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We study the behaviour of a thin fluid filament (a rivulet) flowing in an air-filled
Hele-Shaw cell. Transverse and longitudinal deformations can propagate on this rivulet,
although both are linearly attenuated in the parameter range we use. On this seemingly
simple system, we impose an external acoustic forcing, homogeneous in space and
harmonic in time. When the forcing amplitude exceeds a given threshold, the rivulet
responds nonlinearly, adopting a peculiar pattern. We investigate the dance’ of the rivulet
both experimentally using spatiotemporal measurements, and theoretically using a model
based on depth-averaged Navier–Stokes equations. The instability is due to a three-wave
resonant interaction between waves along the rivulet, the resonance condition fixing the
pattern wavelength. Although the forcing is additive, the amplification of transverse and
longitudinal waves is effectively parametric, being mediated by the linear response of the
system to the homogeneous forcing. Our model successfully explains the mode selection
and phase-locking between the waves, it notably allows us to predict the frequency
dependence of the instability threshold. The dominant spatiotemporal features of the
generated pattern are understood through a multiple-scale analysis.

Key words: capillary waves, pattern formation, parametric instability

1. Introduction
The study of instabilities has been a driving force in fluid mechanics for the last
two hundred years, and is part of virtually every modern course in fluid mechanics.
Understanding the nature of various observed instabilities is the basis for their control,
be it with the aim of suppressing or on the contrary exploiting them. This has led to the
distinction of several archetypes of instability scenarios, which the instability described in
this paper combines in a way that, as we discuss below, is uncommon yet likely relevant
in other systems. Specifically the present system generalizes Faraday-type parametric
instabilities to the systems where two types of waves coexist.
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In this paper, we present an experimental report and theoretical model for a recently
discovered instability that arises when a liquid rivulet in an air-filled Hele-Shaw cell is
forced acoustically (Le Lay & Daerr 2025b). A thin gravity-driven filament of liquid in
a Hele-Shaw cell usually flows down vertically, but when a spatially invariant horizontal
forcing is applied, it destabilizes and forms a complex spatiotemporal pattern. This pattern
has a finite wavelength, while the forcing is spatially homogeneous, and it can be seen
as a phase-locked superposition of transverse and longitudinal waves propagating on
the rivulet. Explaining the mechanism behind this pattern-forming instability and its
consequences is the main motivation of this article

In dynamical systems theory, it is common to distinguish additive, forcing and
parametric, or multiplicative, forcing. When forcing a system additively, one usually
expects a linear response composed of the same space spatial and temporal frequency
components as the excitation. On the contrary, exciting a system parametrically leads to
more complex, nonlinear behaviour: this is notably illustrated in fluid dynamics by the
much-studied Faraday instability (Faraday 1831; Douady 1990; Kumar & Tuckerman 1994;
Bongarzone et al. 2022) where the control parameter is the gravitational acceleration.
Indeed, vibrating a liquid vertically will famously lead to secondary instabilities (Tufillaro,
Ramshankar & Gollub 1989; Fauve, Douady & Thual 1991; Daudet et al. 1995), complex
interactions between modes (Residori, Guarino & Bortolozzo 2007), partially stationary
patterns when the forcing is localized (Moisy et al. 2012), intricate spatiotemporal patterns
(Edwards & Fauve 1994), mean flows (Guan et al. 2023) – it can also prevent coalescence
of droplets (Couder et al. 2005) or can even be used to parametrically stabilize unstable
fluid configurations (Apffel et al. 2020).

In our system we apply an additive, acoustic forcing. This forcing, which is
homogeneous in space and harmonic in time, leads to a linear response of the rivulet with
the same spatiotemporal characteristics. However, this linear response effectively behaves
as a multiplicative parameter coupling longitudinal and transverse waves on the rivulet.
When the forcing is strong enough, this leads to the seemingly paradoxical parametric
destabilization of a system that is forced additively. This original mechanism allows an
initially homogeneous rivulet to display a pattern presenting a well-defined wavelength
although the forcing does not depend on space.

Moreover, this instability relies on the coamplification of two waves that cooperate by
interacting constructively instead of competing for the available energy. This constructive
interaction takes the form of a triadic resonant nonlinear interaction between the two
coamplified waves and the linear response to forcing. Such an interaction is reminiscent
of the case of Faraday waves in a Hele-Shaw cell (Douady, Fauve & Thual 1989; Li, Li &
Liao 2019; Bongarzone et al. 2023), and of other physical systems where a parametric
coupling between waves allows for their amplification: for example internal waves in
a variable-depth container (De Szoeke 1983; Benilov 1987), the elliptical instability in
rotating flows (Kerswell 2002; Le Bars et al. 2015; Lemasquerier et al. 2017; Le Bars &
Lecoanet 2020) or even, in a different field outside of fluid mechanics, the biphoton
mode in optical parametric oscillators (Amon et al. 2009); with the notable difference
that contrary to the previously cited example, in our system the coamplifying waves
are different in nature, having distinct propagation mechanisms and thus very different
dispersion relations. Discussing the emergence of a parametric instability as a limit case
of triadic wave interaction where the forcing acts by producing a response in the form of a
wave with zero wavenumber, provides a second motivation for this work.

In the system we study, we inject a small stream of liquid inbetween two close by, parallel
and vertical glass plates (forming a Hele-Shaw cell). Since the liquid we use perfectly wets
the glass, it forms a liquid bridge spanning the cell thickness, delimited by two semicircular
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menisci. Under the influence of gravity, the liquid forms a thin elongated filament along
the entire height of the cell, henceforth termed a rivulet.

The gravity-driven vertical base flow displays a Poiseuille velocity profile with zero slip
on the bounding glass plates. At low flow rate this base state is stable, and it destabilizes
when the flow rate exceeds a critical value Q∗ (Daerr et al. 2011). In this study, we will only
consider the case Q < Q∗ where the straight rivulet of constant width is linearly stable.

Capillarity acts as a restoring force towards the straight rivulet state, allowing waves
to propagate. These small deformations propagate in the reference frame advected
downwards at the mean flow speed inside the rivulet u0. Waves on the rivulet are
systematically damped by viscosity, which acts on two different level: in the bulk of
the rivulet, and near the edges of the menisci when they are displaced. Indeed, moving
the rivulet transversally at a finite speed implies displacing the fluid layer of vanishing
thickness near the menisci edges, which induces important dissipation.

In order to excite the system, we apply a pressure gradient between the right- and left-
hand sides of the cell, generating a transverse force on the rivulet that does not depend
on the vertical coordinate. The rivulet responds linearly to this forcing, and displays a
pattern-forming instability when the excitation amplitude is above a certain threshold.

The main purpose of this paper is to describe experimentally and explain theoretically
the features of this instability, the conditions under which it can develop and the way it
saturates. We start in § 2 by explaining our experimental method, we recall the physics
ingredients at play and we describe the waves that can propagate on a rivulet. In § 3,
we provide a qualitative experimental description of the phenomenon, we show how
parametric coupling waves leads to amplification of perturbations and we identify the
mathematical resonance condition that selects the pattern. In § 4 we then analyse the
pattern growth in detail, calculating the excitation threshold, the relative amplitudes
of the interacting waves, the saturation mechanism and the maximum forcing before
rivulet breakup. In the conclusive § 5 we revisit experimental observations in the light
of our analysis, before providing a brief summary and presenting several promising future
research directions.

2. Fluid rivulets

2.1. Experimental set-up
A schematic diagram of the experimental set-up is shown in figure 1. The Hele-
Shaw cell consists of two parallel float glass plates of dimensions 1 m × 10 cm × 6 mm
forming an air-filled gap b, 0.5–0.6 mm-thick, depending on the experiments. The gap
thickness is imposed by mylar polyethylene terephthalate spacers of known thickness.
Perfluoropolyether (PFPE) oil is injected locally at the top of the vertically set cell, through
a syringe tip fed by a gear pump from the main liquid reservoir. Under the cell, a recovery
tank placed on a laboratory scale collects the oil. By reading the weight of the tank as
a function of time, we are able to recover the flow rate Q that we inject in the cell. The
recovery tank is automatically flushed to the main reservoir whenever its weight exceeds
a given threshold. On opposite sides of the cell, two loudspeakers (Monacor SP-60/4) are
connected to the air gap via adapter plates that seal the speaker front save for a small
opening. The speakers are in antiparallel configuration (push–pull), the movement of the
membranes being antisymmetric with respect to the cell centreline.

The liquid we used (PFPE oil Galden HT135, density ρ = 1.71 g ml−1, surface tension
γ = 17 mN m−1, kinematic viscosity ν = 1 mm2 s−1) meets the glass at a vanishing
contact angle, measured in a drop spreading experiment to be smaller than 0.5◦. The oil
therefore readily wets both plates of the Hele-Shaw cell, and forms a liquid bridge between
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Figure 1. (a) Experimental apparatus (not to scale, schematic view). The measuring scale and the pump are not
shown. (b) Typical image, with detection of path and width of the rivulet. The path is defined as the centreline
of the bright zone, which corresponds to the interior of the rivulet. The width is the distance between the
detected menisci (blue lines in the figure). (c i) Illustration of the fact that light refracted by the menisci does
not reach the camera. (c ii) Definition of the cell spacing b and rivulet width w.

them. A centimetre-sized obstacle near the injection point breaks the initial jet, reducing
the fluid velocity to near zero independent of the injection diameter, and ensuring wetting.
Under the action of gravity, the oil flows around the obstacle and detaches from its lower
tip to form a continuous liquid stream spanning the entire cell height (1 m), henceforth
termed a rivulet. This thin liquid filament is delimited by two menisci on the sides, between
which the falling fluid flows downwards. Near the top of the cell the rivulet thins as the
fluid accelerates, and reaches an equilibrium width when friction forces balance gravity.
The equilibrium flow speed inside the rivulet is noted u0 = g/μ, where g is the
acceleration of gravity, and μ= 12 ν/b2 is a friction coefficient which depends on the
velocity profile in the rivulet (here a parabolic Poiseuille flow is assumed). The equilibrium
flow speed is attained at a distance u0/μ= gb4/(12ν)2 ≈ 10 mm from the injection site.
All the measurements presented in this study are made below this point, where the rivulet
width is assumed to have reached its equilibrium value w0.

The positions of the menisci bordering the rivulet are readily determined experimentally.
In order to visualize these borders with high contrast, we position the camera normal to the
plates, and a bright back-lighting panel at a distance much larger than the field of view. The
light of the light-emitting-diode panel passes through the air and the (transparent) oil, but
it is refracted at the menisci. The rivulet borders thus appear black on a bright background
on experimental images.

Most of the experimental images are obtained using a gigabit-Ethernet industrial
camera (AVT Manta G-223 B, max framerate 400 Hz, full resolution 1024×2088 pixel,
i.e. 2 megapixel) controlled by the open-source software Limrendir. When recording
periodic phenomena, we use a well-controlled frequency mismatch between the camera
frame rate and the excitation period. This technique allows us to visualize the rivulet with
high temporal resolution, even when the excitation frequency exceeds the maximum frame
rate of the camera. When true high time resolution is needed (i.e. when visualizing non-
periodic phenomena), we employ a high-speed camera (Chronos 1.4 8 GB, max. framerate
20 kHz, max. resolution 1080×1920 pixel, i.e. 2 megapixel). For the experiments presented
in this paper, we used forcing frequencies between 10 and 2000 Hz. The sampling
frequency is always chosen so that we have more than 10 images per forcing period.
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The videos acquisitions are exploited using in-house Python routines, which
automatically detect the position z(x, t) and width w(x, t) of the rivulet. The position
of the rivulet corresponds to the centreline of the liquid bridge, while its width is defined
as the distance between the two menisci. We proceed as follows: (i) the image is filtered
(Gaussian smoothing, vignetting correction, contrast optimization by normalization);
(ii) for each (horizontal) line of the image, the two local minima of luminosity are
associated with the menisci borders, and the zone between these minima is the rivulet
interior (the minimum value in this zone is subtracted from the luminosity in the
following computations); (iii) we estimate the position of the rivulet by computing the
barycentre of the luminosity inside the rivulet, and the width by computing the full-
width at half-maximum of the luminosity profile in the rivulet interior. These two
quantities, position and width, correspond to different kind of perturbations of the rivulet
base state. The reference situation corresponds to a straight rivulet of constant width
flowing vertically. A non-zero position corresponds to a transverse perturbation of the
rivulet, while a width different from the rest width w0 corresponds to a longitudinal
perturbation.

2.2. Dynamical equations
In this section we establish the mathematical model we use to describe the evolution of
the rivulet. Throughout this study we assume that the rivulets remain slender in the (x, z)
plane, meaning that their position z and width w vary on scales that are large compared
with the base width w0 of the rivulet. Mathematically, this translates as |∂x z| � 1 and
|∂xw| � 1.

In order to describe the dynamics of the system we start from first principles, i.e. the
Navier–Stokes equations. We perform a depth-averaging (along the y direction, normal
to the plates), assuming a parabolic profile (corresponding to a Poiseuille flow) for
the velocity. This laminar flow hypothesis is largely relevant, as the typical Reynolds
number associated with the flow inside the rivulet is of order bu0/ν ≈ 150. We then
integrate the result along the direction transverse to the rivulet path. After dividing by the
liquid density ρ, we obtain the following equations for the depth-averaged fluid velocity
u = u ex + v ez :

w (∂t + βu · ∇)u =w g −w μ u +w Γ ∇κw + (Γ κz −μcl u · n +Π) n, (2.1)

where n is a unit vector normal to the rivulet path z(x, t). We also take into account mass
conservation,

(∂t + u·∇)w= −w∇ · u, (2.2)

where w(x, t) is the width of the rivulet. The system is closed using the kinematic
boundary condition v = (∂t + u · ∇)z.

The dynamical (2.1) represent the competition between several physical effects: inertia,
gravity, internal friction, streamwise pressure gradients inside the rivulet and transverse
pressure forces.

The leftmost, inertial term features the numerical prefactor β � 1 accounting for the
velocity’s y-profile. As in Gondret & Rabaud (1997), we set this prefactor to unity in
the following, as it has only minor effects. The internal friction term originates from the
viscosity of the fluid and is given by Darcy’s law, with μ= 12 ν/b2 (assuming a parabolic
velocity profile). The streamwise pressure gradient term is due to inhomogeneities of
Laplace pressure along the path of the rivulet when its width is uneven. It acts as a
restoring force towards the constant-width situation. This mechanism is at the origin of
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the propagation of longitudinal capillary waves along the rivulet, as discussed in the
next section. Here Γ = π γ/(2 ρ), incorporating the π/4 corrective factor from Park &
Homsy (1984); and κw is the curvature of the width profile of the rivulet w(x, t) (at first
approximation, κw ≈ ∂xxw).

The transverse pressure forces normal to the interface are directed along n. There are
three distinct mechanisms which generate a pressure gradient transverse to the rivulet.

(i) The first contribution is the Laplace pressure due to the effective curvature of the
path κz ≈ ∂xx z. Indeed, when the rivulet is curved, a restoring force acts to straighten
it back. This force originates in the change of Laplace pressure due to the deformation
of the menisci caused by the curvature of the rivulet path (Park & Homsy 1984). This
mechanism is at the origin of the propagation of transverse capillary waves along the
rivulet, as discussed in the next section.

(ii) The second contribution corresponds to the stress due to the important dissipation
at the moving contact line. This term translates the fact that moving the rivulet
in the direction normal to its path is energetically costly, since it involves the
displacement of a vanishingly thin film on the meniscus border. The additional
dissipation associated with transverse movement depends notably on the height of
the film already present on the glass plates ahead of the moving meniscus. This film
being the result of previous wetting events, rigorously, its local height depends the
history of rivulet movement. We make the simplifying assumption that the rivulet
is sliding on a film of constant effective thickness, neglecting potential spatial or
temporal variations of the contact line friction coefficient μcl . The effective depth
h is estimated to be approximately several micrometres, in accordance with recent
measurements on this system (Le Lay & Daerr 2025a).

(iii) Last, theΠ term corresponds to the transverse force induced by a pressure difference
±(1/2)ρΠ between the two halves of the cell separated by the rivulet. The rivulet
acts as a membrane separating the left- and right-hand sides of the cell in an airtight
manner: this means it is sensitive to pressure differences between the air masses on its
right- and left-hand sides. Such a pressure difference drives the rivulet transversally.
Using loudspeakers at the side of the cell, we are able to impose an arbitrary pressure
difference Π(t) �= 0.

2.3. Wave propagation on rivulets
In the absence of forcing, the rivulet is in its base state, corresponding to a straight
downwards flowing filament of constant width: z = z0 = 0, w=w0 and u = u0 ex with
u0 = g/μ. Let us now consider a perturbation to this state, and see how it evolves.

We introduce a small non-dimensional number ε� 1 in the problem, so that we can
develop all the dynamic variables in successive powers of this small parameter, in the
fashion a = a0 + εa1 + ε2a2 . . . for a = z, w, u, v, . . . . The perturbation amplitude of
the midsurface position, for example, is then εz1, and the fact that ε� 1 implies that
this perturbation amplitude is small compared with the typical wavelength λ of the
perturbation.

Moreover, in the following we make the assumption of low damping, that is of small μ
and μcl of order ε2. This assumption allows us to focus on the undamped propagation and
interaction of waves. Since ε� 1, this means that we are considering phenomena with
typical frequencies ω that are very large compared with the damping frequencies μ and
μcl/w0. Note that despite the small damping assumption, we still consider the base flow
speed u0 to be of order unity.
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The linear (first order in ε) approximation of the main (2.1) and (2.2) reads

w0(∂t + u0∂x )v1 =Γ ∂xx z1, (2.3a)

w0(∂t + u0∂x )u1 =w0 Γ ∂xxxw1, (2.3b)

(∂t + u0∂x )w1 = −w0∂x u1. (2.3c)

Using the kinematic condition v1 = (∂t + u0∂x )z1 to eliminate v1, this system can be recast
in terms of two linear evolution operators Lz and Lw,

0 = (
(∂t + u0∂x )

2 − vc
2∂xx

)
z1 =:Lzz1, (2.4a)

0 = (
(∂t + u0∂x )

2 + vc
2w0

2∂xxxx
)
w1 =:Lww1, (2.4b)

where we introduced the capillary velocity vc = √
Γ/w0. This velocity can be interpreted

as the displacement speed of purely capillary transverse deformations along the rivulet at
rest. It corresponds to the phase speed of the sinuous waves in the reference frame of the
falling liquid.

The propagation operators Lz and Lw correspond to two distinct types of waves that can
exist on the surface of the rivulet. These waves are linearly independent of one another.
The z-waves correspond to transverse waves, i.e. deformations of the path followed by
the rivulet. The w-waves correspond to longitudinal waves, i.e. modulations of the rivulet
width. These waves are also referred to as sinuous and varicose modes in the literature.

Each type of wave supports two modes, corresponding to the dispersion relations

ω±
z = (u0 ± vc)kz, (2.5a)

ω±
w = u0kw ± vcw0kw

2, (2.5b)

which are plotted on figure 2.
The transverse waves propagate non-dispersively, while the dispersion relation of the

longitudinal waves display a quadratic term. For both waves, two branches coexist: one
fast branch for which the phase speed in the laboratory reference frame is faster than the
flowing speed u0; and one slow branch which displays phase speeds in the laboratory
reference frame inferior to u0 (and which can be negative). These branches correspond,
respectively, to positive (for fast waves) or negative (for slow waves) phase speed in the
reference frame advected with the flow speed u0.

3. Instability mechanism
In the absence of forcing, the rivulet flows straight down, vertically, and since the flow rate
is always under the spontaneous meandering threshold Q∗, one observes that this base
state is very robust. This is because both transverse and longitudinal waves are linearly
damped (as can be seen when looking at the dynamical equations presented on § 3.3
and onwards). Experimentally, if a perturbation of any kind is imposed on the rivulet,
its amplitude is observed to decrease exponentially within a short time scale (< 100 ms)
and over a short spatial distance (< 3 cm).

However, while both transverse and longitudinal waves are linearly attenuated, we
discovered recently (Le Lay & Daerr 2025b) that when a homogeneous, harmonic,
acoustic forcing is applied, the base state becomes unstable and the rivulet exhibits a
distinct pattern combining both types of waves. The birth of this pattern can be observed
on Supplementary movie SM2. The main features of this pattern are that while transverse
and longitudinal perturbations travel at different speed, they both share a common spatial

1028 A13-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

11
10

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.11104
https://doi.org/10.1017/jfm.2025.11104


G. Le Lay and A. Daerr

2.00
(a) (b)

1.75 ωz�

ωz
+

ωw�

ωw
+

ωz
± = u0 kz  ± vc kz ωw

± = u0 kw  ± vc w0 kw2

vc/u0 = 0.8

vc/u0 = 1.0

vc/u0 = 1.2

1.50

1.25

1.00

0.75

0.50

0.25

−0.25

0 0.25 0.50

kz w0

ω
 w

0
/
u 0

0.75 1.00

0

0 0.25 0.50

kw w0

0.75 1.00

Figure 2. Dispersion relations of transverse (a) and longitudinal waves (b), in the absence of damping.
The axis is made dimensionless through appropriate scaling. The horizontal axes correspond to the
dimensionless wavevector amplitude k w0, while vertical axes correspond to the dimensionless angular
frequency ω w0/u0. The grey lines correspond to pure advection ω= k u0.

wavelength. This should come as a surprise, as since the excitation is homogeneous, no
length scale is forced onto the system. The origin of the wavelength, which depends on
the excitation frequency, as can be seen on Supplementary movie SM1, must thus be
dynamical. If the forcing is turned off, both perturbations decay quickly, as can be seen
on Supplementary movie SM3, confirming that both types of waves are attenuated in the
absence of forcing.

The main purpose of this paper is to explain the features of this instability, the conditions
under which it can develop and how it saturates. Let us start by qualitatively describing the
phenomenon, by showing how parametric coupling between longitudinal and transverse
waves leads to amplification of perturbations, and by identifying the resonance condition
that selects the pattern.

3.1. A pattern-forming instability
Consider the rivulet at rest in the vertical base state. Let us now impose an additive forcing
which is homogeneous in space and harmonic in time. If the forcing exceeds a certain
threshold, which depends on its frequency, a pattern starts to appear.

The speakers are driven in an antisymmetric configuration, so when one pushes its
diaphragm out, the other pulls it in. This creates a pressure difference between both sides
of the rivulet, displacing the liquid in the transverse direction. The rivulet thus behaves as a
membrane, separating the cell into two airtight compartments. Note that since the speakers
are not of infinite size, the forcing is not perfectly homogeneous: it is maximal on the
midline joining the two speakers and slowly decreases away from it. All the measurements
presented here are made on a 10 cm zone around this midline, where we checked that the
forcing inhomogeneities never exceed 10 %.
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Figure 3. Spatiotemporal representation of the experimental position z(x, t) of the rivulet as a function of
time and space. Cell gap b = (0.58 ± 0.02)mm, flow rate Q = (25.6 ± 0.9)mm3 s−1, excitation frequency
ω0/(2π)= 40 Hz. (b) Position z of the rivulet (colour scale) as a function of time t and position x . Darker
regions delimited by plain lines correspond to the parts where the rivulet is the heaviest, while lighter regions
delimited by dashed lines correspond to parts where the rivulet is the thinnest (see figure 4). (c) Time-averaged
position (over 60 ms) of the rivulet as a function of space. Labelled ticks are spaced by λ= 2π/k = 6.74 mm.
(a) Spaced-averaged position (over 17 mm) of the rivulet as a function of time. Labelled ticks are spaced by
2π/ω0 = 25.0 ms.

The forcing of the rivulet by the pressure difference between its two sides is represented
mathematically by the rightmost term in (2.1). This forcing is additive, meaning it induces
a linear response from the rivulet. Thus, since the forcing oscillates harmonically in time
at angular frequency ω0, the rivulet adopts a movement that is homogeneous in space, and
harmonic in time at angular frequency ω0. This linear response is always visible on the
experimental signal. Below the instability threshold, it is the only measurable evolution of
z(x, t), but even when the instability develops, this response can still be seen by looking
at 〈z〉x (t), the space-averaged value of z (see figure 3a).

Above the instability threshold, the rivulet adopts a pattern composed of both transverse
and longitudinal perturbations. As can be seen on figure 3(c), in addition to the time-
dependent response to forcing the rivulet exhibits space-dependent transverse oscillations.
The spatiotemporal transverse signal z(x, t) is a combination of these two contributions.
The rivulet also shows longitudinal oscillations, which as can be seen on figure 4 are a
function of x − vwt , where vw =ω+

w/kw = u0 + vcw0kw is the phase speed of longitudi-
nal waves predicted by the dispersion relation (2.5b). The observation of this pattern poses
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Figure 4. Spatiotemporal representation of the experimental width w(x, t) of the rivulet as a function of
time and space. Cell gap b = (0.58 ± 0.02)mm, flow rate Q = (25.6 ± 0.9)mm3 s−1, excitation frequency
ω0/(2π)= 40 Hz. (a) Width w of the rivulet (colour scale) as a function of time t and position x . (b) Width
of the rivulet interpolated along the plain black line represented on (a). The plain and dashed lines correspond
to the width delimiting the darker and lighter regions on figure 3, respectively. The abscissa corresponds to a
counter-advected position x − vwt , with vw = 0 mm s−1 the phase speed of longitudinal waves. Labelled ticks
are spaced by

√
λ2 + (vwT0)2.

several questions, which motivate the present study. Let us highlight here some surprising
key features of the experimental pattern we report, that will be explained theoretically in
the following. The first and most obvious feature of the pattern is that, as can be seen for
example on figure 3, both z and w share the same spatial periodicity. While this indicates
that the two waves are probably coupled, the nature of such a coupling is not clear a
priori. Second, the phase between the transverse and longitudinal patterns is deterministic
(figure 3b), which calls for an explanation. Third, the saturation amplitude of the patterns
in z and w is unexplained, as is the ratio between these different perturbation – rephrased:
Why are the transverse variations of greater amplitude than the longitudinal changes?

3.2. Mathematical formulation
In order to understand the instability and the pattern it generates, we write a nonlinear
development of equations of (2.1) and (2.2), following a multiple scale approach (Nayfeh
2008; Bongarzone et al. 2022). We will be using a slow time scale T̃ = t/ε2, with ε� 1
the small parameter introduced in the previous section. We also consider the case of weak
forcing, that is to say we take the pressure difference imposed by the speakers Π(t) to be
of order ε2.

At order ε, the equations read

Lzz1 = 0, (3.1a)

Lww1 = 0, (3.1b)

i.e. at leading order z(x, t)= ε Z̃ei(ωz t−kz x) + c.c. and w(x, t)= εW̃ ei(ωw t−kwx) + c.c.,
where c.c. stands for complex conjugate, with (ωz, kz) satisfying the transverse waves
dispersion relation (2.5a) and (ωw, kw) satisfying the longitudinal waves dispersion
relation (2.5b).
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At second order in ε, the equations read

w0Lzz2 =Nz(z1, w1, u1)+Π(t), (3.2a)

Lww2 =Nw(z1, w1, u1), (3.2b)

where Nz(z1, w1, u1) and Nw(z1, w1, u1) are quadratic nonlinear functions, the
expression of which is given in Appendix A.2; and Π(t)= Π̃eiω0t + c.c. is the externally
imposed pressure oscillation, homogeneous in space and harmonic in time, of amplitude
Π̃ . The nonlinear terms Nz(z1, w1, u1) and Nw(z1, w1, u1) contain no contributions able
to resonate with z1 and w1. This can be seen by looking directly at the expressions or by
considering symmetry arguments. Equation (3.2) thus reduce to

−w0ω0
2z2 = Π̃eiω0t + c.c., (3.3a)

w2 = 0, (3.3b)

the forcing only adds an additive contribution to the transverse pattern,

z(x, t)= ε Z̃ei(ωz t−kz x) + ε2 F̃ei(ω0t−0x) + c.c. and w(x, t)= εW̃ ei(ωw t−kwx) + c.c.
(3.4)

The term proportional to ε2 F̃ on the expression of z(x, t) corresponds to the linear
response to the forcing. The expression of the operator Lz allows us to write an explicit
expression for F̃ , defined as F̃ := −Π̃/(w0 ω0

2).
At third order in ε, elimination of the resonant terms leads to the following amplitude

equations:

2∂T̃ Z̃ = −μ

(
1 + εz

μcl

w0μ
(1 + εz)

)
Z̃ − iεz

ω0
2

w0u0kw
F̃∗W̃

+ 7ik3u0|Z̃ |2 Z̃ + ik3u0

(
−εz

5
4

+ 4εw
kw0

)
|W̃ |2 Z̃ , (3.5a)

2∂T̃ W̃ = −μW̃ − iεwkwω0

(
ω0

kwvc
− εww0kz

)
F̃ Z̃

− 2iεww0kw
2vc|kz Z̃ |2W̃ + i

(
kw

u0

w02 − εw
3
2
w0vckw

4
)

|W̃ |2W̃ , (3.5b)

where A∗ denotes the complex conjugates of A and εz,w are each to be replaced by +1
or −1, depending on the chosen propagation dispersion (εw = ±1 for ω±

w , and similarly
for εz). The main steps allowing the derivation of (3.5) are shown in Appendix A.3. For
the equations presented in the made text we made the simplifying assumption vc ≈ u0, the
full expression of ∂T̃ Z̃ and ∂T̃ W̃ in the general case is presented in Appendix A.3. Let us
now try to get a physical understanding of these equations. The right-hand side comprises
three kinds of terms: dissipative linear damping, nonlinear cross-coupling and third-order
nonlinearities, in this order.

For longitudinal waves the linear damping is always the same, while for transverse
waves the damping depends on the branch considered. When εz = −1 (ω−

z branch) the
multiplicative coefficient for the linear term is −μ, but the ε= +1 (ω+

z branch) is subject
to a much more important attenuation, with a coefficient −μ(1 + 2μcl/(w0 μ)). Indeed,
since the rivulet is thin, the dissipation due to transverse menisci displacement dominates
the bulk dissipation: μcl �w0μ, meaning that the ω+

z branch is strongly damped. Let us
physically explain this dependence of dissipation with the phase velocity.
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In general, since the rivulet is thin, the dissipation due to the displacement of the
transverse menisci dominates the dissipation in the volume: μcl �w0μ, the main part
of the energy loss comes from the ‘friction’ of the menisci on the glass plates that delimit
the cell. A wave on the ω−

z branch moves at the velocity u0 − vc in the laboratory frame,
thus with respect to the plates. This velocity is very small (compared with u0 or vc, which
are of the same order of magnitude), so the menisci are almost motionless with respect
to the plates and therefore generate very little friction. On the contrary, if we consider
a wave on the ω+

z branch, the rivulet slides on the plates at the velocity u0 + vc in the
laboratory frame, and the menisci are displaced rapidly with respect to the plates, which
is energetically costly. The ω+

z branch is therefore strongly damped: this is consistent with
the fact that transverse waves ω+

z are never observed experimentally. For the following we
will thus only consider the case εz = −1. The fact that the damping then becomes exactly
the same for transverse and longitudinal waves is a consequence of the simplifying vc ≈ u0
assumption.

The most interesting parts of (3.5) are undoubtedly the cross-coupling terms, which
imply an interaction between transverse and longitudinal waves. The sign of each nonlinear
coupling term is critical for the amplification mechanism, and it can only be obtained
through a careful derivation of the third-order equations. As we will show rigorously
in § 4.2, the interaction of transverse and longitudinal waves is only constructive if the
product of both coupling terms is of positive sign, in the opposite case the interaction
only leads to increased damping for both waves. In order to observe an instability, we
must thus have (−iεz)(−iεw)= +1 (assuming ω0 � vcw0k2, which is always verified in
the accessible experimental range). Since εz = −1, this forces εw = +1 to be the branch
amplified by the instability.

Looking at figure 3, one can confirm that the prediction (εz, εw)= (−1,+1) is well
verified experimentally: we can see that ωw >ωz , with vz =ωz/kz ≈ 0.

Note that the form of the coupling term is a signature that the instability is indeed
parametric, as the forcing response F̃ acts as a multiplicative parameter coupling the
two waves together. The fact that the linear response to an additive forcing intervenes
multiplicatively in the amplitude equations participates in the instability originality. This
coupling between two waves mediated by a forcing is analogous to the cross-coupling
between progressive and regressive waves in the Faraday instability in an annulus (Douady
et al. 1989).

The rightmost terms of the (3.5) are nonlinear detuning terms. Indeed in the absence
of nonlinear damping, these terms are associated with a purely imaginary prefactor,
translating the fact that as the amplitudes of the waves grow, their frequencies shift
accordingly. These detuning terms are often responsible for the nonlinear saturation of
parametric instabilities, because they shift the oscillation frequency away from resonance.

To conclude this section, note that the general form of (3.5) could have been guessed
by using only symmetry arguments. If one assumes that the evolution equations for Z̃ and
W̃ contain only third-order terms proportional to Z̃ , W̃ , F̃ and their complex conjugates,
then necessarily such terms must be compatible with the invariances and symmetries of
the problem.

Let us consider the time translation invariance of the problem, i.e. the fact that
the equations should not change when the transformation t → t + t0 is applied. This
transformation corresponds, in terms of our variables, to the phase shift Z̃ , W̃ , F̃ →
Z̃eiφ, W̃ eiφ+iψ, F̃eiψ with φ =ωzt0 and ψ =ω0t0. The third-order evolution equations,
in order to be invariant under this transformation, must then have the following form:
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∂T̃ Z̃ = aμZ̃ + bF̃∗W̃ + cZ̃2 Z̃∗ + dW̃ W̃ ∗ Z̃ , (3.6a)

∂T̃ W̃ = a′μW̃ + b′ F̃ Z̃ + c′ Z̃ Z̃∗W̃ + d ′W̃ 2W̃ ∗, (3.6b)

which is indeed the same form as (3.5).
Finally, the space–time reversal symmetry x, t → −x,−t , imposes the phase (the real

or imaginary character) of the prefactors a, b, c, d, a′, b′, c′ and d ′, since it corresponds
to the transformation Z̃ , W̃ , F̃ → Z̃∗, W̃ ∗, F̃∗ and μ→ −μ.

3.3. Resonance condition
Since (3.5) result from the elimination of secular terms, one can see that the cross-coupling
terms can only be taken into account if a certain resonance condition is met. Indeed,
for the coupling term F̃ei(ω0t−0x) Z̃ei(ωz t−kz x) = F̃ Z̃ei((ωz+ω0))t−(kz+0)x) to interact with
the longitudinal wave W̃ ei(ωw t−kwx), both terms must oscillate at the same (spatial and
temporal) frequency. The resonance, or frequency-matching condition, translates to the
fact that the interaction between the waves have to be resonant for them to exchange energy
and potentially amplify one another.

This behaviour is analogous to a three-wave resonant interaction, where an algebraic
relationship must be satisfied between the waves for the triadic interaction to take
place (Simmons 1969; Martin, Simmons & Wunsch 1972; Phillips 1981; Hammack &
Henderson 1993). It is this mechanism which is responsible, for example, for
pattern generation due to nonlinear interaction between gravitocapillary surface waves
(Mcgoldrick 1965; Moisy et al. 2012; Haudin et al. 2016). Here the waves are a transverse
wave, a longitudinal wave and the F̃eiω0t + c.c. contribution to z(x, t) (linear response to
forcing), which can be thought of as a zero-wavenumber transverse wave.

The resonance condition thus mathematically reads

ωw −ωz = ±ω0, (3.7a)

kw − kz = ±0, (3.7b)

since both temporal and spatial frequencies must match for resonance to take place.
Equation (3.7a,b) impose a necessary condition to the existence of the cross-coupling
term, and thus of the instability. They have straightforward implications for the pattern
features. Equation (3.7b) provides a theoretical explanation for the fact that both transverse
and longitudinal waves share the same wavenumber, and thus the same spatial wavelength.
Equation (3.7a) predicts a deterministic relation between the different frequencies. The
quantity ωw −ωz can take two values, depending on the value of the product ε−ε+. The
result is plotted on figure 5. They show an excellent agreement with our prediction, that
the excited modes are the ω+

w, ω
−
z modes.

Note that the structure of these equations explain simply why it is possible to observe
the instability in a very wide range of excitation frequency. Indeed, the curve ω0 =ω+

w −
ω−

z as a function of k maps R to itself: for every excitation frequency ω0, there exists
a wavenumber k for which the resonance condition can be fulfilled. Experimentally, we
could not observe the instability using frequencies below 10 Hz, for in such condition the
wavelength becomes comparable to the size over which the forcing is homogeneous.

3.4. Physical interpretation of the instability mechanism
Let us now try to convey a qualitative understanding of the physical effects represented
by the nonlinear coupling terms of (3.5) responsible for the destabilization of the straight
rivulet.
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Figure 5. Relationship between k and ω0. Symbols correspond to experimental measurements of the
wavenumber k (which is the same for transverse and longitudinal waves). Experiments done with cell
gap b = 0.6 mm and flow rate Q = (26 ± 1)mm3 s−1. Lines correspond to |ω+

w −ω−
z | = kvc(1 + kw0), i.e.

εzεw = −1 (purple) and |ω−
w −ω−

z | = kvc|1 − kw0|, i.e. εzεw = +1 (ochre). The line curves are computed
without fitting, using the experimental values of the parameters. The theoretical prediction corresponds to the
modes ω+

w, ω
−
z being unstable (purple curve). Note that the experimental points often fall slightly to the right

of the curve, i.e. the wavevectors k are larger than expected: this is because the points were recorded at a finite
amplitude for which nonlinear detuning is measurable (see § 4.4).

One interesting feature of the present instability is that neither of the two types of waves
in the final pattern is unstable on its own in the absence of forcing, nor does the forcing
directly amplify any of the perturbation. While sinuous and varicose instabilities are often
present in fluid mechanics, for example when studying jets (Eggers & Villermaux 2008;
Mikhaylov & Wu 2020) or sheets (Villermaux & Clanet 2002), usually either one mode
becomes unstable on its own, or two or more modes become unstable, compete for energy
and the fastest growing mode wins. In the system we study here, the forcing only acts as a
mere intermediary, as its only role is to couple together two different type of waves which
would not interact in the absence of forcing. The two coupling terms in (3.5a) and (3.5b)
are mathematical representations of the two ways that longitudinal and transverse waves
can influence one another.

The F̃∗W̃ term in (3.5a) that governs the evolution of the path Z̃ translates the fact
that a rivulet with uneven width will see its path deformed when displaced transversally
under the action of the forcing, as illustrated on figure 6(a). Indeed, if a rivulet presenting
width modulations is moved transversally, then the thicker parts of the rivulet, having
more inertia, will be less mobile than the thinner parts of the rivulets, which carry a lesser
mass of liquid. Since different parts of the rivulet, having different mass, will displace
transversally along different lengths, this will lead to a deformation of the path followed
by the rivulet. Following this reasoning, it is straightforward that the spatial periodicity of
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=

& =

(a)
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Figure 6. Schematic illustration of the crossed-amplification mechanism. The length of the arrows represents
the intensity of the displacement locally imposed to the rivulet. (a) Deformation of the fluid path due to space-
varying mass repartition on the rivulet. (b) Change in the width profile due to the rivulet path being non-straight.
Note that as the forces are drawn, the sinuose and varicose deformation enhance each other. If the directions
of the arrows are reversed but the sinuosity stays the same (corresponding to a change of sign in force while
staying in the reference frame moving with the sinuosity, i.e. to transformation (3.8)), then the interaction only
stays constructive if the width modulation is moved half a wavelength downwards, i.e. (3.9) must be verified.
(See also Supplementary figure SF1.)

the path deformation will be the same as the width modulation periodicity. This allows for
a qualitative understanding of condition (3.7b) (the two waves share the same wavelength).

The F̃ Z̃ term in (3.5b) that governs the evolution of the width perturbation W̃ represent
the fact that a rivulet with a curved path will see its width profile evolve when displaced
under the action of the forcing, as illustrated on figure 6(b). Let us considering a rivulet
presenting a period curved path, being moved like a membrane under the action of
differential pressure between both sides of the rivulet. At places where the curvature is
of the same sign as the pressure displacement force, the fluid will accumulate, being
drawn in from the sides, and the rivulet will get thicker. On the contrary, places where
the curvature is of opposite sign as the pressure force will be depleted in fluid and will
be getting thinner, for the same reason the membrane of an expanding rubber balloon
thins. As before, following this reasoning we also understand that the spatial periodicity
of the width modulation will reflect that of the path curvature, validating once more
condition (3.7b).

Finally, let us considers the same mechanisms that were just exposed in the two
preceding paragraphs, but half a forcing period later, as is shown on the bottom part
of Supplementary figure SF1. This corresponds to changing the sign of the pressure
force/transverse displacement: formally, this is associated with the

t → t + π/ω0 Π̃ → −Π̃ F̃ → −F̃ Z̃ → Z̃eiπωz/ω0 W̃ → W̃ eiπωw/ω0 (3.8)

transformation. The varicose amplification mechanism will lead to a width modulation of
opposite sign compared with the previous situation (since the pressure drop changed sign).
In order for the total mechanism to work this must be on par with the action of the sinuosity
amplification mechanism, which requires the width modulation pattern to be displaced by
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half a wavelength compared with the sinuous pattern (see Supplementary figure SF1 for
an illustration): formally, this corresponds to the

W̃ → −W̃ eiπωz/ω0 = W̃ eiπ(ωz±ω0)/ω0 (3.9)

transformation. Hence, for the mechanism to work at all times, the system must
verify ωw =ωz ±ω0: this is precisely the resonance condition (3.7a). Both resonance
conditions can thus be understood qualitatively by looking at the physical interpretation
of the amplification mechanism: two different effects combine to form the complete
amplification cycle.

One obvious follow-up question following this demonstration would be: What is the
relative importance of these two effects? This question, and others, finds its answer in the
next section.

4. Pattern formation and structure

4.1. Dimensionless formulation
In order to make the mathematical computations more concise, we use changes of variables
to make the system of equations dimensionless. The time scale choice is straightforward
and corresponds to 2/μ, the typical wave damping time in the absence of forcing. As
length scale we choose the quantity � :=μ

√
w0vc/ω03, the interpretation of which will

become clear in the next subsection. Thus, we define

T :=μT̃ /2 F := F̃/� Z := Z̃/� W := W̃/� (4.1)

which allows us to write (3.5) in a compact dimensionless form

∂T Z = −Z + iφF∗W + i
(
αZ Z |Z |2 + αZ W |W |2)Z , (4.2a)

∂T W = −W − i
1
φ

F Z + i
(
αW Z |Z |2 + αW W |W |2)W, (4.2b)

where φ := (1/u0k)(
√
ω0vc/w0); and the detuning prefactors αX X are defined as

follows:

αZ Z := 7Ξ (kw0)
3, αZ W := 4Ξ (kw0)

2
(

1 + 5
16
(kw0)

)
,

αW Z := 2Ξ
vc

u0
(kw0)

4, αW W :=Ξ kw0, (4.3)

where Ξ :=μu0vc/ω0
3w0

2 = u0�
2/μw0

3 characterizes the detuning strength. The
dimensionless coefficient φ translates the relative efficacy of the two effects that
participate in the coamplification: amplification of sinuosity due to uneven mass
repartition, and amplification of varicosity due to path curvature (see § 3.4 for further
details on the physical interpretation of these terms). It thus quantifies the asymmetry
of the instability mechanism: thick rivulets moved at low frequency have φ� 1 and are
unstable because of the path deformation due to width heterogeneity, while thin rivulets
moved at high frequency have φ� 1 and are mostly unstable because of curvature induced
fluid concentration along the rivulet. All the experiments presented in this study display
φ > 1, meaning that the main amplification stage in the mechanism is the differential
movement of the path due to the spatially inhomogeneous inertia of the rivulet.
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4.2. Instability threshold
We will now turn to the study of the pattern near the instability threshold: in all the
following, we will assume |Z | ∼ ε′ and |W | ∼ ε′, with ε′ � 1. We define the vector

|U 〉 :=
(

Z
W

)
which condenses all the information about the state our system is in, using a

concise notation. We borrow the bra–ket notation to our quantum mechanics colleagues as
it is particularly useful when dealing with linear algebra problems. Since ‖U‖ � 1, (4.2a)
and (4.2b) can be simplified to

∂T |U 〉 = L|U 〉, with L =
( −1 iφF∗

−i 1
φ

F −1

)
(4.4)

being a linear evolution operator.
The trace of the matrix L is tr(L)= −2< 0. Since it is the sum of the eigenvalues

L, we can conclude that there always exists at least one mode that is linearly damped.
The determinant reads �(L)= 1 − |F |2, it is the product of the eigenvalues of L. The
instability develops if and only if one mode is linearly amplified, i.e. if one of the
eigenvalues of L has a positive real part. This is only the case if �(L) is negative, which
happens when the forcing exceeds a critical threshold equal to one in dimensionless units.
The instability thus develops if and only if the condition

|F |2 > |Fc|2 := 1 ⇔ |F̃ |> |F̃ |c :=μ

√
w0vc

ω03 = � (4.5)

is fulfilled. The interpretation of � is now clear: it corresponds to the minimum transverse
displacement needed to develop the instability. This provides us with a scaling law
for the threshold forcing amplitude: |F̃c| ∝ (ω0)

−3/2. This scaling law is shown on
figure 7 to be verified by experimentally. Interestingly, the prefactor value obtained by
computing the best fit (33.7 mm × Hz−3/2) is the same order of magnitude but does not
correspond exactly to the theoretical prefactor computed using the analytical formula
(4.5) ((16.4 ± 3, 3)mm × Hz−3/2). Several factors may explain this discrepancy. On
the experimental side, the precise measurement of |F̃c| itself is difficult, especially at
high frequencies. On the theoretical side, this difference may be explained, partially or
totally, by several factors: the ε� 1 approximation, which is not strictly respected in
the developed pattern, the weakly nonlinear method we use, if the nonlinearity is more
important than anticipated or the u0 ≈ vc approximation, which is not exact. The fact that
the best fit value is almost exactly a factor two off the theoretical result could also indicate
an algebraic error in our computations, even though we could not catch it after rederiving
our results several times.

4.3. Pattern structure
After identifying the forcing threshold over which the instability develops, we now turn to
the study of the pattern itself. We ought to understand the structure of the most unstable
mode that grows, and compare it with the pattern observed in the experiments.

To do so, we place ourselves in the vicinity of the instability threshold, assuming F =
Fc + ε′2δF with |Fc| = 1 and ε′ the small parameter introduced in the previous subsection.
This allows us to decompose the evolution matrix into

L = L0 + ε′2δL =
( −1 iφFc

∗
−i 1

φ
Fc −1

)
+ ε′2i

(
0 φδF∗

− 1
φ
δF 0

)
. (4.6)
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Figure 7. Threshold transverse displacement as a function of excitation frequency. Experiments done with
cell gap b = 0.6 mm and flow rate Q = (26 ± 1)mm3 s−1. The black dots correspond to experimental
measurements. The dashed grey line represents the resolution limit of our measurement method; it corresponds
to one fifth of the pixel spacing. The full green line is a one-parameter fit corresponding to a power law of
exponent −3/2, the multiplicative factor being free. Inset: same data on a log–log scale.

The matrix L0 is diagonalizable and has two eigenvalues, λ0 = 0 and λ− = −2, associated
with the two eigenvectors

|V0〉 = 1√
1 + |Fc|2/φ2

(
1

−i Fc/φ

)
and |V−〉 = 1√

1 + φ2|Fc|2
(−iφFc

∗
1

)
(4.7)

which are of norm 1, using the standard product 〈P|Q〉 = P† Q where P† represents the
adjoint, or transconjugate, of P .

The eigenvector |V0〉 corresponds to a neutral mode of the operator L0. It is the mode
that will be amplified and that saturates when nearby the threshold instability. Thus, we
can write, at first order in ε′, |U 〉 = ε′ A|V0〉 with A being the dimensionless amplitude of
the pattern.

Looking at |V0〉, it is thus possible to obtain information about the structure of this
neutral mode. In particular, if the pattern is given by |V0〉, then we can write the following
relationship between Z and W :

W = −i
Fc

φ
Z (4.8)

where here the φ factor translates the fact that since one mechanism is more efficient than
the other, then one of the waves will have greater amplitude. Indeed, in the experimental
pattern (figures 3 and 4) we observe that the transverse waves have a greater amplitude
than the longitudinal waves, which is coherent with the fact that the φ factor is always
greater than one in the experiments we show in this article. Equation (4.8) contains all
the information about the structure of the instability pattern. Taking the argument and the
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(b)

Figure 8. Structure of the combined mode. The dots always correspond to experimental measurement. Cell
gap b = (0.58 ± 0.02)mm, flow rate Q = (25.6 ± 0.9)mm3 s−1, excitation frequency ω0/(2π)= 40 Hz. (a)
Relative phase of the waves as a function of the transverse movement amplitude. There are measurement points
below the threshold where we can still observe a weak pattern (see discussion on § 4.4). (b) Link between the
relative amplitude of transverse and longitudinal waves as a function of the transverse movement amplitude. The
points below the threshold are associated with high experimental uncertainty, since the associated amplitudes
are very small (see figure 9).

norm, we can write

arg W = arg Z + arg F − π

2
, (4.9a)

|W | = |Z |/φ = k|Z | u0
√
w0/(ω0 vc). (4.9b)

Equation (4.9a) predicts the relative phase between the longitudinal wave, the transverse
wave and the response to forcing. The arguments of Z , F and W correspond to three
degrees of freedom of the system. Since any pair of these can be arbitrarily changed
by redefining the origins of space (by the transformation x → x + x0) and time (by the
transformation t → t + t0), this relation completely constrains the system. As can be seen
on figure 8(a), the relation (4.9a) is verified experimentally with excellent precision. Note
that signature of this phase relation can be seen when observing directly the pattern. For
example, on figure 3, extrema ofw (centre of dark or light shaded zones in the central plot,
corresponding to arg(W )≡ 0[π]) are never found in places where z is extremal (i.e. where
arg(Z)+ arg(F)≡ 0[π]). On the same figure, by looking carefully at the intersections
between extrema of w, extrema and zeros of Z (figure 3a), and extrema and zeros of F
(figure 3c), one can recover (4.9a).

Complementary to (4.9a), relationship (4.9b) predicts the relative amplitude between
the two waves forming the pattern. The norms of Z , F and W correspond to three degrees
of freedom of the system. The amplitude of F is directly imposed by the forcing, and
the pattern amplitude |A| depends on nonlinear saturation effects, hence (4.9b) closes
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the system and determines completely the pattern. As one can see on figure 8(b), this
relationship is very well recovered by the experiments.

In order to completely characterize the instability, we still need to understand the
saturation of the pattern amplitude A, which is the object of the next subsection.

4.4. Nonlinear detuning and saturation
We now turn to finer effects due to nonlinear terms: frequency detuning and amplitude
saturation. To do so, we allow the amplitude A to vary with a slow dimensionless time
scale τ = T/ε′2, so that (4.2a) and (4.2b) can be written, up to third order in ε′, in the
form

∂τ |U 〉 = (L0 + ε′2δL)|U 〉 + i

(
αZ 0
0 αW

)
ε′2|A|2|U 〉 (4.10)

where we defined αz so that

ε′2|A|2αZ = αZ Z |Z |2 + αZ W |W |2 = ε′2|A|2αZ Z + αZ W |Fc|2/φ2

1 + |Fc|2/φ2
(4.11)

and similarly so for αW . We also have to expand |U 〉 in powers of ε′: |U 〉 = ε′|U1〉 +
ε′2|U2〉 + ε′3|U3〉 + . . . (4.10) at order one which yields the familiar result |U1〉 =
A(τ )|V0〉. By going to higher order, we are now searching to characterize the evolution of
A with τ . At order two the equation leads to |U2〉 = |0〉, while the third-order development
yields

∂τ A|V0〉 = L0|U3〉 + AδL|V0〉 + i |A|2 A

(
αZ 0
0 αW

)
|V0〉, (4.12)

which can be rewritten in the form

|N 〉 := L0|U3〉 = ∂τ A|V0〉 − i A

(
0 φδF∗

− 1
φ
δF 0

)
|V0〉 − i |A|2 A

(
αZ 0
0 αW

)
|V0〉 .

(4.13)

Using the Fredholm alternative, we find that |N 〉 must be orthogonal to the kernel
of L0

†. This can be justified using the simple following reasoning: a weak writing of
the equality L0|U3〉 = |N 〉 is that any vector |P〉 must verify 〈P|N 〉 = 〈P|L0|U3〉 =
〈U3|L0

†|P〉. In particular, if |P〉 ∈ ker(L0
†), that is to say if L0

†|P〉 = 0, then 〈P|N 〉 = 0,
recovering that |P〉 is orthogonal to |N 〉.

The kernel of L0
† is the span of the vector |W0〉, the eigenvector of L0

† of norm unity
associated with the zero-eigenvalue

|W0〉 := 1√
1 + φ2 Fc

2

(
1

−iφFc

)
(4.14)

which resembles closely |V0〉 since L is close to a Hermitian. The condition 〈W0|N 〉 = 0
yields the following amplitude equation:(

1 + |Fc|2
)
∂τ A = A(Fc

∗δF + FcδF∗)+ i |A|2 A
(
αZ + αW |Fc|2

)
. (4.15)

This equation presents an amplification term as well as a nonlinear detuning, but no
saturation of amplitude. Contrary to other parametric systems such as the parametric
pendulum described by the Mathieu equation, detuning here does not force a departure
from resonance. This is because although nonlinear detuning shifts the frequencies away
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from the F = Fc equilibrium values, the system adapts by modifying the wavelength of
the pattern in order to preserve the resonance conditions (3.7b) and (3.7a).

In order for the amplitude equation to have a bounded solution, it is necessary to add
higher-order terms into (4.15). We can do so without needing to compute the prefactor
explicitly, by considering expressions that respect the symmetries of the problem. In
particular, the symmetry x → x + x0 ⇒ A → Aeiϕ forces the supplementary term to be
of the form An A∗m with n = m + 1. Adding in (4.15) the smallest-order term that respects
this symmetry of the problem leads to writing the ansatz

(1 + |Fc|2)∂τ A = A(Fc
∗δF + FcδF∗)+ i |A|2 A(αZ + αW |Fc|2)− σ |A|4 A (4.16)

where σ is a complex number, with positive real part so that the last term is responsible for
the saturation. We now write A(τ ) in the polar form R(τ )eiΩτ with R > 0. The evolution
equations for R and Ω are then

∂τ R = (F − Fc)R − Re(σ )
2

R5, (4.17a)

Ω = αZ + αW

2
R2 − Im(σ )

2
R4 ≈ 1

2
(αZ + αW )R

2 for R � 1, (4.17b)

where without loss of generality we redefined the origin of times in order to have
arg F = arg δF = arg Fc = 0. Equation (4.17a) predicts that the amplitude of the unstable
pattern |A| = R grows when F > Fc, until it reaches a saturation value that is proportional
to 4

√
F − Fc: this is experimentally confirmed on figure 9(b). Equation (4.17b) predicts

that the frequencies of the waves grow by a quantity μΩ/2. In order for ωz and ωw to
stay close from their respective dispersion relations, while still verifying the resonance
condition, the pattern wavelength must also be modified. In the regime k � 1/w0, one
can write ωw ≈ u0k. Hence, the wavelength is modified by a quantity K ≈Ω/vc. This
predicts a displacement k − k0 ∝ 2

√
F − Fc which, as can be seen in figure 9(a), describes

the experiments well.
The imperfect match between our model and experimental data can be at least partially

explained by the fact that the excitation takes place in a finite zone. Near the threshold, the
length over which the instability develops diverges. Since our system is finite, we thus do
not see the fully developed instability in the form that our model rigorously describes. The
match becomes better as the forcing goes further away from the threshold.

4.5. Rivulet breakup
As can be seen on figure 9, the instability stops existing above a certain forcing. This
is because of rivulet breakup: above a critical movement amplitude, the rivulet breaks
at one point into two disconnected top and bottom parts. This process is shown in the
Supplementary movie SM4. The bottom part of the rivulet then falls down rapidly at u0,
while the fluid of the top part retracts until forming a large droplet, which then falls down
vertically. Between the two parts, air can communicate between the right-and left-hand
halves of the cell. This means that the acoustic forcing becomes extremely inefficient,
since the rivulet no longer separates both halves in an airtight manner: the membrane is
breached. When the top part of the rivulet has fallen down low enough, the membrane-like
property of the rivulet is restored and the forcing is effective again: the instability grows
and breaks, repeating the process periodically.

The reason the rivulet breaks is that the two side menisci bordering the liquid filament
enter into contact with each other. This happens when the local width of the rivulet reaches
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Figure 9. Nonlinear detuning and saturation. The dots always correspond to experimental measurement.
Cell gap b = (0.58 ± 0.02)mm, flow rate Q = (25.6 ± 0.9)mm3 s−1, excitation frequency ω0/(2π)= 40 Hz.
(a) Spatial detuning as a function of forcing. The linear prediction is coherent with the zero-amplitude
instability wavelength. The solid line corresponds to the function k → k0 + K

√
F − Fc where the value

of k0 and K are the ones that best fit the data. (b) Amplitude evolution of the instability as a function
of the forcing response amplitude. The filled dots correspond to experimental points. Under the threshold
(F̃c ≈ 0.255 mm), the values of both Z̃ and W̃ are very close to zero. The filled lines correspond to the function
Z̃ , W̃ → Z0

4
√

F − Fc, Z0/φ
4
√

F − Fc where the value of Z0 is the one that best fits the data.

0, i.e. in our model when 2W̃ =w0. Indeed, this is clearly visible in figure 9: the breakup
(indicated by a black dotted line) happens when 2W̃ ≈w0, and we never observe width
variations of amplitude significantly greater than the rest width.

On figure 10 we show the breakup forcing as a function of the excitation frequency.
The points seem to align along a relation of the type F̃break ∝ 1/ω0, although the physical
origin of this scaling law is unclear.

5. Conclusion
To end this article, we first highlight how several key characteristics of the system we
study can be retrieved concisely by representing the experimental signals in the frequency
space. We then present a summary of our study as well as promising directions for future
research.

5.1. Representation in the Fourier space
The evolution of the rivulet geometry due to the instability is at first sight quite complex.
Indeed, the pattern generated is the sum of three contributions of different nature
(transverse or longitudinal), and of different spatial and temporal characteristics. This
can be seen by looking at figures 3 and 4 which are rather busy and need to time to be
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Figure 10. Forcing at breakup for varying excitation frequencies. Experiments done with cell gap b = 0.6 mm
and flow rate Q = (26 ± 1)mm3 s−1. The curve was obtained by measuring the linear response to forcing F̃ at
the maximum forcing amplitude, just before breakup. It is presented in log–log scale, with a −1 power law as
guide for the eyes.
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Figure 11. Experimental rivulet path z and width w, represented in the Fourier space. Cell gap b =
(0.58 ± 0.02)mm, flow rate Q = (25.6 ± 0.9)mm3 s−1, excitation frequency ω0/(2π)= 40 Hz. The filled
lines represent the dispersion relations of transverse (red) and longitudinal (blue) waves. Both graphs were
obtained using zero-padding of the experimental signal. (a) Power spectrum of ẑ(k, ω) (red signal) and ŵ(k, ω)
(blue signal) For both signals, the colour intensity corresponds to scale going from a reference value of 0 dB
(corresponding to the most intense value of this signal) to −20 dB. (b) Phase spectrum of ẑ(k, ω) and ŵ(k, ω).
Colour hue corresponds to the phase of the signal, while colour intensity represents the signal strength. As for
(a), the colour scale fades to white under 20 dB of the reference signal.

properly understood. One way to disentangle all the different contributions of the pattern,
is to represent the experimental data in the frequency space instead of the real space. We
present on figures 11 and 12 such a representation, where the Fourier transform of the
position and width of the rivulet are shown as a function of time and space frequencies.
Since each signal is approximately periodic, it is represented in the Fourier space by a pair
of localized dots that are symmetric with respect to the (ω, k)= (0, 0) point. This allows
for a concise representation of the data: each wave constituting the pattern correspond to
a dot (or pair of dots for functions only of time) on these figures.
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Figure 12. Experimental signals of the rivulet path z and width w, represented in the Fourier space. Cell
gap b = (0.58 ± 0.02)mm, flow rate Q = (25.6 ± 0.9)mm3 s−1, excitation frequency ω0/(2π)= 40 Hz (same
conditions as figure 11). For both signals, the colour intensity corresponds to scale going from a reference
value of 0 dB (corresponding to the most intense value of this signal) to −80 dB. The filled lines represent the
dispersion relations of transverse (red) and longitudinal (blue) waves. Both graphs were obtained using zero-
padding of the experimental signal, and Chebychev windowing to mitigate spectral leakage. (a) Power spectrum
of ẑ(k, ω). The blue dotted lines circle the spots where the power spectrum of ŵ(k, ω) is concentrated; see (b).
(b) Power spectrum of ŵ(k, ω). The red dotted lines circle the spots where the power spectrum of ẑ(k, ω) is
concentrated; see (b).

On figure 11(a) one can see that the signals correspond to the three different waves
forming the instability. The two red dots aligned on the k = 0 vertical line represent the two
frequency components of the linear response of the path to the forcing F̃eiω0t + F̃∗e−iω0t .
The red dot at k �= 0 corresponds to the transverse wave deforming the path, which is
placed along the ω−

z (k) dispersion relation, it corresponds to the Z̃ei(ω−
z t−kz x) + c.c.

signal. The blue dot corresponds to the longitudinal wave modulating the width signal,
it is placed along the ω+

w(k) dispersion relation, it corresponds to the W̃ ei(ω+
w t−kwx) + c.c.

signal. On figure 11(b), one can see the same dots as on the left-hand plot, with the same
colour intensity but with different colours. On this plot, the colours now represent the
phase of the signals, they correspond to the argument of F̃ (dots on k = 0), of Z̃ (dot
on the transverse waves dispersion relation), and of W̃ (dot on the longitudinal waves
dispersion relation).

Just by looking at figure 11, one can directly verify the fundamental properties of the
instability. The pattern is formed of three contributions: a spatially homogeneous (k = 0)
response to the forcing, a transverse wave and a longitudinal wave. Both propagative waves
are aligned on the same vertical line, which correspond to the (3.7b) condition for resonant
interaction, and their vertical distance corresponds to the forcing frequency ω0/(2π)=
40 Hz: this is nothing more than condition (3.7a). With this representation in the dual
space, the resonance condition hence takes a simple, visual meaning.

Using the Fourier representation, we are able to plot both the amplitudes and phase of
the relevant signals. By computing the energetic content of the different peaks showed
on figure 11(a), we are able to measure the amplitudes |F̃ |, |Z̃ | and |W̃ |. The results of
these measurements are shown, for varying forcing amplitude, in figures 8(b) and 9(b).
But the Fourier representation also gives us access to the absolute phase of each signal.
This is what is shown in figure 11(b): the coloured dots correspond to the same signals
as on the left-hand plot, but the colours now represent the phase of the signal. We are
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thus able to visually check that the condition (4.9a) on the pattern structure is verified: on
figure 11 we see that arg(F̃)≈ −π/2, arg(Z̃)≈ 0 and thus arg(W̃ )= −π/2 + 0 − π/2 =
−π . Both the amplitude and phase of the Fourier spectra can thus be quantitatively linked
with mathematical properties of the pattern derived from our model.

On figure 12 we plotted the power spectra of the same signals as in figure 11,
while lowering the fade-to-white threshold. This allows us to see weaker signals which
correspond to secondary modes which are linearly damped. These modes are excited by
nonlinear interactions between transverse displacement z (represented by red arrows), and
longitudinal modulations w (blue arrows). Due to the z → −z mirror symmetry of the
system, the evolution equation for w can display autocoupled terms proportional to z2 and
w2 but never cross-coupling terms zw. For the same reason, the evolution equation of z
can only display cross-coupled terms of the formwz. This symmetry condition thus selects
the nonlinear interactions between modes, and completely explains the spectra observed
on figure 12, as indicated by the coloured arrows which represent the contributions
responsible for the signals we see. Note that the absence of signal in z at coordinates
(ω= ±2ω0, k = 0) on figure 12(a) shows that the excitation is sinusoidal in time, with no
higher harmonics to be seen.

Using the Fourier representation thus allows one to both make accurate measurements,
and grasp visually several key characteristics of the system and their consequences, such
as the resonance condition, the pattern structure or the symmetry underlining the possible
interactions between different waves.

5.2. Summary, limits and perspectives
We have studied the dynamics of liquid rivulets in a Hele-Shaw cell subject to
additive homogeneous acoustic forcing. We established that two types of perturbations
can propagate on the rivulet: deformations of the path and modulations of the width
correspond to transverse and longitudinal waves, respectfully. Each type of wave can
evolve at two different phase velocities, corresponding to distinct propagation modes.
These waves are linearly independent, and exponentially attenuated in the absence
of forcing. When imposing a homogeneous additive forcing to the rivulet, its linear
response consists in a homogeneous transverse movement at the same frequency. This
movement acts as a coupling between transverse and longitudinal waves, which can
grow by amplifying each other if an algebraic relationship between the characteristics
of the waves and the forcing is verified. Above a certain threshold, this cooperative
interaction between the waves overwhelms the damping and a pattern-forming instability
develops. We are able to understand this threshold and quantitatively retrieve its frequency-
dependence. Our model allows us to develop a fine understanding of the structure of
this pattern, in particular of the amplitude ratio and relative phase between longitudinal
and transverse waves. Nonlinear developments explain the spatial detuning observed in
the measurements, and adding an heuristic term compatible with the symmetries of the
system allows us to explain the saturation of the pattern amplitude. We present data and
a quantitative argument to explain the rivulet breakup at high forcing amplitude. Last, we
showed how we can recover almost all the characteristics of the pattern by representing
our data in the Fourier space, which helps visualizing in a simple and concise manner how
the experimental system respects the mathematical constraints that our model predicts.

There are several ways one could improve upon the results we present in this study.
The main drawback of the experimental system we use is the finite size of the acoustic
excitation. Being able to move the rivulet homogeneously over a larger spatial extent would
improve the measurement precision on the amplitudes |Z̃ |, |F̃ | and |W̃ | as well as on the
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wavenumbers kz and kw. It would also presumably extend the observation window for this
instability to lower frequencies. This is feasible by using several loudspeakers, in phase
with each other, on each side of the cell. The membranes of the loudspeakers we use also
have a limited range of movement over which the speaker response is linear, limiting the
range of excitation amplitude we can generate. Using pressurized air nozzles would allow
for a greater range of pressures to be explored, allowing for example the instability to
develop at lower excitation frequencies. On the theoretical side, the discrepancy of a factor
2.05 ± 0.10 between the measured and predicted prefactor for the instability threshold
power law presented on § 4.2 might be solved by a careful rederivation of our result, maybe
using a different method.

Let us finish by presenting three possible directions for future research that we think
are both attainable, in the sense that one would only need to make small modifications to
the set-up in order to observe them, and, according to our experience with this system,
possibly fruitful.

First, one might remark by looking at figures 11 and 12 that the signal for Z̃ seems to
be on the ω= 0 horizontal line. This could indicate a frequency-locking phenomenon: for
a certain range of parameters, the system strays away from the linear dispersion relations
in order to verify (ωz, ωw)= (0, ω0)). This is evidenced by the fact that as shown on the
inset of figure 3 of Le Lay & Daerr (2025b), the time frequency of longitudinal waves ωz
seems to be zero under a certain threshold. The physical origin of this frequency-locking
phenomenon, which would break the Galilean invariance of the amplification mechanism
presented on § 3.4, is unknown.

Second, there are points in the parameter space that are not considered in this study but
seem particularly worthwhile exploring, possibly leading to new behaviours to explain.
At high forcing amplitude, one might expect secondary instabilities to take place, maybe
inducing a drift of the pattern. For example, the (ω= 2ωw, k = 2 kw) mode is naturally
forced by the system, and it lies (approximately) on the ωw(kw) dispersion relation: it
can be resonantly forced and leads to a secondary instability. More generally, our system
sustains a deep analogy with the Faraday instability, which is now well understood, and
thus one can hope to apply the rich phenomenology of Faraday waves to fluid rivulets.
Using analytical, numerical and experimental techniques that have proven useful for the
study of Faraday waves could be a powerful way to explore and understand the dynamics
of the rivulet. Note that in order to explore much higher forcing amplitude, one will need
to make the rivulet more resistant to breakup. This can be done either (i) by using a
thicker rivulet without augmenting the flow rate, which can be done by diminishing the
cell spacing b and/or increasing the fluid viscosity, or (ii) by avoiding the rupture when
w reaches zero – i.e. in the limit where the rivulet is a film linking Plateau borders on
the walls (Drenckhan et al. 2007) – to explore ‘negative’ width w solutions, which can be
done by replacing the oil by a water–surfactant mix.

Last, using an improved set-up, it could be very interesting to use an acoustic
forcing with different spatiotemporal characteristics than the one used in this study
(monochromatic excitation at (ω= ±ω0, k = 0)). By modulating the forcing both in time
and space, for example by using a forcing with two or more frequency components,
one could excite several waves simultaneously and observe their interactions. By using a
forcing with a continuous frequency spectrum, one would be able to observe a continuum
of waves that interact nonlinearly, with possible energy exchange and cascading between
scales. The result could be accurately described by the quasi-one-dimensional wave
turbulence theory, which has already been observed experimentally for gravity–capillary
waves (Ricard & Falcon 2021).
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Appendix A. Nonlinear development of the dynamical equations
In this section, we develop the dynamical equations of the system up to third order in ε.

We define θ as the angle the rivulet makes with the vertical, and geometrically we have,
up to third order in ε,

sin θ = ∂x z√
1 + (∂x z)2

= ε∂x z1 + ε2∂x z2 + ε3
(
∂x z3 − 1

2
(∂x z1)

3
)

+ o(ε4),

and cos θ = 1√
1 + (∂x z)2

= 1−ε2 1
2
(∂x z1)

2 − ε3∂x z1∂x z2 + o(ε4) . (A1)

Our strategy to obtain the nonlinear equations is the following: it seems intuitive at first
to write the nonlinear equations for the behaviour of the rivulet in curvilinear coordinates,
projecting all the vectors unto a local Frenet–Serret basis. This seems to allow the natural
decoupling between streamwise forces (such as the bulk viscosity) and normal forces (such
as pressure variations between the sides of the rivulet). However, since the rivulet, and thus
the vector basis, moves with both space and time, any definition of a curvilinear parameter
is ambiguous, and the writing of the dynamical equations in a frame of reference moving
both in space and time quickly becomes extremely tedious. A simpler alternative is to
introduce the streamwise and normal components of the speed: us = u cos θ + v sin θ and
un = −u sin θ + v cos θ . We then write the equations using these variables, but projecting
them onto the familiar, static basis (x̂, ẑ),

w(∂t + us∂s)v = −wμv+wΓ ∂s(κw) sin θ + (Γ κz −μclun) cos θ, (A2)

w(∂t + us∂s)u =wg −wμu +wΓ ∂s(κw) cos θ + (Γ κz −μclun)(− sin θ), (A3)

(∂t + us∂s)w= −w∂sus, (A4)

with ∂s = cos θ∂x . The equations thus take a simple form, but there is still much work to
be done in order to obtain the approximate evolution equations for our chosen variables, z
and w.

In order to abbreviate the forthcoming equations, we will use the following notation for
the time derivative in the advected frame of reference: ∂a = ∂t + u0∂x .
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A.1 Preliminary computations

A.1.1 Normal velocity un
The kinematic advection condition imposes

u · ez = v= ∂t z + us∂s z. (A5)

We use v = us sin θ + un cos θ , sin θ = (∂x z/
√

1 + (∂x z)2)= zx cos θ and ∂s• =
cos θ∂x•:

us sin θ + un cos θ = ∂t z + us cos θ∂x z,
us∂x z cos θ + un cos θ = ∂t z + us cos θ∂x z. (A6)

Hence

un cos θ = ∂t z, (A7)

thus un1 = ∂t z1, un2 = ∂t z2 and un3 = ∂t z3 + ∂T̃ z1+(1/2)(∂x z1)
2∂t z1 (anticipating that

∂x z2 = 0).

A.1.2 Streamwise velocity us
By definition

us = u cos θ + v sin θ, (A8)

us0 = u0, (A9)

us1 = u1, (A10)

us2 = u2−u0
1
2
(∂x z1)

2 + v1∂x z1

= u2 + 1
2

u0(∂x z1)
2 + ∂t z1∂x z1, (A11)

us3 = u3−u1
1
2
(∂x z1)

2 − u0∂x z1∂x z2 + v1∂x z2 + v2∂x z1

= u3 + u1
1
2
(∂x z1)

2 + u0∂x z1∂x z2 + ∂t z1∂x z2 + ∂t z2∂x z1. (A12)

A.1.3 Link between v and z
By definition

v= un cos θ + us sin θ, (A13)

i.e. v1 = un1 + us0∂x z1 = (∂t + u0∂x )z1, (A14)

v2 = un2 + us0∂x z2+us1∂x z1 = (∂t + u0∂x )z2+u1∂x z1, (A15)

v3 = un3−1
2
(∂x z1)

2un1 + us0∂x z3+us1∂x z2 + us2∂x z1 − 1
6

us0(∂x z1)
3

= ∂T̃ z1 + (∂t + u0∂x )z3+u1∂x z2 + u2∂x z1 + ∂t z1(∂x z1)
2 + 1

3
u0(∂x z1)

3. (A16)
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A.1.4 Curvatures
The effective curvatures of the path κz and width profile κw correspond, up to second order
in ε, to the second space derivative of the respective variables:

κz,1 = ∂xx z1, κw,1 = ∂xxw1,

κz,2 = ∂xx z2, κw,2 = ∂xxw2. (A17)

Going to third order, we face a difficulty: the derivation of Park & Homsy (1984) is only
valid for linear approximations of the curvatures κz,w. To push a system to third order, we
assume that the curvatures take the following form:

κz = 1
2

∂xx (z +w/2)
(1 + (∂x (z +w/2))2)3/2

+ 1
2

∂xx (z −w/2)
(1 + (∂x (z −w/2))2)3/2

,

κw = ∂xx (z +w/2)
(1 + (∂x (z +w/2))2)3/2

− ∂xx (z −w/2)
(1 + (∂x (z −w/2))2)3/2

. (A18)

This assumption leads to the following third-order development:

κz,3 =∂xx z3−3
2
[(∂x z1)

2 + (∂xw1)
2/4]∂xx z1 − 3

4
(∂x z1)(∂xw1)∂xxw1,

κw,3 =∂xxw3−3
2
[(∂x z1)

2 + (∂xw1)
2/4]∂xxw1 − 3

4
(∂x z1)(∂xw1)∂xx z1. (A19)

A.1.5 Mass conservation
Mass conservation states:

∂tw= − ∂s(w us), (A20)

(∂t + u0∂x )w1 = −w0∂x u1, (A21)

(∂t + u0∂x )w2 = −w0∂x us2 − ∂x (w1u1)

= −w0∂x u2 − ∂x (w1u1)−1
2

u0w0∂x (∂x z1)
2 −w0∂x (∂t z1∂x z1),

(A22)

(∂t + u0∂x )w3 + ∂T̃w1 = −w0∂x us3 − ∂x (w2u1 +w1us2)+1
2
(∂x z1)

2∂x (w0u1 + u0w1)

= −w0∂x u3 −w0∂x

(
u1

1
2
(∂x z1)

2

+ u0∂x z1∂x z2 + ∂t z1∂x z2 + ∂t z2∂x z1)

− ∂x

(
w2u1 +w1u2 +w1

[
1
2

u0(∂x z1)
2 + ∂t z1∂x z1

])

+1
2
(∂x z1)

2(w0∂x u1 + u0∂xw1). (A23)
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A.1.6 Linear results
The linear equations can be written (see (2.3)) as

Lzz1 = 0, (A24)

Lww1 = 0, (A25)

(∂t + u0∂x )w1 = −w0∂x u1. (A26)

From (A24) we can write z1 = Z̃ei(ωz t−kz x) + c.c., from (A25) we can write w1 =
W̃ ei(ωw t−kwx) + c.c. and, since (A26) is linear, u1 = Ũei(ωw t−kwx) + c.c.

The dispersions relations (2.5) can be written in the form

ωz = (u0 + εzvc)kz, (A27a)

ωw = u0kw + εwvcw0kw
2, (A27b)

where εz and εw can be +1 or −1 depending on the branch that we consider.
Last, from (A26) we obtain

(iωw − iu0kw)W̃ = iw0kwŨ ,

Ũ = ωw − u0kw
w0kw

W̃ ,

Ũ = εwvckwW̃ . (A28)

A.2 Second order in ε evolution equations

A.2.1 Second-order evolution equation for z
The dynamical equation projected onto z, at second order, reads

w0∂av2

+(w1∂a +w0u1∂x )v1 =w0Γ ∂xκw,1(∂x z1)

+ Γ κz,2 +Π(t), (A29)

which leads to

w0Lzz2 +w0(∂x z1)(∂au1)+ 2w0u1∂a∂x z1 +w1∂a
2z1 =w0Γ ∂x z1∂xxxw1 +Π(t),

(A30)

which corresponds to (3.2a) with

Nz(z1, w1, u1)=−(∂x z1)(∂au1)− 2u1∂a∂x z1)

−w1

w0
∂a

2z1 + Γ ∂x z1∂xxxw1. (A31)

A.2.2 Order 2 in u and w
The dynamical equation projected onto w, at second order, is

w0∂au2

+(w1∂a +w0u1∂x )u1 =w0Γ ∂xκw,2

+w1Γ ∂xκw,1

− Γ κz,1(∂x z1), (A32)
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on which we need to take the space derivative −∂x (A32),

∂a(−w0∂x u2)

+w1∂a(−∂x u1)+ u1∂x (−w0∂x u1)+ (∂x u1)(−w0∂x u1)=w0Γ ∂xxxxw2

−Γ ∂x [w1∂xxxw1]
+ Γ ∂x [(∂xx z1)(∂x z1)],

(A33)

after that we can replace using the appropriate expressions and obtain

Lww2

+∂a∂x (w1u1)+w0∂a∂x [(∂x z1)

((
∂t − 1

2
u0

)
z1

)
]

+w1

w0
∂a

2w1 + (∂x u1 + u1∂x )(∂aw1)=−Γ ∂x [w1∂xxxw1]
+ Γ ∂x [(∂xx z1)(∂x z1)], (A34)

from which the definition of Nw(z1, w1, u1) in (3.2b) is immediate.

A.3 Third order in ε evolution equations

A.3.1 Third-order evolution equation for z
The dynamical equation projected ez reads

w0∂av3 +w0∂T̃ v1

+(w1∂a +w0u1∂x )v2

+(w2∂a +w0us2∂x +w1u1∂x )v1

−1
2
(∂x z1)

2w0u0∂xv1 = −w0μv1 −μcl∂t z1

+w0Γ ∂xκw,2(∂x z1)+w0Γ ∂xκw,1(∂x z2)

+w1Γ ∂xκw,1(∂x z1)

+ Γ κz,3 − 1
2
(∂x z1)

2Γ κz,1, (A35)

which, after replacing using (A14), (A15) and (A16), leads to

w0∂a(∂T̃ z1 + ∂az3)+w0∂T̃ ∂az1

+w0∂a

(
u1∂x z2 + u2∂x z1 + ∂t z1(∂x z1)

2 + 1
3

u0(∂x z1)
3
)

+(w1∂a +w0u1∂x )(∂az2 + u1∂x z1)

+(w2∂a +w0

(
u2 + 1

2
u0(∂x z1)

2 + ∂t z1∂x z1

)
∂x

+w1u1∂x )∂az1

−1
2
(∂x z1)

2w0u0∂x∂az1 = −w0μ∂az1 −μcl∂t z1

+w0Γ ∂xxxw2(∂x z1)

+w0Γ ∂xxxw1(∂x z2)

+w1Γ ∂xxxw1(∂x z1)
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+ Γ ∂xx z3 − 1
2
(∂x z1)

2Γ ∂xx z1

− 3
2
Γ [(∂x z1)

2 + (∂xw1)
2/4]∂xx z1

− 3
4
Γ (∂x z1)(∂xw1)∂xxw1.

(A36)

Using the properties of z2, w2 and u2 one obtains

w0Lzz3 + 2w0∂T̃ ∂az1

+w0∂a

(
∂t z1(∂x z1)

2
)

+ 1
3

u0w0∂a(∂x z1)
3

+w1∂t t z2 + (w1∂a +w0u1∂x )(u1∂x z1)

+(w0∂t z1∂x z1 +w1u1)∂x∂az1 = −w0μ∂az1 −μcl∂t z1+w1Γ ∂xxxw1(∂x z1)

− 1
2
(∂x z1)

2Γ ∂xx z1

− 3
2
Γ [(∂x z1)

2 + (∂xw1)
2/4]∂xx z1

− 3
4
Γ (∂x z1)(∂xw1)∂xxw1. (A37)

And considering only the terms susceptible to resonate, we write

w0Lzz3 + 2w0∂T̃ ∂az1

+w0∂a

(
∂t z1(∂x z1)

2
)

+ 1
3
w0u0∂a(∂x z1)

3

+2w1u1∂a∂x z1 +w0u1
2∂xx z1

+w0∂t z1∂x z1∂x∂az1 = −w0μ∂az1 −μcl∂t z1 −w1∂t t z2

− 1
2
(∂x z1)

2Γ ∂xx z1

− 3
2
[(∂x z1)

2 + (∂xw1)
2/4]∂xx z1

− 3
4
(∂x z1)(∂xw1)∂xxw1. (A38)

We now adopt use the complex expressions of our variables, we write the phase speed
of transverse waves as vz =ωz/kz , and the solvability condition becomes

2w0[ikz(vz − u0)]∂T̃ Z̃

−3iw0vzkz
3[ikz(vz − u0)]|Z̃ |2 Z̃

−iw0u0kz
3[ikz(vz − u0)]|Z̃ |2 Z̃

−2ikz[ikz(vz − u0)](W̃Ũ∗ + W̃ ∗Ũ )Z̃

−2w0kz
2|Ũ |2 Z̃

−3iw0vzkz
3[ikz(vz − u0)]|Z̃ |2 Z̃ = −w0μ[ikz(vz − u0)]Z̃ − iμclvzkz Z̃ +ω0

2W̃ F̃∗
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− 3
2
w0vc

2kz
4|Z̃ |2 Z̃

− 9
2
w0vc

2kz
4|Z̃ |2 Z̃ − 3

4
w0vc

2kz
2kw

2|W̃ |2 Z̃

− 3
2
w0vc

2kzkw
3|W̃ |2 Z̃ . (A39)

After some reordering it becomes

2∂T̃ Z̃ = −μ

(
1 − μcl

w0μ

vz

u0 − vz

)
Z̃ + i

1
1 − vz/u0

ω0
2

w0u0kz
W̃ F̃∗

+ ikz
3
(

u0 + 6vz + 6
vc

2

vz − u0

)
|Z̃ |2 Z̃

+ ikw
2
((

3
2

kw − 1
4

kz

)
vc

2

vz − u0
+ 4εw

kz

kw

vc

w0

)
|W̃ |2 Z̃ . (A40)

Now using that vz = u0 + εzvc, and anticipating that kz = kw = k, we can obtain

2∂T̃ Z̃ = −μ

(
1 + εz

μcl

w0μ

(
u0

vc
+ εz

))
Z̃ − iεz

ω0
2

w0vck
W̃ F̃∗

+ 7ik3u0|Z̃ |2 Z̃

+ ik2vc

(
−εz

5
4

k + 4εw
w0

)
|W̃ |2 Z̃ . (A41)

A.3.2 Third-order evolution equation for w
The dynamical equation projected ex reads

w0∂au3 +w0∂T̃ u1

+(w1∂a +w0u1∂x )u2

+(w2∂a +w0us2∂x +w1u1∂x )u1

−1
2
(∂x z1)

2w0u0∂x u1 = −w0μu1

+w0Γ ∂xκw,3

+w1Γ ∂xκw,2+w2Γ ∂xκw,1

−w0Γ ∂xκw,1(∂x z1)
2

− Γ κz,1(∂x z2)− Γ κz,2(∂x z1)

−Π(∂x z1). (A42)

We then use that w0∂a
2z2 =Π and compute −∂x (A42)

∂a(−w0∂x u3)+ ∂T̃ (−w0∂x u1)

−∂xw1∂t u2 + w1

w0
∂t (−w0∂x u2)

+∂x

(
u0

w0
w1 + u1

)
(−w0∂x u2)

−∂xw2∂t u1 + w2

w0
∂t (−w0∂x u1)
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+∂x

(
u0

w0
w2 + us2 + 1

w0
w1u1

)
(−w0∂x u1)

−1
2

u0∂x

(
(∂x z1)

2(−w0∂x u1)
)

= −μ(−w0∂x u1)

−w0Γ ∂xxxxw3 + 3
2
w0Γ ∂xx ((∂xw1)

2∂xxw1)

−Γ ∂x (w1∂xxxw2 +w2∂xxxw1)

+w0Γ ∂x

(
(∂xxxw1)(∂x z1)

2
)

+ Γ ∂x ((∂xx z1)(∂x z2))+ Γ ∂x ((∂xx z2)(∂x z1))

+w0∂x

(
∂a

2z2(∂x z1)
)
. (A43)

We now have to use the mass conservation (A21) and (A23) in order to obtain

∂a(∂aw3 + ∂T̃w1)+ ∂T̃ ∂aw1

+w0∂a∂x

(
u1

1
2
(∂x z1)

2 + u0∂x z1∂x z2 + ∂t z1∂x z2 + ∂t z2∂x z1

)

+ ∂a∂x

(
w2u1 +w1u2 +w1

[
1
2

u0(∂x z1)
2 + ∂t z1∂x z1

])

− ∂a

(
1
2
(∂x z1)

2(w0∂x u1 + u0∂xw1)

)

− ∂xw1∂t u2 + w1

w0
∂t (−w0∂x u2)

+ ∂x

(
u0

w0
w1 + u1

)
(−w0∂x u2)

− ∂xw2∂t u1 + w2

w0
∂t∂aw1

+ ∂x

[(
u0

w0
w2 + us2 + 1

w0
w1u1

)
∂aw1

]

−1
2

u0∂x
(
(∂x z1)

2∂aw1
) = −μ∂aw1

−w0Γ ∂xxxxw3 + 3
2
w0Γ ∂xx

(
(∂xw1)

2∂xxw1
)

−Γ ∂x (w1∂xxxw2 +w2∂xxxw1)

+w0Γ ∂x ((∂xxxw1)(∂x z1)
2)

+ Γ ∂x ((∂xx z1)(∂x z2))+ Γ ∂x ((∂xx z2)(∂x z1))

+w0∂x
(
∂a

2z2(∂x z1)
)
. (A44)

We now use (A22) and do some simplifications to obtain

Lww3 + 2∂a∂T̃w1)

+w0∂a∂x

(
u1

1
2
(∂x z1)

2 + ∂x z1∂t z2

)

+∂a∂x

(
w1

[
1
2

u0(∂x z1)
2 + ∂t z1∂x z1

])
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−∂a

(
1
2
(∂x z1)

2(−∂tw1)

)

+∂x

[(
1
2

u0(∂x z1)
2 + ∂t z1∂x z1 + 1

w0
w1u1

)
∂aw1

]

−1
2

u0∂x

(
(∂x z1)

2∂aw1

)
= −μ∂aw1

+ 3
2
w0Γ ∂xx

(
(∂xw1)

2∂xxw1

)

+w0Γ ∂x

(
(∂xxxw1)(∂x z1)

2
)

+w0∂xx z1∂t t z2. (A45)

Finally, we use the complex expressions of z1, w1 and z2, with ∂aw= i(ωw − u0kw)=
εwivck2w0:

(εwivck2w0)2∂T̃ W )

+(εwivck2w0)(−ik)

(
u0W

1
2
|k Z |2 +w0(−ik)Z(iω0)F

)

+(εwivck2w0)(−ik)

(
W

[
1
2

u0|k Z |2 + vz|k Z |2
])

+(εwivck2w0)

(
1
2
|k Z |2iωwW

)

+(−ik)(εwivck2w0)

(
1
2

u0|k Z |2 − vz|k Z |2 + u0

w02 |W |2
)

W

+1
2

u0(εwivck2w0)(ik)|k Z |2W = − (εwivck2w0)μw1

+ 3
2
w0Γ k6|W |2W

+w0Γ |k Z |2k4W

+w0k2ω0
2 F Z . (A46)

We finally obtain

2∂T̃ W̃ = −μW̃ − iεwkω0

(
ω0

kvc
− εww0k

)
F̃ Z̃

− εw2iw0k2vc|k Z̃ |2W̃ + i

(
k

u0

w02 − εw
3
2
w0vck4

)
|W̃ |2W̃ (A47)

which corresponds to (3.5b).
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