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Exercice 1 (***)

Soit ]a, b[ un intervalle ouvert de R, notons e = b − a la largeur de l’intervalle. Le réel e étant

strictement positif, il existe nécessairement une valeur de n pour laquelle
1

2n
< e (cela revient à dire

que 2n >
1

e
, ce qui se produira par exemple pour n = Ent

(

− ln(e)

ln(2)

)

+ 1). Fixons alors cette valeur

de n, et posons p = max

{

k ∈ Z | k
2n

6 a

}

. Un tel entier existe nécessairement, car on peut toujours

trouver un entier relatif tel que
k

2n
< a, donc l’ensemble est non vide, et il est majoré par 0 lorsque

a 6 0, et par a × 2n lorsque a > 0. Par construction,
p+ 1

2n
6 a +

1

2n
< a + e = b. Or,

p+ 1

2n
> a,

sinon la minimalité de l’entier p serait contredite. On en déduit que
p

2n
∈]a, b[, ce qui prouve bien la

densité de notre ensemble dans R.

Exercice 2 (**)

• Soit donc un réel M > 0 (si M 6 0, il suffit de prendre n0 = 2 pour que la définition de la
limite soit vérifiée). On aura n2−2n > M dès que (ce n’est pas une équivalence) n−2 >

√
M

(puisqu’alors n >
√
M , et n2 = n(n−2) > M). Il suffit donc de prendre n0 = Ent(2+

√
M)+1

pour satisfaire la définition de la limite infinie.

• Soit ε > 0,
1

2n+ 3
< ε si 2n + 3 >

1

ε
, soit n >

1

2ε
− 3

2
, il suffit donc de prendre un n0

strictement supérieur à cette quantité (je vous épargne le coup de la partie entière augmentée
d’un) pour satisfaire à la définition de la limite nulle.

• Soit ε > 0, on calcule
2n− 1

n+ 1
− 2 =

−3

n+ 1
. On aura donc

∣

∣

∣

∣

2n− 1

n+ 1
− 2

∣

∣

∣

∣

< ε si
3

n+ 1
< ε, soit

n >
3

ε
− 1, ce qui donne facilement une valeur de n0 convenable.

• Soit M > 0 (si M 6 0, encore une fois, ce n’est pas trop dur de rendre
√
n+ 3 plus grand que

M). On aura
√
n+ 3 > M dès que n > M2−3. Il suffit donc de prendre n0 = Ent(M2−3)+1.

Exercice 3 (* à **)

• On peut écrire un =
3n

4n
− 2n

4n
=

(

3

4

)n

−
(

1

2

)n

. La suite est donc une différence de deux

suites géométriques dont les raisons sont comprises entre −1 et 1. Ces deux suites convergent
donc vers 0, et lim

n→+∞
un = 0.

• On peut développer : un = 2e−n − ne−n. On sait que lim
n→+∞

e−n = 0, donc le premier terme

de la différence tend vers 0. Le deuxième peut s’écrire sous la forme
n

en
, c’est un cas d’école
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de croissance comparée, il tend également vers 0. Conclusion : lim
n→+∞

un = 0.

• Pour un quotient de polynôme, vous êtes autorisés à utiliser la règle du quotient des termes

de plus haut degré : lim
n→+∞

n2 − 3n+ 2

2n2 + 5n− 34
= lim

n→+∞

n2

2n2
=

1

2
.

• Utilisation de la quantité conjuguée très conseillée pour ce calcul :

un =
(
√
n2 − 1− n)(

√
n2 − 1 + n)√

n2 − 1 + n
=

n2 − 1− n2√
n2 − 1 + n

=
−1√

n2 − 1 + n
.

Le dénominateur de cette fraction ayant clairement pour limite +∞, lim
n→+∞

un = 0.

• La principale difficulté est la manipulation des factorielles : un =
n!× (n+ 1)× (n+ 2)

(n2 + 1)× n!
=

(n + 1)(n + 2)

n2 + 1
=
n2 + 3n + 2

n2 + 1
. Reste à utiliser la règle des termes de plus haut degré pour

obtenir lim
n→+∞

un = 1.

• Il faut simplement faire les choses méthodiquement. D’un côté, lim
n→+∞

−1

2n
= 0, donc lim

n→+∞
e−

1

2n =

e0 = 1, de l’autre côté, en utilisant la règle des termes de plus haut degré, lim
n→+∞

n

n+ 2
=

lim
n→+∞

n

n
= 1, donc lim

n→+∞
ln

(

n

n+ 2

)

= ln(1) = 0. Il ne reste plus qu’à additionner les deux

termes pour obtenir lim
n→+∞

un = 1.

• On peut factoriser si on le souhaite numérateur et dénominateur par n, mais le plus simple
reste sûrement d’encadrer le quotient en utilisant que −1 6 sin(n) 6 1 et −1 6 cos(n) 6 1.

On obtient ainsi, ∀n > 2,
n− 1

n+ 1
6 un 6

n+ 1

n− 1
, soit 1 − 2

n+ 1
6 un 6 1 +

2

n− 1
. Les

deux membres extrêmes de l’encadrement ayant la même limite 1, le théorème des gendarmes
permet d’affirmer que lim

n→+∞
un = 1.

• Revenons à la définition du sinus hyperbolique : un =
e2n − e−2n

2
−(en−e−n) = en

(

en

2
− 1

)

−
e−2n

2
+ e−n. Une simple application des règles de calcul sur les sommes et produits de limite

permet alors d’obtenir lim
n→+∞

un = +∞.

• Pour celle-ci, difficile de s’en sortir sans équivalents (que nous n’avons pas encore étudiés !),

ou du moins sans une utilisation subtile des taux d’accroissement : comme lim
n→+∞

1 +
π2

n2
= 1,

on peut dire que lim
n→+∞

ln(1 + π2

n2 )− ln(1)

1 + π2

n2

= ln′(1) = 1, soit lim
n→+∞

n2 ln

(

1 +
π2

n2

)

= π2. Or,

n

√

ln

(

1 +
π2

n2

)

=

√

n2 ln

(

1 +
π2

n2

)

, donc tout ce qui se trouve dans la tangente définissant

un a pour limite

√
π2

4
=
π

4
, et lim

n→+∞
un = tan

(π

4

)

= 1.

Exercice 4 (**)

Les deux conditions peuvent se traduire de la façon suivante :
b

a
=
c

b
= q, et 2b−a = 3c− 2b = q

(comme a est supposé non nul, b et c ne peuvent pas non plus être nuls). La première relation revient à
dire que b = aq et c = bq = aq2, d’où, en remplaçant dans la deuxième équation, 2aq−a = 3aq2−2aq,
d’où 3aq2 − 4aq + a = 0, soit en factorisant par a qui est supposé non nul 3q2 − 4q + 1 = 0. Cette
équation du second degré a pour discriminant ∆ = 16 − 12 = 4, et admet deux racines réelles

q1 =
4 + 2

6
= 1, et q2 =

4− 2

6
=

1

3
. Si q = 1, la condition 2aq − a = q donne a = 1, puis
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b = aq = 1 et c = bq = 1 ; et si q =
1

2
, on obtient

2

3
a − a =

1

3
, soit a = −1, puis b =

1

3
a = −1

3

et c =
1

3
b = −1

9
. Les deux seules possibilités sont donc d’avoir a = b = c = q = 1 (auquel cas les

trois termes consécutifs de la suite géométrique sont 1, 1 et 1, et les trois termes consécutifs de la

suite arithmétique sont 1, 2 et 3), ou q =
1

3
, donc a = −1, b = −1

3
et c = −1

9
(auquel cas les trois

termes consécutifs de la suite géométrique sont −1, −1

3
et −1

9
, et les trois termes consécutifs de la

suite arithmétique sont −1, −2

3
et −1

3
).

Exercice 5 (*)

1. La suite (un) est arithmético-géométrique, d’équation de point fixe x = 4x− 6, ce qui donne
x = 2. On pose donc vn = un − 2, et on vérifie que la suite auxiliaire est géométrique :
vn+1 = un+1 − 2 = 4un − 6− 2 = 4un − 8 = 4(un − 2). La suite (vn) est donc géométrique de
raison 4, et de premier terme v0 = u0−2 = −1. On a donc vn = −4n, puis un = vn+2 = 2−4n.

2. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique x2−3x+2 = 0, qui a pour

discriminant ∆ = 9 − 8 = 1, et admet deux racines réelles r =
3 + 1

2
= 2 et s =

3− 1

2
= 1.

La suite (un) a donc un terme général de la forme un = α2n+β, avec, en utilisant les valeurs
initiales, u0 = α + β = 0 et u1 = 2α + β = 1. En soustrayant les deux équations on obtient
α = 1, puis β = −α = −1, donc un = 2n − 1.

3. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique x2 − 6x + 9 = 0, qui a

pour discriminant ∆ = 36 − 36 = 0, et admet une racine double r =
6

2
= 3. La suite (un) a

donc un terme général de la forme un = (α + βn)3n, avec, en utilisant les valeurs initiales,
u0 = α×30 = 0 et u1 = (α+β)×31 = 1. La première équation donne α = 0, puis la deuxième

donne β =
1

3
, d’où un =

1

3
n3n = n3n−1 (formule valable seulement si n > 1).

4. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique x2 − 1

2
x − 1

2
= 0, qui a

pour discriminant ∆ =
1

4
+2 =

9

4
et admet donc pour racines r1 =

1
2 +

3
2

2
= 1 (qui était aussi

une racine évidente), et r2 =
1
2 − 3

2

2
= −1

2
. On peut donc écrire un = α+ β

(

−1

2

)n

. Avec les

conditions initiales données, u0 = α+β = 1 et u1 = α− 1

2
β = 2, donc

3

2
β = −1, soit β = −2

3

puis α =
5

3
. On conclut que un =

5

3
+

1

3(−2)n−1
.

Autre méthode, posons donc vn = un+1 − un, alors vn+1 = un+2 − un+1 =
un+1 + un

2
−

un+1 =
un − un+1

2
= −1

2
vn. La suite (vn) est donc géométrique de raison −1

2
et de premier

terme v0 = u1−u0 = 1, donc vn =

(

−1

2

)n

. On en déduit que un+1 = un+

(

−1

2

)n

pour tout

entier n. On peut alors écrire un = u0 +

n−1
∑

k=0

(

−1

2

)k

(si ça ne vous semble pas clair, faites

une belle récurrence), donc un = 1 +
1− (−1

2)
n

1 + 1
2

= 1 +
2

3

(

1 +

(

−1

2

)n)

=
5

3
+

1

3(−2)n−1
.

On retrouve bien sûr la même expression.

5. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique 3x2 − 4x + 1 = 0, dont

le discriminant vaut ∆ = 16 − 12 = 4, et qui admet donc deux racines r =
4 + 2

6
= 1, et
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s =
4− 2

6
=

1

3
. On en déduit la forme générale de la suite : un = α +

β

3n
. En utilisant les

valeurs des deux premiers termes, on a u0 = α+ β = 2 et u1 = α+
1

3
β =

10

3
. En soustrayant

les deux équations, on obtient
2

3
β = 2− 10

3
= −4

3
, soit β = −2, puis α = 4. On a finalement

un = 4− 2

3n
.

6. Considérons d’abord la suite (vn) pour laquelle v0 = 1, v1 = 11, v2 = 111 etc (attention au
décalage, le nombre contenant n chiffres 1 correspond donc au terme d’indice n−1 de la suite
(vn)). Une façon de la décrire est de dire que v0 = 1 et que ∀n ∈ N, vn+1 = 10vn + 1 (en
effet, quand on multiplie par 10, on ajoute un 0 à la fin, et en ajoutant 1 on le transforme
en 1). Autrement dit, la suite (vn) est arithmético-géométrique. Son équation de point fixe

x = 10x + 1 a pour solution x = −1

9
. On pose donc wn = vn +

1

9
, la suite (wn) devrait être

géométrique, ce qu’on vérifie sans peine : wn+1 = vn+1 +
1

9
= 10vn +1+

1

9
= 10

(

vn +
1

9

)

=

10wn. La suite (wn) est donc géométrique de raison 10 et de premier terme w0 = v0+
1

9
=

10

9
.

Autrement dit, wn =
10n+1

9
, et vn = wn − 1

9
=

10n+1 − 1

9
. Reste à calculer un, c’est-à-

dire à calculer les sommes partielles de la suite (vn) : un =
n−1
∑

k=0

vk =
1

9

n−1
∑

k=0

10k+1 − 1 =

10

9
× 1− 10n

1− 10
− n− 1

9
=

10n − 1

81
− n− 1

9
.

7. Séparons donc parties réelle et imaginaire en posant zn = an + ibn. On peut alors écrire

a0 = 0, b0 = 2, et pour tout entier n, an+1 + ibn+1 =
1

3
(2an + 2ibn − an + ibn) =

1

3
an + ibn.

Autrement dit, an+1 =
1

3
an et bn+1 = bn. La suite (bn) est donc constante égale à 2, et la

suite (an) géométrique de raison
1

3
et de premier terme 0. Ah ben en fait on a donc toujours

zn = 2i (c’était bien la peine de se fatiguer).

Exercice 6 (**)

Notons donc vn = un+an
2+bn+c, alors vn+1 = un+1+a(n+1)2+b(n+1)+c = 2un+2n2−n+

an2+2an+a+bn+b+c = 2un+(a+2)n2+(2a+b−1)n+a+b+c. Pour que (vn) soit géométrique,
on doit avoir vn+1 = qvn = qun + aqn2 + bqn + cq. Il est nécessaire d’avoir q = 2, et en identifiant
ensuite les coefficients des deux formules obtenues, on a a+2 = 2a, 2a+ b− 1 = 2b et a+ b+ c = 2c,
ce qui donne successivement a = 2, puis b = 2a− 1 = 3, et enfin c = a+ b = 5. Avec ces valeurs, la
suite (vn) est géométrique de raison 2 et de premier terme v0 = u0 + a× 02 + b× 0 + c = 2+ 5 = 7.
Conclusion de ces calculs : vn = 7× 2n, puis un = vn − an2 − bn− c = 7× 2n − 2n2 − 3n− 5.

Exercice 7 (**)

Par hypothèse, on sait déjà que ∀n ∈ N, un 6 1 et vn 6 1. De plus, la convergence du produit
assure que, ∀ε > 0, ∃n0 ∈ N, ∀n > n0, 1− ε < unvn 6 1 (avec les hypothèses faites sur (un) et (vn),
le produit ne peut certainement pas être supérieur à 1). Or, unvn 6 un puisque vn ∈ [0, 1], ce qui
assure que, ∀n > n0, 1− ε < unvn 6 un 6 1, et donc que la suite (un) converge vers 1. Par symétrie,
(vn) converge également vers 1.
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Exercice 8 (***)

1. La suite étant à valeurs strictement positives, la limite l est elle-même positive ou nulle.

Si l < 1, posons l′ =
1 + l

2
, qui est un réel strictement compris entre 0 et 1. En posant

ε = l′ − l > 0, on peut trouver un rang n0 à partir duquel on aura
un+1

un
< l + ε = l′.

Une récurrence triviale permet alors de prouver que, ∀n > n0,
un

un0

< l′n−n0 (en effet, c’est

vrai au rang n0 de façon évidente, et on peut prouver l’hérédité en écrivant que
un+ 1

un0

=

un+1

un
× un

un0

6 l′× l′n en exploitant la remarque précédente et l’hypothèse de récurrence). On a

donc ∀n > n0, un 6 un0
l′n−n0 , et ce majorant est le terme général d’une suite géométrique de

raison strictement inférieure à 1 (et positive), donc convergeant vers 0. Comme par ailleurs la
suite (un) est minorée par 0, le théorème des gendarmes permet d’affirmer qu’elle va converger
vers 0.

2. C’est le même principe : on pose toujours l′ =
1 + l

2
et on aura cette fois 1 < l′ < l. On

note donc ε = l − l′ et on trouve un rang n0 à partir duquel
un+1

un
> l′. La même récurrence

que tout à l’heure prouve alors que, ∀n > n0, un > un0
× l′n−n0 , avec cette fois-ci une suite

minorante qui est géométrique de raison strictement supérieure à 1. La suite (un) tend donc
vers +∞.

3. Dans ce dernier cas, la suite (un) peut avoir n’importe quelle limite non nulle (il suffit de

prendre la suite constante égale à l), ou bien converger vers 0 (on pose un =
1

n
, et

un+1

un
=

n+ 1

n
= 1 +

1

n
a bien pour limite 1), ou tendre vers +∞ (on peut par exemple prendre

simplement un = n). Bref, aucune conclusion intéressante n’est possible.

Exercice 9 (***)

1. Assez clairement n2 + n > n2, mais on peut aussi affirmer que n2 + n < n2 + 2n + 1 =
(n + 1)2. On déduit de ces passionnantes constatations que n 6

√
n2 + n < n + 1, et donc

que ⌊
√
n2 + n⌋ = n. On peut alors calculer explicitement (avec une petite multiplication par

la quantité conjuguée en passant) un2+n =
√
n2 + n − n =

n2 + n− n2√
n2 + n+ n

=
n√

n2 + n+ n
=

1

1 +
√

1 + 1
n

. Cette dernière expression ayant pour limite
1

2
, la suite (un), si elle converge,

aura nécessairement pour limite
1

2
(toutes ses suites convergeant alors vers la même limite

qu’elle).

2. C’est le même raisonnement que ci-dessus : (nb)2 = n2b2 6 n2b2 + 2an < n2b2 + 2bn + 1 =

(nb+1)2, donc ⌊
√
n2b2 + 2an⌋ = nb, et un2b2+2an =

√
n2b2 + 2an−nb = 2an√

n2b2 + 2an + nb
=

2a

b+
√

b+ 2a
b

, qui converge facilement vers
a

b
.

3. C’est évident pour tout rationnel appartenant à [0, 1], mais un peu moins si l est irrationnel.
Dans ce cas, on peut construire une sous-suite de la façon suivante : pour tout entier k, la

densité des rationnels dans [0, 1] assure qu’il existe un nombre rationnel
a

b
tel que

∣

∣

∣
l − a

b

∣

∣

∣
6

1

2k
. On fixe ce rationnel et, en appliquant la définition de la limite à la sous-suite construire
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à la question précédente, on trouve un entier n0 tel que
∣

∣

∣
un2

0
b2+2an0

− a

b

∣

∣

∣
<

1

2n
. On fixe alors

ϕ(k) = n20b
2+2an0 (si jamais cet entier est inférieur à un entier déjà sélectionné pour une plus

petite valeur de k, on va en chercher un plus grand, les inégalités restant vraies à partir du rang

n0, ça ne pose aucun problème). Par construction, on aura |uϕ(k)− l| 6
∣

∣

∣
uϕ(k) −

a

b

∣

∣

∣
+
∣

∣

∣

a

b
− l
∣

∣

∣
6

1

n
, ce qui prouve la convergence de la sous-suite ainsi construite vers l.

Exercice 10 (**)

1. La suite (un) est une suite récurrente. Nous n’avons malheureusement pas encore vu en classe
comment traiter ce genre de suite de façon systématique, on va donc s’en sortir avec les

moyens du bord. Cherchons à déterminer sa monotonie : un+1 − un =
1

2
un +

a

2un
− un =

a

2un
− 1

2
un =

a− u2n
2un

=
(
√
a− un)(

√
a+ un)

2un
. Une récurrence triviale permet de prouver que

tous les termes de la suite sont positifs : c’est vrai pour u0 par hypothèse, et si un > 0, a étant
lui-même positif, un+1 le sera également. Le facteur

√
a+un est donc aussi positif, et le signe

de un+1 − un ne dépend que de la position de un par rapport à
√
a. Posons donc pour nous

aider f(x) =
1

2
x+

a

2x
(de façon à avoir f(un) = un+1). La fonction f est dérivable sur R

+∗,

de dérivée f ′(x) =
1

2
− a

2x2
=
x2 − a

2x2
. Cette dérivée s’annule en

√
a, la fonction f y admet

un minimum de valeur f(
√
a) =

√
a

2
+

a

2
√
a
=

√
a. On en déduit que, ∀x > 0, f(x) >

√
a.

En particulier, ∀n ∈ N, un+1 = f(un) >
√
a, et un+1 − un est donc nécessairement négatif à

partir du rang 1 (pour n = 0, cela dépend de la valeur choisie). La suite est donc décroissante
à partir du rang 1. Étant minorée par 0, elle converge nécessairement vers un réel l. Revenons

à la relation de récurrence pour déterminer l : lim
n→+∞

un+1 = l, et lim
n→+∞

1

2
un+

a

2un
=

1

2
l+

a

2l
,

donc on doit avoir l =
l

2
+
a

2l
(notons au passage que l ne peut pas être nulle, sinon un+1

ne converge plus), soit 2l2 = l2 + a, donc l =
√
a (impossible que la limite soit négative).

Conclusion : la suite (un) converge vers
√
a.

2. Calculons donc vn+1 =
un+1 −

√
a

un+1 +
√
a
=

1
2un +

a
2un

−√
a

1
2un +

a
2un

−√
a
=
u2n + a− 2

√
aun

u2n + a+ 2
√
aun

=
(un −

√
a)2

(un +
√
a)2

=

v2n. On peut alors prouver par récurrence que vn = v
(2n)
0 . En effet, c’est trivialement vrai

pour n = 0, et si on le suppose au rang n, alors vn+1 = v2n = (v
(2n)
0 )2 = v

(2×2n)
0 = v

(2n+1)
0 , la

propriété est donc vraie au rang n+ 1 et la récurrence fonctionne.

3. D’après la question précédente, un − √
a = v2

n

0 (u0 +
√
a) (même pas besoin de majoration,

on a la valeur exacte). Pour a = 2, et par exemple u0 = 1 (sans valeur de u0, l’application

numérique est impossible), on a un −
√
2 6

(√
2− 1

1 +
√
2

)2n

× (1 +
√
2) (on a changé le signe

dans la puissance pour prendre la valeur absolue). Il suffit donc de prendre un n pour lequel

2n ln

(√
2− 1√
2 + 1

)

> −100 ln(10) − ln(1 +
√
2), ce qui donne 2n > 132, soit n > 8 (encore un

coup de ln si on veut être très précis). Il suffit donc de prendre le terme d’indice 8 de la suite
pour avoir une valeur approchée de la limite correcte à 10−100 près !
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Exercice 11 (***)

1. On calcule donc u1 =
1

1
+

1

1
= 2, v1 = u1 = 2 et w1 = 0 + 1 = 1.

Puis u2 =
1

1
+

1

2
+

1

1
=

5

2
, v2 + 2u2 = 5 et w2 = 0 +

2

2
+ 2× 2 = 5.

Enfin, u3 =
1

1
+

1

3
+

1

3
+

1

1
=

8

3
, v3 = 6u3 = 16 et w3 = 0 +

6

3
+ 2× 6

3
+ 3× 6 = 24.

2. En exploitant la symétrie des coefficients binomiaux

(

n

n− k

)

=

(

n

k

)

, on se rend compte

qu’en remplaçant k par n − k dans la somme, les deux expressions sont effectivement égales
(on se contente en fait d’effectuer la somme en sens inverse). On a donc, en développant,

wn =

n
∑

k=0

n
n!
(

n
k

) −
n
∑

k=0

k
n!
(

n
k

) = n× n!un −wn, soit 2wn = nvn et donc wn =
nvn

2
.

3. On sait déjà que wn =
n

2
vn =

n× n!

2
un. Effectuons par ailleurs un calcul astucieux : wn =

n
∑

k=0

(k + 1 − 1)
n!
(

n
k

) (on applique une bonne vieille astuce belge). En séparant le facteur en

k + 1 et −1, on trouve alors wn =
n
∑

k=0

(k + 1)n!
(

n
k

) − n!un. Or, on peut écrire que
1

k + 1

(

n

k

)

=

n!

(n − k)!(k + 1)!
=

1

n+ 1

(

n+ 1

k + 1

)

(c’est une variante de la formule sans nom), donc wn =

n
∑

k=0

(n+ 1)× n!
(

n+1
k+1

) −n!un =

n
∑

k=0

(n+ 1)!
(

n+1
k+1

) −n!un = (n+1)!

n+1
∑

k=1

1
(

n+1
k

)−n!un. On reconnait presque

dans la première somme la valeur de un+1, il ne manque que le terme numéro 0. Autrement

dit, on a wn = (n+1)!(un+1 − 1)− n!un, donc
nn!

2
un = (n+1)!(un+1 − 1)− n!un. On divise

tout par n! :
n

2
un = (n + 1)(un+1 − 1) − un, soit un+1 − 1 =

un

n+ 1
+

nun

2n+ 2
=

(n+ 2)un
2n + 2

.

C’est exactement la relation demandée.

4. On peut calculer u4 =
1

1
+

1

4
+

1

6
+

1

4
+

1

1
=

8

3
, et en déduire à l’aide de la relation précédente

que u5 = 1 +
6

10
u4 = 1 +

3

5
× 8

3
= 1 +

8

5
=

13

5
. Ensuite, u6 = 1 +

7

12
u5 = 1 +

91

60
=

151

60
, et

enfin u7 = 1 +
8

15
u6 = 1 +

4

7
× 151

60
= 1 +

151

105
=

256

105
. Passionnant.

5. C’est un calcul tout bête exploitant la question 2 : tn+1 =
2n+1un+1

n+ 2
=

2n+1

n+ 2
+

2n+1

n+ 2
×

n+ 2

2n + 2
un =

2n+1

n+ 2
+

2n+1

2(n + 1)
un =

2n+1

n+ 2
+

2n

n+ 1
un =

2n+1

n+ 2
+ tn.

6. On procède par exemple par récurrence, en prouvant plus simplement que tn =

n
∑

k=0

2k

k + 1
. Au

rang 0, le membre de droite de la relation vaut 1 (un seul terme dans la somme égal à 1), ce

qui est bien la valeur de t0. Supposons la relation vraie au rang n, alors tn+1 =
2n+1

n+ 2
+ tn =

2n+1

n+ 2
+

n
∑

k=0

2k

k + 1
=

n+1
∑

k=0

2k

k + 1
, ce qui achève la récurrence.

Exercice 12 (**)

1. Prenons par exemple ε = 1 dans la définition et fixons p = n0 : ∃n0 ∈ N, ∀q > n0, |uq−un0
| <

1. À partir du rang n0, la suite (un) est donc bornée par un0
− 1 et un0

+ 1. On termine en
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appliquant le même raisonnement que pour montrer qu’une suite convergente est bornée :
l’ensemble des n0 premiers termes de la suite étant fini, il est majoré et minoré. On prend le
minimum des deux minorants obtenus et le maximum des deux majorants pour obtenir des
bornes valables pour tous les termes de la suite.

2. Appliquons la définition de la limite au réel strictement positif
ε

2
: ∃n0 ∈ N, ∀n > n0,

|un − l| < ε

2
. Mais alors, par inégalité triangulaire, pour tout couple d’entiers (p, q) tous les

deux supérieurs à n0, on peut écrire |up−uq| = |up− l+ l−uq| 6 |up− l|+ |l−uq| <
ε

2
+
ε

2
= ε,

ce qui prouve que la suite est une suite de Cauchy.

3. La suite étant bornée d’après la question 1, elle admet une sous-suite convergeant vers une

certaine limite l. Fixons alors un ε > 0 et appliquons la définition de la suite de Cauchy à
ε

12
.

On peut donc trouver un entier n0 à partir duquel on aura toujours |up − uq| <
ε

12
. Parmi

tous les termes d’indice supérieur ou égal à n0, il en existe correspondant à des termes de

la sous-suite convergeante tels que |un − l| < ε

37
(c’est la définition de la convergence qui

l’assure), fixons p égal à l’un de ces indices. On peut alors écrire que, ∀q > n0, |uq − l| =
|uq −up+up− l| 6 |uq −up|+ |up− l| < ε

12
+

ε

37
, ce qui assure très largement la convergence

de la suite (un) vers l.

Exercice 13 (***)

1. Commençons donc par prouver la croissance de f sur R+∗. On a f(x) = x ln
x+ a

x
= x ln(x+

a) − x lnx, donc f ′(x) = ln(x + a) +
x

x+ a
− lnx − 1, et f ′′(x) =

1

x+ a
+
x+ a− x

(x+ a)2
− 1

x
=

x(x+ a) + ax− (x+ a)2

x(x+ a)2
=

−a2
x(x+ a)2

< 0. La fonction f ′ est donc strictement décroissante

sur R+∗. Or, f ′(x) = ln
(

1 +
a

x

)

+
x

x+ a
−1 a pour limite 0 en +∞ (en effet, ce qui se trouve

dans le ln a pour limite 1 donc le terme avec le ln tend vers 0, et en conservant les termes

de plus haut degré, lim
x→+∞

x

x+ a
= 1). Il est inutile ici (même si ce n’est pas spécialement

difficile) de calculer la limite de f ′ en 0, on peut déjà conclure que f ′ est toujours positive, ce
dont on déduit que f est bien croissante.

Il faut maintenant faire le lien avec la suite (un) en remarquant que ln(un) = n ln
(

1 +
a

n

)

=

f(n). La fonction f étant croissante, on aura certainement, pour tout entier n, f(n) 6 f(n+1),
c’est-à-dire ln(un) 6 ln(un+1). Un petit passage à l’exponentielle donne alors un 6 un+1, ce
qui prouve que la suite (un) est croissante.

2. Le plus simple est de démontrer séparément chacune des deux inégalités en faisant tout passer
d’un seul côté et en faisant des études de fonctions. Posons ainsi g(t) = t−ln(1+t). La fonction
g est définie sur R

+ (elle est même définie entre −1 et 0, mais pour ce qu’on nous demande,

pas la peine de s’y intéresser), de dérivée g′(t) = 1 − 1

1 + t
=

t

1 + t
> 0. La fonction g est

donc croissante, et comme g(0) = 0, elle est toujours positive, ce qui prouve que t− ln(1 + t)
sur R+, soit ln(1 + t) 6 t. Pour cette inégalité, on pouvait aussi invoquer la concavité de la
fonction ln.

De même, on pose h(t) = ln(1+t)− t

1 + t
, fonction dont la dérivée vaut

1

1 + t
− 1 + t− t

(1 + t)2
=

1 + t− 1

(1 + t)2
=

t

(1 + t)2
> 0. Cette fonction est donc également croissante, et vérifie aussi h(0) =

0, d’où sa positivité sur R+ et l’encadrement souhaité.
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3. On a vu que lnun = n ln
(

1 +
a

n

)

, donc en posant t =
a

n
et en appliquant l’encadrement

de la question précédente,
a
n

1 + a
n

6 n ln
(

1 +
a

n

)

6
a

n
, soit

a
n
n+a
n

6
1

n
lnun 6

a

n
, ou encore

a

a+ n
6

1

n
lnun 6

a

n
. Il ne reste plus qu’à tout multiplier par n pour obtenir l’encadrement

demandé.

4. Comme lim
n→+∞

na

n+ a
= a (on garde les termes de plus haut degré, a étant toujours une

constante), le théorème des gendarmes permet d’affirmer que la suite ln(un) converge vers a.
La suite (un) a donc pour limite ea.

5. Pour a = 1, on obtient le résultat classique suivant : lim
n→+∞

(

1 +
1

n

)n

= e.

Exercice 14 (**)

1. En effet, an+1 = un+1 + vn+1 = 3un + vn + 1 + 2− 2un = un + vn + 3 = an + 3. La suite est
bien arithmétique de raison 3 et de premier terme a0 = 2, donc an = 2 + 3n.

2. Allons-y : bn+1 = 2un+1 + vn+1 = 6un + 2vn + 2 + 2 − 2un = 4un + 2vn + 4 = 2bn + 4.
La suite est bien arithmético-géométrique. Son équation de point fixe x = 2x + 4 a pour
solution x = −4, on pose donc cn = bn + 4, et on vérifie que (cn) est une suite géométrique :
cn+1 = bn+1 + 4 = 2bn + 8 = 2(bn + 4) = 2cn. La suite (cn) est donc géométrique de raison
2 et de premier terme c0 = b0 + 4 = 2u0 + v0 + 4 = 7. On en déduit que cn = 7 × 2n, puis
bn = cn − 4 = 7× 2n − 4.

3. Il suffit de combiner an et bn : en faisant simplement leur différence, on obtient immédiatement
un = bn−an = 7×2n−4− (2+3n) = 7×2n−3n−6. Ensuite, vn = an−un = 2+3n−un =
8 + 6n− 7× 2n.

4. Calculons : Sn =

n
∑

k=0

7× 2k − 3k − 6 = 7× 1− 2n+1

1− 2
− 3× n(n+ 1)

2
− 6(n+ 1) = 7× 2n+1 −

7 − 3n(n+ 1)

2
− 6n − 6 = 7 × 2n+1 − 3

2
n2 − 15n

2
− 13. Ce résultat n’a absolument aucun

intérêt, pas plus d’ailleurs que le fait que lim
n→+∞

Sn = +∞, qui découle d’un simple résultat

de croissance comparée.

Exercice 15 (*)

1. Il faut donc résoudre l’équation
4x+ 2

x+ 5
= x, soit 4x+2 = x2+5x, qui se ramène à l’équation

du second degré x2 + x− 2 = 0, qui a pour racines évidentes a = −2 et b = 1.

2. Pour cela, il faut que un ne soit jamais égal à a. On sait déjà que c’est le cas pour u0 qui
est supposé strictement positif, et on peut démontrer aisément par récurrence que tous les
termes de la suite seront également strictement positifs, ce qui répond à la question. Mais on
va chercher à faire plus rigolo : remarquons que un+1 = a équivaut à f(un) = a. Or, l’équation
f(x) = a se ramène à 4x + 2 = −2(x+ 5), soit 6x = −12, donc x = −2 = a. Autrement dit,
pour avoir un+1 = a, il faut déjà avoir un = a. Notons alors n le plus petit entier pour lequel
un = a (en supposant qu’un tel entier existe). On a nécessairement n > 0 puisque u0 6= a,
mais d’après ce qui précède, cela implique alors un−1 = a, ce qui contredit la minimalité de
n. Autrement dit, il est impossible qu’un tel entier n existe, et un est donc toujours différent
de a.

3. Un calcul peu subtil : vn+1 =
un+1 − 1

un+1 + 2
=

4un+2
un+5 − 1
4un+2
un+5 + 2

=
4un + 2− un − 5

4un + 2 + 2un + 10
=

3un − 3

6un + 12
=

9



1

2

un − 1

un + 2
=

1

2
vn. La suite (vn) est donc géométrique de raison

1

2
et de premier terme v0 =

u0 − 1

u0 + 2
= −1

2
. Conclusion : vn = − 1

2n+1
.

4. Puisque vn =
un − 1

un + 2
, vnun + 2vn = un − 1, donc un(vn − 1) = −1− 2vn, et un =

1 + 2vn
1− vn

=

1− 1
2n

1 + 1
2n+1

=
2n+1 − 2

2n+1 + 1
.

Exercice 16 (**)

Prouvons les trois points habituels :

• un+1 − un =

(

1 +
1

(n+ 1)(n + 1)!

)

un − un =
un

(n+ 1)(n+ 1)!
> 0, donc la suite (un) est

croissante.

• vn+1 − vn =

(

1 +
1

(n + 1)(n + 1)!

)

un+1 −
(

1 +
1

nn!

)

un

=

(

(

1 +
1

(n+ 1)(n + 1)!

)2

− 1− 1

nn!

)

un

=

(

2

(n + 1)(n + 1)!
+

1

(n + 1)2(n+ 1)!2
− 1

nn!

)

un

=
un

n(n+ 1)(n + 1)!

(

2n+
n

(n+ 1)(n + 1)!
− (n+ 1)2

)

. Le terme
n

(n+ 1)(n + 1)!
étant

(largement) inférieur à 1, on peut majorer toute la parenthèse par 2n+1−(n+1)2 = −n2 < 0,
donc la suite (vn) est décroissante.

• vn − un =
un

nn!
> 0, ce qui prouve que un 6 vn mais n’est pas exactement suffisant à prouver

que la limite de la différence est nulle. Sauf qu’on peut désormais dire que un 6 vn 6 v1, donc

vn − un 6
v1

nn!
, et le théorème des gendarmes assure alors la convergence de (vn− un) vers 0.

Les deux suites sont donc bien adjacentes.

Exercice 17 (*)

Il y a deux points sur les trois qui sont très faciles à prouver :

• vn − un =
1

n× n!
, donc lim

n→+∞
un − vn = 0.

• un+1 − un =
1

(n+ 1)!
> 0, donc la suite (un) est croissante.

Ne reste plus qu’à prouver que (vn) est décroissante : vn+1 − vn = un+1 +
1

(n+ 1)× (n+ 1)!
− un −

1

n× n!
=

1

(n+ 1)!
+

1

(n+ 1)× (n+ 1)!
− 1

n× n!
=
n(n+ 1) + n− (n+ 1)2

n× (n+ 1)× (n+ 1)!
=
n2 + 2n− (n2 + 2n + 1)

n(n+ 1)(n + 1)!
=

−1

n(n+ 1)(n + 1)!
< 0. La suite (vn) est donc bien décroissante, et les deux suites étant adjacentes,

elles convergent donc vers une limite commune.

Notons donc l la limite commune des deux suites, et supposons que l =
a

b
, avec a et b deux entiers

naturels. Comme la suite (un) est strictement croissante, et la suite (vn) strictement décroissante,

on peut écrire, pour tout entier n, un < l < vn, soit
n
∑

k=0

1

k!
<

a

b
<

n
∑

k=0

1

k!
+

1

n× n!
. C’est en
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particulier vrai lorsque n = b :
b
∑

k=0

1

k!
<
a

b
<

b
∑

k=0

1

k!
+

1

b× b!
. Multiplions cet encadrement par b× b! :

b

b
∑

k=0

b!

k!
< a× b! < b

b
∑

k=0

b!

k!
+ 1. À gauche, chaque quotient

b!

k!
est un entier lorsque k 6 b (en effet, b!

est un multiple de k! pour tous les entiers k compris entre 0 et b), donc le membre de gauche est une
somme d’entiers et appartient à N. Notons ce nombre p. Le membre de droite est le même que celui
de gauche, avec un simple +1, donc est égal à p+ 1. On a donc p < a× b! < p+ 1. Autrement dit,
le nombre a × b!, qui est lui aussi un nombre entier, est strictement compris entre les deux entiers
consécutifs p et p+1. Ce n’est pas possible ! On a prouvé par l’absurde que l ne pouvait pas être un
nombre rationnel (pour les curieux, la valeur de l est en fait le nombre e que nous connaissons bien
depuis l’étude de la fonction exponentielle).

Exercice 18 (**)

1. Il suffit pour cela de prouver par récurrence (simultanée pour les deux suites) que ∀n ∈ N,
un > 0 et vn > 0. C’est vrai au rang 0 par hypothèse, et si un et vn sont tous deux strictement
positifs, ce sera aussi le cas de un+vn et de unvn, donc de un+1 et vn+1. Ainsi, les deux suites
sont bien définies.

2. Supposons n > 1 (pour n = 0 l’inégalité est vraie par hypothèse). On a vn−un =
un−1 + vn−1

2
−

√
un−1vn−1 =

un−1 + vn−1 − 2
√
un−1

√
vn−1

2
=

(
√
un−1 −

√
vn−1)

2

2
> 0, donc un 6 vn.

3. C’est désormais facile en utilisant le résultat de la question précédente : un+1−un =
√
unvn−

un =
√
un(

√
vn−

√
un) > 0 puisque vn > un, donc (un) est strictement croissante. De même,

vn+1 − vn =
un + vn

2
− vn =

un − vn

2
< 0, donc (vn) est décroissante.

4. On ne peut pas affirmer que les suites sont adjacentes car on ne sait pas si (un−vn) tend vers
0. Par contre, (un) étant croissante et majorée par exemple par v0 (car un 6 vn 6 v0 puisque
la suite (vn) est decroissante), le théorème de convergence monotone permet d’affirmer qu’elle
est convergente vers une certaine limite l. De même, (vn) est décroissante et minorée (encore
plus simplement, par 0), donc converge vers une limite l′. La suite (vn+1) converge aussi

vers l′, mais comme vn+1 =
un + vn

2
, on a donc, par passage à la limite, l′ =

l + l′

2
, d’où

l′

2
=

l

2
, soit l = l′. Finalement, les deux suites ont bien la même limite (appelée moyenne

arithmético-géométrique des deux réels a et b).

Exercice 19 (**)

1. On va bien sûr procéder par récurrence, en prouvant simultanément que un ∈ [0, 3] et vn ∈
[0, 3]. C’est vrai au rang 0 puisque u0 = v0 = 0. Supposons donc que un et vn appartiennent
à [0, 3] pour un certain entier n, alors 3 − vn ∈ [0, 3], donc un+1 ∈ [0,

√
3] (et a fortioro

un+1 ∈ [0, 3]). De même, 3+un ∈ [3, 6], donc vn+1 ∈ [
√
3,
√
6] ⊂ [0, 3], ce qui achève l’hérédité

de notre récurrence.

2. Supposons donc que (un) converge vers l et (vn) vers l′. Alors on peut passer à la limite dans
les relations de récurrence définissant les deux suites pour obtenir l =

√
3− l′ et l′ =

√
3 + l.

On aurait donc l2 = 3 − l′ = 3 −
√
3 + l, soit l2 − 3 = −

√
3 + l, puis en élevant à nouveau

au carré l4 − 6l2 + 9 = 3 + l, soit encore l4 − 6l2 − l + 6 = 0. Cette équation semble a priori
impossible à résoudre, mais coup de chance, 1 est solution évidente, et on peut donc factoriser
sous la forme l4−6l2− l+6 = (l−1)(al3+bl2+cl+d) = al4+(b−a)l3+(c−b)l2+(d−c)l−d.
Une identification impose les conditions a = 1, puis b − a = 0 donc b = a = 1, c − b = −6

11



donc c = −5 et d − c = −1 donc d = −6 (ce qui est cohérent avec l’équation donnée par
le coefficient constant). Deuxième miracle, on constate que le facteur restant l3 + l2 − 5l − 6
admet pour racine presque évidente l = −2 : −8 + 4 + 10 − 6 = 0, donc on peut à nouveau
factoriser sous la forme l3+l2−5l−6)(l+2)(el2+fl+g) = el3+(f+2e)l2+(g+2f)l+2g. Une
nouvelle identification des coefficients donne e = 1, f + 2e = 1 donc f = −1 et g + 2f = −5
donc g = −3. On garde donc un dernier facteur égal à x2 − x − 3, qui a pour discriminant

∆ = 1 + 12 = 13 et admet donc deux racines réelles l3 =
1 +

√
13

2
et l4 =

1−
√
13

2
. Après

cet ébouriffant calcul, on sait donc que l prend l’une des quatre valeurs suivantes : 1, −2,
1 +

√
13

2
ou

1−
√
13

2
. On peut immédiatement éliminer les valeurs strictement négatives −2

et
1−

√
13

2
puisque la suite (un) est positive. La valeur

1 +
√
13

2
est en fait aussi à éliminer

puisque supérieure à 2 (
√
13 > 3), alors que, d’après la question précédente, (un) est majorée

par
√
3. Finalement, on a nécessairement l = 1. Bien sûr, on en déduit que l′ =

√
3 + 1 = 2.

3. Calculons an+1 =
√
3− vn − 1 =

3− vn − 1√
3− vn + 1

=
−bn

1 +
√
3− vn

. Le dénominateur de cette

fraction étant supérieur à 1, on a bien en valeur absolue |an+1| 6 |bn|. De même, bn+1 =
√
3 + un − 2 =

3 + un − 4

2 +
√
3 + un

=
an

2 +
√
un + 3

est majoré en valeur absolue par
|an|
2

.

4. En effet, si |an+2| 6 |bn+1| 6
1

2
|an| 6

1

2
cn et |bn+2| 6

1

2
|an+1| 6

1

2
|bn| 6

1

2
cn, donc cn+2 6

1

2
cn. Une récurrence facile montre alors que c2n 6

c0

2n
=

1

2n−1
, et c2n+1 6

c1

2n
=

√
3− 1

2n
.

Ces deux sous-suites convergent donc vers 0 (théorème des gendarmes, les sous-suites de (cn)
sont toujours positives en tant que valeurs absolues), donc (cn) elle-même a une limite nulle.
Or, par définition, 0 6 |an| 6 cn et 0 6 |bn| 6 cn, donc le théorème des gendarmes permet à
nouveau de prouver que (|an|) et (|bn|), et donc (an) et (bn), ont une limite nulle. Conclusion :
lim

n→+∞
un = 1 et v

n→+∞n
= 2 puisque un = an + 1 et vn = bn + 2.

Exercice 20 (***)

1. Supposons donc que lim
n→+∞

un = 0, et choisissons un ε > 0. Par définition de la limite, il existe

un entier n0 à partir duquel on aura |un| <
ε

2
. Découpons alors vn en deux parties : ce qui se

passe avant n0 et après n0 : si n > n0, vn =
1

n+ 1

n
∑

k=0

uk =
1

n+ 1

n0
∑

k=0

uk +
1

n+ 1

n
∑

k=n0+1

uk.

La première somme est une constante (on peut modifier n, mais n0, lui, est fixé), donc, quand
on la divise par n, ça va finir par se rapprocher de 0. Autrement dit, ∃n1 ∈ N, ∀n > n1,

1

n+ 1

∣

∣

∣

∣

∣

n0
∑

k=0

uk

∣

∣

∣

∣

∣

<
ε

2
. Quand à la deuxième somme, elle est constituée de n − n0 termes qui,

d’après ce qu’on a dit plus haut, sont tous inférieurs (en valeur absolue) à
ε

2
, donc par inégalité

triangulaire sa valeur absolue est inférieure à (n−n0)
ε

2
, d’où

1

n+ 1

∣

∣

∣

∣

∣

∣

n
∑

k=n0+1

uk

∣

∣

∣

∣

∣

∣

6
n− n0

n+ 1

ε

2
6
ε

2

(puisque
n− n0

n+ 1
6 1). Conclusion, lorsque n > max(n0, n1), on a |vn| 6

ε

2
+
ε

2
= ε. Ceci suffit

à prouver que la suite (vn) tend vers 0, et a donc bien la même limite que (un).

Passons désormais au cas général (qui va être facile en fait), c’est à dire lorsque lim
n→+∞

un =

l 6= 0. Posons wn = un− l, cette suite auxilaire a pour limite 0, donc on peut lui appliquer ce
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qu’on vient de démontrer : lim
n→+∞

1

n+ 1

n
∑

k=0

wk = 0. Or,
1

n+ 1

n
∑

k=0

wk =
1

n+ 1

k=n
∑

k=0

(uk − l) =

1

n+ 1

(

(

n
∑

k=0

uk)− (n+ 1)l

)

=

(

1

n+ 1

n
∑

k=0

uk

)

− l. On en déduit que lim
n→+∞

1

n+ 1

n
∑

k=0

uk = l,

ce qu’on voulait prouver.

2. La réciproque est fausse. On peut prendre comme contre-exemple un = (−1)n. Dans ce cas

vn =
1

n+ 1

n
∑

k=0

(−1)k = 0 si n est impair (on additionne un nombre égal de termes égaux à

1 et à −1 dans la somme), et vn =
1

n+ 1
si n est pair. La suite (vn) converge donc vers 0.

Pourtant la suite (un) ne converge pas.

3. Supposons que (un) diverge vers +∞ (il suffit de changer les signes pour traiter le cas où
la limite vaut −∞), et fixons M ∈ R

+, alors ∃n0 ∈ N, ∀n > n0, un > 4M . Par ailleurs,
n0−1
∑

k=0

uk est une constante que nous noterons A. On peut alors écrire (si n > n0) vn =
A

n+ 1
+

1

n+ 1

n
∑

k=n0

uk >
A

n+ 1
+
4M(n− n0)

n+ 1
. Quitte à choisir n suffisamment grand, on peut imposer

A

n+ 1
> −M (puisque cette expression a une limite nulle), mais aussi

n− n0

n+ 1
>

1

2
(puisque

cette fois-ci l’expression tend vers 1, ce qui donnera vn > −M +2M =M et prouve donc que
(vn) diverge vers +∞ comme (un).

La réciproque n’est toujours pas vraie pour une suite divergeant vers +∞. Considérons
par exemple une suite (un) pour laquelle u2n = 2n mais u2n+1 = 0 (pour tout entier naturel

n). On calcule alors, si n = 2p est pair, vn =
1

n+ 1

p
∑

k=0

2k =
2p(p + 1)

2n+ 2
=
p(p+ 1)

2p + 1
. Dans le

cas où n = 2p + 1 est impair, on calcule de même vn =
1

n+ 1

p
∑

k=0

2k =
2p(p+ 1)

2n+ 2
=
p

2
. La

suite (vn) diverge vers +∞. Pourtant, la suite (un) ne tend pas vers +∞ puisque la sous-suite
(u2n+1) est nulle.

4. Supposons par exemple la suite (un) croissante (le cas décroissante se traite de même en
changeant tous les signes) et non convergente, donc nécessairement non majorée. Notons l la
limite de la suite (vn) (qu’on supposera positive, sinon on peut là aussi faire le raisonnement à
quelques changements de signes près). On aurait alors, à partir d’un certain rang n0, un > 2l
puisque la suite est supposée non majorée et croissante (il suffit de trouver un terme de la
suite supérieur à 2l, tous les suivants le seront aussi). Pour tout entier n > 3n0, on pourra

alors écrire vn =
1

3n0 + 1

n0
∑

k=0

uk +
1

3n0 + 1

3n0
∑

k=n0+1

uk >
4ln0 +K

3n0 + 1
, en ayant posé K =

n0
∑

k=0

uk.

Autrement dit, la suite (vn) censée converger vers l est minorée par une suite qui converge

vers
4

3
l, ce qui est évidemment impossible. La suite (un) converge donc nécessairement.

5. Posons pour plus de simplicité wn =
2

n(n+ 1)

k=n
∑

k=0

kuk, et supposons dans un premier temps

que lim
n→+∞

un = 0. Il existe donc un rang n0 à partir duquel |un| <
ε

2
. On découpe la somme

en deux comme précédemment : wn =
2

n(n+ 1)

n0
∑

k=0

kuk +
2

n(n+ 1)

n
∑

k=n0+1

kuk. La première

moitié a certainement une limite nulle, donc deviendra inférieure en valeur absolue à
ε

2
à

13



partir d’un certain rang n1. Quant à la deuxième moitié, on la majore en valeur absolue

(comme dans la question 1) par
2

n(n+ 1)

n
∑

k=n0

kε

2
6

2

n(n+ 1)
× n(n+ 1)

2

ε

2
=
ε

2
. On a donc

globalement, lorsque n > max(n0, n1), |wn| 6 ε, et lim
n→+∞

wn = 0. Comme vn =
n(n+ 1)

2n2
wn,

avec lim
n→+∞

n(n+ 1)

2n2
=

1

2
, on en déduit que lim

n→+∞
vn = 0.

Supposons désormais lim
n→+∞

un = l 6= 0. Posons comme précédemment zn = un − l, alors

wn =
2

n(n+ 1)

∑

kzk tend vers 0. Or, wn =
2

n(n+ 1)

n
∑

k=0

(kuk − kl) =
2

n(n+ 1)

n
∑

k=0

kuk − l.

Autrement dit, lim
n→+∞

2

n(n+ 1)

n
∑

k=0

kuk = l, soit en multipliant par
n(n+ 1)

2n2
qui tend toujours

vers
1

2
, la conclusion lim

n→+∞

1

n2

n
∑

k=0

kuk =
l

2
.

Exercice 21 (**)

1. La seule chose qui pourrait empêcher la suite d’être correctement définie serait la présence
d’un terme égal à −1 (annulant donc le dénominateur pour le calcul de un+1), prouver que
un > 0 est donc suffisant. C’est une récurrence double triviale : u0 et u1 sont positifs par
hypothèse, et en supposant un et un+1 tous les deux positifs, un+2 le sera également.

2. Calculons donc brutalement (un+2 − un+1)(un+2 − un) =
(1 + un)un+1 − un+1(1 + un+1)

1 + un+1
×

(1 + un)un+1 − un(1 + un+1)

1 + un+1
=

(unun+1 − u2n+1)(un+1 − un)

(1 + un+1)2
= −un+1(un − un+1)

2

(1 + un+1)2
, ex-

pression du signe opposé à celui de un+1, donc toujours négative d’après la question 1.

3. On peut par exemple procéder par récurrence. Par hypothèse, u0 6 u1, ce qui prouve l’ini-
tialisation. Supposons désormais u2n 6 u2n+1 pour un certain entier n, alors d’après la ques-
tion précédent, (u2n+2 − u2n+1)(u2n+2 − u2n) est négatif, ce qui signifie que u2n+2 − u2n+1

et u2n+2 − u2n sont de signe opposé. Autrement dit, u2n+2 est situé entre u2n et u2n+1 :
u2n 6 u2n+2 6 u2n+1. Exactement de la même façon, on aura ensuite u2n+2 6 u2n+3 6 u2n+1,
ce qui prouve en particulier que u2(n+1) 6 u2(n+1)+1 et achève donc la récurrence.

4. On a vu à la question précédente que u2n 6 u2n+2 et u2n+3 6 u2n+1. La suite (u2n) est
donc croissante, et la suite (u2n+1) décroissante. De plus, (u2n) est majorée par u1 (puisque
u2n 6 u2n+1 6 u1) et (u2n+1) minorée par 0, donc les deux sous-suites convergent. Notons l
et l′ leurs limites respectives. La relation de récurrence définissant la suite, appliquée pour un

entier n pair, impose alors par passage à la limite l =
1 + l

1 + l′
× l′, soit l(1 + l′) = l′(1 + l), ou

encore l = l′. Les deux sous-suites ayant la même limite, la suite (un) converge donc également
vers cette limite commune.

Exercice 22 (***)

1. Si z0 est réel, tous les termes de la suite seront également réels. Or, pour un réel
x+ |x|

2
est

égal à 0 si x est négatif, et égal à x si x est positif. Si z0 est un réel négatif, la suite sera donc
nulle à partir du rang 1 (une fois que z1 = 0, on ne bouge plus), et si z0 est un réel positif,
elle est constante égale à z0.
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2. Il suffit d’écrire que zn+1 =
zn + |zn|

2
=
rne

iθn + rn

2
=
rn(1 + eiθn)

2
. Une petite factorisation

par l’angle moitié s’impose : zn+1 = rne
i θn

2 × ei
θn

2 + e
−iθn

2

2
= rn cos

(

θn

2

)

ei
θn

2 . Autrement

dit, on aura simplement rn+1 = rn cos

(

θn

2

)

et θn+1 =
θn

2
.

3. Pour θn, c’est facile, la suite est géométrique de raison
1

2
, et θn =

θ

2n
. Pour rn, c’est un peu

plus laid puisque rn = r × cos

(

θ

2

)

× cos

(

θ

4

)

× · · · × cos

(

θ

2n

)

. A priori, ce produit n’est

pas très sympathique, mais une astuce diabolique permet de le simplifier en un coup d’oeil :

multiplions-le donc par sin

(

θ

2n

)

! En effet, en utilisant n fois de suite la formule de duplication

sin(2a) = 2 cos(a) sin(a), on va trouver cos

(

θ

2

)

× cos

(

θ

4

)

× · · · × cos

(

θ

2n

)

× sin

(

θ

2n

)

=

1

2
cos

(

θ

2

)

× cos

(

θ

4

)

× · · · × cos

(

θ

2n−1

)

× sin

(

θ

2n−1

)

= · · · = 1

2n−1
cos

(

θ

2

)

sin

(

θ

2

)

=

sin(θ)

2n
. On en déduit que rn =

r sin(θ)

2n sin( θ2n )
(on peut faire une belle récurrence si on veut être

plus rigoureux que ce que je n’ai fait). Si on veut être totalement rigoureux, il faudrait en fait
distinguer le cas où θ ∈]0π[, où le signe des sinus sera toujours positif et ne posera donc aucun
problème, de celui où θ ∈] − π, 0[ où on va avoir des problèmes de signe à chaque étape. En
fait, si θ < 0, le plus simple est de traiter le cas symétrique consistant à remplacer z0 par son
conjugué (pour avoir θ > 0), et constater que tous les termes seront simplement conjugués de
ceux de la suite initiale.

4. La suite (θn) a manifestement une limite nulle. Pour la suite (rn), on peut utiliser la limite

classique lim
x→0

sin(x)

x
= 1 et l’appliquer à

θ

2n
pour obtenir lim

n→+∞

θ

2n sin( θ2n )
= 1, et donc

lim
n→+∞

rn =
r sin(θ)

θ
. On en déduit que la suite (zn) converge vers ce même réel (si on tient

à être rigoureux, les parties réelles et imaginaires de zn sont obtenues en multipliant rn par
cos(θn), qui tend vers 1, et par sin(θn), qui tend vers 0, ce qui permet un calcul de limite
évident).

Exercice 23 (***)

1. Calculons donc
1

ϕ
=

2

1 +
√
5
=

2(1−
√
5)

1− 5
= −1−

√
5

2
= −ψ, ce qui prouve l’égalité deman-

dée.

2. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique x2 − x − 1 = 0. Elle a

pour discriminant ∆ = 1+ 4 = 5, et admet comme racines r1 =
1 +

√
5

2
= ϕ et

1−
√
5

2
= ψ.

On peut donc écrire Fn = 1ϕn + Bψn. Les conditions initiales donnent F0 = A + B = 0,

donc B = −A, et F1 = Aϕ + Bψ = 1, donc A =
1

ϕ− ψ
=

2

2
√
5

=
1√
5
. On a donc

Fn =
1√
5
(ϕn − ψn).

3. Commençons par donner les premiers termes de la suite (Fn) : F2 = 1, F3 = 2, F4 = 3, F5 = 5

et F6 = 8, donc u1 = 1, u2 = 2, u3 =
3

2
, u4 =

5

3
et u5 =

8

5
.

4. On calcule bien sûr un+1 − un =
Fn+2

Fn+1
− Fn+1

Fn
=

Fn+1 + Fn

Fn+1
− Fn+1

Fn
= 1 +

1

un
− un =
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1 + un − u2n
un

. Le dénominateur est bien sûr positif (par une récurrence triviale, tous les termes

de chacune des suites (Fn) et (un) sont strictement positifs), et le numérateur s’annule en ϕ

et en ψ (c’est l’équation qu’on a résolue plus haut). Puisque un > 0 et ψ < 0, un+1 − un sera
positif à l’intérieur des racines du numérateur, donc si un 6 ϕ, et négatif sinon. En fait, on est
capable de dire si un 6 ϕ en utilisant la formule explicite donnée à la question précedente :

un =
ϕn+1 − ψn+1

ϕn − ψn
. En effet, ψ étant négatif, ψn est alternativement positif et négatif, ce qui

signifie que, si n est pair, le numérateur est inférieur à ϕn+1, et le dénominateur supérieur à
ϕn, donc le quotient inférieur à ϕ. De la même façon, si n est impair, un > ϕ. On en déduit
que un+1 > un si n est impair, mais un+1 6 un si n est pair (ce qui est tout à fait cohérent
avec les premières valeurs de la suite que nous avons calculées).

5. Factorisons notre quotient par les puissances de ϕ : un =
ϕn+1(1 − (ψ

ϕ
)n+1)

ϕn(1 − (ψ
ϕ
)n)

= ϕ× 1− αn+1

1− αn
,

en posant α =
ψ

ϕ
=

1−
√
5

1 +
√
5
. Ce réel est certainement compris entre −1 et 1, donc lim

n→+∞
αn =

0, et lim
n→+∞

un = ϕ.

6. On reprend pratiquement un calcul déjà fait : un+1 =
Fn+1 + Fn

Fn
= 1 +

1

un
. La fonction

f : x 7→ 1+
1

x
est décroissante sur R+∗, et coupe la droite d’équation y = x pour x = ϕ (c’est

encore et toujours la même équation), ce qui permet de dessiner le bel escargot suivant pour
représenter les termes de la suite (un) :

0 1 2 3

0

1

2

3

u1 u2u3 u4

u5

7. D’après le calcul effectué pour déterminer la limite de (un), un − ϕ = ϕ

(

1− αn+1

1− αn
− 1

)

=

ϕ × αn(α− 1)

1− αn
. Or,

αn

1− αn
=

ψn

ϕn
× ϕn

ϕn − ψn
=

ψn√
5Fn

; et α − 1 =
ψ − ϕ

ϕ
. Finalement,

un − ϕ =
(ψ − ϕ)ψn√

5Fn
=

−ψn
Fn

. Comme −ψn = −
(

− 1

ϕ

)n

, on obtient bien, en valeur absolue,
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|un − ϕ| = 1

ϕnFn
.

8. Il suffit pour cela de constater que ϕn 6 Fn. Si n est pair, c’est évident, puisque Fn 6
ϕn√
5
,

mais même dans le cas où n est impair, ϕn−ψn 6 2ϕn puisque |ψ| < ϕ, donc Fn 6
2ϕn√

5
< ϕn.

9. Il faut trouver une valeur de Fn telle que F 2
n > 104, donc Fn > 100. Un calcul légèrement

laborieux nous mène à trouver F12 = 144. On a alors u12 =
233

144
qui est une valeur approchée

de ϕ à 10−4 près par excès puisque tous les termes d’indice pair de la suite sont plus grands

que ϕ. Une passionnante division « à la main » permet d’obtenir que
233

144
≃ 1.61806, et les

plus courageux vérifieront de même que u13 =
377

233
> 1.6180, ce qui permet d’affirmer que

1.6180 et 1.6181 sont les valeurs approchées de ϕ à 10−4 près par défaut et par excès.

10. Faisons donc une petite démonstration par récurrence double, par exemple en fixant la valeur
de n et en faisant varier p (on ne peut pas faire varier les deux à la fois). On pose donc Pp :
Fn+p = Fn−1Fp+FnFp+1. Au rang 0, la propriété stipule simplement que Fn = Fn−1F0+FnF1,
ce qui est vrai puisque F0 = 0 et F1 = 1. De même au rang 1 : Fn+1 = Fn−1 + Fn est vraie
par définition de la suite de Fibonacci. Supposons la propriété vraie aux rangs p et p + 1,
alors Fn+p+2 = Fn+p+1 + Fn+p = Fn−1Fp+1 + FnFp+2 + Fn−1Fp + FnFp+1 = Fn+1(Fp +
Fp+1) +Fn(Fp+1 +Fp+2) = Fn+1Fp+2 +FnFp+3, ce qui est exactement la propriété Pp+2. La
propriété est donc vrai pour tout entier p. En particulier, en posant n = p + 1, on obtient
F2p+1 = F 2

p +F
2
p+1, ce qui prouve effectivement que les termes d’indice impair de la suite sont

sommes de deux carrés.

11. Et si on faisait une nouvelle récurrence ? Au rang 0, on a
0
∑

k=0

Fk = 0, et F2 − 1 = 1− 1 = 0,

donc la propriété est vraie. Supposons la vérifiée au rang n, alors
n+1
∑

k=0

Fk = Fn+1 +
n
∑

k=0

Fk =

Fn+1 + Fn+2 − 1 = Fn+3 − 1 en utilisant la relation de récurrence définissant la suite (Fn).
cela prouve que la propriété reste vraie au rang n+ 1, et achève la récurrence.

12. La question est bizarrement formulée, puisqu’elle donne la valeur de la suite juste avant de la
demander. Bref, jamais deux sans trois, on va faire une belle récurrence. Au rang 1 (le rang
0 n’est pas vraiment pertinent vu le Fn−1 qui traine dans la formule), on a F2F0 − F 2

1 = −1,
ça marche. Supposons la formule vérifiée au rang n, alors au rang suivant Fn+2Fn − F 2

n+1 =
(Fn+1 + Fn)Fn − F 2

n+1 = F 2
n − Fn+1(Fn+1 − Fn) = F 2

n − Fn+1Fn−1 = −(−1)n = (−1)n+1, ce
qui prouve la propriété au rang n+ 1.

13. Pour comparer les deux nombres, calculons leur tangente : à droite, c’est facile, ça vaut
bien évidemment 1. À gauche, c’est à peine plus compliqué, mais il faut bien sûr se sou-

venir de ses formules d’addition de tangente : tan

(

arctan

(

Fn+2

Fn+1

)

− arctan

(

Fn

Fn+3

))

=

Fn+2

Fn+1
− Fn

Fn+3

1 + Fn+2Fn

Fn+1Fn+3

=
Fn+2Fn+3 + Fn+1Fn

Fn+1Fn+3 − Fn+2Fn
=
Fn+2(Fn+2 + Fn+1)− Fn+1(Fn+2 − Fn+1)

F 2
n+2 + (−1)n+2 + F 2

n+1 − (−1)n+1
=
F 2
n+2 + F 2

n+1

F 2
n+2 + F 2

n+1

=

1. Les deux membres ont donc la même tangente, ils sont égaux à π près. Mais comme

0 <
Fn

Fn+3
< 1, on a certainement 0 < arctan

(

Fn

Fn+3

)

<
π

4
. L’autre arctangente étant pour le

même genre de raison comprise entre
π

4
et
π

2
, la différence des deux est (strictement) comprise

entre 0 et
π

2
, et donc bien égale à

π

4
. On obtient ainsi toute une série de formules palpitants,

comme par exemple arctan

(

55

34

)

− arctan

(

21

89

)

=
π

4
. Étonnant, non ?
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Exercice 24 (***)

1. Calculons donc : p0 = 1, q0 = 1, p1 = 2 + 1 = 3, q1 = 2, puis on applique les relations de
récurrence : p2 = 2p1 + p0 = 7, q2 = 2q1 + q0 = 5, p3 = 2p2 + p1 = 17, q3 = 2q2 + q1 = 12,

p4 = 2p3 + p2 = 41 et q4 = 2q3 + q2 = 29. On en déduit que x0 = 1, x1 =
3

2
, x2 =

7

5
,

x3 =
17

12
et x4 =

41

29
. si on est courageux, on peut pousser jusqu’à évaluer x1 = 1.5, x2 = 1.4,

x3 ≃ 1.4167 et x4 ≃ 1.4138, ce qui est cohérent avec les propriétés démontrées plus loin sur
la suite (xn). Les plus réveillés se rendront peut-être même compte que la suite (xn) semble
converger vers une valeur qui pourrait bien être

√
2 (cf question 9.c).

2. Récurrence double triviale : c’est vrai pour q0 et q1 par hypothèse, et si on suppose qn > n

et qn+1 > n+1, alors qn+2 > qn+1 + qn > 2n+ 1, ce qui est largement plus fort que ce qu’on
doit prouver.

3. Essayons de simplifier à l’aide de la relation de récurrence : si n > 1, on peut écrire pn+1 =
an+1pn+pn−1 et de même pour qn+1, donc pn+1qn−qn+1pn = an+1pnqn+pn−1qn−an+1qnpn−
qn−1pn = −(pnqn−1 − qnpn−1). Autrement dit, en posant un = pn+1qn− qn+1pn, la suite (un)
est une suite géométrique de raison −1. Comme u0 = p1q0 − q1p0 = a0a1 + 1− a1a0 = 1, on
aura simplement un = (−1)n.

On calcule de même pn+2qn − qn+2pn = an+1pn+1qn + pnqn − an+1qn+1pn − qnpn =
an+1(pn+1qn − qn+1pn) = (−1)nan+1 d’après le calcul précédent.

4. Par définition, xn+1−xn =
pn+1

qn+1
− pn

qn
=
pn+1qn − qn+1pn

qnqn+1
=

(−1)n

qnqn+1
. De même, xn+2−xn =

pn+2qn − qn+2pn

qnqn+2
=

(−1)nan+1

qnqn+2
.

5. D’après la question précédente, x2n+2 − x2n =
a2n+1

q2nq2n+2
> 0 puisque les suites (an) et (qn)

sont à valeurs positives. De même, x2n+3 −x2n+1 = − a2n+2

q2n+1q2n+3
< 0, donc la suite (x2n) est

croissante et la suite (x2n+1) décroissante (c’est cohérent avec les quelques valeurs calculées

à la première question de l’exercice). Ensuite, x2n+1 − x2n =
1

q2nq2n+1
6

1

2n(2n + 1)
d’après

la question 2, ce qui suffit largement à prouver que lim
n→+∞

x2n+1 − x2n = 0 (théorème des

gendarmes, puisque cet écart est positif vu son expression). Les deux suites sont bien adjacente,
et convergent donc vers une même limite. Cela suffit à affirmer que la suite (xn) converge elle-
même vers cette limite commune (théorème du cours).

6. Par définition, x1 =
p1

q1
=

a0a1 + 1

a1
= a0 +

1

a1
. De même, x2 =

p2

q2
=

a2p1 + p0

a2q1 + q0
=

a2a0a1 + a2 + a0

a2a1 + 1
= a0 +

a2

a2a1 + 1
= a0 +

1

a1 +
1
a2

, qui est bien la formule souhaitée.

7. On peut s’en sortir à l’aide d’une simple récurrence un peu astucieuse : notons Pn la pro-
priété qui affirme que (xn) a la forme donnée dans l’énoncé quelle que soit la suite (an)
définissant les suites (pn), (qn) et (xn). La propriété P0 est manifestement vraie puis-
qu’elle stipule que x0 = a0, ce qui découle immédiatement de la définition des valeurs de
p0 et de q0. Supposons maintenant la formule vraie au rang n. Au lieu d’appliquer l’hy-
pothèse de récurrence, on va l’appliquer à la suite (a′n) définie par : ∀k < n, a′k = ak et

a′n = an +
1

an+1
(et peu importe ce qu’on fait pour les termes suivants, on n’en aura pas

besoin pour prouver l’hérédité). On notera yn l’équivalent de xn défini à partir de la suite
(a′n). Puisque la propriété Pn est supposée vraie pour toute suite, on peut alors affirmer que

yn = a0 +
1

a1 +
1

a2+
1

...+ 1

a′n

= a0 +
1

a1 +
1

a2+
1

...+ 1
an+1

. Il suffit donc de prouver que xn+1 = yn
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pour que l’hérédité de notre récurrence soit prouvée. Or, xn+1 =
pn+1

qn+1
=
an+1pn + pn−1

an+1qn + qn−1
. Avec

la définition donnée pour a′n, on peut écrire an+1 =
1

a′n − an
, remplaçons dans l’expression de

xn+1, en multipliant numérateur et dénominateur par a′n − an : xn+1 =
pn + (a′n − an)pn−1

qn + (a′n − an)qn−1
.

Remplaçons désormais pn et qn en appliquant la relation de récurrence définissant les deux

suites pour trouver xn+1 =
anpn−1 + pn−2 + (a′n − an)pn−1

anqn−1 + qn−2 + (a′n− an)qn−1
=
a′npn−1 + pn−2

a′nqn−1 + qn−2
. Or, ce quo-

tient est exactement égal à yn (en notant p′n et q′n les équivalents de pn et qn pour la suite
(a′n), numérateur et dénominateur sont simplement égaux à p′n et q′n puisque pn−2 = p′n−2 et

qn−2 = q′n−2). On a bien prouvé que xn+1 = yn = a0 +
1

a1 +
1

a2+
1

...+ 1
an+1

.

8. Puisque les suites (x2n) et (x2n+1) sont adjacentes de limite commune α, avec de plus x2n <

x2n+1, on peut affirmer que x0 < α < x1. Comme par ailleurs x0 = a0 ∈ N et x1−x0 =
1

a1
6 1

(puisque a1 est lui-même entier), on a donc a0 < α < a0 + 1, ce qui suffit à affirmer que
a0 = ⌊α⌋.

9. (a) Manifestement, αn = an+
1

αn+1
(il n’y pas grand chose à justifier, c’est la définition même

de αn).

(b) On peut simplement effectuer un calcul par récurrence : une fois connues les valeurs de an

et de αn, on calcule d’abord αn+1 =
1

αn − an
(relation de la question précédente), puis

on peut ensuite calculer an+1 = ⌊αn+1⌋ (c’est le même principe que pour le calcul de a0,
il suffit de constater que αn+1 est toujours supérieur ou égal à 1, ce qui est évident vu sa
définition puisqu’on ajoute à un entier non nul an+1 une fraction manifestement positive).
Comme on connait les valeurs de α0 = α et de a0 (question précédente), on peut initialiser
sans problème le calcul.

(c) Calculons donc : a0 = ⌊
√
2⌋ = 1, puis α1 =

1

α0 − a0
=

1√
2− 1

=
√
2 + 1 (mutliplication

par la quantité conjuguée). On en déduit a1 = ⌊
√
2 + 1 = 2, puis α2 =

1

α1 − a1
=

1√
2 + 1− 2

=
1√
2− 1

=
√
2+1. Inutile de pousser plus loin les calculs, on aura désormais

an = 2 puis αn+1 =
√
2 + 1 pour tout entier n > 2.

(d) On vient de le dire : a0 = 1 et ∀n > 1, an = 2. Oh mais ne serait-ce point par hasard
le cas particulier étudié en question 1 ? Quel hasard exatrordinaire. On a donc prouvé
indirectement que ce cas particulier donne une suite (xn) convergeant vers

√
2, ou si on

préfère que
√
2 = 1 +

1

2 + 1
2+ 1

2+...

. Étonnant, non ?

(e) On part donc cette fois-ci de α =
√
3, et on calcule de même : a0 = ⌊

√
3⌋ = 1, puis

α1 =
1√
3− 1

=

√
3 + 1

2
≃ 1.4. On continue : a1 = ⌊α1⌋ = 1, donc α2 =

1
√
3+1
2 − 1

=

2√
3− 1

=
√
3 + 1 ≃ 2.7. Bon, les calculs ne semblent jusqu’ici pas se répéter mais ça

va venir : a2 = 2, donc α3 =
1√
3− 1

= α1. À partir de là, les calculs vont boucler

périodiquement : αn =

√
3 + 1

2
si n est impair, αn =

√
3 + 1 si n est pair (non nul), donc
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a2n+1 = 1 et a2n = 2 (sauf pour n = 0). Autrement dit,
√
3 = 1 +

1

1 + 1
2+ 1

1+ 1
2+...

.

Problème 1 : autour de la méthode de Newton (**)

1. On se limitera aux tout premiers termes de la suite sur le dessin, pour la bonne raison que la
suite converge tellement rapidement qu’en pratique, on n’y voit très vite plus rien ! Ici, on a
pris un exemple hyper classique qui est justement celui illustré (dans un cadre un peu plus
général) dans la suite de l’exercice : f(x) = x2 − 2 (qui s’annule bien entendu pour x =

√
2),

et x0 = 2 (on pourra considérer que l’intervalle I est ici l’intervalle [0, 2]. On calcule alors
aisément (par exemple en utilisant les formules démontrées ensuite dans l’exercice, c’est de

toute façon l’objet de la question 5.a) que x1 =
3

2
, x2 =

17

12
, puis x3 =

577

408
(non indiqué sur

le dessin) :

1 2

0

1

2

−1

x0
x1x2

2. La tangente à la courbe de f en son point d’abscisse xn a pour équation y = f ′(xn)(x−xn)+
f(xn). Par définition, xn+1 représente la valeur de x pour laquelle y = 0 dans cette équation
(intersection avec l’axe des abscisses), donc 0 = f ′(xn)(xn+1 −xn)+ f(xn), ce qui donne bien

xn+1 = xn −
f(xn)

f ′(xn)
.

3. (a) Dans ce cas, on a f(xn) = x2n − a et f ′(xn) = 2xn, donc en reprenant la formule de la

question précédente xn+1 = xn −
x2n − a

2xn
=
x2n + a

2xn
.

(b) Étudions donc g, qui est définie et dérivable sur I, de dérivée g′(x) =
4x2 − 2x2 − 2a

4x2
=
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x2 − a

2x2
. En particulier, cette dérivée s’annule lorsque x =

√
a, valeur pour laquelle on a

g(
√
a) =

a+ a

2
√
a

=
√
a. On peut donc dresser le tableau de variations suivant (les limites

étant évidentes à calculer) :

x 0
√
a +∞

g

+∞
❅
❅
❅❘√

a

�✒
�

�

+∞

Passons à l’étude de la fonction h, dont la dérivée vaut h′(x) = g′(x)−1 =
x2 − a

2x2
−1 =

−x
2 + a

2x2
< 0 sur tout l’intervalle I. La fonction h est donc strictement décroissante sur I,

et on a sans difficulté lim
x→0

h(x) = lim
x→0

g(x) = +∞, et comme h(x) =
x2 + a

2x
− x =

a− x2

2x
,

on calcule lim
x→+∞

h(x) = −∞ (par exemple en utilisant la règle du quotient des termes de

plus haut degré). Remarquons en passant que, comme g(
√
a) =

√
a, on a h(

√
a) = 0, la

fonction h est donc positive sur l’intervalle ]0,
√
a] et négative sur [a,+∞[.

(c) Par définition, on a xn+1 − xn = g(xn)− xn = h(xn), dont le signe dépend de la position
de xn par rapport à

√
a. Or, le tableau de variations de la fonction g obtenu à la question

précédente prouve que g est minorée sur I par
√
a, donc que, ∀n ∈ N, xn+1 = g(xn) >

√
a.

La suite (xn) est donc bien minorée par
√
a (au moins à partir du rang 1, mais en fait on

a aussix0 = a >
√
a puisqu’on a supposé a > 1), et par conséquent décroissante puisqu’on

a toujours h(xn) 6 0. Le théorème de convergence monotone assure alors que la suite
(xn) converge nécessairement vers une limite l ∈ R. Bien entendu, on aura alors aussi

lim
n→+∞

xn+1 = l, mais aussi lim
n→+∞

x2n + a

2xn
=
l2 + a

2l
(la limite l étant supérieure ou égale à

√
a ne peut être nulle). Par conséquent, on doit avoir (en reprenant l’égalité prouvée à la

question 3.a) l =
l2 + a

2l
, soit l2 = a, et donc l =

√
a puisque l est nécessairement positive.

4. (a) C’est un calcul direct : vn+1 =
xn+1 −

√
a

xn+1 +
√
a
=

x2n+a
2xn

+
√
a

x2n+a
2xn

+
√
a
=
x2n − 2xn

√
a+ a

x2n + 2xn
√
a+ a

=
(xn −

√
a)2

(xn +
√
a)2

=

v2n.
(b) À partir du résultat de la question précédente, on montre facilement par récurrence que,

∀n ∈ N, vn = (v0)
2n . C’est bien entendu vrai au rang n = 0 puisque (v0)

20 = v10 = v0,

et si on suppose la propriété vraie au rang n, alors vn+1 = v2n =
(

(v0)
2n
)2

= (v0)
2n+1

,
ce qui prouve bien l’hérédité. On déduit de cette égalité et de la définition de la suite vn
que |xn − √

a| = |xn +
√
a| × v2

n

0 (on sait que v0 est un nombre positif). Il suffit alors
de constater que xn +

√
a 6 x0 +

√
a 6 2x0 pour conclure (puisque la suite (xn) est

décroissante de premier terme x0 = a).

5. (a) La relation de la question 3.a peut se réécrire dans ce par particulier xn+1 =
x2n + 2

2xn
=

xn

2
+

1

xn
. À partir de x0 = 2, on calcule donc successivement x1 = 1 +

1

2
=

3

2
; x2 =

3

4
+

2

3
=

9 + 8

12
=

17

12
et enfin x3 =

17

24
+

12

17
=

289 + 288

408
=

577

408
(oui, quatre premiers

termes, ça s’arrête bien à x3).

(b) On applique bien sûr l’inégalité démontrée en question 4.b : 2x0 = 4, et v0 =
2−

√
2

2 +
√
2
<

1

3
,

puisque 2−
√
2 < 1 et 2 +

√
2 > 3. Cela suffit à obtenir la majoration souhaitée.
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(c) Il suffit d’après la question précédente d’avoir
4

3(2n)
6 10−6, soit 32

n

> 4 000 000. Or,

32 = 9, 34 = 81, 38 = 812 = 6 561, et le carré de ce dernier nombre est déjà bien supérieur
à 4× 106, donc n = 4 suffit. La suite (xn) converge en fait très très vite vers

√
2.

Problème 2 : autour de la série harmonique (***)

1. (a) Une question triviale pour commencer en douceur : Hn+1−Hn =

n+1
∑

k=1

1

k
−

n
∑

k=1

1

k
=

1

n+ 1
>

0, donc la suite (Hn) est strictement croissante.

(b) Commençons par calculer H2n−Hn =

2n
∑

k=1

1

k
−

n
∑

k=1

1

k
=

2n
∑

k=n+1

1

k
. Cette dernière somme est

constituée de n termes, et chacun d’entre eux est supérieur ou égal à
1

2n
, donc la somme

est bien supérieure ou égale à
n

2n
=

1

2
.

(c) La suite étant croissante, si elle était majorée, elle convergerait nécessairement vers une
limite l. Mais alors on aurait lim

n→+∞
H2n − Hn = l − l = 0, ce qui est complètement

incompatible avec le résultat démontré à la question précédente. La suite ne peut donc
pas être majorée, ce qui implique qu’elle diverge vers +∞.

2. (a) Calculons donc : u1 =
2
∑

k=1

1

k
= 1 +

1

2
=

3

2
; u2 =

4
∑

k=2

1

k
=

1

2
+

1

3
+

1

4
=

13

12
; u3 =

1

3
+
1

4
+
1

5
+
1

6
=

19

20
. La suite (un) semble décroissante. De l’autre côté, v1 =

1
∑

k=1

1

1 + k
=

1

2
;

v2 =

2
∑

k=1

1

2 + k
=

1

3
+

1

4
=

7

12
, et v3 =

3
∑

k=1

1

3 + k
=

1

4
+

1

5
+

1

6
=

37

60
. Cette deuxième suite

semble croissante.

(b) Commençons par étudier la monotonie des deux suites : un+1 − un =

2n+2
∑

k=n+1

1

k
−

2n
∑

k=n

1

k
=

1

2n+ 1
+

1

2n+ 2
− 1

n
=
n(2n + 1) + n(2n + 2)− (2n + 1)(2n + 2)

n(2n+ 1)(2n + 2)
=

2n2 + n+ 2n2 + 2n− 4n2 − 6n− 2

n(2n+ 1)(2n + 2)
−2

n(2n+ 2)
< 0, donc la suite (un) est bien décroissante. De l’autre côté, vn+1 − vn =

n+1
∑

k=1

1

n+ 1 + k
−

n
∑

k=1

1

n+ k
=

n+2
∑

k=2

1

n+ k
−

n
∑

k=1

1

n+ k
=

1

2n+ 1
+

1

2n + 2
− 1

n+ 1
=

1

2n+ 1
−

1

2n+ 2
> 0, donc (vn) est décroissante.

Enfin, en effectuant un changement d’indice j = k+n (on peut, n est une valeur fixée),

on a vn − un =
2n
∑

j=n+1

1

j
−

2n
∑

k=n

1

k
= − 1

2n
, qui a certainement une limite nulle. Les deux

suites sont donc adjacentes et convergent vers une même limite.

3. (a) La méthode suggérée par l’énoncé consiste à constater que, ∀x ∈ [k, k + 1], on a l’enca-

drement
1

k + 1
6

1

x
6

1

k
(décroissance de la fonction inverse). Comme l’encadrement est

valable sur tout l’intervalle, on peut intégrer les inégalités pour écrire
∫ k+1

k

1

k + 1
dx 6

∫ k+1

k

1

x
dx 6

∫ k+1

k

1

k
dx. Les deux intégrales à gauche et à droite sont des intégrales
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de constates sur un intervalle de largeur 1, elles valent donc respectivement
1

k + 1
et

1

k
.

Et, bien sûr,
∫ k+1

k

1

x
dx = [ln(x)]k+1

k = ln(k + 1) − ln(k), dont découle l’encadrement

demandé.

Méthode plus rustique : on pose f(x) = ln(x + 1) − ln(x) − 1

x+ 1
, la fonction f

est bien définie et dérivable sur ]0,+∞[, de dérivée f ′(x) =
1

x+ 1
− 1

x
+

1

(x+ 1)2
=

x(x+ 1)− (x+ 1)2 + x

x(x+ 1)2
= − 1

x(x+ 1)2
< 0. La fonction f est donc strictement décrois-

sante. Or, f(x) = ln

(

x+ 1

x

)

− 1

x+ 1
= ln

(

1 +
1

x

)

− 1

x+ 1
a une limite nulle quand x

tend vers +∞. On en déduit que f est toujours positive.

On recommence ensuite avec g(x) =
1

x
− ln(x + 1) + ln(x), avec cette fois g′(x) =

− 1

x2
− 1

x+ 1
+

1

x
= − 1

x2(x+ 1)
< 0. Encore une fonction décroissante à limite nulle en

+∞ (calcul très similaire au précédent), donc positive sur ]0,+∞[.

(b) Si on reprend l’inégalité de droite de l’encadrement précédent et qu’on la somme pour

les valeurs de k comprises entre 1 et n, on trouve
n
∑

k=1

ln(k + 1) − ln(k) 6

n
∑

k=1

1

k
, donc

ln(n + 1) − ln(1) 6 Hn (la somme de gauche est télescopique), c’est bien la première
moitié de l’encadrement demandé pour Hn. Pour obtenir la moitié de droite, décalons les
indices dans l’inégalité de gauche de l’encadrement de la question a : si k > 2, on peut

écrire
1

k
6 ln(k) − ln(k − 1). Là encore, on va sommer ces inégalités, mais on ne peut le

faire qu’à partir de k = 2 :
n
∑

k=2

1

k
6

n
∑

k=2

ln(k)− ln(k − 1), ce qui donne Hn − 1 6 ln(n) (il

manque le premier terme dans la somme de gauche pour reconnaitre Hn), ce qui implique
bien Hn 6 ln(n) + 1.

(c) Commençons par étudier les monotonies : an+1 − an = Hn+1 −Hn − ln(n+ 1) + ln(n) =
1

n+ 1
−ln(n+1)+ln(n) 6 0 d’après l’inégalité de gauche de l’encadrement de la question a.

La suite (an) est donc décroissante. De même, bn+1−bn =
1

n+ 1
− ln(n+2)+ln(n+1) > 0

(c’est l’inégalité de droite de l’encadrement de la question a, mais décalé d’une unité). La

suite (bn) est donc croissante. Enfin, an−bn = ln(n+1)− ln(n) = ln

(

1 +
1

n

)

a une limite

nulle. Les deux suites sont donc adjacentes, elles convergent vers une même limite.

(d) En effet, en reprenant le changement d’indice de la question 2.c, vn =
2n
∑

k=n+1

1

k
= H2n−Hn.

Comme on sait que ln(2n) = ln(2) + ln(n), on peut faire une astuce belge étonnante en
écrivant vn = H2n − ln(2n) + ln(n) − Hn + ln(2). Or, lim

n→+∞
Hn − ln(n) = γ (question

précédente), et donc lim
n→+∞

H2n−ln(2n) = γ également. Il ne reste donc plus que lim
n→+∞

vn =

γ−γ+ln(2) = ln(2). Ce genre de calcul pourra être écrit de façon beaucoup plus naturelle
quand nous aurons étudié la négligeabilité et les notations qui vont avec.
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Problème 3 (***)

1. On part donc de u0 = 1 et u1 = 0 avant d’appliquer la relation de récurrence : u2 =
1

2
(12 +

02) =
1

2
, puis u3 =

1

2

(

0 +
1

4

)

=
1

8
et enfin u4 =

1

2

(

1

4
+

1

64

)

=
17

128
(oui, cinq termes, ça

s’arrête bien à u4 quand on part de u0).

2. (a) Si (un) est constante égale à k (avec bien sûr k > 0), la relation de récurrence implique

que k =
1

2
(k2 + k2), donc que k = k2, ce qui implique k = 0 ou k = 1. Réciproquement

les deux suites constantes égales à 0 et à 1 sont bien des éléments de S.

(b) Supposons donc que, pour un certain entier n, on ait un = un+1 = 1, alors on démontre
par récurrence double que, ∀p > n, up = 1 (c’est le cas aux rangs n et n+1 par hypothèse,
ce qui donne l’initialisation de la récurrence double ; et si on suppose uk = uk+1 = 1 pour

un certain entier k > n, alors uk+2 =
1

2
(12 + 12) = 1, ce qui prouve l’hérédité). Il faut

toutefois aussi prouver que les termes d’indice inférieur à n sont aussi égaux à 1 si on veut
la suite soit réellement constante. Supposons que ce ne soit pas toujours le cas, et notons
n0 le plus grand entier tel que un0

6= 1. On a alors par définition de n0, un0+1 = un0+2 = 1,

donc en appliquant la relation de récurrence définissant un au rang n0, 1 =
1

2
(1 + u2n0

),

donc u2n0
= 1. Tous les termes de la suite (un) étant positifs (récurrence double triviale si

on tient à être rigoureux), on a nécessairement un0
= 1, ce qui contredit notre hypothèse

et prouve par conséquent que tous les termes de notre suite sont bien égaux à 1.

(c) Supposons donc qu’un certain terme un soit égal à 0, avec n > 2. Alors un = 0 =
1

2
(u2n−2 + u2n−1), ce qui implique manifestement que un−1 = un−2 = 0 (une somme de

carrés ne pouvant être nulle que si chacun de ses termes est nul). Comme à la question
précédente, ce raisonnement peut s’étendre pour prouver que tous les termes d’indice
inférieur à n sont eux aussi nuls, et on prouve ensuite par récurrence double que la suite
est entièrement nulle.

3. Supposons donc que lim
n→+∞

un = l ∈ R, alors bien entendu on a aussi lim un+2 = l et limu2n+1 =

lim u2n = l2, et la relation de récurrence définissant (un) implique que l =
1

2
(l2 + l2). C’est la

même équation qu’à la question 2.a, on en déduit que l = 0 ou l = 1.

4. (a) Supposons donc, en plus des hypothèses 0 6 a 6 b 6
a2 + b2

2
, que b < 1, alors 0 6 b2 6

b < 1, et bien entendu on a aussi a2 6 b2 6 b par croissance de la fonction carré sur

[0, 1[. On en déduit que
a2 + b2

2
6

2b

2
= b, ce qui contredit les hypothèses initiales sauf si

toutes nos inégalités sont des égalités. C’est le cas uniquement si a2 = b2 = b = 0, donc
a = b = 0.

(b) Puisque
a2 + b2

2
6 a, on peut écrire a2+ b2−2a 6 0, donc (a−1)2−1+ b2 6 0, ou encore

b2 6 1− (a−1)2 6 1 (puisqu’un carré est bien sûr positif). Ceci suffit à affirmer que b 6 1.

5. Calculons donc un+3−un+2 =
1

2
(u2n+1+u

2
n+2)−

1

2
(u2n+u

2
n+1) =

u2n+2 − u2n
2

, qui est du même

signe que u2n+2 − u2n, et donc du même signe que un+2 − un puisque ces deux nombres sont
positifs (si on le souhaite, on factorise sous la forme (un+2 − un)(un+2 + un) pour rendre la
preuve plus évidente).

6. (a) Cela découle de façon évidente de la question précédente : puisque un+2 − un > 0, alors
un+3 − un+2 > 0, ce qui suffit à prouver ce qui est demandé.

(b) Prouvons par récurrence double la propriété uk 6 uk+1 à partir du rang n + 1. L’ini-
tialisation double découle de la question précédente, supposons alors que uk 6 uk+1 et
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uk+1 6 uk+2 pour un certain entier k > n+1. On peut à nouveau appliquer la question a
pour en déduire que uk+2 6 uk+3, ce qui prouve l’hérédité de la propriété et la croissance
de la suite à partir du rang n+ 1. Supposons désormais que la suite n’est pas strictement
croissante à partir du rang n + 3 (précision omise dans l’énoncé, on ne peut rien dire sur
les termes d’indice n + 1, n + 2 et n + 3 de plus qu’une simple croissance au sens large),
alors il existe donc un entier p > n + 3 tel que up = up+1 (une suite croissante qui ne
l’est pas strictement contient au minimum deux termes consécutifs égaux). En appliquant
la question 5, on en déduit alors que up−2 = up, et donc également que up−1 = up par
croissance de la suite. La suite contient donc trois termes (et même quatre) consécutifs
égaux, la valeur de ces termes ne peut être que 0 ou 1 (calcul déjà effectué deux ou trois
fois), et on a démontré à la question 2 que la suite était constante dans ces deux cas.

(c) Posons a = un+1 et b = un+2. Par hypothèse, un+1 6 un+2 6 un+3, soit a 6 b 6
a2 + b2

2
.

Sachant que b n’a pas le droit d’être nul (sinon toute la suite l’est, question 2.c), la question
4.a permet d’affirmer que b = un+2 > 1.

(d) En éliminant les suites constantes, la suite est strictement croissante à partir du rang n+3,
et va d’après la question précédente prendre des valeurs strictement supérieures à 1. Si elle
converge, c’est donc vers une limite elle-même strictement supérieure à 1, ce qui est exclu
par la question 3. Étant croissante (à partir d’un certain rang), la suite ne peut donc que
diverger vers +∞.

7. Ce sont exactement les mêmes étapes quà la question précédente : on prouve d’abord que
un+3 6 un+2 6 un+1 en utilisant la question 5. Ensuite, on prouve par récurrence double que
la suite est décroissante à partir du rang n+1 (exactement la même récurrence que ci-dessus
en changeant le sens des inégalités), puis que la suite est strictement décroissante à partir du
rang n + 3 (encore une fois, c’est pareil). Enfin, on applique la question 4.b avec a = un+2,

b = un+1 et
a2 + b2

2
= un+3, et on en déduit que un+1 6 1, et donc un+3 6 1. La suite étant

ensuite strictement décroissante et minorée par 0, elle converge nécessairement, et sa limite
est nulle puisqu’elle ne peut pas être égale à 1.

8. Calculons les premiers termes de la suite (un(
√
2, 0)) : u2 =

1

2
(2+0) = 1, puis u3 =

1

2
(0+1) =

1

2
, u4 =

1

2

(

1 +
1

4

)

=
5

8
et u5 =

1

2

(

1

4
+

25

64

)

=
41

128
. On peut s’arrêter là : u5 6 u4 et

u5 6 u3, donc la suite converge vers 0 d’après la question 7.

On fait pareil pour (un(2, 0)) : u2 =
1

2
(4 + 0) = 2, puis u3 = 2 (même calcul !), donc u3

est supérieur à la fois à u1 et à u2 et la suite diverge vers +∞ (question 6).

9. (a) Effectuons un raisonnement par l’absurde en supposant que u1 = u0. On distingue alors
trois cas selon la valeur de u2 :
• si u2 = u1, on a trois termes consécutifs égaux, et la suite est constante, cas exclu par

l’énoncé.
• si u1 < u2, alors la question 6 assure que la suite va diverger vers +∞, cas également

exclu.
• enfin, si u1 > u2, la question 7 assure cette fois-ci que la suite va converger vers 0, ce

qui n’est pas non plus autorisé.
On doit bien avoir u1 6= u0.

(b) Exactement le même principe qu’à la question précédente, on exclut les autres possibilités :
• si un+2 = un+1, la position de un+3 par rapport à ces deux valeurs identiques donnera

exactement les trois mêmes cas qu’à la question précédente (suite constante, divergeant
vers +∞, ou convergeant vers 0), qui sont exclus tous les trois. On en déduit que
un+2 6= un+1.

• si un+2 < un+1, on ne peut pas avoir un+2 6 un, sinon la suite convergerait vers 0
(question 7), donc un < un+2 < un+1.
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• si au contraire un+1 < un+2, on ne peut pas avoir un 6 un+2, sinon la suite divergerait
vers +∞ (question 6), donc cette fois un+1 < un+2 < un.

(c) On peut effectuer une récurrence en appliquant la question précédente pour prouver que,
pour tout entier n, on va avoir u2n < u2n+2 < u2n+1 et u2n+2 < u2n+3 < u2n+1. Au rang
0, l’encadrement u0 < u2 < u1 découle de la question précédente, puis l’inégalité u2 < u1
implique (toujours en utilisant la question précédente) que u2 < u3 < u1. Supposons main-
tenant les inégalités vraies au rang n, on part alors de u2n+2 < u2n+3 pour en déduire que
u2n+2 < u2n+4 < u2n+3 puis (en gardant l’inégalité de droite de l’encadrement précédent)
que u2n+4 < u2n+5 < u2n+3, ce qui prouve les deux encadrements souhaités au rang n+1.

On a en particulier prouvé qu’on avait toujours u2n < u2n+2 et u2n+3 < u2n+1, donc
la sous-suite (u2n) est strictement croissante, et la sous-suite (u2n+1) strictement décrois-
sante. Comme on a toujours u2n < u2n+1 < u1, la suite (u2n) converge vers une limite
finie l. De même, u2n+1 > u2n > u0 donc la suite (u2n+1) est minorée et converge vers

une limite finie l′. En passant à la limite dans la relation u2n+2 =
u2n + u2n+1

2
, on trouve la

relation l =
l2 + l′2

2
. De même, en passant à la limite la relation u2n+3 =

u2n+1 + u2n+2

2
, on

aura l′ =
l′2 = l2

2
, donc l′ = l. Les deux sous-suites (u2n) et (u2n+1) ayant la même limite,

on peut en déduire que la suite (un) converge vers cette même limite. Cette limite ne peut
pas être nulle puisque la suite est minorée par u0 > 0, elle est donc nécessairement égale
à 1.

(d) On a en effet prouvé que, quelles que soient les valeurs initiales, la suite (un) allait converger
vers 0, converger vers 1, ou diverger vers +∞, ce qui est exactement ce qui est demandé
dans cette question.

10. Il s’agit donc de représenter l’ensemble défini par l’équation
1

2
(x2 + y2) = 1, soit x2 + y2 = 2.

Il s’agit tout simplement d’un cercle de centre O et de rayon
√
2, ou plutôt d’un quart de

cercle puisqu’on se contente des valeurs de x et de y positives depuis le début de l’exercice.
Ce quart de cercle est représenté en rouge sur la figure en fin d’exercice.

11. On calcule cette fois u3(x, y) =
1

2

(

(

x2 + y2

2

)2

+ y2

)

, donc u3(x, y) = 1 si (x2+y2)2+4y2 =

8, soit (x2 + y2)2 = 8 − 4y2. Cette condition ne peut être vérifiée que si 8 − 4y2 > 0, soit
y 6

√
2. On aura alors (tout étant positif) x2 + y2 =

√

8− 4y2, soit (quand cela a un sens)

x =

√

√

8− 4y2 − y2. On pose donc h(y) =

√

√

8− 4y2 − y2, la fonction étant définie si

y 6
√
2, mais aussi si

√

8− 4y2 > y2, soit 8− 4y2 > y4 ou encore y4+4y2− 8 6 0. En posant
Y = y2, le trinôme Y 2 + 4Y − 8 a pour discriminant ∆ = 16 + 32 = 48 = (4

√
3)2, et admet

pour racines Y1 =
−4− 4

√
3

2
< 0, et Y2 =

−4 + 4
√
3

2
= 2

√
3 − 2 > 0. On en déduit que

Y doit être compris entre Y1 et Y2 pour que h soit définie, ce qui donne en remontant aux
valeurs de y, Dh = [0,

√

2
√
3− 2] (la borne supérieure étant facilement plus petite que

√
2).

Elle est dérivable sur cet intervalle sauf en
√

2
√
3− 2 où sa courbe admettra une tangente

verticale, et strictement décroissante sur son domaine de définition (c’est évident même sans
expliciter la dérivée, puisque y 7→

√

8− 4y2 et y 7→ −y2 sont toutes les deux décroissantes
sur ce segment, et qu’on compose par la racine carrée qui est croissante). On peut calculer

h(0) =
√

2
√
2 et h(

√

2
√
3− 2) = 0. Les plus courageux constateront qu’il y a une tangente

horizontale en 0. L’ensemble C3 est obtenu en prenant la courbe représentative de la fonction
h et en la symétrisant par rapport à la droite d’équation y = x, puisque h exprime x en
fonction de y (autrement dit, (x, y) ∈ C3 si x = h(y), ou encore si y = h−1(x), en notant
bien sûr h−1 la réciproque de la fonction h. L’ensemble C3 est représenté en bleu sur la figure
ci-dessous.
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12. Si un point (x, y) appartient à la fois à C2 et à C3, la suite (un(x, y)) aura deux termes consécu-
tifs égaux à 1, elle est donc nécessairement constante égale à 1, ce qui implique que x = y = 1.
Autrement dit, le point de coordonnées (1, 1) est le seul à appartenir aux deux ensembles. La
courbe C3 est donc en-dessous du quart de cercle C2 sur l’intervalle [0, 1] (puisqu’elle coupe

l’axe des ordonnées en
√

2
√
3− 2 <

√
2) et au-dessus ensuite. Une allure des deux ensembles :

0 1

0

1

13. Tout point (x, y) qui se trouve à la fois à l’intérieur (strictement) de C2 et à l’intérieur de C3
vérifie u2 < 1 et u3 < 1 (les inégalités auraient du être strictes dans l’énoncé), donc appartient
à l’ensemble E0 puisque la suite va alors converger vers 0. De même, tout point strictement à
l’extérieur de C2 et de C3 appartiendra nécessairement à E∞. Ce magnifique problème était un
extrait (seulement !) d’un vieux problème de concours PT (Centrale 1989, à l’époque on savait
rigoler), où on se proposait ensuite de faire beaucoup mieux, en prouvant que toute demi-droite
issue de l’origine dans (R+)2 contenait exactement un point (x, y) appartenant à E1, tous les
points de la demi-droite étant situés du côté de ce point contenant l’origine appartenant à
E0 et tous les autres à E∞. Autrement dit, il existe une courbe traversant le quart de plan
depuis l’axe des ordonnées jusqu’à l’axe des abscisses et correspondant à l’ensemble E1. Les
points situés en-dessous de cette courbe sont dans E0, ceux situés à l’extérieur sont dans E∞.
Cette courbe se situe quelque part entre les courbes C2 et C3.
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