceases to
detect entanglement before the normalized variance stops. For example, when mode 2 has an
initial thermal population of 0.2, it fails to witness entanglement at all, while the normalized
variance is still below 1. On the other hand, we see that it never witnesses a separable state as
entangled in this particular example. ©Distributions obtained using the Walrus library (Gupt
et al., 2019).

2. The left panel represents the logarithm negativity, an entanglement criterion, the middle
panel the normalized variance (a possible entanglement witness), and on the right panel the
quantity W𝐵. On the middle and right panels, the vertical lines represent the limits beyond
which the state is not entangled (gPPT), with the color corresponding to each curve chosen in
agreement with the legend.
When the population in mode 2 is low, W𝐵 and the variance witness entanglement (they are
below 1) over a reasonable range, with the variance being a little bit more precise as it goes
above one after W𝐵. When the initial population of mode 2 is a bit higher, W𝐵 never wit-
nesses entanglement, while the normalized variance does but over a small range. When the
initial population in mode 2 is too high, both criteria fail to witness entanglement. This is
expected because the two final populations are too different, causing the variance to fail to
witness entanglement as seen in Figure 28.

In Figure 96, we fix the mean number of particles in the Gaussian state to 0.2 on the left
and 2.2 on the right (taken equal for both modes). We change the strengths of the correla-
tion between the two modes, namely the values of | 〈𝑎1𝑎2〉 | and | 〈𝑎1𝑎†2〉 | in the covariance
matrix. These values are bounded: the grey region on the plot corresponds to an unphysical
region where the Schrödinger-Robertson inequality (105) is not satisfied. Here again, the PPT

182

https://the-walrus.readthedocs.io/en/latest/


Appendix

Figure 96: Failure of theW𝐵 witness candidateW𝐵 to reliably witness mode entanglement.
For these plots, the population was kept constant (𝑛 = 0.2 on the left and 𝑛 = 2.2 on the right)
while the correlation between the modes was changed, namely | 〈𝑎1𝑎2〉 | on the 𝑥 axis and
| 〈𝑎1𝑎†2〉 | on the 𝑦 axis. Depending on the value of these operators, the state can be separable
(on the left of the solid black curve, which is the PPT criterion) or entangled (on the right).
The colorscale shows the logarithm negativity. The reds and blue dots represent the states
where W𝐵 > 1 (orange) and W𝐵 < 1 (purple), respectively. On the left plot, we observe
blues dots in the separable region. This means this witness detec entanglement for a separable
state. This potential entanglement witness must be rejected. ©W𝐵 was computed using the
Walrus library (Gupt et al., 2019).

criterion splits the space in two: separable states lie on the left (states for which the correlation
| 〈𝑎1𝑎2〉 | is weak), and entangled states lie on the right of the map. The color scale represents
the logarithm negativity. The markers represent the quantityW𝐵, which claims entanglement
for blue dots and does not witness it for orange diamonds. On the left subplot, some blue
circles witness entanglement while the state is not. This means thatW𝐵 cannot be considered
as an entanglement witness when the coherence is not null.

1.B Impact on the correlations of the BEC arrival time fluctuations

In section 1.C of the sixth chapter, we explained that fluctuations of the cloud speed can destroy
the measurement of the cross-correlations and enhance the value of the local one. Here, we
numerically investigate the influence of a random average velocity on the atom distribution.
Our method is close to the method of Bonneau (2011) but a bit more sophisticated as we add
the bosonic bunching (thermal statistics).

Method

• BEC: We randomly sample the number of atoms per shot, 𝑛𝑏𝑒𝑐𝑖 , from a Poisson distri-
bution. For each shot, we sample the momentum of each atom from a beta distribution
(2,2) that looks like a Thomas-Fermi profile. The radius is fixed to 4 mm/s. The BEC
corresponds to the central lobe in Figure 97.

• Thermal atoms: We sample thermal atoms in a similar manner. We model our gas with
𝑁 independent thermal modes, each with a width of 𝜎𝑚𝑜𝑑𝑒 = 0.5 mm/s. The number
of thermal atoms is determined by Bose-Einstein statistics with a quadratic dispersion
relation (non interacting gas or phonons). Once the number of thermal atoms per mode
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Figure 97: Density profile of our model. The central peak is the BEC, the wings a thermal
distribution and the side-band two thermal distributions. On the right panel, the distribution
of each individual mode is shown in color and the dashed grey line show the total distribution.

Figure 98: Two-dimensional plot of the second order correlation function 𝑔 (2) (𝑣1, 𝑣2) (top)
and the Cauchy-Schwarz ratio CS .

per cycle is known, the momentum of each atom is drawn from a Gaussian distribution
with a width of 𝜎𝑚𝑜𝑑𝑒/3. On the density profile of Figure 97, the slight secondary peak
along the BEC tails is due to the fact that thermal atoms are sample for velocities greater
than 3 mm/s.

• Pairs: We replace 3 modes of thermal atom by pairs with momenta around 8 mm/s.
Note that this means that we assume we have a two mode squeezed state and not a two-
mode squeezed thermal state. The reason is that it simplifies the model and I do not
expect it to change much the result. The number of atoms is sampled from a thermal
distribution and each peak is sampled from a Gaussian distribution of width 𝜎𝑚𝑜𝑑𝑒/3.

We then randomly sample the atom table with a 0.5 probability to account for the efficiency
of the detector. Panel (b) of Figure 97 shows the momentum distribution of different modes,
represented by various colors. The total distribution is plotted as a grey dashed line. Once the
atom table is complete, we randomly shift the velocity distribution of each cycle to take into
account the instability. The shift is drawn from a Gaussian distribution with a width 𝜎𝑣 . Once
the atom table is complete, we compute correlations using the same algorithm as for “real”
data.
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Results

The simulated 2D correlation maps are shown in Figure 98. The first line shows the 2D map
of the second order correlation function and the second the Cauchy-Schwarz ratio

CS =
𝑔 (2) (𝑣1, 𝑣2)√

𝑔 (2) (𝑣1, 𝑣1)𝑔 (2) (𝑣2, 𝑣2)
. (233)

Each column corresponds to a different instability 𝜎𝑣 , ranging from 0 mm/s (perfect) to 0.8
mm/s (awful). The local correlation function (boson bunching) lies on the diagonal while
anomalous correlation lie on the anti-diagonal. We focus on the first 𝑔 (2) map. At the center,
the local correlation function is equal to 1 as the statistics of the mode is poissonian. On the
edge of the distribution, the statistics is thermal and the local correlation goes to 2. We observe
normal correlation on a wider range than cross-correlations: it is due to the fact that only 3
modes [7.7, 8, 8.5] mm/s are correlated while the other are just thermal uncorrelated atoms.
On the second raw (Cauchy-Schwarz ratio), red color indicates “quantumness”.

For the second column, which is the best stability we have achieved, the correlation are
already affected. We still violate the Cauchy-Schwarz inequality (there is some red in the
upper left corner) but the violation is weak. When the instability increases (third panel), we
completely loose this violation and therefore the ability to assess entanglement. Here, the
instability (0.3 mm/s) approaches the width of a mode, around 0.5 mm/s. We see that the
instability must be (much) smaller than the width of a single mode. On the last panel, we show
the 2D map for a large instability of 0.8 mm/s (80 µs). Such instability completely distort the
correlation map. In fact, the instability artificially create correlations where the variation of
the atom number is important. Such spurious correlations are dramatic to use the criterion
derived in the second chapter as it requires the state to be thermal and un-squeezed: 𝑔 (2)

𝑘,𝑘 = 2.
Here, we see that the instability can increase the measured value of the local correlation.

To further investigate this, we focus on the sideband region (around 8 mm/s) and on the
diagonal (local correlation) and anti-diagonal (cross correlations). Each column corresponds
to a different instability. On the first raw of Figure 99, we show the local correlation function.
The red square corresponds to the expected value and each color refers to a different size of
the analyzed voxel. In the stable case, we see that the smaller the analysis box, the closer
to 2 𝑔 (2)

𝑘,𝑘 . This is because the modes overlap and as we probe the statistics in a finite-sized
box, we become sensitive to the nearby mode. When instability increases, we see that the
local correlation is enhanced: the smaller the box, the highest the “spurious” correlation. A
deeper analysis revealed that this artificial increase of the local correlation is stronger when
the density changes with 𝑣𝑧 , which is typically the case as we have a narrow peak.

The second row shows the second-order correlation function. The red squares represent the
expected value for a two-mode squeezed state 2+ 1/𝑛. Surprisingly, we observe a quite larger
discrepancy between the expected value and the numerical point, even for the “stable” sample.
This is particularly true for the peak at 7.5 mm/s, less populated than the 8 mm/s one (1.3 and 5
mean atoms), and for the smallest voxel. We see here that the integration volume should not be
too large and should roughly match the size of the mode. When the instability increases to 0.1
mm/s, the second-order correlation function hardly exceeds 2, which prohibits the detection
of entanglement. On the opposite, when the instability increases, 𝑔 (2)

𝑘,−𝑘 goes above 2 due to
spurious correlations. The last row of this plot shows the Cauchy-Schwarz inequality ratio.
In this case, the theoretical points match the numerical ones when the integration volume
matches the size of the mode (orange, 0.5 mm/s). When the instability increases to 0.1 mm/s,
we again observe that we fail to detect entanglement. However, for higher instability, the
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Figure 99: Two-dimensional plot of the second order correlation function 𝑔 (2) (𝑣1, 𝑣2) (top)
and the Cauchy-Schwarz ratio CS .

Cauchy-Schwarz inequality is not violated due to spurious correlations. It seems more robust
to those instabilities.

1.C Local correlation function

In this subsection, I report on the measurement of the local correlation on a different dataset
that the one presented in the sixth chapter, section 2.A. Particularly, the temperature is lightly
larger hence the contribution of thermal modes that were not squeezed is more important. The
chemical potential of the gas was also higher which increases the population in the transverse
level of the trap, allowing to measure the correlation length in this direction (in the dataset
presented in the main text, the correlation function in the transverse direction was almost flat).
We select a volume Ω𝐵 of atoms, near the positive peak at 10 mm/s. This is represented by
the shaded area in Figure 100(c). Subplots (a-b) of Figure 100 shows the density of this 𝑣𝑧 cut.
A Gaussian fit (solid red curve) yields a width of 𝜎𝑥,𝑦 = 11 mm/s.

On the second row, we show the local normalized second order correlation function inte-
grated over the volume Ω𝐵. The latter is defined as

𝑔 (2)
𝐶𝐿 (𝜹𝒌) =

∫
Ω𝐵

〈𝑎†
𝒌
𝑎†
𝒌+𝜹𝒌𝑎𝒌𝑎𝒌+𝜹𝒌〉 d𝒌∫

Ω𝐵
𝑛𝒌𝑛𝒌+𝜹𝒌d𝒌

, (234)

where the index CL stands for colinear. The 𝑔 (2)
𝐶𝐿 (𝜹𝒌) function has 3 variables 𝛿𝑣𝑥 , 𝛿𝑣𝑦 and

𝛿𝑣𝑧 . Each panel (d-f) of Figure 100 shows 𝑔 (2)
𝐶𝐿 along one direction: 𝑣𝑥 on the left, 𝑣𝑦 in

the middle and 𝑣𝑧 on the right. The color and style of each curve correspond to different
integration volume along the two other axis. For example, on panel (f) is plotted 𝑔 (2)

𝐶𝐿 as a
function of 𝛿𝑣𝑧 for 𝛿𝑣𝑥,𝑦 = 0 ± 15 mm/s (circles), 10 mm/s (triangles) or 5 mm/s (squares).
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Figure 100: First row: Density along 𝑣𝑥 and 𝑣𝑦 of the region Ω𝐵, shaded in green on sub-
plot (c). Second row: normalized second order correlation function along each axis. Each
color/symbol corresponds to a different integration volume along the others axis. The integra-
tion volume along the 𝑣𝑧 is (2, 1, 0.5) mm/s and it is (15,10,5) mm/s along 𝑣𝑥,𝑦 for the symbols
(round, triangle, square). ®Dataset taken on September 2024.

In Figure 100, we adjusted the correlation functions with a Gaussian11 fit whose width give
11-12 mm/s along the 𝑥 and 𝑦 axis. Applying stricto sensu the result of Gomes et al. (2006)
which relates the source sice 𝑠 to the correlation length (in momentum) by 𝑠 = 1/

√
2𝜎𝑘 , we

obtain 𝑠 = 1 µm. This value is really close to the harmonic oscillator length
√
ℏ/𝑚𝜔⊥ = 1.4

µm.
In the longitudinal direction, we find a correlation length of 1.1(1) mm/s. If we express

this in trap speed in terms of distance after a 308 ms time-of-flight, this implies that the cor-
relation length is approximately 300 µm. Using Figure 61 of the fourth chapter section 3.B,
this indicates that the initial wave-function size is of the order of 100 µm, in agreement with
the BEC size we expect (150-200 µm). We also observe here that the second order correlation
value reaches 2 when 𝛿𝑣𝑧 → 0, which confirms that our measurement is consistent with a
thermal state.

11The width 𝜎 refers to the Gaussian RMS width 𝑒−𝑥
2/2𝜎2

.
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2. QControl3, our python based experiment program
Before spring 2021, the experiment was controlled with a homemade hardware, interfaced
with Matlab but the materials was suspected to be failing hence it was decided to replace
it. The choice was made to use the Adwin Pro 2 hardware with a python wrapper QControl3
developed by theMPQ researchers Christoph Gohle, Sebastian Blatt and Christian Gro𝛽. This
python wrapper was imported byMarc Cheneau in the group who uses it on the LCF Strontium
experiment.

Note that this section does not intend to explain how QControl and the sequencer are
interfaced and communicate : this can be found in Raven (2022). This note is rather meant to
introduce QControl3 through an installation guide and a user-guide for the next PhD students
on the experiment (or other experiments).

The first section explains why we chose to use the Adwin and QControl and gives a really
short introduction of the sequencer features and its hardware configuration. The second part
is intended to be a tutorial on how to write a very simple script with QControl, introducing
important concepts : this can be of interest if one wants to install QControl3 on its experiment.
The third one focuses on the remote drivers that allows one to code additional devices (arbitrary
function generators for example, cameras etc..) and explains how to code a really simple (and
useless for the one presented) remote driver. Finally, the fourth part describes how we coded
our sequence and the choices we made for the scripts.

2.A From Adwin to QControl3

Change motivation : Adwin & QControl

The choice to use the ADwin-Pro II system was made on the 1st February, 2021 in a meeting
during which we decided to stop to persist on trying to run the experiment on its current con-
figuration. On the “to-change” list, in addition to the sequencer, were also the cooling laser,
the magnetic trap coils, the transverse molasses, the current power supply as well as possibly
the MOT beams. In the LCF Quantum Gases group, all teams except the Quantum Dynamics
use the National Instrument material together with Cicero12 developed by Keshet and Ketterle
(2013). The advantage of the Adwin material was its availability : Marc had one additional
sequencer in spare and proposed us to test it. Considering the other changes were also expan-
sive, we decided to stay with this material and to save money for other investments13.
Of course, the hardware material does not impose to work with the QControl software: to
my knowledge, the Sodium experiment at the Laboratoire de Physique des Lasers uses also
the Adwin-Pro II material but together with a Matlab wrapper developed by Aurélien Perrin.
The Adwin material is also used in Wien14 together with the Labscript program developed by
Starkey et al. (2013). In a quantum optics experiment, the Adwin-Pro II material was also
used to perform real-time quantum feedback to prepares and stabilize photon number states

12The year 2021 A.C. The Quantum Gases NI users group is entirely occupied by the Cicero Words Generator.
Well not entirely! One small team of Rubidium still holds out against the Cicero dictator and is ruled by Spartacus.
See the CiceroIsa Project for more information.

13I would like to thank a lot Marc for the sequencer. I think that our team did not paid the sequencer back,
and as good accounts make good friends, I guess we should... But OK, this is permanent researcher business.
Nevertheless, in general, I think this illustrates the atmosphere of cooperation among the six research teams within
the group, which I have been able to benefit from throughout my thesis. The credit for this good atmosphere goes
to all the permanent researcher staff, whom I thank for it.

14The Adwin labScript driver developed within the Leonard Lab can be found here and was implemented by
Schabbauer (2023).
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Table VI.2: Adwin cards available wit QControl and their authorized address range. Lecture
: to run QControl with Adwin material, one must use at least 1 and less than 4 digital cards
and set their address number between 1 to 4. It is possible to use also a RTD8 card

Card name Number range Address value range
DIO-32 1-4 1-4
AOUT8/16 0-6 5-10
MIO4 0-1 14
RTD8 0-1 15

by Sayrin et al. (2011). It was distributed more recently as a python package NQontrol by
Darsow-Fromm et al. (2020)
Nevertheless, working with QControl3 seemed the best option as the LCF strontium team was
working with this wrapper and we could benefit from Marc experience. With hindsight, the
criticism I would address to QControl3 would be the non-free online access to the code15 mak-
ing the collaboration to this project not trivial. The documentation is not yet complete even
though I will try to make a contribution based on this note.

Adwin Pro-II features

We use the ADwin-Pro II system with a processor module T12 that “provides high perfor-
mance using 1 GHz clock rate, 1 GB memory, and a 64-bit FPU (double precision) for float
calculations” according to the Adwin documentation. Beside this “heart” module, we cur-
rently have two other types of cards that perform analog and digital signals. Analog outputs
modules, Pro II AOut-8/16, have 8 channels with 16 bit resolution, a voltage range of ±10 V
and a settling time of 3 s. Digital output modules DIO-32 composed of 32 TTL channels with
edge output of 100 MHz with time stamp. Even thought the value of 100 MHz seems to allow
a minimum pulse duration of 10 ns, the minimum value allowed by QControl3 is 5 µs.

Adwin Pro-II hardware configuration

The following section resume the Adwin Pro-II material configuration that is needed to use it
with QControl3 on a Linux based computer. First, the Adwin driver must be installed - the 5th
driver and not the most recent one - following the documentation. Once the connection with
the sequencer is established, a fixed (local) IP address should be set to the device and then
saved into a driver property file, using the adconfig add command.

$ adconfig config 00:22:71:03:08:F8 IP 192.168.1.4 MASK
255.255.255.00↩→

$ adconfig add 0x001 TYPE net IP 192.168.1.4

One must then declare the number and the address of each card using the ADPro software,
only available on a Windows. Note that the minimal configuration for QControl3 to work is
with one DIO-32 card. To choose the number and the address of each card, one should respect
the Table VI.2 conventions. Note also that one could use ADpro to control the outputs of the
cards to check the hardware output signals.

15Even though the code is shared under the GNU GPL3 free software license, one needs to request access each
year to the maintained repository on the MPQ Gitlab server which does not help the collaboration.
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2.B Introduction to QControl3

In this section, I will walk you through getting start with QControl3. The first subsection
provides a guide on installing the various QControl packages on your computer, while the
second introduces the declaration of different channels that will be used in scripts. The third
subsection covers the client and the various commands associated with it, while the fourth out-
lines the structure of a simple script. In this part, we will focus on a single Timing Controller,
meaning that only the sequencer channels will be accessible. Programming and using other
Timing Controllers will be discussed in a dedicated section.

Figure 101 summarizes the basic functionalities of QControl. The strength of the code lies
in enabling multiple clocks to evolve in parallel once the starting signal is given by the main
clock. This can be particularly useful for using the same device twice during a sequence or for
providing feedback within the same sequence. Any clock with independent timing is referred
to as a Timing Controller, and only one of them is the absolute master of time – in our case,
it will, of course, be the sequencer. Each Timing Controller is a node in the Timing System
and can have various devices under it: the so-called Timing Devices. For example, a current
generator will be a Timing Device and a child of a Timing Controller, that can control several
other devices. Below the Timing Device node, it will be necessary to create temporal channels
so that the user can send instructions to the device (e.g., “current 2 A; output on”). Note that
the words timing in front of each word is not only here to show off but to emphasize the fact
that any action on a timing channels is done at a given time. For example, the instruction
“output on” sent to the current generator will be sent at a given time of the sequence. The rela-
tionships between Timing Controller, Timing Device, and Timing Channel will be discussed
in the following section. Here we will simply explain how to add a Timing Controller to our
Timing System and then create user channels from existing timing channels.

Installation

The QControl3 programs can be downloaded from the MPQ gitlab server or from the fork
branch on our (public) gitlab server. Note that QControl was developed on Linux-based com-
puters, but it seems that it was extended for Windows. In the following, I will assume that
one works with Linux. Depending on the devices used in your experiment, a various number
of packages can be needed, but we will focus here on the minimal configuration in order to
run the simplest sequence possible. The first step is to create a virtual environment so that
QControl3 is not installed on your python’s system distribution. In the following, any instal-
lation will be done within the qc3 virtual environment, even if it is not specified. There are
four essential packages needed to use QControl3.

• qunits is used by all other packages and hence must be installed first, after having
install cython. It ables the use of physical quantities in script, which is quite conve-
nient.

• qcontrol3_base is the core of the program : it contains the timing server which com-
municates with all the remote devices, the Adwin sequencer being one of them.

• qcontrol3_driver_timing_adwin is the driver that ables the QControl3 program to
dialogs with the Adwin sequencer.

• qcontrol3_driver_timing_softwareremote is the driver that ables QControl3 to
dialog with other remote devices than the Adwin Pro-II sequencer. It is not strictly
speaking necessary to run a first sequence but it is a low level driver that will be rapidly
needed, to control cameras or waveform generators for example.
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Figure 101: QControl3 timing system. The user script is compiled and a sequence of events
is passed to the Timing system composed of Timing Controller and Software Controller. The
clock of each controller will evolve independently : Timing Controller time is set by the se-
quencer clock while Software Controller time will be set by the computer on which the remote
runs. The sequencer timing is “strict” since it controls digital and analogue output up to the
nanosecond scale while Software Controllers have more sloppy timings - typically some ten
of ms. Programming devices during a run and not before able the use of the same device at
two different time in the experiment in different configurations. For example, we use the same
current generator to perform compensation magnetic fields during the optical molasses and for
the magnetic compensation to maintain a bias during the optical dipole trap. An other example
of the use of this soft timing is the trigger of the evaporative RF ramp that is trigger with a
“Output On” command sent with a remote server at soft time. Double arrows between blocks
mean that timing channels can also send back measured values to their timing controller : it
is the case for example for a camera which returns the image, or an oscilloscope that returns
the measured voltage. In principle, it is possible to register analog signal with inputs cards of
the Adwin material but this was not yet implemented. ©Inspired from M. Cheneau seminar.
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After installing those packages16, one should be able to run a first simple sequence. To
dialog between the client (you) and the different server, QControl3 use Pyro communication.
Therefore, one must start by launching the name-server in a terminal, within your virtual
environment17. In a new terminal, the event-server can be launch and will create several
directories in your home directory:

• .qc3 stores the configuration file qc3conf.json. It is initialized with default values
and can be customized following the documentation of the QControl3 base repository.

• qc3data stores the data after each experiment run.
• qc3log stores log messages.
• /qc3scripts will contain your script, subscripts and hardware configuration18.

+ - qc3scripts
+ - config
| + - channels.py
| + - hardware.py
- myscript.pys

Figure 102: Typical content of the qc3scripts directory.

Summing up, we have now initiated both the name server and event server, essential pre-
requisites for launching the main server.

Declaration of the hardware and user channels

So far, properties of the hardware processor did not matter but this must now be configured
in the qc3scripts folder, which config folder will be read when launching the main server.
The server will first import the hardware_setup function from the hardware.py file. The
argument that is passed to this function tsys is the timing system. This is the “the root instance
of the hardware tree on which one should add your timing controllers.” In QControl language,
a timing controller is a complex object with timing channels, that often dialog with an ex-
ternal device. In the example we provide in Program 103, we add to the timing system the
Adwin Timing Controller. Note that in the declaration of the Adwin Timing Controller, one
must specified the device number and the number of different cards used. The device number
must match the one set previously using the adPro software in subsection Adwin Pro-II hard-
ware configuration.

Timing controllers like the Adwin Timing Controller contains several timing channels but
one must now create so-called user_channels so that the user is able to interact with them.

16To install a package, one should clone it from the git repository, change to directory and install it as a develop-
per :python setup.py develop. This means that rather than copying the package’s files into the site-packages
directory (as it would with a regular installation), it creates a symbolic link or .pth file that points to the project’s
source code directory. This enables you to modify the source code and the changes will take effect without the
need for reinstallation (i.e. running again the setup file installing again). Note also that I recommand to use the
python setup.py develop command rather than the pip install -e .. Indeed, depending on which com-
mand we used to install the package, the qcontrol3-create-package that we use after in the tutorial did not
worked. See the Laboratory Journal on the 06/10/23 for more informations.

17The code to launch the name server (or the event-server) is (qc3-env) $ name-server where, the
(qc3-env) keyword highlights that one must works within your favourite environment but will be dropped after.

18Note that you could have an error if you do not have yet entered your hardware configuration. If so, continue
to next subsection and run again the event-server.
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from qcontrol3.driver.timing.adwin import AdwinTimingController

def hardware_setup(tsys):
"""Define the hardware setup.
Parameters
- - - - - - - - - -
tsys : TimingSystem

The root instance of the hardware tree. Add your timing
controllers to it.↩→

"""
adw = AdwinTimingController(

"ADWIN0",
processor=12,
number_dio32=1,
number_aout8_16=1,
device_number=1,
is_dummy=False,

)
tsys.add_child(adw)
tsys.set_master_by_name("ADWIN0") # set the master timing

controller for the system.↩→

Figure 103: Minimal example for the file hardware.py. Tests can be perform disconnected
from the real sequencer by setting the adwin system dummy.

This is done in the channels.py file. In the Program 104, we create two user channels : one
is digital while the other is an analog channel.

import os
from qcontrol3.tools.units import u

orgdir = os.getcwd() # change the directory for easy usage of subdirs
os.chdir(os.path.dirname(__file__))
def channel_setup(tsys):

tch = tsys.get_node("ADWIN0.DIO0.DO01")
tch.create_user_channel("DIGITAL_01",

"Description of my digital output 01",
default_value=False)

tch = tsys.get_node("ADWIN0.AOUT0.AO4")
tch.create_user_channel("ANALOG_04",

"Description of my fivth analog output",
default_value=0*u.V)

os.chdir(orgdir) # change the directory back

Figure 104: Creation of two user channels from timing system nodes. Note that one can
display the timing system tree tsys.tree to check available timing channels.
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Once the hardware is declared, User Channel must be created in a channels.py file:
this will able the client to access and modify the values of timing channels. User Channels
are created using the create_user_channel method which take as argument a name19, a
description and a default value. The later will be set at the beginning of each cycle. Once a
User Channel has been created, its value can be changed with the qcontrol3-client and it
is accessible in any file with the .pys extension.

Once those file are completed, the last configuration step is to launch the server running
the qcontrol3-server command. If an error occurs at this stage, it probably means that
there is an error in the hardware and/or channel declaration.

Communicating with the qcontrol3-client

Any command that a user want to send to the server must passes through the client called
qcontrol3-client. I will not list all the client functionalities but restrict myself to some
of them. The set_channel_value function ables to change a value of a timing channel: it
must be followed by the name of the user channel associated to this timing channel and by
its value. The type of the value depends on the type of the channel: it is a boolean for digital
outputs and a string with a voltage unit for analog outputs. For example, with the configuration
and the user channels declared inProgram 103 and Program 104 one could send the following
commands to the server:

$ qcontrol3 -client set_channel_value DO0_01 True
$ qcontrol3 -client set_channel_value AOUT0_4 "6 V"

The reset_defaults command resets all timing channels to their default value that was
set when instancing the associated user channel.

To run a script, one must first create a file whose extension is “pys” in the qc3script reposi-
tory. This ables the script to access global variables like iter_step, iter_value as we shall
see after. To run a script, the user must first declare which file should be upload, then upload
it and finally run it :

$ qcontrol3 -client set_pys_file my -script -name.pys
$ qcontrol3 -client upload_task
$ qcontrol3 -client run_single

It exists three different running modes :
• run_single : the task runs only once and the system stops when the task is over,
• run_looped : the task is run while the user stops the execution with the
qcontrol3-client stop command.

• run_iteration : the task is run but the script is executed several times. A list,
called iter_list is browsed as the iteration progress. Two name reserved variables
iter_step, ranging from 0 to the size of the list uninclosed and iter_value, which
takes a value of the iter_list at each iteration represent the progress of the iteration.
The idea behind it is to enable the scan of a parameter in the script.

Before going into greater details on how to write a script, let’s mention that the
upload_and_run_single script.pys command ables to declare, upload and run a script
file. This commands exist also for iteration and looped modes.

19The name of the channel must be composed of caps, number and “_”. Note that it is in the qc3 documentation
that “the convention is that this is all upper case with a number at the end if appropriate. This number indexes
several channels of the same kind and starts with 0.”
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Running a first script

A script inherits from the Script class and must be save with the “.pys” extension so that it
has access to global variables such as iter_list, user channels defined in channels.py file
or other global variables in QControl. In a script, the basic syntax to add an event on a timing
channel is add(t, val) where t is the time at which the channel must take the value val20.
An example of a minimal script file is given in Program 105.

from qcontrol3.server.script import Script
from qcontrol3.tools.units import u

iter_list = [1, 2, 3, 4]
class MyScript(Script):

def __init__(self):
super().__init__()

def main(self):
time = 10.0 * u.ms # absolute deadtime for Adwin sequencer
DIGITAL_01.add(time, True)
DIGITAL_01.add(time + (1 + iter_step) * 10 * u.ms, False)
time += 220 * u.ms
ANALOG_04.add(time, 2 * u.V)

timing_script = MyScript()

Figure 105: Basic script in which we change the value of a digital user channel to True and
False at various time and the value of an analog channel to 2 V a bit later. Note that the user
channel name used in this script is the one declared in the Program 104. Because this script
has the .pys extension, it has access to user channels and iter_list related properties (see text).
QControl3 will then call the main method of the timing script.

However, the idea is not to use directly user channels in the main script but to wrap them
into more complex object, tht should inherits from the ScriptObjects class. Regarding this,
(DigitalObjects) and analog outputs (AnalogObjects) are already defined in qcontrol3_base,
with methods that conveys more their purpose than the add method. For our current example,
one could define objects in a different file (here devices.pys) that should be imported in the
main script.

In this case, the main function of the script could read

Summary In summary, in this section, we learned how to declare user channels
from already defined timing channels and how to modify their values using the
server (live) or in a script (at specific times). In the next section, we will explore
creating timing channels and their associated timing devices.

20The type of the value depends on the timing type : it is a boolean for a TimingChannelBool, like Digital
outputs of the sequencer. To understand deeper the different type of TimingChannel and user channel, I would
recommend to create from scratch a remote device following the subsection - a Timing Device composed of several
type of Timing Channels in qc3 terminology.
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from qcontrol3.server.script import ScriptObject
from qcontrol3.scripts.base.digital import DigitalObject, Shutter
from qcontrol3.scripts.base.analog import AnalogObject

class ScriptDevices(ScriptObject):
def __init__(self) -> None:

super().__init__()
self.molasses_shutter = Shutter(DIGITAL_01)
self.mot_aom = AnalogObject(ANALOG_04)

Figure 106: This file wraps user channels into more compex objects that will be used by the
final user.

from qcontrol3.server.script import Script
from qcontrol3.tools.units import u
from config.devices import ScriptDevices

iter_list = [1, 2, 3, 4]
class MyScript(Script):

def __init__(self):
super().__init__()
self.devices = ScriptDevices()

def main(self):
time = 10.0 * u.ms # absolute deadtime for Adwin sequencer
self.devices.molasse_shutter.add_pulse(time, duration = (1 +

iter_step) * 10 * u.ms)↩→

time += 220 * u.ms
self.mot_aom.ramp_to(time, 2 * u.V, duration = 100 * u.ms)

timing_script = MyScript()

Figure 107: A script that is a bit more evaluate than the previous one. Devices are imported
from an other file with a more user-friendly name and with other methods than the add one.
For example, the mot_aom use the ramp_to method and one could imagine objects with other
methods (exponential ramps for example).

2.C Remote server and drivers
Often, in a cold atom experiment, one needs to use several other instruments, for example
waveform generators or cameras. In QControl, commands are sent at various time during a
task, offering the possibility to use one instrument in two different configurations during a run
or to assign a value at an instrument after having perform a measurement within the same task.

196



Appendix

Figure 108: This scheme is a specific zoom of Figure 101 on the different Timing Controllers.
Before launching the client, the user must start all remote server that host the remote tim-
ing controllers. When a run is about to start, the timing system provides timing controllers
its list of events and then launch the official start signal. Until the end of the run, each
remote timing uses its own clock as time reference, based on the starting signal. On this
scheme, this is underlined by each remote timing controller represented as shells of the com-
puter. The sequencer clock is of course internal and set as the master timing controller in
the qc3cripts/config/hardware.py file. The link between timing device as waveform
generators or oscilloscopes are defined in each remote configuration file. Note also that the
name of each remote (REMOTE1 for example) and their location (the folder that contains the
config.py file) must be declared in the qcontrol configuration file (in ~/.qc3 on linux).

The remote server

As shown in Figure 101, timing devices are controlled by the software controller. The com-
mand

$ qcontrol3 -remoteserver REMOTE0

starts the remote server which can be seen as the actual remote controller. Launching
this command for the first time should create a qc3remotecontroller0 in your home path.
Remote devices of your experiment should be declared in the config.py file of this folder21.
Note that the hardware properties of your instrument must be filled in this file : for example,
instrument that use the VISA standard communication protocol can be controlled with an
existing VISA driver class. Since this remote class can be used for several instruments, it is in
the config.py file that the user fills hardware informations such as the IP address, its name
and other properties (timeout, encoding...). Even though various drivers already exist, it is
often needed to create a new remote device. In the following, we will see how to create a
simple driver from scratch.

21Note that several remote controllers can be launched. To do so, one just have to create a new directory with a
config.py file and declare the path to this directory and the name of this remote in ∼/.qc3/qc3conf.json.
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Creating a remote driver

In this section, we will create a device that will query a database to print in the terminal the
meteo in a city (provided by the user) at a precised time. To do so, we need a string timing
channel so that the user can set the city and a boolean channel such that when set to True, the
device prompt the meteo to the database and print it.

In QControl, remote drivers consist of a python package that should respect the QControl3
package tree. To ensure that, we will use the dedicated command

$ qcontrol3 -create -package

in which you will have to fill the type of package you want to create, its name and descrip-
tion. This creates a new directory on your computer that contains the relevant file tree as well
as a git repository. A setup.py file is also created to install it in your python environment22.
Since we want to create a meteo driver, we will create in the following misc package named
meteo_driver.py.

The Figure 109 tries to summarize the links between the two software devices that compose
a diver defined in Program 110. The upper part of the later sets up the client part of the driver
: the MeteoDevice class defined in the driver is a Software Device composed of two String
type and Boolean type timing channels whose names are respectively LOCATION and TRIGGER.
Nothing is implemented in this part since they are just used to assign the value set by the
user to the remote device. Indeed, one can see that timing channels that are children of the
MeteoDevice inherit from SoftwareTimingChannel class and not from TimingChannel.

The second part of the code defines the remote part and the RemoteMeteoDevice class.
This class has also two timing channels as childrenwhose name are also SCRIPT_ADDRESS and
TRIGGER. Classes that define those children inherit from the TimingChannel class. When-
ever one channel value of the (client) software device is changed, the value of the associated
remote timing channel is modified too through the “set_value_raw” method. Note that this
correspondence is only possible if the names of each channel are identical. In the example,
both the children of the MeteoDevice and the RemoteMeteoDevice have the same name -
METEO_NAME.TRIGGER for example. When a channel is modified, the io_updatemethod of
its parent is also called, which can be view as callback. Note also that a software device can
retrieve the value of its children channels through its “children” dictionary attribute. In our
driver, we therefore use the io_update method : given that the default value of the trigger
channel is False, whenever its value is set to True, the driver get the meteo from the location.

Once your file driver is ready, the drivermust be declared as a timing device on both remote
and client parts. The remote part must be set up in the config file of the remote controller
repository23 while the client part should be set up in the hardware file of the configuration
script folder.

We first declare the remote part of the device, in this case in the config file of the re-
mote0 directory. Since we want to provide the meteo from to different website, we create
two drivers whose name and url addresses are different. Note that the name define here de-
fine the name of the timing channel, for example here, one of the timing channel name is
REMOTE0.METEO_CIEL.TRIGGER.

22It is recommended to install this package as a developer (python meteo_driver/setup.py develop). Do-
ing so, the installation process will create symbolic links that point to your driver software so that any modification
in your driver does not need a new installation in your environment.

23The default repository is ∼/qc3remotecontroller0/ with default name being REMOTE0
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Figure 109: This scheme is a zoom from Figure 101 on the specific driver meteo_driver.py.
Relation between objects are represented by lines : solid for child/parent relation, dashes for
user channels and dotted for others. Next to each line is given the file in which the relation
must be set. Each frame contains the description of the object with its name of the associated
node, the object description in QControl3 language, the name of the class and the class the
object inherits from (see legend). The driver is composed of two software devices one being
the remote part (green) and one the client part (brown). In the driver file are defined the two
times two timing channels that compose the driver : two are children of the remote part of
the driver and the two other are channels of the client part. The user creates user channels
associated to those timing channels : changing a channel value - on the client side - sends an
update on the remote side through the communication channel between the Remote Software
Controller and the Remote Controller. This is made possible if the two names coincide.

Now that that devices are created, we need to start the remote controller before starting the
client24. Once this hardware part is done, we need to do the same on the client side. This is
done in the hardware_setup function of the qc3scripts/config/hardware.py file. In
our case, we just need to :

• instantiate the timing controller corresponding to remote0 and add it as a child of the
timing system,

• instantiate all software drivers with the same name defined in the remote configuration

24to launch the remote0 server, one must run $ qcontrol3-remoteserver REMOTE0
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This code is not available on PDF.

Figure 110: The meteo_device example. This code creates the links between the
mete_devices and its timing channels. The brown part of Figure 109 is the local part of the
driver with which the user will communicate. The green part of the driver is in the second part
of the code : the remote part. See text for more description.

#file : config.py
from qcontrol3.driver.misc.meteo_driver import RemoteMeteoDevice
def hardware_setup(remote_controller):

# 1. instantiate device
dev1 = RemoteMeteoDevice(name = "METEO_CIEL",

description= "query meteo to meteo
-ciel.com",↩→

url_adress = "www.meteo
-ciel.com/database")↩→

# 2. add it to the remote_controller
remote_controller.add_child(dev1)

dev2 = RemoteMeteoDevice(name = "METEO_FRANCE",
description= "query meteo to meteo

-france.fr",↩→

url_adress = "www.meteo -france.fr/public
-db")↩→

remote_controller.add_child(dev2)

Figure 111: Declaration of the remote part of the script driver in config.py of the remote0
controller.

file and add them as the child of the timing controller

from qcontrol3.driver.misc.meteo_driver import MeteoDevice
(....)

def hardware_setup(tsys):
(....)

rem0 = RemoteSoftwareTimingController("REMOTE0")
tsys.add_child(rem0)
dev = MeteoDevice("METEO_CIEL")
rem0.add_child(dev)
dev = MeteoDevice("METEO_FRANCE")
rem0.add_child(dev)

Figure 112: Completion of harware_setup function of Program 103. Declaration of the
devices should align with the declaration done in the remote configuration file, i.e. names
must match.
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Now that this is done, one can create user channels associated to those timing channels
in the channels.py file. The full name of a timing channel consists of all the nodes that
compose it, extending from the trunk to the leaves and separated by dots. For example, to
create a user channel associated to the trigger timing channel of the device that query the
meteo from meteo-france.fr, one must use the following syntax, in channels.py:

tch = tsys.get_node("REMOTE0.METEO_FRANCE.TRIGGER")
tch.create_user_channel("METEO_FRANCE_TRIG", "", default_value =

False)↩→

Even though it is recommended to create user-friendly devices name, we can now use our
device to get the meteo just by adding to our script Program 105 the following lines.

time = 300 * u.ms
METEO_FRANCE_LOC.add(time, "Brest")
METEO_FRANCE_TRIG.add(time + 30 * u.ms, True)
METEO_FRANCE_TRIG.add(time + 80 * u.ms, False)

If you look into the remote0 shell, you will see that during the cycle, and at the exact
moment (up to a few milliseconds), the temperature is printed. Well done !

Note that our device do not save the meteo inside the hdf5 file in our case. If this is needed,
for a camera driver for example, the driver can inherit from the WriterDevice class. This class
inherits from the SoftwareDevice class but has already two timing channels defined of type
boolean (TRIG) and string (HDF_PATH). When the first one is set to True, the driver called
the initialize_capture method and when set to False it ends the capture by calling the
end_capture method, and saves the acquired data into the HDF5 file, whose path is given
by the string channel, after calling the process_data method.

Summary In summary, in this section, we learned how to create a driver from
scratch. Once the code is set up, the driver must be installed in your environ-
ment and declared both in the remote part (config.py) and the server part
(hardware.py). Once device is instantiated and added as a grand-child of the
timing system, it is possible to create user-channels associated to those channels
(channels.py). User channels can then be wrapped into more complex object
or just used with the add method in the script.

2.D Our current configuration
I will now give a brief overview of how we structure our code and way of coding sequences.
We discovered QControl3 and started to understand its logic while we had other experimental
issues, so we had to balance proper coding and quick - and dirty - implementation in order
to progress on the experiment. As we had no clear tutorial, it took time to clearly understand
the logic behind QControl and, as Python beginners, we had tried our best to do it as clean
as possible. Writing this thesis appendix made me realized however that our way to code
sequences was in fact quite proper and logical. Last but not least, I think that what belongs
to Caesar must be returned to Caesar : even though it is not clearly valued in his PhD thesis,
Quentin Marolleau (2022) made a major contribution to our script structure during summer
2021. His work pioneered the current code structure.
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For future developers, note the code has (slightly) diverged in two (reversible) aspects
from the official QControl3 version.

1. Experimental parameters are not hardcoded in the scripts but are stored in a parameter
file that is read during each script execution, i.e., for each run. This choice is motivated
in the first following subsection. The consequence is that the iter_values are dictio-
naries which raises an type error when the program tries to save it in the HDF archive.

2. We do not save data with the HDF format as motivated in the see the second subsec-
tion and we must therefore assign a custom identifier per shot, as explained in the
third subsection. The consequence of this choice is that we changed a few lines in the
qcontrol3_base code in order to store the experimental configuration. More details
are given below.

Defining a parameter value and scanning a parameter

All values used in our code are not hard-coded but defined in a so-called sequence_parameters
dictionary. This dictionary is loaded from a json file of the same name. This format was chosen
for its nice readability properties - even thought we do not read it anymore. At the first iteration
of the script, this file content is saved in a hidden file (.sequence_parameters.json) so
that the user cannot modify any parameter during a sequence. The content of the file is then
loaded into a dictionary, and interpreted in terms of dimensioned quantities25.

The iter_list is supposed to be the list containing the scanned parameter values. As we
understood QControl logic, if a user wants to scan the MOT AOM frequency, he would hard-
write the frequency defined in the script by the iter_value so that this value is updated at
each run. In our case, every parameter being encoded in the parameters dictionary, we need to
update this dictionary at each run. An element of the iter_list is therefore a dictionary whose
entries are keys of the parameters dictionary, for example, {"MOT | AOM | freq" : 80 *
u.MHz}. Since the iter_list elements were not thought to be dictionaries therefore it produce
an error when QControl tries to save the iter_value into the HDF5 file. Some remarks about
the iter_list definition :

• it can contain several entries to perform double scans,
• it is a global value of pys files so it is define when the script is uploaded and not at each
run. In practice, this means that we define the iter_list at the first execution, e.g. when
iter_step is -126.

Saving data

The data repository has the following form day / SEQ / STEP where SEQ is the sequence
number, an integer starting each day at and STEP is the shot iteration number. Even thought
QControl3 gives the possibility to save all data associated to a run into a single HDF5 file, we
finally decided to abandon this way of saving data. First reason is that opening an HDF5 file to
get a few information or just an image is quite long compare to a simple file : one has to open
all data and not only the one you are interested in. Loading data to briefly analyze a sequence
was a pain when the number of runs was above 10027. An other reason is that variables and

25For example, the dictionary entry string "3 V" will be changed to 3 * u.V, a qunits quantity.
26When the pys file is uploaded, it is parsed and exectuted a first time with iter_step value -1. The file is then

executed at each run with iter_step increasing value ranging from 0 to the length of the iter_list minus one.
27This problem is also because of the software we used needed to open all file at once, which is not optimized.
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scripts are not easily accessible in HDF5 file which is not convenient when one needs only to
check an old sequence. Because of this choice, we always run iterations, and never loop nor
single runs, because we need the iter_step to increase at each cycle so that we know at which
iteration in the sequence we are.

QControl allows the user the option to save or not save its data. In addition to the HDF file
containing the data, QControl also generates an HDF5 archive with the experimental configu-
ration. A graphical user interface (GUI) called sequence_viewer was developed in Munich to
load this file and display the content of each channel in the sequence. To avoid reprogramming
this entirely, we made some modifications to qcontrol3-base to save only this experimental
configuration file. It is worth noting that updating the Python version or the qcontrol3-base
from the MPQ may necessitate an update to this modification.

The HeliumScript class and spirit of the code

Any script we use in the lab inherits from the HeliumScript class, which contains methods and
attributes common to any script. This class sets the sequence number, the cycle number, the
sequence directory, loads the sequence_parameters and update it if one scans a parameter.
When the user starts a sequence, the following steps are performed by the HeliumScript class.

• it sets the default path to look for camera picture and configuration files,
• it sets the cycle id, defined as the absolute time of the current cycle in seconds, relatively
to the epoch time for QControl3 (the first qcontrol-Helium-MOT time 1619049600:
April, 22nd of 2021 for humans),

• it sets the day directory, defined the sequence number and its associated directory de-
pending on the last folders in the day directory. If the last folder was 014, this means
that the sequence is 14 if the iteration step is greater than 1 or it means that one starts a
new sequence hence it creates the folder 015 and set the sequence number to 15. Not
that this fragile way of saving data implies that one should not modify the day folder on
the server when the experiment is running.

• it loads the sequence parameters file from the hidden sequence parameters file. If the
iteration step is 0, it copies the sequence_parameters.json file into the hidden file
so that parameters of a sequence cannot be changed while running.

• it updates the parameters dictionary with respect to the iteration value of the iter_list.
• it instantiates script devices i.e. it gives nice name to user_channels.
• it instantiates subscripts class like Raman or cMOT for example. Note that as shown
in Figure 113, subscripts are instantiated with the sequence parameters and they also
instantiates script devices (as they inherits from the ScriptObject class)

Note that the helium script also defines methods to save data that should be called at the
end of any script to save the content of the script folder.
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Figure 113: UML diagram of our scripts. Inheritance is represented by an arrow toward the
mother class and aggregation with a diamond near the aggregate. Any script (MOT,MT, ODT)
must have a main method to be run that contain the list of event of the sequence and inherits
from the HeliumScript class, our base mother class. When instantiated, the HeliumScript
gathers the sequence parameters from a configuration file and interprets its entries as qunits
quantities. It then instantiate all device (red) from the experiment : channels of the sequencer
as well as string channels to dialog with different instruments. A device can be a simple
DigitalObject (a switch for example) or a more complex object composed of several other
channels (a VCO for example is composed of two AnalogObject and one DigitalObject).
The class instantiates also each subscripts, passing it the parameter dictionary and the devices
instantiated. The various method defined in each subscript are then called by the daughter
class.
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Remotes currently implemented

As with any other cold atom experiment, we use many other devices that are programmed and
triggered during a sequence. Each device requires a specific driver:

• SCPI: Many manufactured devices use the SCPI convention to send commands. Such
devices were already programmed. This is how we program the Rigol DG4202 (for
radio-frequency evaporation and the 1064 nm pair lattice power ramp), the Anapico
(radio-frequency generator for the Raman 2 beam and the 1064 nm lattice), the Keysight
33522B waveform generator (sinc shaping for the Bragg pulses), and the Agilent de-
vices.

• Socket-type devices: Some other devices do not work with SCPI commands but with
a less evolved protocol scheme called socket. This is the case with the R&S HMP4040
power supply (magnetic bias during the molasses and the dipole trap), and the TTI
TGF4242 waveform generator (RF frequency sweep for the Bragg pulses).

• Camera Xenics: We have never been able to remotely control the camera. Since we do
not change its properties much (exposure time and so on), we program it on a daily basis
to save the picture in a folder when the camera is triggered. The driver then accesses
this folder and uploads the latest image found to the sequence repository (or the HDF
file when it was used).

• The MCP driver simply writes in a file where the TDC driver should save the data (it
saves the ‘cycle_prefix’). Indeed, the TDC acquisition window is set by a digital trigger.
The recorded data are then sent to a Windows computer for Windows driver reasons, on
which the reconstruction program runs continuously. Each time the program receives
data from the TDC, it reads a file in which the cycle prefix is written.

• Picoscope drivers: PicoTech develops PC oscilloscopes that can be remotely controlled.
In order to save experimental signals, we have developed three drivers:

– The Picoscope3000 driver, for a four-channel oscilloscope, is used to monitor and
fit the Bragg interferometric sequence. We use it to access the absolute phase of
our interferometer.

– The Picoscope2000 driver, for the two-channel device, is used to save and fit the
arrival time of the BEC on the MCP and to recenter data.

– The Picolog driver registers data with a lower time-base to enhance the possible
drifts of beam power (cooling lasers especially, for example the MOT).

The scan controller

On a daily basis, we use a Figure 114 called scan-controller. The idea of this GUI was to
be as the more agnostic possible meaning the code can be effortless run without it28. When
running an experiment, we want to run a sequence providing all experiment parameters, which
variable should be changed at each cycle (scanned in our language) and which value to save
for the analysis29. Hence, the ScanController just saves three files :

• sequence_parameters.json : contains the value of the experiment parameters,
• .scan_parameters.json : contains a dictionnary with the parameters that should
be scanned : it contains the key of the parameter (its unique identifier), its minimum
and maximum values as well as the number of values to scan. This file is then red

28At first, we used to define within the code the parameters valueas well as the scanned parameters so in order
to have a smooth implementation, this code was thought to be compatible with the way we used to work.

29All parameter values are saved at each run, but since only a small fraction of them are of particular interest
for the immediate analysis, we store them in a dedicated file.
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Figure 114: The GUI used to monitor the experiment. The user define here the parameter
used and if the parameter should be saved in a specific file for immediate analysis. Scanning a
parameter is made possible by clicking the Scan button. Subsequence are separated in different
tabs, who’s color change depending if the subsequence is run or not. For developers, the code
tried to respect the “MVC” (Model-View-Controller) design pattern.

Figure 115: The boron nitride diameter should not exceed 12 mm in order to put it in the
copper piece : its diameter should be 11.97(1) mm. The width of the small hole is 500 µm
while the other one should match the diameter of the glass tube (slightly above 8 mm). ©Plans
by Jean-René Ruillier.

and interpreted by the scan_from_controller and function from qc3scripts. In
order to perform more complex scans (i.e. changing twice parameter at the same
time), it is possible to redefine within the code the iter_list instead of calling the
scan_from_controller function.

• .hal_dictionary.json : contains a list of the parameters that are registred at the end
of the run. Note that the unit complited in the scan controller must match the true unit
of the parameter or it will raise an error when QC3 tries to executes the file.

3. Technical details about the experiment

3.A The source of metastable helium
Due to a crack in the weld between the flange and the pipes that carry liquid nitrogen to the
source, we had to dismantle the source and take it to a welder in December 2022. While
reassembling the source onto the flange, I broke the glass. Consequently, it was necessary to
machine a new boron nitride piece (which breaks when the glass is removed) and a new glass
piece. We took this opportunity to re-measure the copper piece - see Figure 115.
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Figure 116: Replacement protocol. See text for description.

Replacement protocol

We needed several attempts before successfully installing a stable source - see the January,
2023 and February 2024 laboratory journal for more information. The challenge in installing
the source lies in threading the Swagelok connector onto one side of the glass while avoiding
inducing torsional force on the glass. On the other side, the glass is bonded to boron nitride,
itself inserted into the copper block. In our initial attempt, we tried assembling the Swagelok
connector and the glass before bonding the latter. The issue was that access to the glass once
the assembly was complete was too constrained, and we couldn’t achieve a secure joint to
prevent helium leakage. Following two unsuccessful attempts30, the fourth version of the
source proved to be more stable. The procedure for its installation is as follows.

• The glass is pressed into the boron nitride, and adhesive is applied to the glass-nitride
junction. The adhesive used is the glue Devcon home 5 minutes epoxy from Thorlabs31.

• The boron nitride attached to the glass is then slightly inserted into the copper cube from
the rear. To prevent the glue from breaking, the nitride-copper friction must be low and
the better is not to insert entirely the Boron nitride. The Swagelock connector is then
approached and screwed in. To do so, it can be practical to have at least three hands:
one holds the glass between two fingers to prevent any rotation, while the other two
tighten the Swagelok connector. The danger here is inducing rotation on the glass while
screwing: as the nitride part is embedded in the copper part, the friction between these
two pieces prevents the rotation of the nitride-glass block. It is the adhesive that may
give way, which would also probably break the boron nitride piece.

• Once the Swagelok connector is screwed in, the entire boron nitride assembly is inserted
into the copper by heating the later to make it expand. Congratulations, the source is
now ready to be tested!

Once the source is installed, one has to believe - at least a bit - in it before it works properly.
30The second version of the source, installed from January 12 to 16, 2023, had a glass with a diameter that was

slightly too large for the Swagelock connector. However, we managed to load aMOT even if the atom number was
not optimal. After three days, the discharge no longer occurred. For the third source, the remaining dimensions of
the nitride were a bit too large, and we couldn’t achieve discharge on January 17 and 18.

31I tested the resistance of three different adhesives to liquid nitrogen. To do this, metal pieces were glued
together and then immersed in liquid nitrogen for several hours. Once returned to room temperature, they were
detached, and the strength of the bond was evaluated. Among the tested adhesives, 1. TorrSeal from Thorlabs, 2.
the Devcon home 5 minutes epoxy also from Thorlabs, and 3. Loctite double bubble Transparent Adhesive, the
second one appeared to be the most robust.
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Figure 117: Evolution of the discharge properties of the 2023 vintage. We started working
with the previous discharge parameters, with a large current/voltage before decreasing it to
5 mA and 1.5 kV. We worked with voltage control for 3 months before switching to current
control on May. Note that if each point represents the discharge property of a single day, it
was observed that these values can vary throughout the course of that day.

Vintage 2023 feedbacks

At first, the discharge was not stable and we observed the same flashes as reported in the
main text (January, 20th). With the previous version of the source, we used to work with
a voltage of roughly 2 kV and a current of 16 mA (discharge was controlled by the current
value). With this new setup, such current needed a quite high voltage to obtain. Please note
that the voltage mentioned hereafter does not refer to the voltage applied to the metallic needle.
Indeed, between the power supply and the needle, there are 150 kΩ electrical ballasts.

• From the 20 to the 24 of January, we worked with voltage control discharge at 2.2
kV. Turning on the discharge, the current starts aroud 10 mA but decreases to a value
between 1.5 and 3 mA.

• From the 24 of January to the 10 of February, we increased the voltage to 3.2 kV. Our
goal was to recover the current value of the previous source - which was not a really
good idea. We observed lightnings in the glass tube on a daily basis and a discharge in
the helium tube on the 10th of February. This motivate us to decrease the voltage.

• From the 10th of February to the 20th ofMay, we worked still with voltage control of the
discharge but with 1.5 kV in order to have more or less 5 mA. This was due to lightnings
in the helium tube and the fact that we did not observed any atom number difference in
the magneto-optical trap when varying the source current, as shown in Figure 118.

• On the 20th of May, the current of the discharged was around 2.8 mA for a voltage of
1.5 kV and stopped on its own twice. The voltage was increased to 1.85 kV in order
to recover roughly 5.8 mA. From this day, the source discharge is under current control
with 5 mA. One can see on the right graph of Figure 117 the variations of the voltage
discharge.

Vintage 2024 feedbacks

After one year, the discharge stopped and we had to replace it. The source change took us
roughly a month as we needed to open four times the source before having a stable situation.
To make a long story short, here are the replacement we needed to do.

• We found that the plastic tube supplying helium was completely burnt at the connection
with the Swagelok connector, requiring us to cut and reconnect it.

• We changed the skimmer that was heavily soiled, perhaps inhibiting current conduction.
We replaced it with the original one (it was only changed once in the 30 y.o. life of the
experiment)
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Figure 118: Number of atoms in the MOT as a function of time for different voltages. Each
color matches a voltage of the source (in kV units). The current for each voltage from 1 kV to
3.2 kV are 3mA, 5.7mA, 8mA, 10mA and 13.6mA. Oscillations are due to room temperature
fluctuations - and bad MOT fiber injection and the the author does not guaranty the absolute
number of atoms. See the Laboratory Journal of the 10/02/2023 for more information.

Figure 119: Possible scheme to bring LN2 to the experiment. A dewar of liquid nitrogen is
placed above the experiment vacuum chamber and, thanks to gravity, pipes are full of liquid
nitrogen. When the liquid vaporizes, it escapes from the top of the dewar which has a free
surface with air. A possible issue with this scheme would be bubbles that might not be able to
escape from the pipes because the slope is not constant. Note that it would be better to use a
cold head in order to cool down as in Keller et al. (2014).

• We noticed that the plastic tube was positioned outside the three rods prevented the
flange to complete its full course. We put it back inside.

3.B Liquid nitrogen cooling

3.C Water cooling of the experiment

The power dissipated by the magnetic trap is quite high: around 5 kW. Up to 400 A pass
through diodes, IGBTs, and coils, which requires cooling them with chilled water. Our experi-
ment room is connected to the cold water circuit managed by the “Infra” service of the Institut
d’Optique. This circuit is common to all the laboratory’s experiment rooms and must remain
closed. The laboratory rooms are in parallel: closing one valve does not prevent the other
laboratories from being supplied. However, this means that one laboratory can short-circuit
the others. I have not managed to get a clear answer on how the flow/pressure of the cold
water circuit is managed.

Furthermore, we do not want to use the chilled water circuit to cool the magnetic trap coils.
Indeed, the water may contain impurities that could clog the coils, whose inner diameter is .
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Table VI.3: The first two measurements of the water flux were made with the open-loop
water system. The pressure difference between the pump and the output of the coils was,
therefore, the city water supply pressure plus the overpressure from the HVX pump. Since
the installation of the chiller, the pressure difference is now only due to the HVX pump and is
8.5 bar, regardless of the water flux. To measure the flow-rate in each coil, the valves of the
other are closed and the HVX pump is kept on. A flux meter allows to monitor the flux.

Date Dipole (cour-
bure)

Quadrupole
(gradient)

Compensation Total

Browaeys
(1999)

4 l/min 2 l/min 4 l/min n.c.

18/06/2020 2x1.9 l/min 2x1.2 l/min 2x1.9 l/min 10 l/min
09/02/2024 2x1.6 l/min 2x1.2 l/min 2x1.6 l/min 8 l/min
09/08/2024 2x1.4 l/min 2x0.9 l/min 2x1.4 l/min 7.5 l/min

Additionally, certain parts could cause redox reactions with other experiment rooms, which has
already happened within the group32 and caused a significant shutdown of the experiment. In
December 2024, we installed a chiller to cool the magnetic trap coils. The chiller was bought
from Eurodifroid, under reference ECH80AWI2RAC. Note that the chiller and its water level
should be checked at least once a month. A 100 µm particle filter (RBM 126 filter 1” with 0.1
bar pressure drop at 2 m3/h) was added to prevent blockages, for which the cartridge should
be changed every 6 months. The water pump that circulates water in the magnetic coils is the
HVX 15-bar pump, whose reference is given in Browaeys (1999). The water that flows in the
magentic trap should be checked on a regular basis: Table VI.3 gives the waterflow that was
measured when the trap was installed 30 years ago and the measurement performed in 2020.
This measurement cannot be reproduced because the water-pressure is now lower33: it is only
the 8.5 bar due to the HVX pump. The total water-flow of 8l/min should be checked regularly
as it is now straight forward to look at it.

Our room is connected to the cold water circuit and is divided into two circuits: a “chiller”
circuit and a “primary” circuit. It is represented on Figure 120. A pipe connects the chiller via
20 mmmultiskin pipes installed in 2023. The other circuit is connected via plastic pipes of 16
mm installed in 2007, the year the building was created. This second pipe is connected to a
manifold that allows the cooling of the various electrical devices in the experiment (Zeeman
slower, diodes, pumps...).

The pipes that connect the chiller to the cold circuit are large because we fear that the
flow might not be sufficient to cool the reservoir. A valve allows the regulation of the water
flow coming from the institute’s cold circuit. If this valve is fully open, the primary circuit is
completely short-circuited. Its opening is a compromise between the cooling capacity of the
chiller and the flow in the primary circuit. The flow in the primary circuit is measured using the
water-meter installed on the Zeeman/IGBT/diode circuit. This flow-meter is routinely checked
and should be around 3-4 L/min. A value below 2 L/min prevents to run the experiment with
a stable BEC.

In September 2022, we encountered issues with the cooling of IGBTs and power supply
diodes. To increase the water flow, we decided to connect the IGBTs in parallel. However,

32Note that the redox reaction that clogged the coils in Vincent Josse’s experiment involved an aluminum part.
In our experiment, all connections are copper (to my knowledge).

33The first two measurements of the water flux were made with the open-loop water system: the pressure at the
input was the pressure of the water-city supply plus the pump while it is now only the pressure from the pump.
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Figure 120: The chiller tank temperature is set by the user and should be above the temperature
of the cold water circuit. To control the temperature of the tank, the machine acts on a servo
valve that control the cold water circuit flux that passes through the heat exchanger. The water
pump that circulates water in the magnetic coils is the HVX 15-bar pump, whose reference is
given in Browaeys (1999). Note that the water drop due to the multiskin 16 mm pipes (10 m
long) is estimated to be around 0.5 bar for a 10 L/min water flux and only 0.1-0.2 bar for the
20 mm model.

Figure 121: Watercooling apparatus. Note that we bought new cold plates for IGBTs that are
available in the experiment room.
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Table VI.4: IGBTs and diode water flux. One can see that the sum of individual water rate is
clearly not equal to the water rate when all valves are open.

Date Zeeman IGBT
1&2

IGBT
3&4

IGBT 5 Diodes Total (all
open)

07/10/2022 2 l/min 2,6 l/min 2,5 l/min 2,4 l/min 2,2 l/min 4,6 l/min

Figure 122: Evolution of the water-flow on the Zeeman/IGBTs/Diode branch of the cooling
setup. A value below 2 means the experiment does not work well. Absence of measurement
means that the water flux was not too low to carry an experiment.

the cooling pipes used in the experiment were Ø14 mm multiskin pipes, and this diameter is
no longer a standard; we could not find any compatible connectors. Therefore, we modified
our setup to use Ø16 mm multiskin pipes. Figure 121 provides information on the connectors
used for this setup and Table VI.4 gives the water flows at different times. Sadly, this change
of configuration did not improve enough the total water rate to avoid being distrub day to day.
Nevertheless, it allows us at least to better monitor the water-flow rate.

3.D Optics

Dipole trap injection optics

The collimators that inject the laser beam from the “preparation” breadboard are 60FC-SMA-
T-23-A-11-03 from Schäfter+Kirchhoff company, which means their focal length is 11 mm
with 0.25 numerical aperture. We combine them to optical fibers supplied by NKT photonics
that are connected to the High power SMA connector by Alpha Nov and cut at 5 degrees (this
5° cut angle is perpendicular to the polarization axis). Once connected, the polarization axis
is indicated by the mark on the top of the fiber. On the collimator, the axis is perpendicular
to the mark (faded edge on the part connected to the collimator’s fiber): as explained by S+K,
one should align the polarization axis with groove in the connector.

On Febrary 2023, when we changed the laser, we decided to install the S&K fiber col-
limators on mirror mounts. For this, we use Polaris mounts, which conveniently allows the
collimator to be almost entirely inserted. To fit the collimator completely, I had to file down
the small pins that hold the mirror (see Figure 123). The collimator is then secured with the top
screw, just like a mirror. This way of holding the collimator is about a thousand times better
than the previous method, where they were on solid supports. With this method, injection and
fine adjustments are much easier and monthly adjustment too.

The following technique allows one to easily inject a fiber. It was suggested by Jan-Philipp
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Figure 123: Sketch of the collimator. ©Left scheme from Schäfter+Kirchhoff and right pic-
ture from Thorlabs.

Bureik (2024).

• Install first a diaphragm in between the collimator and the lastmirror to set up the vertical
direction of the beam

• Without the fiber, make sure the beam goes through the collimator and observe a nice
shape after the hole,

• With approx 100 mW of power, approach the fiber without plugging it totally. One
should observe a bit of light at the output of the fiber.

• With small steps, kepp plugging gently the fiber in the collimator. You should never
loose light at the output of the fiber. Adjust the injectoin by changing the rotation (po-
laris fiber coupling mount) and the translations screws (last mirror mount),

• Screw the fiber to the collimator, paying attention to the cut angle and optimize the
output with the four screws.

Dipole trap waists: vertical beam

The vertical dipole trap was installed in 2010. Jaskula (2010) measured optically a waist of
roughly 30 µm but then measured it to be 43 µm on the atoms (through parametric excitation).
Bonneau (2011) reported also the value of 43(1.5) µm when measuring through parametric
excitations. The difference between the optical measurement and atomic one is high but an
explanation might be found. Indeed, when Perrier (2020) measured the waist of the horizontal
beam optically, he realized that the camera was sensitive to the square of the intensity and not
the intensity. In other words, it is a two photons process that excites the pixel. This means
that the measured waist is too small by a factor

√
2 which would lead to 30

√
2 ∼ 42 µm, in

agreement with the waist measured on the atoms.
The optical setup was reinstalled by Perrier (2020) but without changing the vertical lens. He
measured a value of 53 µm on the atoms (gravity compensation and parametric excitations)
but expected also to measure a value closer to 40 µm34. Since that time, the dipole trap was
realigned multiple time and the power meter used to calibrate the trap was not so reliable. Here
we present the recent measurement of the waist by three means on the atoms (25/07/2024).
The power of the dipole trap was calibrated with a new (and not burned) Thorlabs photodiode

34If the vertical trap is not purely vertical, it means that the effect of gravity is reduced by the cosinus of the
angle. It means that for a fixed waist of the beam, a slightly tilted beam might compensate gravity where a purely
vertical beam might not. This means that the apparent waist is smaller than the measured one. If the measured
waist is larger, I would say that this was due to optical aberrations of the lens i.e. that the beam was not perfectly
centered on the lens. Another uncertainty factor is due to the calibration of the power meter that was used to
measure the power of the laser.
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Figure 124: Measure of the waist by two different methods. Left: a snapshot of the cloud
for various power gives access to the in situ position of the cloud. Data taken of February
(25//2022). Right: excitation frequency of the breathing mode as a function of the laser power.
Experimental points were extracted from various day, ranging from February 2022 to May
2024.

power sensor S132C that cannot measure more than 500 mW. Power above this value are
extrapolated.

Measure by imaging the cloud’s position and gravity: we load a dipole trap and de-
crease the power up to a final value. Because of gravity, when the power of the beam decrease,
the minimum of the total potential is shifted down. Here, we decrease the power of the laser
beam, let the cloud expand for 1 ms and take a snapshot (emission imaging). We then adjust
the density profile of the cloud with a Gaussian function to obtain its position.
Results: On the left panel of Figure 124, the vertical position of the cloud is plotted as a
function of the vertical beam power. The experimental points are fine-tuned by a waist of
42.5(3)µm which is in agreement with the expected waist.

Measure with parametric excitation: this method consists of modulating the intensity
of the dipole trap at a given frequency. When the frequency of excitation is equal to twice the
transverse frequency, the breathing mode is excited (Chevy et al., 2002). When the excitation
amplitude is quite high: typically a fraction of the final power, the system is excited in a quite
a “violent” way, heating occurs and the width of the detected cloud is increased (Lopes, 2014).
We expect also to detect fewer atoms. However, we sometime detect more atoms at resonance:
this is due to the fact that the width of the BEC increased. The atomic flux is therefore lower,
which increases the detected atom number due to the saturation of the MCP. Note however
that this breathing mode frequency is 2𝜔⊥ only for a elongated trap: in the case of a spherical
trap, its frequency is

√
5𝜔 (Stringari, 1998).

Results: the excitation frequency is plotted as a function of the vertical power on the right panel
of Figure 124. We adjust this curve with a theoretical waist of 41.5(1.0) µm. Note however
that the experimental points that are reported here were extracted from different days (over a
year and a half) and measured in different conditions (four different days). The power of the
trap was not always really well calibrated due to a defective power-meter and a photodiode
drift that was fixed recently.

Measure with gravity compensation: the single vertical dipole trap does not compensate
gravity for all powers. At a threshold power, it will not be able to still trap atoms. The MCP
detects a really low number of atoms and therefore allows identifying such power. Here we
evaporate in the single vertical trap, for different power and look for the atomic signal on the
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Figure 125: Left: horizontal dipole trap optical setup. The beam expander was installed on
January 2024 and bought in 2017 from Acal BFI. Right: optical measurement of the waist of
the horizontal dipole trap for a 1.5 magnification factor (top raw) and 2 (bottom row). The
measurement was carried using a Gentec Beam profiler and are reported n triangle green (Y)
or diamond yellow (X) for which the minimal measured waist is reported in the legend. The
fit assumes a Gaussian beam: the important uncertainty associated to the fit reflects the fact
that the waist longitudinal evolution is not proper. For a Gaussian beam with initial waist of
108 µm, we expect a 71 µm and 54 µm waist respectively for the 1.5 and 2 magnification
factor. Data taken on the 05/02/2024.

MCP as a function of power. On the left panel of Figure 125 is shown the depth of the trap as
a function of the laser power. Each curves shows the depth for different waist. The power at
which the trap stops compensating gravity is the point where its depth null. The knowledge
up to 10 mW of the threshold for which gravity is not compensated provides a measurement
with a precision of 0.2 µm on the waist.
Results: the number of atoms as a function of the laser power is shown on the right panel
of Figure 125. Each dots represents a single measurement. The red line shows if a dipole
trap widh 40.5±0.1 µm still compensates gravity. Its value is 1 if yes, 0 if not. Its 𝑦-axis is
represented on the right 𝑦-axis of the plot. Experimental points are separated by 10mW, which
gives the ability to determine the waist up to 0.2 µm. The horizontal errorbars are due to the
calibration curve. The final uncertainty on this measurement is estimated to 0.2 µm.

ResultsWe therefore measured with 3 different techniques the waist of the verti-
cal laser beam. The gravity compensation one predicts a 40.5 µmwith a precision
of 0.2 µm. The 41(1) µm waist measured with parametric excitation should be
taken with caution as it relies on dataset that were taken at quite different periods.
Its value is in agreement with the waist measure with other techniques. However,
the waist we measure by imaging the cloud in situ and evaluating its position due
to gravity is not in agreement with the first techniques, even though this is not
a 3 − 𝜎 difference. A source of uncertainty not taken into account here is the
calibration of the camera that was not really well done. Another explanation
to this discrepancy is the presence of an unknown magnetic field gradient that
could affect the trapping potential at really low power and changing the gravity
gradient.
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Figure 126: Measure of the waist of the horizontal beam. Left: after a quench, the BEC
oscillates in the trap. Its arrival time exhibits the same oscillation frequency. Each symbols
corresponds to a different laser trap. The line is a sine fit of the experimental data from which
we extract the frequency of the trap, which is the same than the frequency of the atoms. Right:
the trap frequency as a function of the laser power. The solid line is adjusted to the experi-
mental data that gives a waist of 108(2) µm.

Dipole trap waists: horizontal beam

The waist of the horizontal beam was measured optically by two methods by Perrier (2020)
who reported 107(3) µm and 110(4) µm. We report in this subsection that we measured
108(2)µm in agreement with his measures. The measurement was performed measuring the
trap frequency for several powers: we then adjusted the theoretical curve with the waist as a
free parameter. The trap frequency is measured by exciting the cloud in the first collective
oscillation of the BEC (Stringari, 1996).

Protocol: we produce a BEC in the cross dipole trap (400 mW, 30 mW) respectively for
the vertical and horizontal trap beams. At 𝑡 = 0, we quench the horizontal beam power to
a different power. We then hold the cloud in the trap for different durations. For each hold
time, we record the arrival time of the cloud measuring the atomic flux on the MCP with an
oscilloscope. Indeed, the horizontal laser beam is responsible for the vertical confinement.
We observe the arrival time to oscillate as a function of the hold time in the trap as shown on
the left panel of Figure 126. We fit the signal to get the frequency of the oscillation, which
corresponds to the frequency of the trap. The measurement is repeated for different laser
powers: Figure 126 shows the trap frequency as a function of the power of the laser.
Result: We adjust the waist of the trap to coincide the experimental data. This gives a value
of 108(2) µm for the waist of the horizontal beam. This value is consistent with the value
reported by Perrier (2020).

We also installed a beam expander on the experiment in January 24. The idea is to allow
one to decrease the vertical confinement (the shallow axis) and therefore change the mode size
to be less sensitive to center of mass fluctuations. In the right panel of Figure 127, we report
the optical measurement of the waist of the horizontal beam. Measurement was performed
using a Gentec beam profiler and the fit was double-check with a 2D home-made fit program.
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Figure 127: Left: horizontal dipole trap optical setup. The beam expander was installed on
January 2024 and bought in 2017 from Acal BFI. Right: optical measurement of the waist of
the horizontal dipole trap for a 1.5 magnification factor (top raw) and 2 (bottom row). The
measurement was carried using a Gentec Beam profiler and are reported n triangle green (Y)
or diamond yellow (X) for which the minimal measured waist is reported in the legend. The
fit assumes a Gaussian beam: the important uncertainty associated to the fit reflects the fact
that the waist longitudinal evolution is not proper. For a Gaussian beam with initial waist of
108 µm, we expect a 71 µm and 54 µm waist respectively for the 1.5 and 2 magnification
factor. Data taken on the 05/02/2024.

Bragg alignement

The procedure to align the Bragg beams follows:

1. The Bragg beam should be visible with the infrared viewfinder : one beam should illu-
minate the bottom of Zeeman slower outpout bulge, the other the top.

2. The polarization are then turned by 45° from 𝜋 to 𝜎−/+. The magnetically trapped cloud
is shined typically for a few ms with a few mW. The number of atoms should drop as
the beam allows the atoms to go from the trapped 𝑚 = 1 state to the untrapped 𝑚 = 0
state via spontaneous emission. This first alignment is performed separately for each
beam and we work with the camera to assess the atom number in the cloud.

3. We now work with both beam with a 𝜋 polarization and detect atoms with the MCP. We
produce a BEC, release it and shine it with both laser. We then scan the duration of the
Bragg pulse to observe a Rabi oscillation. The idea is to maximize the Rabi frequency
as it is proportional to the product of the two beams intensity. An example is given
in fig Figure 128, on the right where we plot the relative population between |𝑝 = 0〉
and |𝑝 = ℏ𝑘𝑏〉 as the function of the duration of the pulse. Here, for each sequence
represented by the color and style of the curve, we turn a screw. The alignment in
sequence 45 (red dashed dotted) is better than in sequence 41 (solid blue).

4. Once the beam are centered on the atoms, one should check if the Bragg momentum is
well aligned on the vertical axis with a Ramsey interferometer. To do so, we produce a
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Figure 128: Left: Ramsey interference pattern when the beam is badly aligned (left) and
better aligned (right, but yes, still not perfect). Right: Rabi oscillation for different sequences.
At each sequence, a screw is turned to check if the Rabi frequency increases. Here we showed
the begining of the Rabi oscillation but it is better to scan on the second arch as the difference
between two frequencies is visible faster.

BEC. After 1 ms, we perform a first 𝜋/2 pulse and a second one, delayed byΔ𝑡 ∼ 2.5ms.
The two coherent cloud that were transferred by the first and then the second overlap
and interfere due to gravity. The vertical interference period writes 2𝜋/𝑘𝑏𝑔𝜏 (Leprince,
2024) and the fringes should be only along the vertical axis. If not, one of the mirror
should be displacedmacroscopically (a translation of themirror mount and not a rotation
with the screws) and the alignment procedure started back from step 1.

The left panel of Figure 128 represents three interference patterns. On the first picture, we
clearly see that the fringes are tilted along X. One of the mirror was then unscrewed from its
tie bar and moved by a few mm in the tilt angle direction. In the case where the fringes are
tilted on the X direction, one of the mirror should be displaced along the horizontal. The two
other pictures represent the interference pattern while iterating over the (boring) alignment
procedure. Note that this method is really sensitive as the final relative angle were estimated
to 0.08(3)° along X and 0.04(2)° along Y (Leprince, 2024).

4. Reconstruction and correlation codes
We developed our codes in a team project called heliumtools that can be installed as a python
package. I will describe in the following how codes work and the choices that was made for
computation speed.
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4.A Correlations and data analysis
At the end of an experiment, we obtain a list of unique atoms at a given position in momentum
space. When probing the normalized correlation function 𝑔 (2) of two modes 1 and 2, the
normalized variance 𝑉1,2 and the Cauchy-Schwarz ratio 𝐶1,2 are defined as

𝑔 (2)
1,2 =

〈: 𝑛1𝑛2 :〉
〈𝑛1〉〈𝑛2〉

, 𝜉1,2 =
Var(𝑛1 − 𝑛2)
〈𝑛1〉 + 〈𝑛2〉

, C1,2 =
𝑔 (2)
1,2√

𝑔 (2)
1,1 × 𝑔 (2)

2,2

. (235)

where the 𝑛 refers to the mode population, the dots : to normal order and the variance of the
population difference is Var(𝑛1−𝑛2) = 〈(𝑛1−𝑛2)2〉− 〈𝑛1−𝑛2〉2. Note that the brackets means
average value hence it will be in the following be interpreted as average over cycles. When
studying correlations, it is therefore possible to select two modes and compute the above quan-
tity. However, in order to increase the signal to noise ratio, it can be better to average over
modes in a selected region. In our experiment, we know where we create pairs, i.e. there po-
sition in momentum space is well defined, making possible to study the correlations between
those two modes. However, it is possible to average over a wide range of modes in the system
and then compute the integrated correlation function. In the following of this section, we will
introduce both approaches, the first one being momentum resolved correlations as it keeps
trace of the momentum of the considered modes, the second one being momentum integrated
correlations. As we shall see, the first one ables to enhance Cauchy-Schwarz violation and/or
sub-shot-noise variance, mode number statistics, while the second one allows a better estima-
tion of the second order correlation, its height and width, and to reveal the Hanbury, Brown
and Twiss effect (Jeltes et al. (2007)).

4.B Momentum integrated correlations

Presentation of the 𝐺 (2) calculation After applying the 1064 nm optical lattice for less
than a ms, we end up with two correlated beams (Bonneau et al. (2013)) A and B, composed
of several modes in the longitudinal (z) and transverse direction (x and y). The idea of this
method is to quantify the number of atomic pairs and the bosonic bunching : considering
we have an atom located in ®𝑘 what is the probability to get an other atom near this atoms
(®𝑘 + 𝛿®𝑘) or opposite to this atom (−®𝑘 + 𝛿®𝑘). To do so, we compute the 3D histogram of
the momentum difference between. This gives access to the (non-normalized) second-order
correlation function 𝐺 (2) . This function is however proportional to the density and does not
captures efficiently what we study : bosonic bunching and anomalous correlations.

So far, we have only the non-normalized correlation function 𝐺 hence one must normal-
ized it with respect to density to obtain the normalized corelation function. To do so, we repeat
Program 129 taking uncorrelated atoms, i.e. atoms from different cycles. Using the notations
above, this means that atom_j should be taken from all other cycles than the cycle of atom_i
(Schellekens, 2007; Ténart, 2021). Considering that we have 𝑁𝑎𝑡 atoms per shot and 𝑁𝑠ℎ𝑜𝑡

shots, the complexity of the numerator calculation is 𝑁2
𝑎𝑡𝑁𝑠ℎ𝑜𝑡 while the complexity of the de-

nominator is 𝑁2
𝑎𝑡𝑁

2
𝑠ℎ𝑜𝑡 . A way to decrease the complexity of the denominator is to normalize

with only a fraction of the remaining shots or even to use only one other shot. I tried the later
but the noise from the denominator was too important. Taking also a fraction of the cycles can
be done but this does not change the complexity (even though it does decrease the calculation
time which in practice is useful).
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sx, sy, sz = 1,1,0.1 # definition of the resolution on each axis
G = initialize_voxel_map()
for cycle in all_cycles:

for atom_i in cycle.get_atoms_list():
for atom_j in cycle.get_atoms_list():

if atom_j != atom_i:
(dkx, dky, dkz) = atom_j.get_momentum() -/+

atom_i.get_momentum()↩→

G[dkx/sx][dky/sy][dkz/dz] += 1

Figure 129: Pseudo-code of the construction of the three dimensional second order correla-
tion function 𝐺 (2) . In this code, the voxel map G is a three-dimensional list. To populate
the histogram, we iterate through all cycles, calculating the momentum difference between
each pair of atoms. The requirement to ensure that both atoms are distinct reflects the normal
ordering in the definition of the second-order correlation function. In other terms, this condi-
tion ensures that we do not correlate an atom with itself. The -/+ depends on the correlations
one wants to probe : either local correlation (− for bosonic bunching) or cross-correlation (+
opposite momentum correlation). In this program, the parameters are the width of the voxel 𝜎
that should be narrow enough in order to visualize correlations i.e. they must be much smaller
than the correlation length.

Implementation of the code I will turn now into a more detailed presentation of the code
itself and the tools used. As Python is neither a compiled program like C or Fortran nor a
pre-compiled program like Matlab, it is highly inefficient with for loops and one needs to
find the best module that can carry the calculation. Let’s reformulate what we are trying to
compute : for a given cycle, we have a list of all atoms momentum in 3D {®𝑘𝑖} of size 𝑁𝑎𝑡 and
the list of all other atoms momentum {®𝑘 𝑗} of size 𝑁𝑎𝑡𝑁𝑠ℎ𝑜𝑡 . The first operation is to perform
the cross product in order to get all ( ®𝑘𝑖 , ®𝑘 𝑗) couples and then to do the 3D histogram of the
{®𝑘𝑖 − ®𝑘 𝑗} distribution. Typically, the number of atoms per shot is around 100 and the number
of shots is a few thousands.

The cross product between the two lists {®𝑘𝑖, 𝑗} can be achieved with pandas merge, torch
cartesian product or itertools methods while the 3D histogram can be achieved with numpy or
torch histogramdd methods. Note that given the resolution of the MCP and the range of our
data, we could work with 16 bits integers. Figure 130 represents the computation time needed
to perform the cartesian product operation (left) or the 3D histogram (right) as a function of
the number of cycles. One can see that the longest operation here is the cross product and I
noted also that the instantaneous memory usage is much bigger that the resulting array. The
better module to perform both operations is the torch module.35

35The quite poor performances of the numpy module led to the development of the fast-histogram module but
that tackles only 1D and 2D histograms and the pytorch module by the CERN as explained here.
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Figure 130: Comparison of the different modules performance with cartesian product (left)
and 3D histogram (right) as a function of the number of shots 𝑁𝑠ℎ𝑜𝑡𝑠. For a given module
function, we compute the time it takes to perform the cartesian cross product of an array of
size 𝑁𝑎𝑡 and an array of size 𝑁𝑎𝑡 ×𝑁𝑠ℎ𝑜𝑡𝑠. For the pandas module, this time strongly depends
on the data type. For the 3D histogram calculation we represent the time it takes to perform the
histogram with an initial array of size 𝑁2

𝑎𝑡 ×𝑁𝑠ℎ𝑜𝑡𝑠, returned by the cartesian product function.
The computation time is performed 10 times for each curve and the shaded region represent
the standard deviation over the 10 measurements. Here 𝑁𝑎𝑡 = 100, using a - not anymore
standard - 10 years old computer machine with 8Gb RAM.

Figure 131: Two dimensional plots of the density of atoms. The two beams A and B are
represented with the green and gray rectangles. Pairs produced with the 1083 nm laser in
February 2024.

Practical description of the code Following the notation introduced by Lopes (2014) , we
consider two beams A and B, represented by the green and brown rectangles region of interest
in Figure 131. One must then defined the properties of the so-called voxel map, defined by the
number of voxels in each axis and the voxel size. The later represent the ultimate precision that
can be reach for a given axis. In order to emphasize the correlation amplitude, this length must
be much smaller than the correlation length. Calling the compute_correlations method
will define the result table that contains for each voxel 𝛿®𝑣 the number of nearby pairs (G2AA,
G2BB for each beam) and opposite pairs (G2AB). The quantity result['G2AB'][0,0,0] is
therefore the number of opposite momentum pairs in the central voxel 𝛿®𝑘 = 0. When we
represent the one-axis (say z) integrated correlation function, we define an integration volume
along the two other directions (say dx, dy). The normalized correlation function is then sim-
ply given by g2[z]=G2AB[-dx:dx, -dy:dy, z]/G2AB_denom[-dx:dx, -dy:dy, z].
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Figure 132: One dimensional integrated second order correlation function along x, y and z
axis. For each curve (marker and color), the integration size along the two other dimensions is
changed (see legend). One can see that the smaller the transverse integration is, the higher is
the amplitude. If the Gaussian-fitted width of the correlation does not depend on the transverse
integration, this would means that the correlation function is separable. On this dataset, it
seems that this is the case (seems the case on this example). The fit function is lorentzian and
error bars are obtained with bootstrapping. ®Data obtained in May 2022.

Bootstrapping The bootstrapping method enables estimation of the standard deviation of
a sample using resampling with replacement. The idea is to resample with replacement and
to recompute the quantity of interest with this new sample. One has then to recompute this
quantity of interest {𝐴𝑖} N times and then study the probability distribution of the 𝐴𝑖 . The
width of the distribution gives the uncertainty deviation of the associated observable 𝐴. With
this method, one can see that computing the denominator with a re-sampled sample is prob-
lematic as one might correlate an atom with itself, leading to 1. an obvious divergence of the
denominator at 𝛿®𝑘 = 0 and 2. an HBT effect for the nearby atoms. For that reason, we do not
evaluate the error on the denominator36.

Momentum resolved correlation

At the end of an experiment, we obtain a list of three-dimensional speeds of an atom, and we
must determine which mode(s) we want to examine—specifically, its size and position. We
refer to such a region of momentum space as a box in the following. In the current version of
the code, a box is represented as a dictionary that includes either its position and size or its
boundaries along different directions37.

36The denominator noise is really low with respect to the numerator. Indeed, the denominator calculation in-
volves 𝑁2

𝑠ℎ𝑜𝑡𝑠
𝑁2
𝑎𝑡 terms while the numerator contains only 𝑁𝑠ℎ𝑜𝑡𝑠𝑁

2
𝑎𝑡 terms.

37The format of a box matches the expected format of a Region of Interest (ROI) defined in the tools file of
the package. It should be a dictionary whose keys are the axes of the ROI. The element can be either a list or
a dictionary. A list will define the maximum and minimum boundaries of an ROI, while the dictionary can also
define position and size.
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Figure 133: Relative error on the mean of a poisson distribution as a function of the number
of cycles (left) and the population (right). The solid curves are given by equation (237) with
no adjustable parameter.

4.C Errors on the particle number of a thermal and poisson distribution

The particle probability distribution of a thermal state follows the geometrical law

𝑃𝑡ℎ (𝑛) =
𝜈𝑛

(1 + 𝜈)𝑛+1 (236)

where 𝜈 is themean population. Especially, themean associated to this distribution is 𝐸𝑡ℎ (𝜈) =
𝜈 and the variance is Var𝑡ℎ (𝜈) = 𝜈2 + 𝜈. This should be compared to the poissonian statistics
with mean 𝜈 for which 𝑃𝑝𝑜𝑖 (𝑛) = 𝜈𝑛𝑒−𝜈/𝑛! hence Var𝑝𝑜𝑖 (𝜈) = 𝜈. For low populations (𝜈 < 1),
the thermal and Poissonian distribution exhibits a similar variance as one can neglect 𝜈2 com-
pared to 𝜈. On the opposite, when the population is larger, the width of a thermal distribution
is larger than the one of a Poissonian distribution. In particular, the standard deviation of the
mean number of particle is equal to the mean. Such fluctuation of the particle number is a
characteristic of thermal state, as we saw in the second chapter. When drawing randomly 𝑛
samples from a thermal distribution, the standard deviation associated to the particle number
is expected to be large. Does this mean that the uncertainty associated to the mean is large ?

Protocol: To answer this question, we randomly draw a sample with 𝑁𝑐𝑦𝑐𝑙𝑒 elements
from a thermal (respectively a poisson) distribution with a mean 𝜈. We compute the absolute
difference between the mean of the distribution 𝑛 and the expected mean 𝜈. We repeat this
100 times and compute the mean absolute error 𝛿𝑛 = |𝑛 − 𝜈 |. The relative error 𝛿𝑛/𝜈 depends
both on the theoretical population 𝜈 and the number of cycles 𝑁𝑐𝑦𝑐𝑙𝑒.

Results: The relative error 𝛿𝑛/𝜈 is shown on Figure 133 for the Poissonian distribution
and on Figure 134 for the thermal distribution. On the left panel is shown the relative error in
percent as a function the number of cycles for three different populations (0.3, 1 and 4). On
the right panel, it is shown as a function of the mean population. Note also that the dispersion
of the relative error is of the order of the error: if one adds error bars on the graph, their size
would be equal to the amplitude of the point.

We first consider the poisson distribution, shown on Figure 133, as a sanity check. On the
left panel, we observe that the relative error 𝛿𝑛/𝜈 scales with

√
𝑁𝑐𝑦𝑐𝑙𝑒, and on the right panel,

the relative mean error also scales with the square root of the population. The solid curves are
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Figure 134: Relative error on the mean of a thermal distribution as a function of the number
of cycles (left) and the population (right). The solid curve are given by equation (238) with
no adjustable parameter.

given by the following formula, with a heuristic 0.8 prefactor and no adjustable parameter

𝛿𝑛𝑝𝑜𝑖 =
0.8

√
𝜈√

𝑁𝑐𝑦𝑐𝑙𝑒

. (237)

We now focus on Figure 134 and the thermal distribution. On the left panel, the relative error
on the mean still scales with the square root of the number of shots

√
𝑁𝑐𝑦𝑐𝑙𝑒. However, on

the right graph on which the error is shown as a function of the mean population, we observe
two slopes. For low population, the slope is similar to that of the Poissonian distribution. For
higher populations however, the relative error is much higher than in the poisson case. This
can be expected as the dispersion associated to the thermal distribution is 𝜈 while it is only

√
𝜈

for the poisson distribution. As shown in Figure 134, data are well-adjusted by the following
formula,

𝛿𝑛𝑡ℎ =
0.8

√
𝜈2 + 𝜈√

𝑁𝑐𝑦𝑐𝑙𝑒

(238)

i.e. the standard deviation divided by the square-root of the sample size, with an overall 0.8
factor.
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Glossary

BdG : Bogoliubov-de Gennes

BEC : Bose-Einstein Condensate

CMB : Cosmic Background Radiation

CFD : Constant Fraction Discriminator

CSI : Cauchy-Schwarz Inequality

DCE : Dynamical Casimir Effect

DL : Delay Lines

FPGA : Field-Programmable Gate Ar-
ray

GP : Gross-Pitaevskii

gPPT : Generalized Positive Partial
Transpose, parfois noté (g)PPT

IGBT : Insulated-Gate Bipolar Transis-
tor

LN : Logarithmic Negativity

MCP : Micro-Channel Plate

MOT : Magneto-Optical Trap

ODT : Optical Dipole Trap

PPT : Positive Partial Transpose

qBEC : quasi Bose-Einstein Conden-
sate

QFTCST : Quantum Field Theory in
Curved Space Time

RF : Radio Frequency

SSR : Superselection Rule

TDC : Time-to-Digital Converter

TF : Thomas-Fermi

TMS : Two-Modes Squeezed State

TMSth : Two-Modes Squeezed Ther-
mal State

TOF : Time-of flight

UV : Ultraviolet
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Résumé : Ce mémoire de thèse traite de la non-
séparabilité de paires de quasi-particules excitées
par résonance paramétrique. Le dispositif expéri-
mental utilisé pendant cette thèse permet de pro-
duire un condensat de Bose-Einstein d’hélium mé-
tastable. L’utilisation d’un gaz d’atomes ultra-froid
permet d’atteindre des températures suffisamment
basses afin de pouvoir observer des phénomènes in-
trinsèquement quantiques : la non-séparabilité de
l’état. Dans ce travail, nous utilisons le conden-
sat comme un réservoir cohérent permettant de
peupler deux modes d’impulsions. L’avantage de
l’hélium métastable est sa grande énergie interne,
qui permet la détection électronique de particules
uniques. Nous mesurons donc la position et le
temps d’impact des particules après un temps de

vol de 308 ms, ce qui permet de reconstruire la
distribution en impulsion dans le piège. Dans la
première contribution théorique de ce travail, nous
démontrons que la mesure des fonctions de corré-
lation à deux et quatre corps permet de quantifier
la non-séparabilité d’un état gaussien. Nous déri-
vons également un critère permettant d’attester la
séparabilité de l’état via la seule mesure la fonc-
tion de corrélation à deux corps. Dans la partie ex-
périmentale, nous améliorons la machine permet-
tant de produire notre gaz ultra-froid, ainsi que sa
stabilité. Par ailleurs, nous mettons en œuvre des
techniques originales afin de dévier une partie des
atomes et éviter la saturation de notre détecteur.
Ces améliorations nous permettent ainsi d’observer
la non-séparabilité de l’état.

Title : On the entanglement of quasi-particles in a Bose-Einstein Condensate
Keywords : Quantum Physics ; Quantum simulations ; Cold atoms ; Analog gravity ; Entanglement of
Gaussian states ; Parametric resonance

Abstract : This thesis focuses on the non-
separability of pairs of quasi-particles excited by
parametric resonance. The experimental setup
used here allows the production of a Bose-Einstein
condensate of metastable helium. The use of an
ultra-cold atomic gas makes it possible to reach
sufficiently low temperatures to observe intrinsi-
cally quantum phenomena : the non-separability
of the state. In this work, we use the condensate
as a coherent reservoir to populate two momentum
modes. The advantage of metastable helium is its
high internal energy, which allows the electronic
detection of single particles. We therefore measure
the position and the time of impact of the particles

after a time of flight of 308 ms, which allows us
to reconstruct the in-trap momentum distribution.
In the first theoretical contribution of this work,
we demonstrate that measuring the two- and four-
body correlation functions not only attests to, but
also quantifies the non-separability of a Gaussian
state. We also derive a new entanglement witness
using only the two-body correlation function. In the
experimental part, we improve the machine used to
produce our ultra-cold gas and enhance its stabi-
lity. We implement original techniques to deflect
part of the atoms and avoid the saturation of our
detector. These improvements allow us to observe
the non-separability of the state.
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