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Exercice 1 (***)

Soit ]a,b[ un intervalle ouvert de R, notons e = b — a la largeur de 'intervalle. Le réel e étant

1
strictement positif, il existe nécessairement une valeur de n pour laquelle on < e (cela revient a dire
In(e)
In(2)

1
que 2" > —, ce qui se produira par exemple pour n = Ent ( > + 1). Fixons alors cette valeur
e

k
de n, et posons p = max {k‘ €7 on < a}. Un tel entier existe nécessairement, car on peut toujours

trouver un entier relatif tel que on < a, donc I'ensemble est non vide, et il est majoré par 0 lorsque

1 1 p+1
2—n<a+2—n<a—|—e:b.0r, on

sinon la minimalité de 'entier p serait contredite. On en déduit que 2% €la, b|, ce qui prouve bien la

a < 0, et par a x 2" lorsque a > 0. Par construction, > a,

densité de notre ensemble dans R.

Exercice 2 (**)

e Soit donc un réel M > 0 (si M < 0, il suffit de prendre ng = 2 pour que la définition de la
limite soit vérifiée). On aura n? —2n > M dés que (ce n’est pas une équivalence) n—2 > /M
(puisqu’alors n > /M, et n? = n(n—2) > M). Il suffit donc de prendre ng = Ent(24++v/M)+1
pour satisfaire la définition de la limite infinie.

3
on+3 - 9 3 il suffit donc de prendre un ng

strictement supérieur a cette quantité (je vous épargne le coup de la partie entiére augmentée
d’un) pour satisfaire a la définition de la limite nulle.

1 _
e Soit € > 0, on calcule n —2= . On aura donc
n+1 n+1

: 1 : 1. 1
e Soit e >0, —— < es8i2n+3 > —, soit n > —

2n —1
n-+1

-2

< esl

< g, soit
n+1 ’

3 . .
n > — — 1, ce qui donne facilement une valeur de ng convenable.

€
e Soit M > 0 (si M < 0, encore une fois, ce n’est pas trop dur de rendre y/n + 3 plus grand que
M). On aura v/n + 3 > M dés que n > M2 —3. Il suffit donc de prendre ng = Ent(M?—3)+1.

Exercice 3 (* a **)

3n2n 3\" 1\"
e On peut écrire u, = o <Z> — <§> . La suite est donc une différence de deux

suites géométriques dont les raisons sont comprises entre —1 et 1. Ces deux suites convergent

donc vers 0, et lim u, = 0.
n—-+00
e On peut développer : u, = 2™ —ne™". On sait que lim e~
n——+0o0o

" = 0, donc le premier terme

de la différence tend vers 0. Le deuxiéme peut s’écrire sous la forme —, c’est un cas d’école
e



de croissance comparée, il tend également vers 0. Conclusion : lim w, = 0.
n—-+o0o

e Pour un quotient de polynéme, vous étes autorisés a utiliser la régle du quotient des termes
n%—3n+2 . n? 1

de plus haut degré : ngrilmm ngr-q{looﬁ = 3

e Utilisation de la quantité conjuguée trés conseillée pour ce calcul :

(Vn?—1-n)(Wn?—1+n) n?—-1-n? -1
VnZ—1+4+n S VnZ—1+4n Vn2i—14n

Le dénominateur de cette fraction ayant clairement pour limite +oo, llI_’I_l Uy = 0.

I'x 1 2
e La principale difficulté est la manipulation des factorielles : u, = z ((nQ—:_ 1)) X(n'—i— ) =
n n!

Up =

(n+1)(n+2) n®+3n+2
n?+1 - n2+1

obtenir lim wu, = 1.
n—-4o00

. Reste a utiliser la régle des termes de plus haut degré pour

-1
e [l faut simplement faire les choses méthodiquement. D’un c6té, lim — = 0,donc lim e ~

n——4o00 2n n—-+o0o
n
e’ = 1, de lautre coté, en utilisant la régle des termes de plus haut degré, lim
n—+oon + 2
lim = = 1, donc lim In ( & > = In(1) = 0. Il ne reste plus qu’a additionner les deux
n——4oon n——4o00 n-+2
termes pour obtenir lim u, = 1.

n—-+0o
e On peut factoriser si on le souhaite numérateur et dénominateur par n, mais le plus simple

reste stirement d’encadrer le quotient en utilisant que —1 < sin(n) < 1 et —1 < cos(n) < 1.
n— 2

On obtient ainsi, Vn > 2, —— < u, < L, soit 1 — <u, <1+ . Les
n+1 n—1 n+1 n—1

deux membres extrémes de ’encadrement ayant la méme limite 1, le théoréme des gendarmes

permet d’affirmer que lim u, = 1.
n—-+0o0o

e2n —e 2n

(e = (% - 1) -

+ e~ ™. Une simple application des régles de calcul sur les sommes et produits de limite

e Revenons & la définition du sinus hyperbolique : u,, =

—2n

permet alors d’obtenir lim wu,, = +oc.
n— +oo

e Pour celle-ci, difficile de s’en sortir sans équivalents (que nous n’avons pas encore etudles N,
1,

ou du moins sans une utilisation subtile des taux d’accroissement : comme lim 1 —|— — =
n—-+oo n

2
In(l1+4 %) —In(1 2
on peut dire que lim 1+ ) W =1In'(1) = 1, soit lim n?In <1 + ﬂ—2> = 72. Or,
n

n—-+o0o 1 + 7"_3 n—-4o0o

2 2
n\/ In <1 + 7T—2> = \/ n21In <1 + 7T—2> , donc tout ce qui se trouve dans la tangente définissant
n n

.o Vrr o7 . m
Uy, a pour limite = — et lim u, =tan (—) =1.
4 n—+o0 4

Exercice 4 (**)

c
Les deux conditions peuvent se traduire de la fagon suivante : — = 5= et 2b—a=3c—2b=q
a

(comme a est supposé non nul, b et ¢ ne peuvent pas non plus étre nuls). La premiére relation revient &
dire que b = aq et ¢ = bg = aq?, d’otl, en remplacant dans la deuxiéme équation, 2aq—a = 3aq® —2aq,
d’ott 3aq? — 4aq + a = 0, soit en factorisant par a qui est supposé non nul 3¢> — 4g + 1 = 0. Cette

équation du second degré a pour discriminant A = 16 — 12 = 4, et admet deux racines réelles
4+2 4 -2
qQ = % =1, et go = & — 3 Si g = 1, la condition 2ag — a = q donne a = 1, puis



1 2 1 1 1
b:aqzletc:qul;etsiq:§,onobtient ga—azg,soita:—l,puisb:ga:——

3
1
et ¢ = gb = ——. Les deux seules possibilités sont donc d’avoir a = b = ¢ = ¢ = 1 (auquel cas les
trois termes consécutifs de la suite géométrique sont 1, 1 et 1, et les trois termes consécutifs de la
1
suite arithmétique sont 1, 2 et 3), ou ¢ = 3 donca=-1,b= -3 et c = ~9 (auquel cas les trois

1
termes consécutifs de la suite géométrique sont —1, -3 et —g’ et les trois termes consécutifs de la

1
suite arithmétique sont —1, —3 et —g)

Exercice 5 (*)

1. La suite (uy) est arithmético-géométrique, d’équation de point fixe x = 4z — 6, ce qui donne
x = 2. On pose donc v, = u, — 2, et on vérifie que la suite auxiliaire est géométrique :
Upt1 = Upt1 — 2 = 4up — 6 — 2 = 4u,, — 8 = 4(u,, — 2). La suite (v,) est donc géométrique de
raison 4, et de premier terme vy = ug—2 = —1. On a donc v,, = —4", puis u,, = v,+2 = 2—4".

2. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique 2> —3z+2 = 0, qui a pour

3+1 —
discriminant A = 9 — 8 = 1, et admet deux racines réelles r = % =2ets= —5 = 1.
La suite (uy,) a donc un terme général de la forme u,, = a2™ + 3, avec, en utilisant les valeurs
initiales, ug = a+ 8 = 0 et u; = 2o+ § = 1. En soustrayant les deux équations on obtient
a=1, puis § = —a=—1, donc u, =2" — 1.

3. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique z2 — 62 +9 = 0, qui a
pour discriminant A = 36 — 36 = 0, et admet une racine double » = — = 3. La suite (uy) a
donc un terme général de la forme u, = (a + n)3", avec, en utilisant les valeurs initiales,
up = ax3% =0etu; = (a+F)x3! = 1. La premiére équation donne o = 0, puis la deuxiéme

donne = 37 d’ott uy, = gn?)” =n3""! (formule valable seulement si n > 1).

1
4. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique 2 — §m —5= 0, qui a
1,3
pour discriminant A = 1 +2= 1 et admet donc pour racines r; = 2—2 =1 (qui était aussi
173 n
une racine évidente), et 7y = 2 5 2 — —5 On peut donc écrire u, = a+ f <—§> . Avec les
2
conditions initiales données, ug = o+ =1et u1 = a— §ﬁ = 2, donc 55 = —1, soit § = —3
i > (0] lut > + .
uis « = —. On conclut que u, = - + ———.
P 3 dUe tn = 5T 5Tyt
U U
Autre méthode, posons donc v, = upi1 — Up, alors vp41 = Upys — Uptl = %—i_n —

Up — Un+1
2
1\" 1\"
terme vy = u1 —ug = 1, donc v, = <—§> . On en déduit que upy1 = up + <—§> pour tout

1
Upy1 = = —ivn. La suite (vy,) est donc géométrique de raison —5 et de premier

n—1

1

k
entier n. On peut alors écrire u, = ug + Z <—§> (si ¢a ne vous semble pas clair, faites
k=0

1— (=L 2 1\" 5} 1
une belle récurrence), donc u, = 1 + %%2) =1+ 3 (1 + <_§> > ~ 3 + 3(—2)n 1’

On retrouve bien str la méme expression.

5. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique 322 — 42 4+ 1 = 0, dont

442
le discriminant vaut A = 16 — 12 = 4, et qui admet donc deux racines r = % =1, et



s = 45%2 = é On en déduit la forme générale de la suite : u, = a + 3% En utilisant les
valeurs des deux premiers termes, on a ug = a+ 8 =2 et u; = a+ % 8= EO En soustrayant
les deux équations, on obtient %5 =2 % =3 soit § = —2, puis &« = 4. On a finalement
Uy =4 — 3%

6. Considérons d’abord la suite (vy,) pour laquelle vg = 1, v; = 11, vy = 111 etc (attention au
décalage, le nombre contenant n chiffres 1 correspond donc au terme d’indice n — 1 de la suite
(vp)). Une fagon de la décrire est de dire que vg = 1 et que Vn € N, v,41 = 10v, + 1 (en
effet, quand on multiplie par 10, on ajoute un 0 & la fin, et en ajoutant 1 on le transforme
en 1). Autrement dit, la suite (v,) est arithmético-géométrique. Son équation de point fixe

xz = 10x + 1 a pour solution x = ~3 On pose donc w,, = v, + g’ la suite (wy,) devrait étre

1 1 1
géométrique, ce qu’on vérifie sans peine : wy11 = vp41 + 9 = 10v, +1+ 9 =10 <vn + §> =

1 10
10w,,. La suite (wy,) est donc géométrique de raison 10 et de premier terme wg = v+ =79
10m+! 1 1mtt—1
Autrement dit, w, = , et v, = w, — 9 = — 9 Reste a calculer u,, c’est-a-
n—1 1 n—1
3 A 3 : . — _ k+1 —
dire & calculer les sommes partielles de la suite (vy,) : u, = kz_ovk =3 ;10 1=

10 1-10" n—-1 1W0"-1 n-1

X — = _
9 1-10 9 81 9
7. Séparons donc parties réelle et imaginaire en posant z, = a, + ib,. On peut alors écrire

1
ag = 0, by = 2, et pour tout entier n, an41 + tbpyr1 = §(2an + 2ib, — a, +iby,) = gan + ib,,.
1
Autrement dit, an4+1 = gan et bp+1 = by. La suite (b,) est donc constante égale a 2, et la

1
suite (a,) géométrique de raison - et de premier terme 0. Ah ben en fait on a donc toujours

zn, = 21 (c’était bien la peine de se fatiguer).

Exercice 6 (**)

Notons donc v, = u, +an?+bn+c, alors v, 1 = Unp1+a(n+1)2+b(n+1)+c = 2u, +2n% —n+
an?®+2an+a+bn+b+c = 2u, + (a+2)n?+ (2a+b—1)n+a+b+c. Pour que (v,) soit géométrique,
on doit avoir v,41 = qu, = qu, + aqn® + bgn + cq. 11 est nécessaire d’avoir ¢ = 2, et en identifiant
ensuite les coefficients des deux formules obtenues, on a a+2 = 2a, 2a+b—1=2bet a+b+c = 2c¢,
ce qui donne successivement a = 2, puis b = 2a — 1 = 3, et enfin ¢ = a + b = 5. Avec ces valeurs, la
suite (vy,) est géométrique de raison 2 et de premier terme vy = up + a x 0°4+bx0+c=2+5=T1.
Conclusion de ces calculs : v, = 7 x 27, puis u, = v, —an® —bn —c =7 x 2" — 2n%> — 3n — 5.

Exercice 7 (**)

Par hypothése, on sait déja que Vn € N, u, < 1 et v, < 1. De plus, la convergence du produit
assure que, Ve > 0, Ing € N, Vn > ng, 1 — e < u,v, < 1 (avec les hypothéses faites sur (uy,) et (vy,),
le produit ne peut certainement pas étre supérieur a 1). Or, u,v, < u, puisque v, € [0,1], ce qui
assure que, Vn = ng, 1 —e < upv, < uy, < 1, et done que la suite (u,) converge vers 1. Par symétrie,
(vp,) converge également vers 1.



Exercice 8 (***)

1. La suite étant & valeurs strictement positives, la limite [ est elle-méme positive ou nulle.

1+1
Sil < 1, posons I = %, qui est un réel strictement compris entre 0 et 1. En posant
U
e =1' =1 > 0, on peut trouver un rang ng a partir duquel on aura o re =1
Un,

) .. Unp, _
Une récurrence triviale permet alors de prouver que, Vn > ng, — < "™ (en effet, c’est
) 0 )
no

un + 1 _

vrai au rang ng de fagon évidente, et on peut prouver ’hérédité en écrivant que
Uny
Un+1 u
n—+ X _n < l/ X lln
Un Ung
donc Vn = ng, un < up ™™, et ce majorant est le terme général d’une suite géométrique de
raison strictement inférieure & 1 (et positive), donc convergeant vers 0. Comme par ailleurs la

en exploitant la remarque précédente et 'hypotheése de récurrence). On a

suite (uy,) est minorée par 0, le théoréme des gendarmes permet d’affirmer qu’elle va converger
vers 0.

141

2. C’est le méme principe : on pose toujours I’ = et on aura cette fois 1 < I’ < [. On

N . Un+1 ~ .
note donc € = — I’ et on trouve un rang ng a partir duquel 1 S I, La méme récurrence
U

n
que tout a I’heure prouve alors que, Vn > ng, U, = up, X I""""0, avec cette fois-ci une suite
minorante qui est géométrique de raison strictement supérieure a 1. La suite (u,) tend donc
vers +00.

3. Dans ce dernier cas, la suite (u,) peut avoir n’'importe quelle limite non nulle (il suffit de

. . 1 Un+1
prendre la suite constante égale a [), ou bien converger vers 0 (on pose u, = —, et ntl
n

Un
n-+1

1 . .
= 1+ — a bien pour limite 1), ou tendre vers 400 (on peut par exemple prendre

n n
simplement u,, = n). Bref, aucune conclusion intéressante n’est possible.

Exercice 9 (***)

1. Assez clairement n? + n > n?, mais on peut aussi affirmer que n> +n < n? +2n +1 =

(n +1)2. On déduit de ces passionnantes constatations que n < vVn2+n < n + 1, et donc

que |vn? 4+ n] =n. On peut alors calculer explicitement (avec une petite multiplication par
2 2

n“+n-—n

n
Vn2+n4+n Vnlitn+n

. Cette derniére expression ayant pour limite 37 la suite (uy,), si elle converge,

la quantité conjuguée en passant) u,2,, = Vn2+n—n=

1
1+4/1+1
aura nécessairement pour limite 3 (toutes ses suites convergeant alors vers la méme limite
qu’elle).

2. (’est le méme raisonnement que ci-dessus : (nb)? = n?b? < n?b? + 2an < n?b> + 2bn + 1 =

2an
nb+1)2, donc |vV/n2b2 + 2an| = nb, et u, 22 = vVn?b? + 2an—nb = =
( 2) I_ J n2b%+2an \/m+ nb
a

b+ /b+ 28

3. C’est évident pour tout rationnel appartenant a [0, 1], mais un peu moins si [ est irrationnel.
Dans ce cas, on peut construire une sous-suite de la fagon suivante : pour tout entier k, la

. . a
, qui converge facilement vers 7

a a
densité des rationnels dans [0, 1] assure qu'il existe un nombre rationnel 7 tel que |l — E‘ <
1
% On fixe ce rationnel et, en appliquant la définition de la limite & la sous-suite construire



a 1
—| < —. On fixe alors
b 2n
o(k) = n0b2 +2ang (si jamais cet entier est inférieur a un entier déja sélectionné pour une plus
petite valeur de k, on va en chercher un plus grand, les inégalités restant vraies a partlr du rang

a la question précédente, on trouve un entier ng tel que |u n2b242ang

ng, ¢a ne pose aucun probléme). Par construction, on aura ]uw(k) =1 < ‘ Up(k) — ‘—i—‘ b l‘

—, ce qui prouve la convergence de la sous-suite ainsi construite vers [.
n

Exercice 10 (**)

1. La suite (uy) est une suite récurrente. Nous n’avons malheureusement pas encore vu en classe
comment traiter ce genre de suite de fagon systématique, on va donc s’en sortir avec les

1 a
moyens du bord. Cherchons & déterminer sa monotonie : un,+1 — Uy = Eun + C Uy =
Unp
a 1 a — u? a—u a+u o
— — —uy, = - (Va n) (Ve n) Une récurrence triviale permet de prouver que
2u, 2 2u, 2u,

tous les termes de la suite sont positifs : ¢’est vrai pour ug par hypotheése, et si u, > 0, a étant
lui-méme positif, u, 11 le sera également. Le facteur v/a + u,, est donc aussi positif, et le signe
de up4+1 — u, ne dépend que de la position de w, par rapport a y/a. Posons donc pour nous

aider f(x) = 2%+ Qi (de fagon & avoir f(u,) = un41). La fonction f est dérivable sur R1*,
T
1 2—
de dérivée f'(z) = 3 ;Lz = %. Cette dérivée s’annule en +/a, la fonction f y admet
T T
un minimum de valeur f(y/a) = \/—— ——= = /a. On en déduit que, Yz > 0, f(z) > Va.

\/_

_|_
En particulier, Vn € N, w41 = f (un) > +/a, et up41 — uy est donc nécessairement négatif a
partir du rang 1 (pour n = 0, cela dépend de la valeur choisie). La suite est donc décroissante

a partir du rang 1. Etant minorée par 0, elle converge nécessairement vers un réel [. Revenons

3 la relation de ré déterminer [ : i Let lim u, + -2 I+
a la relatlon de recurrence pour dadeterminer . 1m u = e 1m —-u _— = = —
P ntoo P T O L 2 M 2y, 20 2D

. . [ a R .
donc on doit avoir | = 3 + — (notons au passage que [ ne peut pas étre nulle, sinon w4

ne converge plus), soit 21> = [?> + a, donc | = y/a (impossible que la limite soit négative).
Conclusion : la suite (u,) converge vers /a.

Uni1 = VA _ 3t — Ve ud ta—2Vau, (= va)?
Uni1 tVa  Jun+ 5= —va  udtat2Vau,  (up +a)?

2. Calculons donc vy, 41 =

) 2n . .

v2. On peut alors prouver par récurrence que v, = v((] ). En effet, c’est trivialement vrai
- 2 (2")y2 (2x2") (@)

pour n = 0, et si on le suppose au rang n, alors v, 1 = v; = (v5 ')* = v, =, , la

propriété est donc vraie au rang n + 1 et la récurrence fonctionne.
3. D’apres la question précédente, u, — v/a = v%n (uo + v/a) (méme pas besoin de majoration,
on a la valeur exacte). Pour a = 2, et par exemple ug :nl (sans valeur de wg, l'application
V2 —
1+ \f

dans la puissance pour prendre la valeur absolue). I1 suffit donc de prendre un n pour lequel

numeérique est impossible), on a u, — V2 < x (1 ++/2) (on a changé le signe

2—-1
2" In <\\j_m> > —1001n(10) — In(1 + v/2), ce qui donne 2" > 132, soit n > 8 (encore un

coup de In si on veut étre trés précis). Il suffit donc de prendre le terme d’indice 8 de la suite
pour avoir une valeur approchée de la limite correcte a 107100 pres!



Exercice 11 (**%*)

1 1
1.Oncalculedoncu1:I+I:2,v1:u1:26tw1:0+1:1.
. 1 1 1 5 2
Pu1su2:I+§—|—I:§,v2—|—2u2:5€tw2:0+§—|—2x2:5.
1 1 1 1 8 6 6
Enfi =4+ -+ -—+-== = 6uz = 16 et =04+ -+2x=-+3x6=24.
nfin, us 1+3+3+1 3,1}3 U3 et ws +3+ 3+

n n
2. En exploitant la symétrie des coefficients binomiaux < /<:> = < k)’ on se rend compte
n—

qu’en remplacant k par n — k dans la somme, les deux expressions sont effectivement égales
(on se contente en fait d’effectuer la somme en sens inverse). On a donc, en développant,

n! n! ) nv
n = g Noos — g k‘T:nxn!un—wn,801t2wn:m)netdoncwn:—n.
(%) () 2
k=0 \k k=0 \k

n n x n!
3. On sait déja que w, = 5Un =

uy,. Effectuons par ailleurs un calcul astucieux : w, =
n

Z(kz + 1 — 1) (on applique une bonne vieille astuce belge). En séparant le facteur en

= T )

" (k+1)n! 1 [n
k+1 et —1, on trouve alors w,, = Z ——— — nlu,. Or, on peut écrire que —< > =
— (3 k+1\k
! 1 1
( k:)T'L(k 1) = o <Z::__1> (c’est une variante de la formule sans nom), donc w, =
n—k)! ' n
“(n+1) xn! (n+1)! (e
Z B e = Z n+1 - = (n+1)! Z “iy — up. Onreconnait presque
k=0 (k+1) k=0 k+1) k=1 (")

dans la premiére somme la valeur de u,1, il ne manque que le terme numéro 0. Autrement

dit, on a wy, = (n+ 1)!(up41 — 1) — nluy,, donc %un = (n+ )Y (unt1 — 1) — nlu,. On divise
Up N nu,  (n+2)uy,

n+l 2n+2  2n+42

tout par n! : gun = (n+ 1)(upt1 — 1) — up, soit upy; — 1 =

C’est exactement la relation demandée.

1 1 1 1
4. On peut calculer uy = 1 —|— - 6 —|— -+ 1= 3 et en déduire & I'aide de la relation précédente
6 8 8 13 7 91 151
ue us =14+ —uyg =1 X =-=1+—-=—. Ensuite, u¢ =14+ —us =1+ — = —, et
ane s +104 +53 573 TR T TR w0
a 143 1+4><151 +151 256P N
enfin uy = =X — = —— = ——. Passionnan
! 15" 77 60 105 ~ 105
2n+1un+1 2n+1 2n+1
5. C’est un calcul tout béte exploitant la question 2 : ¢,41 = = + X
n-+2 n+2 n+4+2
n4+2 2n+1 2n+1 2n+1 on 2n+1
= = t
2 T na2 2mt )™ a2 nil™ a2
n k
2
6. On procéde par exemple par récurrence, en prouvant plus simplement que ¢, Z . . Au
k=0
rang 0, le membre de droite de la relation vaut 1 (un seul terme dans la somme égal a 1), ce
2n+1
qui est bien la valeur de tg. Supposons la relation vraie au rang n, alors t, 11 = P +t, =
n
2n+1 n 2l<; nt1 2l<;

" + 2 S 2 PR ce qui acheve la récurrence.

Exercice 12 (**)

1. Prenons par exemple € = 1 dans la définition et fixons p = ng : Ing € N, Vg = no, |ug—un,| <
1. A partir du rang ng, la suite (u,) est donc bornée par u,, — 1 et u,, + 1. On termine en



appliquant le méme raisonnement que pour montrer qu’une suite convergente est bornée :
I’ensemble des ng premiers termes de la suite étant fini, il est majoré et minoré. On prend le
minimum des deux minorants obtenus et le maximum des deux majorants pour obtenir des
bornes valables pour tous les termes de la suite.

€
2. Appliquons la définition de la limite au réel strictement positif 3" dng € N, Vn > ng,
€
|un, — 1| < =. Mais alors, par inégalité triangulaire, pour tout couple d’entiers (p,q) tous les

deux supérieurs & ng, on peut écrire |u, —uy| = |up —l+1—uq| < Jup =1+l —uq| < §+g =€,
ce qui prouve que la suite est une suite de Cauchy.

3. La suite étant bornée d’aprés la question 1, elle admet une sous-suite convergeant vers une
certaine limite [. Fixons alors un € > 0 et appliquons la définition de la suite de Cauchy a %
On peut donc trouver un entier ng a partir duquel on aura toujours |u, — ug| < i. Parmi
tous les termes d’indice supérieur ou égal & ng, il en existe correspondant & des termes de
la sous-suite convergeante tels que |u, —I| < 37 (c’est la définition de la convergence qui
l'assure), fixons p égal a 'un de ces indices. On peut alors écrire que, Vg > ng, |uqg — | =

€ € ) .
— 4+ —, ce qui assure trés largement la convergence

[ug — up +up — 1| < Jug —up| +[up — 1] < 237

de la suite (uy,) vers [.

Exercice 13 (**%*)

T+ a

1. Commengons donc par prouver la croissance de f sur R™*. On a f(z) = zln =zln(z+
x
1 z+a—z 1

a) — zlnz, donc f’(:c):ln(:c—i—a)%—xx?—lnx—l, et f(z) = x—l—a+ @+ a)y o=

_ 2 _ 2
wetatar—(@+a) = a < 0. La fonction f’ est donc strictement décroissante
z(x + a)? z(z + a)?

sur RT™. Or, f/(z) =In (1 + 2) + % —1 a pour limite 0 en 400 (en effet, ce qui se trouve
x x+a

dans le In a pour limite 1 donc le terme avec le In tend vers 0, et en conservant les termes

x
de plus haut degré, lim = 1). Il est inutile ici (méme si ce n’est pas spécialement
T—=>+00X + a

difficile) de calculer la limite de f’ en 0, on peut déja conclure que f” est toujours positive, ce
dont on déduit que f est bien croissante.

Il faut maintenant faire le lien avec la suite (uy,) en remarquant que In(u,) = nln <1 + ﬂ) =
n

f(n). La fonction f étant croissante, on aura certainement, pour tout entier n, f(n) < f(n+1),
c’est-a-dire In(u,) < In(up+1). Un petit passage a I'exponentielle donne alors wu,, < w41, ce
qui prouve que la suite (u,) est croissante.

2. Le plus simple est de démontrer séparément chacune des deux inégalités en faisant tout passer
d’un seul coté et en faisant des études de fonctions. Posons ainsi g(t) = t—In(1+¢). La fonction

g est définie sur R (elle est méme définie entre —1 et 0, mais pour ce qu'on nous demande,
1 t

T 14t 1+t
donc croissante, et comme ¢(0) = 0, elle est toujours positive, ce qui prouve que ¢t — In(1 + t)
sur R, soit In(1 4 ¢) < ¢. Pour cette inégalité, on pouvait aussi invoquer la concavité de la

fonction In.

pas la peine de s’y intéresser), de dérivée ¢'(t) = 1 > 0. La fonction g est

1 1+t—t
De méme, on pose h(t) = In(1+t)— , fonction dont la dérivée vaut i (1—:_ 2 =
1+t—-1 t

= > 0. Cette fonction est donc également croissante, et vérifie aussi h(0) =
A+r0?  (1+02° & ’ (0)
0, d’otu sa positivité sur Ry et 'encadrement souhaité.

t
1+¢




a .
>, donc en posant ¢ = — et en appliquant ’encadrement
n

3|

3. On a vu que Inu, = nln (1—|—
a

1 a
< —Ilnu, < —, ou encore
n n

de la question précédente, T n—

a

a a -
< nln(l—i——) < —, soit o
n n o

a 1 a . s s
- < —Inwu, < —. Il ne reste plus qu’a tout multiplier par n pour obtenir I’encadrement
a+n n n
demandé.
na
4. Comme lim = a (on garde les termes de plus haut degré, a étant toujours une

n—+oon + a
constante), le théoréme des gendarmes permet d’affirmer que la suite In(u,,) converge vers a.

La suite (u,) a donc pour limite e®.

n
5. Pour a = 1, on obtient le résultat classique suivant : lim <1 + —) =e.
n—-+o00 n

Exercice 14 (**)

1. En effet, apr1 = upt+1 + vps1 = 3up +vp + 1+ 2 — 2uy, = uyp + v + 3 = ay, + 3. La suite est
bien arithmétique de raison 3 et de premier terme ag = 2, donc a, = 2 + 3n.

2. Allons-y : bpy1 = 2upy1 + Vnpa1 = 6up + 20, + 2 + 2 — 2u, = 4duy + 2v, +4 = 2b, + 4.
La suite est bien arithmético-géométrique. Son équation de point fixe x = 2z + 4 a pour
solution x = —4, on pose donc ¢, = b, + 4, et on vérifie que (¢,) est une suite géométrique :
Cnt1 = bpt1 +4 = 2b, +8 = 2(b, +4) = 2¢,. La suite (¢,) est donc géométrique de raison
2 et de premier terme ¢y = bg +4 = 2ug +vg +4 = 7. On en déduit que ¢, = 7 x 2", puis
bp=c,—4=7x2"—4.

3. Il suffit de combiner a,, et b, : en faisant simplement leur différence, on obtient immédiatement
Up =bp—ap, =7Tx2"—4—(243n) = 7x2" —3n—6. Ensuite, v, = ap —u, =2+3n—u, =

8 +6n—7x 2",
n
1_2n+1 1
4. Calculons:Sn:l;)wz’f—?)k—ﬁ:?xﬁ—?)x@—ﬁ(nﬂ):?m"“—
3 1 3 15
7 — M —6n—6 =T7Tx 2" Zp2 N 13. Ce résultat n’a absolument aucun

2
intérét, pas plus d’ailleurs que le fait que lirf Sn = +00, qui découle d’'un simple résultat
n——+0o0

de croissance comparée.

Exercice 15 (*)

4o + 2

1. 1l faut donc résoudre I’équation =z, soit 4z +2 = 22 + 5z, qui se raméne a I'équation

du second degré z2 + x — 2 = 0, qui a pour racines évidentes a = —2 et b = 1.

2. Pour cela, il faut que u, ne soit jamais égal a a. On sait déja que c’est le cas pour ug qui
est supposé strictement positif, et on peut démontrer aisément par récurrence que tous les
termes de la suite seront également strictement positifs, ce qui répond a la question. Mais on
va chercher a faire plus rigolo : remarquons que u,+1 = a équivaut & f(u,) = a. Or, ’équation
f(z) = a se raméne & 4z + 2 = —2(z + 5), soit 6z = —12, donc z = —2 = a. Autrement dit,
pour avoir u,41 = a, il faut déja avoir u,, = a. Notons alors n le plus petit entier pour lequel
u, = a (en supposant qu'un tel entier existe). On a nécessairement n > 0 puisque uy # a,
mais d’aprés ce qui précéde, cela implique alors u,_1 = a, ce qui contredit la minimalité de
n. Autrement dit, il est impossible qu'un tel entier n existe, et u, est donc toujours différent

de a.
4un+2
1 AR gy 42w, =5 Bu,—3
3. Un calcul peu subtil : v, = Ynt1 5 = 422152 _ fun Un = Un =



lu, —1 1 1
= Un = —vy,. La suite (v,) est donc géométrique de raison — et de premier terme vy =
2u, + 2 2 2
ug — 1 1 Conclusi 1
= ——. Conclusion : v,, = ———.
uy + 2 2 " on+l1
—1 1+2
4. Puisque v, = L, Uply + 20, = u, — 1, done up (v, — 1) = =1 — 2y, et u, = + ZUn =
Uy + 2 1—v,

1—g  2nfl 2
1+ 2n1+1 2n+1 +1

Exercice 16 (**)

Prouvons les trois points habituels :

1 U
. 7 = 0, donc la suite (uy) est

el (e re= vrey) e reav ey

croissante.

1 1
® Vntl = Un = (”m)“nﬂ‘(“@)“n

:<@+@¢ﬁ%rmf‘“7%>%

_ 2 1 1
a ((n—i-l)(n—i—l)! . (n+1)2(n+ 1) - W) Up,

= n ) L L — (n+1)%). Le terme —_ Gtant
n(n+1)(n+1)! (n+1)(n+1)! ' (n+1)(n+1)!
(largement) inférieur & 1, on peut majorer toute la parenthése par 2n+1—(n+1)? = —n? < 0,

donc la suite (vy,) est décroissante.
e Uy — Uy = n—;:' > 0, ce qui prouve que u, < v, mais n’est pas exactement suffisant & prouver
que la limite de la différence est nulle. Sauf qu’on peut désormais dire que u,, < v, < v1, donc
Up — Up < U—ll, et le théoréme des gendarmes assure alors la convergence de (v, — u,) vers 0.

Les deux suites sont donc bien adjacentes.

Exercice 17 (*)

Il y a deux points sur les trois qui sont trés faciles & prouver :

e U, — Uy = , donc lim wu, —v, =0.
n xn! n—-+o0
® Uyl — Uy = m > 0, donc la suite (u,) est croissante.
N te pl g (vp,) est décroi t + !
e reste plus qu’a prouver que (v, ) est décroissante : v, 11 — v, = u —Up —
11 N 1 1 nan+)4+n—(n+1)? n?+2n—(n?+2n+1)
nxn  (n+1)! (n+D)xn+1)! nxnl  nax@m+1)xn+D n(n+1)(n+1)!
-1

< 0. La suite (vy,) est donc bien décroissante, et les deux suites étant adjacentes,

nn+1)(n+1)!

elles convergent donc vers une limite commune.

a
Notons donc [ la limite commune des deux suites, et supposons que [ = 3 avec a et b deux entiers

naturels. Comme la suite (u,) est strictement croissante, et la suite (v, ) strictement décroissante,

n n
1 a 1 1
on peut écrire, pour tout entier n, u, < [ < v,, soit E il < 3 < E il + o C’est en
k=0 k=0

10



b
1
<@ty

k=0

@I@

b
1
particulier vrai lorsque n = b : kz k_

b b
b!
Z <axbl < bz o + 1. A gauche, chaque quotient 0 est un entier lorsque k < b (en effet, b!
k= k=0
est un multlple de k! pour tous les entiers k compris entre 0 et b), donc le membre de gauche est une

somme d’entiers et appartient & N. Notons ce nombre p. Le membre de droite est le méme que celui
de gauche, avec un simple +1, donc est égal & p+ 1. On a donc p < a x b! < p+ 1. Autrement dit,
le nombre a x b!, qui est lui aussi un nombre entier, est strictement compris entre les deux entiers
consécutifs p et p+ 1. Ce n’est pas possible! On a prouvé par 'absurde que [ ne pouvait pas étre un
nombre rationnel (pour les curieux, la valeur de [ est en fait le nombre e que nous connaissons bien
depuis I'étude de la fonction exponentielle).

Exercice 18 (**)

1. 11 suffit pour cela de prouver par récurrence (simultanée pour les deux suites) que Vn € N,
Uy > 0 et v, > 0. Clest vrai au rang 0 par hypothése, et si u, et v, sont tous deux strictement
positifs, ce sera aussi le cas de wu,, + v, et de u,v,, donc de u,4+1 et v,+1. Ainsi, les deux suites
sont bien définies.

Up—1 + Up
2. Supposons n > 1 (pour n = 0 Iinégalité est vraie par hypothése). On a v, —u, = ————— i

2
Up—1 + VUp—1 — 2+/Up—1+/Up— Un—1 — /Un_1)?
SUp—1Un_1 = no1 T nml 2\/"1\/"1:(\/n12\/n1) > 0, donc u,, < vy,

3. C’est désormais facile en utilisant le résultat de la question précédente : uy 11 —up = /Upvy —
\/un(w/vn V) > 0 puisque v, > u,, donc (u,) est strictement croissante. De méme,
v Uy — U
Uptl — Up = Tn — vy = % < 0, donc (vy,) est décroissante.

4. On ne peut pas affirmer que les suites sont adjacentes car on ne sait pas si (u,, —vy,) tend vers
0. Par contre, (u,) étant croissante et majorée par exemple par vy (car u, < v, < vo puisque
la suite (v,) est decroissante), le théoréme de convergence monotone permet d’affirmer qu’elle
est convergente vers une certaine limite . De méme, (v,,) est décroissante et minorée (encore

plus simplement, par 0), donc converge vers une limite I’. La suite (v,41) converge aussi

I+
UnQﬂ, on a donc, par passage a la limite, I’ = L, d’ou

soit { = I’. Finalement, les deux suites ont bien la méme limite (appelée moyenne

vers I, mais comme v,41 =
l/

2 . B 2 ’ . .

arithmético-géométrique des deux réels a et b).

Exercice 19 (**)

1. On va bien str procéder par récurrence, en prouvant simultanément que w, € [0,3] et v, €
[0, 3]. C’est vrai au rang 0 puisque ug = vg = 0. Supposons donc que u,, et v, appartiennent
a [0,3] pour un certain entier n, alors 3 — v, € [0,3], donc u,1 € [0,v/3] (et a fortioro
Unt1 € [0,3]). De méme, 3+u, € [3,6], donc v,11 € [V/3,v/6] C [0,3], ce qui achéve 'hérédité
de notre récurrence.

2. Supposons donc que (uy,,) converge vers [ et (v,) vers . Alors on peut passer a la limite dans
les relations de récurrence définissant les deux suites pour obtenir | = /3 — ' et I’ = /3 + 1.
On aurait donc 12 =3 —1' =3 — /341, soit 1> — 3 = —v/3 + [, puis en élevant & nouveau
au carré [* — 612 +9 = 3 + [, soit encore I* — 61> — [ + 6 = 0. Cette équation semble a priori
impossible & résoudre, mais coup de chance, 1 est solution évidente, et on peut donc factoriser
sous la forme I*— 612 —1+6 = (1—1)(al®> +bl>+cl+d) = al*+ (b—a)l>+ (c—b)I* + (d—c)l — d.

Une identification impose les conditions a = 1, puisb—a =0doncb=a=1,c—b = —6

11



donc ¢ = =5 et d — ¢ = —1 donc d = —6 (ce qui est cohérent avec I’équation donnée par
le coefficient constant). Deuxiéme miracle, on constate que le facteur restant I3 + 1% — 5] — 6
admet pour racine presque évidente | = —2 : —8 +4 + 10 — 6 = 0, donc on peut & nouveau
factoriser sous la forme I3 +12 —51—6)(1+2)(el® + fl+g) = el3+(f +2e)I?>+(g+2f)l+2g. Une
nouvelle identification des coefficients donne e =1, f +2e =1 donc f = —-1et g+ 2f = -5
donc g = —3. On garde donc un dernier facteur égal a x> — x — 3, qui a pour discriminant

1++v13 1—-+13
2

A =1+ 12 = 13 et admet donc deux racines réelles I3 = et Iy = —s Aprés

cet ébouriffant calcul, on sait donc que [ prend 'une des quatre valeurs suivantes : 1, —2,

1++13 1—-+13
ou
2 2
et1—\/13 1++v13

puisque la suite (uy,) est positive. La valeur —s est en fait aussi & éliminer

. On peut immédiatement éliminer les valeurs strictement négatives —2

puisque supérieure & 2 (\/1—3 > 3), alors que, d’aprés la question précédente, (u,) est majorée
par v/3. Finalement, on a nécessairement [ = 1. Bien sir, on en déduit que ! = /3 + 1 = 2.
3 —v, -1 —b
V3=, +1

Le dénominateur de cette

3. Calculons a =+3—-v, —1 = L )
n+1 n 1+ B0 o

fraction étant supérieur & 1, on a bien en valeur absolue |an4+1| < |by|. De méme, b, 11 =

V3+u,—2= = est majoré en valeur absolue par —.
" 2+ V3tun 2+ un T3 ) pat 7o
i 1 1 1 1 1
4. En effet, si |api2| < [bpt1] < §‘an’ < §Cn et |bpya| < §‘an+1’ < §’bn‘ < §Cn, donc ¢p42 <
1 3—-1
—cy. Une récurrence facile montre alors que ¢y, < < et cont1 < a _ v3 )

2 PPN 21 21

Ces deux sous-suites convergent donc vers 0 (théoréme des gendarmes, les sous-suites de (c;,)
sont toujours positives en tant que valeurs absolues), donc (¢,) elle-méme a une limite nulle.
Or, par définition, 0 < |a,| < ¢, et 0 < |b,| < ¢, donc le théoréme des gendarmes permet a
nouveau de prouver que (|a,|) et (|by|), et donc (ay,) et (by), ont une limite nulle. Conclusion :

lim u, =1let w = 2 puisque u, = a, + 1 et v,, = b, + 2.
n—-+0oo n—+ooy,

Exercice 20 (**%*)

1. Supposons donc que lirf uy = 0, et choisissons un £ > 0. Par définition de la limite, il existe
n——+0o0

. < . 3 , . .
un entier ng a partir duquel on aura |u,| < 3 Découpons alors v,, en deux parties : ce qui se

1 n 1 no 1 n
passe avant ng et aprés ng : si n > ng, v, = —— Zuk = Zuk +— Z e
n+1 n+1 n+1
= i3 R
La premiére somme est une constante (on peut modifier n, mais ng, lui, est fixé), donc, quand

on la divise par n, ¢a va finir par se rapprocher de 0. Autrement dit, Iny € N, Vn > nq,
1 |&
D> ur
k=0

n+1
. s s . € ST,
d’apreés ce qu’on a dit plus haut, sont tous inférieurs (en valeur absolue) a o donc par inégalité

€ . o .
< 3 Quand a la deuxiéme somme, elle est constituée de n — ng termes qui,

n

€ 1 n—ngé _ €

triangulaire sa valeur absolue est inférieure a (n—ng)—=, d’ou ug| < - < =

5 (n=n0)3, n—l—lkZJrlk\n—i—lQ\Q
=ngo

(puisque n= o
n+1

a prouver que la suite (v,) tend vers 0, et a donc bien la méme limite que (uy,).

. g & .
< 1). Conclusion, lorsque n > max(ng,n1), on a |v,| < 3 + ;=€ Ceci suffit

Passons désormais au cas général (qui va étre facile en fait), c’est a dire lorsque lim wu,, =
n——+00

I # 0. Posons w,, = u, — [, cette suite auxilaire a pour limite 0, donc on peut lui appliquer ce

12



n k=n

1< 1 1
qu’on vient de démontrer : lim Zwk = 0. Or, Zwk = Z(uk -1) =
k=0

n—+oon + 1 n—|—1k:0 n+1k:0

] <(];)uk) —(n+ 1)l> = (TL—H ];)Uk> — 1. On en déduit que nll)r_{lmn | kzouk =1,

ce qu’on voulait prouver.

. La réciproque est fausse. On peut prendre comme contre-exemple u,, = (—1)". Dans ce cas
1 n

Up = 1 Z(—l)k = 0 si n est impair (on additionne un nombre égal de termes égaux a
n+1:= )
1 et & —1 dans la somme), et v, = si n est pair. La suite (v,) converge donc vers 0.

n+1
Pourtant la suite (u,,) ne converge pas.
. Supposons que (u,) diverge vers oo (il suffit de changer les signes pour traiter le cas ou
la limite vaut —oc0), et fixons M € R*, alors Ing € N, Vn > ng, u, > 4M. Par ailleurs,
no—1
A
Z 1), est une constante que nous noterons A. On peut alors écrire (si n = no) Uy = 1
n

k=0

R A 4AM(n —no)

Uy =

n—l—lz k/n+1+ n+1

A

. Quitte a choisir n suffisamment grand, on peut imposer

k=ng
n — no S 1 (pui

— (puisque
n+1 1 5 puisq
cette fois-ci I’expression tend vers 1, ce qui donnera v, > —M +2M = M et prouve donc que

(vy,) diverge vers +oo comme (uy,).

> —M (puisque cette expression a une limite nulle), mais aussi

La réciproque n’est toujours pas vraie pour une suite divergeant vers +oo. Considérons
par exemple une suite (u,) pour laquelle ug, = 2n mais ug,+1; = 0 (pour tout entier naturel

L Ny 200+1) _ plo+1)

n). On calcule alors, si n = 2p est pair, v,, = p—— 2 on 12 = w1l Dans le
P
2 1
cas ol n = 2p + 1 est impair, on calcule de méme v, = e = % = g

k=0
suite (vy,) diverge vers +oo. Pourtant, la suite (u,) ne tend pas vers 400 puisque la sous-suite

(u2n41) est nulle.

. Supposons par exemple la suite (u,) croissante (le cas décroissante se traite de méme en
changeant tous les signes) et non convergente, donc nécessairement non majorée. Notons [ la
limite de la suite (v,) (qu’on supposera positive, sinon on peut 1a aussi faire le raisonnement a
quelques changements de signes prés). On aurait alors, a partir d’un certain rang ng, u, > 2I
puisque la suite est supposée non majorée et croissante (il suffit de trouver un terme de la
suite supérieur a 2[, tous les suivants le seront aussi). Pour tout entier n > 3ng, on pourra

1 o 1™ ding + K 2o

. 0 )

alors écrire v, = ——— up + ——— up = ——————, en ayant posé K = U .-

! 3n0—{—1k20 k+3n0+1k;+1 ETTEE ey kzok
= =ng —

Autrement dit, la suite (v,) censée converger vers [ est minorée par une suite qui converge

4
vers §l , ce qui est évidemment impossible. La suite (u,) converge donc nécessairement.

k=n
2
. Posons pour plus de simplicité w,, = —— E ku, et supposons dans un premier temps
n(n+1) —

€
que lirj{l u, = 0. Il existe donc un rang ng a partir duquel |u,| < 3 On découpe la somme
n—-+0oo

2 no n
en deux comme précédemment : w, = ————— kup + —— kuy. La premiére
— =no

moitié a certainement une limite nulle, donc deviendra inférieure en valeur absolue & — &

[\)
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partir d’'un certain rang n;. Quant & la deuxiéme moitié, on la majore en valeur absolue
n

k 2 1
(comme dans la question 1) par nln 1) kz 76 < nln 1) % n(n2+ )% — % On a donc
=ng
n(n+1)
onZ Wn,

1
avec lim w =

5 , on en déduit que lim v, = 0.
n—+oo  2n

globalement, lorsque n > max(ng,n1), |w,| < €, et lirj{l wy, = 0. Comme v, =
n—-+0oo
1
2 n—-—+oo

Supposons désormais lim w, = # 0. Posons comme précédemment z, = u,, — [, alors

n——+0o00
2 2 = 2 =
= — kzy, tend 0. Or, = — kup — kl) = —— kug — 1.

Wy, Y E 2, tend vers r, Wy Y p— ];0( U, ) Y p—— ];0 U,
2 = 1

Autrement dit, lim ——— E kuy = [, soit en multipliant par nfn + qui tend toujours

n—+oon(n + 1) — n2
1 n l
vers 3 la conclusion ngg-looﬁ kgo kuy, = 3

Exercice 21 (**)

1. La seule chose qui pourrait empécher la suite d’étre correctement définie serait la présence
d’un terme égal & —1 (annulant donc le dénominateur pour le calcul de u,11), prouver que
uy, = 0 est donc suffisant. C’est une récurrence double triviale : ug et u; sont positifs par
hypothese, et en supposant u, et u,y1 tous les deux positifs, u,1o le sera également.

(1 4+ un)tnt1 — Ups1(1 + uny1) %

2. Calculons donc brutalement (w42 — Upt1)(Unto — Up) =

1+ Un+1
(1 + wp)upg1 — wn (1 4 tpgr) _ (uptpt1 — ugz—i—l)(un—i—l — Up) _ Upy1(Upn — un+1)2 oxe
1 +un+1 (1 +un+1)2 (1 +un+1)2 ’

pression du signe opposé a celui de u,41, donc toujours négative d’aprés la question 1.

3. On peut par exemple procéder par récurrence. Par hypothése, ug < uy, ce qui prouve l'ini-
tialisation. Supposons désormais us, < u2,41 pour un certain entier n, alors d’aprés la ques-
tion précédent, (ugnio — Uapi1)(Unt2 — Ugy) est négatif, ce qui signifie que ugp12 — Uop41
et usnio — U9, sont de signe opposé. Autrement dit, uo,yo est situé entre wo, et uopiq :
Uy < Uopta < Ugpt1. Exactement de la méme fagon, on aura ensuite ugnp19 < Uop13 < Uopt1,
ce qui prouve en particulier que uy(, 1) < Ug(n41)+1 €t achéve donc la récurrence.

4. On a vu a la question précédente que ug, < Ugni2 €t Ugpis < Ugpi1. La suite (ugy) est
donc croissante, et la suite (ugy+1) décroissante. De plus, (ug,) est majorée par uj (puisque
Ugp < Uzpt1 < Uuy) et (ugp+1) minorée par 0, donc les deux sous-suites convergent. Notons [
et I’ leurs limites respectives. La relation de récurrence définissant la suite, appliquée pour un

141 .
x ' soit I(1+1")=U'(1+1), ou

1+
encore | = I'. Les deux sous-suites ayant la méme limite, la suite (u,,) converge donc également

entier n pair, impose alors par passage a la limite [ =

vers cette limite commune.

Exercice 22 (**%*)

x + |z| st

égal & 0 si x est négatif, et égal a = si x est positif. Si zg est un réel négatif, la suite sera donc
nulle & partir du rang 1 (une fois que z; = 0, on ne bouge plus), et si zy est un réel positif,
elle est constante égale a zg.

1. Si zg est réel, tous les termes de la suite seront également réels. Or, pour un réel
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z z rpefn 41 (14 eifn
2. 11 suffit d’écrire que z,11 = — _'_2| il == 2+ n= n( _'2_ ) Une petite factorisation

on € 2 e 2 0 O

par angle moitié s’'impose : z,11 = rpe'2 X ez te? = 7, COS (él) e’ 2 . Autrement
: . n bn
dit, on aura simplement r,; = ry, cos 5 et Opp1 = CX

, . . L ) 1 0 ,
3. Pour 6,, c’est facile, la suite est géométrique de raison 2 et 0, = on” Pour 7, c’est un peu
. . 0 0 0 . -
plus laid puisque 7, = 7 X cos 3 X COos 1 X -+ X COS on ) A priori, ce produit n’est
pas trés sympathique, mais une astuce diabolique permet de le simplifier en un coup d’oeil :

0
multiplions-le donc par sin <2—n> ! En effet, en utilisant n fois de suite la formule de duplication

sin(2a) = 2cos(a) sin(a), on va trouver cos g X €08 Q) X -+ X COS <i> X sin <i> =

4 2n 2n
1 0 0 0 ) 0 1 0\ . [0
—cos| =) xcos|—] x -+ xcos Xsin|——|] =-+-=——cos|=|sin|=| =
2 2 4 an—1 an—1 an—1 2 2
sin () L 7 sin(6 , . _ .
on - On en déduit que r, = m (on peut faire une belle récurrence si on veut étre
sin (o

plus rigoureux que ce que je n’ai fait). Si on veut étre totalement rigoureux, il faudrait en fait
distinguer le cas ou § €]07[, o le signe des sinus sera toujours positif et ne posera donc aucun
probléme, de celui ou 6 €] — 7,0 ol on va avoir des problémes de signe a chaque étape. En
fait, si 8 < 0, le plus simple est de traiter le cas symétrique consistant & remplacer zg par son
conjugué (pour avoir € > 0), et constater que tous les termes seront simplement conjugués de
ceux de la suite initiale.

4. La suite (#,,) a manifestement une limite nulle. Pour la suite (r,), on peut utiliser la limite

sin(x 6
classique lim (z) = 1 et lappliquer & _~ pour obtenir lim ————— =1, et donc
z—0 AL n—r+o0 QN Sin(2—n)
) rsin(0) o . A : : :
llI_’I_l =g On en déduit que la suite (z,) converge vers ce méme réel (si on tient
n—-+o0o

& étre rigoureux, les parties réelles et imaginaires de z, sont obtenues en multipliant r, par
cos(fy,), qui tend vers 1, et par sin(6f,,), qui tend vers 0, ce qui permet un calcul de limite
évident).

Exercice 23 (**%*)

1 2 2(1 —+/5 1—-+5
1. Calculons donc — = = ( V) =— V5 = —1), ce qui prouve I'égalité deman-
p 11v5 1-5 2

dée.

2. La suite est récurrente linéaire d’ordre 2, d’équation caractéristique 22 — 2 — 1 = 0. Elle a

1+V5 _ 1-5

pour discriminant A =144 =5, et admet comme racines r; = et = 1.
On peut donc écrire F,, = 1¢™ + By". Les conditions initiales donnent Fy = A+ B = 0,
1 2 1
donc B = —A, et F1 = Ap+ By =1, donc A = —— = — = —. On a donc
) e—v 25 b
o= —=(¢" —4").

V5

3. Commencons par donner les premiers termes de la suite (F,) : Fo =1, F3 =2, F; =3, F5 =5
8

3
etF6:8,doncu1:1,uQ:Q,U3:§,u4:§etu5:5.
. Foio  Fog Foaa+F, Fua
4. On calcule bien sir u,.1 — uy, = nt2 _ Zndl — =1+ ——u, =
n+ " Fn+1 Fn Fn+1 Fn Unp, "
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14 up, — u? . . . .
———" " Le dénominateur est bien stir positif (par une récurrence triviale, tous les termes
Un,
de chacune des suites (F),) et (uy) sont strictement positifs), et le numérateur s’annule en ¢
et en 1) (c’est I’équation qu’on a résolue plus haut). Puisque u, > 0 et ¢ < 0, uy4+1 — uy, sera
positif & 'intérieur des racines du numérateur, donc si u,, < @, et négatif sinon. En fait, on est
capable de dire si u, < ¢ en utilisant la formule explicite donnée & la question précedente :
n+1 wnJrl
— wn
signifie que, si n est pair, le numérateur est inférieur a "1, et le dénominateur supérieur a
™, donc le quotient inférieur & ¢. De la méme fagon, si n est impair, u, = ¢. On en déduit
que Up+1 = Uy sl n est impair, mais u,4+1 < uy, Si 1 est pair (ce qui est tout & fait cohérent
avec les premiéres valeurs de la suite que nous avons calculées).

Uy = . En effet, 1 étant négatif, ¢ est alternativement positif et négatif, ce qui

P (1= (5" 1— ot
5. Factorisons notre quotient par les puissances de ¢ : u,, = i =X —,
(1= () I—ar
[
v _1-V5 , . . .
en posant o = — Ce réel est certainement compris entre —1 et 1, donc lim o™ =
¢ 1+V5 oo
0, et lim u, = ¢.
n—-+4o0o
F F, 1
6. On reprend pratiquement un calcul déja fait : w,41 = %ﬂ = 1+ —. La fonction
n Un,

1
:x — 1+ = est décroissante sur RT*, et coupe la droite d’équation y = x pour x = ¢ (c’est
P q Yy p ¥
x

encore et toujours la méme équation), ce qui permet de dessiner le bel escargot suivant pour
représenter les termes de la suite (uy,) :

3 _—
2t  CGGRGEEEEEEEEEE .
0 ul E u3 E E i ud i u?2
0 I us 2 3
. . 1—-a"
7. D’aprés le calcul effectué pour déterminer la limite de (uy,), uy, = 1 - =
-«
n -1 n n n n
@ X w. Or, @ = ¢— X 14 = ¥ et a—1 = . Finalement,
1—a™ 1—an SDn SDn_wn \/an SD
_ n _ n
Up — P = W=e¥ = v . Comme —¢" = — ——> , on obtient bien, en valeur absolue,
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10.

11.

12.

13.

1

Up — Q| = .
n
. Il suffit pour cela de constater que " < F,. Si n est pair, c’est évident, puisque F, < %,
2 n
mais méme dans le cas ou n est impair, " —" < 29" puisque || < ¢, donc F;, < el < ™

V5

. 11 faut trouver une valeur de F), telle que F? > 10*, donc F,, > 100. Un calcul légérement

233
laborieux nous méne & trouver Fjo = 144. On a alors ujp = Tad qui est une valeur approchée

de ¢ & 10™* prés par excés puisque tous les termes d’indice pair de la suite sont plus grands

233
que . Une passionnante division « & la main » permet d’obtenir que — ~ 1.61806, et les

144
377
plus courageux vérifieront de méme que u13 = 233 > 1.6180, ce qui permet d’affirmer que

1.6180 et 1.6181 sont les valeurs approchées de ¢ a 10~ prés par défaut et par excés.
Faisons donc une petite démonstration par récurrence double, par exemple en fixant la valeur
de n et en faisant varier p (on ne peut pas faire varier les deux a la fois). On pose donc P, :
Frtp = Fy1Fy+F,Fy11. Aurang 0, la propriété stipule simplement que F,, = F,,_1 Fo+F, F1,
ce qui est vrai puisque Fy = 0 et F; = 1. De méme au rang 1 : F,41 = F,,—1 + F, est vraie
par définition de la suite de Fibonacci. Supposons la propriété vraie aux rangs p et p + 1,
alors F%+p+2:: P%+p+1'+AFh+p = n—lE}+1'+'FhPL+2'+AFh—1E% +'FhE}+1:: P%+{(E;'+
Fpi1) + Fo(Fpyq1 + Fpyo) = Fp1Fpio + F Fpp3, ce qui est exactement la propriété Py o. La
propriété est donc vrai pour tout entier p. En particulier, en posant n = p 4+ 1, on obtient
Fopi1 = Fp2 —|—Fp2 " 1, ce qui prouve effectivement que les termes d’indice impair de la suite sont
sommes de deux carrés.

0
Et si on faisait une nouvelle récurrence ? Au rang 0, on a Z Fro=0,et Fh—1=1—-1=0,
k=0
n+1 n
donc la propriété est vraie. Supposons la vérifiée au rang n, alors Z Fp=F,1 + Z F, =
k=0 k=0

Fot1+ Fhy2 — 1 = F,13 — 1 en utilisant la relation de récurrence définissant la suite (F,).
cela prouve que la propriété reste vraie au rang n + 1, et achéve la récurrence.

La question est bizarrement formulée, puisqu’elle donne la valeur de la suite juste avant de la
demander. Bref, jamais deux sans trois, on va faire une belle récurrence. Au rang 1 (le rang
0 n’est pas vraiment pertinent vu le F;, 1 qui traine dans la formule), on a FyFy — F2 = —1,
ca marche. Supposons la formule vérifiée au rang n, alors au rang suivant F,,oF, — F> 1=
(Frs1 + Fp)Fp — Fr%Jrl = Fg —Fpy1(Fpy1 — ) = Fr% — by =—(-1)" = (_1)n+1’ ce
qui prouve la propriété au rang n + 1.

Pour comparer les deux nombres, calculons leur tangente : & droite, c’est facile, ¢a vaut
bien évidemment 1. A gauche, c’est & peine plus compliqué, mais il faut bien sir se sou-

F F
venir de ses formules d’addition de tangente : tan (arctan <—n+2> — arctan( n >> =
n+1 n+3

J) F,

Fat1 Ptz _ FrnroFnys + Faq1 Fy _ Fn+2(Fn+2 + Foy1) — Fn+1(Fn+2 — Fay1) _ Fr%+2 +F7%+1 _

1+ Antefn Foy1Fnys — Fnpoly B F2+2 + (_1)n+2 + Fr%—i—l B (_1)n+1 - F2+2 + Fr%—i—l -

n n

Fn+1Fn+3
1. Les deux membres ont donc la méme tangente, ils sont égaux a w prés. Mais comme
n

F%+3 P%+3
A . . ™ crs . .
méme genre de raison comprise entre 1 et 5 la différence des deux est (strictement) comprise

0<

T
< 1, on a certainement 0 < arctan < < —. L’autre arctangente étant pour le

T T
entre 0 et —, et donc bien égale & —. On obtient ainsi toute une série de formules palpitants,

55 21 T
comme par exemple arctan [ — | — arctan (| — )] = —. Etonnant, non ?
34 89 4
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Exercice 24 (**%*)

1.

. D’aprés la question précédente, xop 1o — Top =

Calculons donc : pg =1, g9 =1, p1 =24+ 1 = 3, ¢1 = 2, puis on applique les relations de
récurrence : py = 2p1 +po =7, g2 = 2q1 + qo = 5, p3 = 2p2 + p1 = 17, q3 = 2q2 + q1 = 12,
pe = 2p3 +p2 = 41 et g4 = 293 + g2 = 29. On en déduit que zg = 1, 21 = g, Ty = g,
T3 = B et T4 = ;1—1 si on est courageux, on peut pousser jusqu'a évaluer x1 = 1.5, z9 = 1.4,
xg ~ 1.4167 et x4 >~ 1.4138, ce qui est cohérent avec les propriétés démontrées plus loin sur
la suite (z,). Les plus réveillés se rendront peut-étre méme compte que la suite (z,,) semble
converger vers une valeur qui pourrait bien étre V2 (cf question 9.c).

. Récurrence double triviale : c¢’est vrai pour gy et q; par hypothése, et si on suppose ¢, = n

et gnt1 = n+ 1, alors gnio = gni1 + gn = 2n+ 1, ce qui est largement plus fort que ce qu'on
doit prouver.

Essayons de simplifier & l'aide de la relation de récurrence : si n > 1, on peut écrire pyy1 =
Ap41Pn+Pn—1 €t de méme pour g, 41, donc pry1gn —qn1Pn = Ant1PnGn+Pn—19n— An+1qnPn—
Gn—1Pn = —(Pndn-1 — qnPn—1)- Autrement dit, en posant u, = pni1¢n — @ni1Pn, la suite (uy)
est une suite géométrique de raison —1. Comme ug = p1gop — q1po = apa1 + 1 — ajag =1, on
aura simplement u,, = (—1)".

On calcule de méme p,i2¢n — Gni2Dn = Apt1Pnt19n + Pnln — An+1Qn+1Pn — nbn =
an+1(Pn+19n — Gnr1Pn) = (—1)"an41 d’apres le calcul précédent.
_ Pn+1 _ Zﬁ _ Pn+14n — gn+1Pn (_1)11

Par définition, z, 11 —x, = = . De méme, x40 — 2, =
gn+1 qn qndn+1 dndn+1
Pn+2dn — Gnt2Pn  (—1)"an41
dnqn+-2 qndn-+2
a2n+1

> 0 puisque les suites (ay) et (gn)
Q2nq2n+2

N .. R A2n+2
sont & valeurs positives. De méme, x93 — Topy1 = —

42n+192n+3
croissante et la suite (x9,41) décroissante (c’est cohérent avec les quelques valeurs calculées

< 0, donc la suite (x2,) est

a la premiére question de I'exercice). Ensuite, xo,11 — T2, = d’aprés

<
Gn@ont1  2n(2n+1)
la question 2, ce qui suffit largement & prouver que lirf ZTont+1 — Ton, = 0 (théoréme des
n——+00
gendarmes, puisque cet écart est positif vu son expression). Les deux suites sont bien adjacente,
et convergent donc vers une méme limite. Cela suffit a affirmer que la suite (z,,) converge elle-
méme vers cette limite commune (théoréme du cours).

apa 1 1 a
. Par définition, z; = P o1 + 2 = a9 + —. De méme, xo = Pz _ @2P1 + Po =
q ai ai q2 a2q1 +qo
asagal + as + a a
20001 + a2 + do = ag e - ag + ———, qui est bien la formule souhaitée.
aza; +1 azar +1 a + =

a2
On peut s’en sortir & l'aide d’une simple récurrence un peu astucieuse : notons P, la pro-
priété qui affirme que (z,,) a la forme donnée dans I’énoncé quelle que soit la suite (a,,)
définissant les suites (p,), (¢n) et (z,). La propriété Py est manifestement vraie puis-
qu’elle stipule que zg = ag, ce qui découle immédiatement de la définition des valeurs de
po et de ¢g. Supposons maintenant la formule vraie au rang n. Au lieu d’appliquer I’hy-
pothése de récurrence, on va l'appliquer a la suite (aj,) définie par : Yk < n, a), = aj et

!/
a, = ap +

(et peu importe ce qu’on fait pour les termes suivants, on n’en aura pas
an+1
besoin pour prouver 'hérédité). On notera y, 1’équivalent de x,, défini & partir de la suite

(a),). Puisque la propriété P, est supposée vraie pour toute suite, on peut alors affirmer que

Yn = ao + T =ap+ T . Il suffit donc de prouver que z,1+1 = yn
a1+ —F——=— a1+ —F/—71—
a2+ ag+——m

R
+a41

Ty
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VR , . , 1 OGn41Pn + Pn—1
pour que I’hérédité de notre récurrence soit prouvée. Or, x, 11 = Pol _ Gnt1Pn TPnol poee

1 dn+1 An+1Gn + qn-1

la définition donnée pour a),, on peut écrire a1 = , remplacons dans l'expression de

I

al, — an

Pn + (az, — an)pn—1

n + (@}, — an)gn—1

Remplagons désormais p, et ¢, en appliquant la relation de récurrence définissant les deux
. apPpn—1 + Pn—2 + (a/n - an)pn—l a/npn—l + Pn—2

suites pour trouver x,41 = ; = — . Or, ce quo-

anGn—1+ qn—2 + (a n— an)Qn—l ApGn—1 + qn—2
tient est exactement égal & y,, (en notant p'n et ¢'n les équivalents de p, et ¢, pour la suite

(a),), numérateur et dénominateur sont simplement égaux a pl, et ¢/, puisque p,_o2 = p),_5 et
1

Znt1, en multipliant numérateur et dénominateur par a), — ay, : Tp41 =

qn—2 = q;_Q). On a bien prouvé que Tp+1 = Yn = ag + T

ag+—L1
|
+an+1

. Puisque les suites (z2,) et (z2,+1) sont adjacentes de limite commune «, avec de plus xy, <

ai

Zon+1, on peut affirmer que zg < a < x1. Comme par ailleurs g = ag € Net z1—x9p = — < 1
ai
(puisque aj est lui-méme entier), on a donc agp < o < ag + 1, ce qui suffit a affirmer que

ap = |a.

. (a) Manifestement, o, = a,, + (il n’y pas grand chose a justifier, c’est la définition méme

(07N ]
de ay).
(b) On peut simplement effectuer un calcul par récurrence : une fois connues les valeurs de a,
1
et de ay,, on calcule d’abord a1 = —— (relation de la question précédente), puis
Qp — A

on peut ensuite calculer a,,41 = |an11] (c’est le méme principe que pour le calcul de ag,
il suffit de constater que «,,+1 est toujours supérieur ou égal a 1, ce qui est évident vu sa
définition puisqu’on ajoute a un entier non nul a, 1 une fraction manifestement positive).
Comme on connait les valeurs de ag = « et de ag (question précédente), on peut initialiser
sans probléme le calcul.

(¢) Calculons donc : ag = [V2] = 1, puis oy =

1 1
= = v/2 4+ 1 (mutliplication
Qo — agp \/5 —1 ( pl

par la quantité conjuguée). On en déduit a1 = [V2+1 = 2, puis ag = ——— =
a1 —a
1 1

V2+1-2 V2-1

an = 2 puis 41 = V241 pour tout entier n > 2.

= v/2+1. Inutile de pousser plus loin les calculs, on aura désormais

(d) On vient de le dire : ag = 1 et Vn > 1, a, = 2. Oh mais ne serait-ce point par hasard
le cas particulier étudié en question 17 Quel hasard exatrordinaire. On a donc prouvé
indirectement que ce cas particulier donne une suite (z,,) convergeant vers \/5, ou si on

préfere que v2 =1+ PRI — Etonnant, non ?
24 51—
(e) On part donc cette fois-ci de @ = /3, et on calcule de méme : a9 = [v3] = 1, puis

1 3+1 1
= V3 + ~ 1.4. On continue : a; = |a1] = 1, donc ap = ———— =
V31 2

V3+1 -1
5 2
= V3 +1 ~ 2.7. Bon, les calculs ne semblent jusqu’ici pas se répéter mais ca

V3-—1
1

va venir : ag = 2, donc a3 = ——— = a;. A partir de 14, les calculs vont boucler

V3-1
V3+1

5 si n est impair, o, = v/3 + 1 si n est pair (non nul), donc

o =

périodiquement : a,, =

19



asni1 = 1 et as, = 2 (sauf pour n = 0). Autrement dit, v/3 =1 +

Probléme 1 : autour de la méthode de Newton (**)

1. On se limitera aux tout premiers termes de la suite sur le dessin, pour la bonne raison que la
suite converge tellement rapidement qu’en pratique, on n’y voit trés vite plus rien! Ici, on a
pris un exemple hyper classique qui est justement celui illustré (dans un cadre un peu plus
général) dans la suite de 'exercice : f(z) = 22 — 2 (qui s’annule bien entendu pour z = v/2),
et 9 = 2 (on pourra considérer que l'intervalle I est ici I'intervalle [0,2]. On calcule alors

aisément (par exemple en utilisant les formules démontrées ensuite dans 'exercice, c’est de
3 17 577

toute fagon 'objet de la question 5.a) que x1 = 3 T2 = T puis x3 = 108 (non indiqué sur
le dessin) :
2 T / ':'
)
1+ '
0 i x0}
2
-1 -

2. La tangente a la courbe de f en son point d’abscisse ,, a pour équation y = f'(z,,)(x — x,) +
f(xy). Par définition, x,11 représente la valeur de x pour laquelle y = 0 dans cette équation
(intersection avec 'axe des abscisses), donc 0 = f/(z,)(xp+1 — 2n) + f(2y), ce qui donne bien

Tn+1 = Tn — f/(x )
n

3. (a) Dans ce cas, on a f(z,) ==

2 _aet f'(x,) = 2z,, donc en reprenant la formule de la
2 2

. T, —a T,+a

question précédente 1 = T, — — =1

2x, 2x,

} 4 — 22° — 2
(b) Etudions donc g, qui est définie et dérivable sur I, de dérivée ¢'(z) = # =
x

20



2
¥ —a
57 En particulier, cette dérivée s’annule lorsque x = /a, valeur pour laquelle on a

x
a+a

9Wa) = 57

étant évidentes & calculer) :

= /a. On peut donc dresser le tableau de variations suivant (les limites

x| 0 Va +00
400 400
g \
a
. ) 2 —a
Passons a I’étude de la fonction h, dont la dérivée vaut h'(z) = ¢'(x)—1 = 52 1=
x
2’ +a . : : :
9.2 < 0 sur tout I'intervalle I. La fonction A est donc strictement décroissante sur 1,
x
2 2
x4 a a—2x
et on a sans difficulté limh(x) = limg(z) = 400, et comme h(x) = ta_ x = ,
z—0 z—0 2x 2x
on calcule 11141_1 h(z) = —oco (par exemple en utilisant la régle du quotient des termes de
T—1+00

plus haut degré). Remarquons en passant que, comme g(y/a) = y/a, on a h(y/a) = 0, la
fonction h est donc positive sur l'intervalle ]0, v/a] et négative sur [a, +o0.

Par définition, on a xy,4+1 — x, = g(x,) — x, = h(zy), dont le signe dépend de la position
de x,, par rapport a y/a. Or, le tableau de variations de la fonction g obtenu a la question
précédente prouve que g est minorée sur I par y/a, donc que, Vn € N, z,11 = g(x,) = /a.
La suite (x;,) est donc bien minorée par y/a (au moins a partir du rang 1, mais en fait on
a aussizg = a > y/a puisqu’on a supposé a > 1), et par conséquent décroissante puisqu’on
a toujours h(z,) < 0. Le théoréme de convergence monotone assure alors que la suite
(z,,) converge nécessairement vers une limite [ € R. Bien entendu, on aura alors aussi

. . .. x2i4a PP+a
lim z,41 =1, mais aussi lim =
n— 400 n—+oo 2x, 21

v/a ne peut étre nulle). Par conséquent, on doit avoir (en reprenant 1'égalité prouvée a la
2

a . . , . .-
——— soit 12 = a, et donc | = \/a puisque [ est nécessairement positive.

21
z2+a 2 2
Toy1 —va S tVa  x2 —2x,Jat+a (z,—+a)

Tpi1 +Va xéxt“_,_\/a_x%—Fan\/a%—a - (T + Va)? -

(la limite { étant supérieure ou égale a

question 3.a) | =

C’est un calcul direct : vy 41 =

2
n:

A partir du résultat de la question précédente, on montre facilement par récurrence que,
vn € N, v, = (v9)?". Cest bien entendu vrai au rang n = 0 puisque (vg)2’ = vh = o,

v

et si on suppose la propriété vraie au rang n, alors v,y = v2 = ((1)0)271)2 = (vo)QnH,
ce qui prouve bien I'hérédité. On déduit de cette égalité et de la définition de la suite v,
que |z, — /a| = |z, + v/a| x 3" (on sait que vy est un nombre positif). 11 suffit alors
de constater que x, + v/a < xg + v/a < 2x¢ pour conclure (puisque la suite (x,) est

décroissante de premier terme xg = a).

2
2
La relation de la question 3.a peut se réécrire dans ce par particulier x,4+; = x; * =
L,
1 . 1 3
x—; + —. A partir de g = 2, on calcule donc successivement x7 = 1 + 3 =3 %=
x
3+2"9+8 17 17 12 2804288 5TT o .
- 4+-=——=—c¢etenfinzr3 = — + — = ———— = —— (oul, quatre premiers
1737 12 T 12 YT 408 qo8 "M duate P

termes, ga s’arréte bien a x3).

5

2 -2

2+42

puisque 2 — v/2 < 1 et 2+ /2 > 3. Cela suffit & obtenir la majoration souhaitée.

1
On applique bien siir 'inégalité démontrée en question 4.b : 2xg = 4, et vy = < 3
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()

Il suffit d’aprés la question précédente d’avoir < 1079, soit 32" > 4 000 000. Or,

4
5
32 =09, 3% =81, 3% = 812 = 6 561, et le carré de ce dernier nombre est déja bien supérieur
a4 x 10%, donc n = 4 suffit. La suite (z,,) converge en fait trés trés vite vers /2.

Probléme 2 : autour de la série harmonique (***)

1. (a)

(b)

n+1 1 n 1 1
Une question triviale pour commencer en douceur : Hy, 1 — H, = —— - =
pt k P k' n+1
0, donc la suite (H,,) est strictement croissante.
1 &1
Commencons par calculer Ho,, — H,, = ; T 2 7= kZH T Cette derniére somme est
= = =n

. ) 1
constituée de n termes, et chacun d’entre eux est supérieur ou égal a o donc la somme
n

) L. ) . n 1
est bien supérieure ou égale & — = —.
2n 2

La suite étant croissante, si elle était majorée, elle convergerait nécessairement vers une

limite [. Mais alors on aurait lirf Hs, — H, =1—1 = 0, ce qui est complétement
n—-—+0oo

incompatible avec le résultat démontré & la question précédente. La suite ne peut donc
pas étre majorée, ce qui implique qu’elle diverge vers +oc0.

4
1 1 3 1 1 1 1 13
alculons adonc : u; Z:k —i—2 2,u2 k,Qk 2+3+4 1,U3
1
1 1. 1 1 19 1
§+Z+5+6 =55 La suite (u,,) semble décroissante. De autre coté, v; = ; o5 2 ;
2 3
1 1 1 1 1 37
Vg :;24——]&‘ = §+Z =13 et vgzkz = — 5+6 = 50" Cette deuxiéme suite
semble croissante.
2n+2
Commengons par étudier la monotonie des deux suites : up41 — Uy = kzﬂ - — Z r =
n
1 n 1 1 n2n+1)4+n2n+2)—2n+1)(2n+2)  2n? +n+ 2n? —i—2n—4n2—6n—f
n+1 2n+2 n n(2n + 1)(2n + 2) B n(2n + 1)(2n + 2)
-2
m < 0, donc la suite (u,) est bien décroissante. De 'autre coté, v,11 — v, =
"il 1 1 ’iQ 1 1 Lo, 1 1
n+1+k ntk “~n+k Z<n+tk 2n+l 2n+2 n+l 2n+1
k=1 k=1 k= k=1
2 > 0, donc (vy,) est décroissante.
Enfin, en effectuant un changement d’indice j = k+n (on peut, n est une valeur fixée),
2n 2n
1 1 1
on a vy — U, = Z - — — = ——, qui a certainement une limite nulle. Les deux
j=n+1 J k=n k 2n

suites sont donc adjacentes et convergent vers une méme limite.

La méthode suggérée par 1’énoncé consiste a constater que, Vx € [k, k + 1], on a l'enca-

1 1
drement el <= < Z (décroissance de la fonction inverse). Comme ’encadrement est

T
k+1 1

valable sur tout l'intervalle, on peut intégrer les inégalités pour écrire / Pl dx
k

k+1 1 k+1
/ — dx < / Z dx. Les deux intégrales a gauche et & droite sont des intégrales
kT k
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‘ 1
et —.
+1 k
k+11

Et, bien sir, / ~ dx = [In(z)]f*™ = In(k + 1) — In(k), dont découle I'encadrement
k x

de constates sur un intervalle de largeur 1, elles valent donc respectivement

demandé.

1
Méthode plus rustique : on pose f(z) = In(z + 1) — In(z) — 11 la fonction f
x

1 1
est bien définie et dérivable sur ]0,+oo[, de dérivée f'(z) = oo + CEIE =
1) — 1)2
et —(@+1)y+w = — < 0. La fonction f est donc strictement décrois-
x(z +1)2 x(r+1)2

1 1 1
sante. Or, f(x) =1n <x i ) - =1In <1 + —> - a une limite nulle quand x
T z+1 T T+

tend vers +00. On en déduit que f est toujours positive.

1

On recommence ensuite avec g(z) = — — In(x + 1) + In(z), avec cette fois ¢'(z) =
x

1 1 1 1

2 il 2 2@t
+00 (calcul trés similaire au précédent), donc positive sur |0, +o00].

< 0. Encore une fonction décroissante a limite nulle en

Si on reprend l'inégalité de droite de l’encadrement précédent et qu’on la somme pour
n n

1

les valeurs de k comprises entre 1 et n, on trouve Zln(k +1) —In(k) < Z —, donc
k=1 il

In(n + 1) —In(1) < H, (la somme de gauche est télescopique), c’est bien la premiére

moitié de ’encadrement demandé pour H,. Pour obtenir la moitié de droite, décalons les
indices dans l'inégalité de gauche de ’encadrement de la question a : si k > 2, on peut

écrire Z < In(k) — In(k — 1). La encore, on va sommer ces inégalités, mais on ne peut le

n n

1

faire qu’a partir de k = 2 : Z % < Zln(k) —1In(k — 1), ce qui donne H,, — 1 < In(n) (il
k=2 k=2

manque le premier terme dans la somme de gauche pour reconnaitre H,,), ce qui implique

bien H, < In(n)+ 1.

Commengcons par étudier les monotonies : ap4+1 — ap = Hpp1 — Hy —In(n+ 1) +1In(n) =

T —In(n+1)+In(n) < 0 d’apres 'inégalité de gauche de ’encadrement de la question a.
n

1
La suite (ay,) est donc décroissante. De méme, by, 41— by, = —— —In(n+2)+In(n+1) >0
n
(c’est I'inégalité de droite de I'encadrement de la question a, mais décalé d’une unité). La
1
suite (b,,) est donc croissante. Enfin, a,, —b, = In(n+1)—In(n) = In <1 + —) a une limite
n
nulle. Les deux suites sont donc adjacentes, elles convergent vers une méme limite.
2n
1
En effet, en reprenant le changement d’indice de la question 2.c, v, = Z = Hs,— H,.
k=n+1
Comme on sait que In(2n) = In(2) + In(n), on peut faire une astuce belge étonnante en
écrivant v, = Ho, — In(2n) + In(n) — H,, + In(2). Or, hr—Ikl H, — In(n) = 7 (question
n—-+00

précédente), et donc lim Ha,—In(2n) = 7 également. Il ne reste donc plus que lim v, =
n—+oo n—+oo

v—v+1n(2) = In(2). Ce genre de calcul pourra étre écrit de fagon beaucoup plus naturelle
quand nous aurons étudié la négligeabilité et les notations qui vont avec.
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Probléme 3 (**%*)

1. On part donc de ug = 1 et u; = 0 avant d’appliquer la relation de récurrence : us = 5(12 +

1 1 1 1 1/1 1 17
0%) = =, puis ug = ~ <0 + —) =3 et enfin uy = = <— + ) (oui, cing termes, ¢a

2 2 4 o\27"64) " 128

s’arréte bien & uy4 quand on part de ).

2. (a)

(b)

Si (uy,) est constante égale a k (avec bien str k > 0), la relation de récurrence implique
1

que k = 5(1(52 + k?), donc que k = k2, ce qui implique k£ = 0 ou k = 1. Réciproquement

les deux suites constantes égales a 0 et & 1 sont bien des éléments de S.

Supposons donc que, pour un certain entier n, on ait u, = u,+1 = 1, alors on démontre
par récurrence double que, Vp > n, u, = 1 (c’est le cas aux rangs n et n+1 par hypotheése,
ce qui donne l'initialisation de la récurrence double; et si on suppose ux = ug41 = 1 pour

1
un certain entier k¥ > n, alors ug o = 5(12 +12) = 1, ce qui prouve I'hérédité). Il faut

toutefois aussi prouver que les termes d’indice inférieur & n sont aussi égaux a 1 si on veut
la suite soit réellement constante. Supposons que ce ne soit pas toujours le cas, et notons
ng le plus grand entier tel que u,, # 1. On a alors par définition de ng, Up,+1 = Ung+2 = 1,

donc en appliquant la relation de récurrence définissant w, au rang ng, 1 = 5(1 + uio),
donc u%o = 1. Tous les termes de la suite (u,) étant positifs (récurrence double triviale si

on tient a étre rigoureux), on a nécessairement u,, = 1, ce qui contredit notre hypothése
et prouve par conséquent que tous les termes de notre suite sont bien égaux a 1.

Supposons donc qu'un certain terme wu, soit égal & 0, avec n > 2. Alors u, = 0 =

§(ui_2 +u2_,), ce qui implique manifestement que u,_1 = u,_2 = 0 (une somme de
carrés ne pouvant étre nulle que si chacun de ses termes est nul). Comme a la question
précédente, ce raisonnement peut s’étendre pour prouver que tous les termes d’indice
inférieur & m sont eux aussi nuls, et on prouve ensuite par récurrence double que la suite

est entiérement nulle.

3. Supposons donc que Erfooun = € R, alors bien entendu on a aussi lim u,, 12 = [ et lim ui 1=

lim u

n

2 _
- =

(12 +12). Clest la

1
12, et la relation de récurrence définissant (u,) implique que [ = 3

méme équation qu’a la question 2.a, on en déduit que I =0oul = 1.

4. (a)

2 62
s ,que b < 1, alors 0 < b? <

Supposons donc, en plus des hypothéses 0 < a < b <
b

a
b < 1, et bien entendu on a aussi a®> < b? < b par croissance de la fonction carré sur

2 12
a”+b 2b . . s .
< 5 = b, ce qui contredit les hypothéses initiales sauf si

toutes nos inégalités sont des égalités. C’est le cas uniquement si a? = b?> = b = 0, donc
a=b=0.

[0,1]. On en déduit que

2 62
uisque @+ < a, on peut écrire a® +b% —2a < 0, donc (a —1)2 —1+b? < 0, ou encore
b) Puisq 5 p ;
b? <1—(a—1)? < 1 (puisqu'un carré est bien siir positif). Ceci suffit & affirmer que b < 1.
1.2 2 Lo, o Unig —Up R
5. Calculons donc 43— Up42 = §(un+1 +ug o) — §(un +ui ) = — 5 qul est du méme

signe que ui o — u2, et donc du méme signe que u, 4o — U, puisque ces deux nombres sont
positifs (si on le souhaite, on factorise sous la forme (uny2 — up)(Unt2 + u,) pour rendre la
preuve plus évidente).

6. (a)

(b)

Cela découle de fagon évidente de la question précédente : puisque up42 — u, > 0, alors
Upt3 — Upgo > 0, ce qui suffit & prouver ce qui est demandé.

Prouvons par récurrence double la propriété ug < ug4q & partir du rang n + 1. L’ini-
tialisation double découle de la question précédente, supposons alors que uy < ugs; et
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Uk11 < Ugao pour un certain entier k > n+ 1. On peut & nouveau appliquer la question a
pour en déduire que ugyo < ugy3, ce qui prouve I’hérédité de la propriété et la croissance
de la suite & partir du rang n + 1. Supposons désormais que la suite n’est pas strictement
croissante & partir du rang n + 3 (précision omise dans I’énoncé, on ne peut rien dire sur
les termes d’indice n 4+ 1, n + 2 et n + 3 de plus qu’'une simple croissance au sens large),
alors il existe donc un entier p > n + 3 tel que u, = w41 (une suite croissante qui ne
lest pas strictement contient au minimum deux termes consécutifs égaux). En appliquant
la question 5, on en déduit alors que u,—2 = u,, et donc également que wu,_1 = u, par
croissance de la suite. La suite contient donc trois termes (et méme quatre) consécutifs
égaux, la valeur de ces termes ne peut étre que 0 ou 1 (calcul déja effectué deux ou trois
fois), et on a démontré a la question 2 que la suite était constante dans ces deux cas.

a? +v?

(c) Posons a = up11 et b = up49. Par hypotheése, w41 < upio < Upys, soit a < b <

Sachant que b n’a pas le droit d’étre nul (sinon toute la suite ’est, question 2.c), la question
4.a permet d’affirmer que b = uy49 > 1.

(d) En éliminant les suites constantes, la suite est strictement croissante a partir du rang n+3,
et va d’aprés la question précédente prendre des valeurs strictement supérieures a 1. Si elle
converge, c’est donc vers une limite elle-méme strictement supérieure & 1, ce qui est exclu
par la question 3. Etant croissante (a partir d’un certain rang), la suite ne peut donc que
diverger vers +oc.

. Ce sont exactement les mémes étapes qua la question précédente : on prouve d’abord que
Upts < Unto < Upt1 en utilisant la question 5. Ensuite, on prouve par récurrence double que
la suite est décroissante a partir du rang n + 1 (exactement la méme récurrence que ci-dessus
en changeant le sens des inégalités), puis que la suite est strictement décroissante & partir du
rang n + 3 (er21(:or62une fois, c’est pareil). Enfin, on applique la question 4.b avec a = up42,

a‘+b

b= up41 et = Up43, et on en déduit que u,11 < 1, et donc u,43 < 1. La suite étant
ensuite strictement décroissante et minorée par 0, elle converge nécessairement, et sa limite

est nulle puisqu’elle ne peut pas étre égale a 1.

1 1
. Calculons les premiers termes de la suite (u,,(v/2,0)) : ug = 5(2—1—0) =1, puis ug = 5(0—1—1) =

1 _11+1 —5‘5 1 1+25_410 ¢ sarroter 1a - < ¢
2,U4—2 1 —86 U5—2 176) T I n peut s’arréter la : us < uq €

us < ug, donc la suite converge vers 0 d’aprés la question 7.
1
On fait pareil pour (u,(2,0)) : ug = 5(4 +0) = 2, puis ug = 2 (méme calcul!), donc us
est supérieur a la fois & u; et & ug et la suite diverge vers 400 (question 6).

. (a) Effectuons un raisonnement par ’absurde en supposant que u; = ug. On distingue alors
trois cas selon la valeur de us :
e si us = uq, on a trois termes consécutifs égaux, et la suite est constante, cas exclu par
I’énoncé.
e si uy; < ug, alors la question 6 assure que la suite va diverger vers +o00, cas également
exclu.
e enfin, si u; > us, la question 7 assure cette fois-ci que la suite va converger vers 0, ce
qui n’est pas non plus autorisé.
On doit bien avoir uy # uyg.
(b) Exactement le méme principe qu’a la question précédente, on exclut les autres possibilités :
® si Upio = Upy1, la position de u, 3 par rapport a ces deux valeurs identiques donnera
exactement les trois mémes cas qu’a la question précédente (suite constante, divergeant
vers +00, ou convergeant vers 0), qui sont exclus tous les trois. On en déduit que
Unt2 7 Untl.
® si Upto < Upt1, ON Ne peut pas avoir up4o < Up, sinon la suite convergerait vers 0
(question 7), donc u, < Upto < Upii.
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e si au contraire u, 41 < Up42, ON Ne peut pas avoir u, < Up42, sinon la suite divergerait
vers +00 (question 6), donc cette fois up+1 < Upt2 < Up.

(¢) On peut effectuer une récurrence en appliquant la question précédente pour prouver que,
pour tout entier n, on va avoir ug, < Ugnto < U2n+1 €6 Uopto < Uopts < Ugpy1. AU rang
0, 'encadrement ug < us < u; découle de la question précédente, puis l'inégalité uo < uy
implique (toujours en utilisant la question précédente) que ug < uz < uj. Supposons main-
tenant les inégalités vraies au rang n, on part alors de uoy 2 < ugp4+3 pour en déduire que
Ugnto < Uoptq < U2n+s puis (en gardant I'inégalité de droite de I'encadrement précédent)
que Ugpt4 < U245 < Uap+3, ce qui prouve les deux encadrements souhaités au rang n + 1.

On a en particulier prouvé qu’on avait toujours uo, < uopy2 €t Uopts < Ugpt1, donc
la sous-suite (ugy,) est strictement croissante, et la sous-suite (ug,4+1) strictement décrois-
sante. Comme on a toujours ug, < Ug,4+1 < u1, la suite (ug,) converge vers une limite
finie I. De méme, ug, 1 > w2, > up donc la suite (ug,4+1) est minorée et converge vers

2 2
Up, + un+1

une limite finie /. En passant a la limite dans la relation g, o = , on trouve la

207 . . up 1 + U,
. De méme, en passant a la limite la relation ug, 13 = w

relation | =
l/2 — l2

, ONn

aura [’ = , donc " = [. Les deux sous-suites (ugy,) et (ug,+1) ayant la méme limite,

on peut en déduire que la suite (u,) converge vers cette méme limite. Cette limite ne peut
pas étre nulle puisque la suite est minorée par ug > 0, elle est donc nécessairement égale
al.

(d) On a en effet prouvé que, quelles que soient les valeurs initiales, la suite (u,,) allait converger
vers 0, converger vers 1, ou diverger vers +00, ce qui est exactement ce qui est demandé
dans cette question.

1
10. Il s’agit donc de représenter I’ensemble défini par 1’équation 5(562 +12) = 1, soit 22 + 9% = 2.

11.

Il s’agit tout simplement d’un cercle de centre O et de rayon v/2, ou plutét d’un quart de
cercle puisqu’on se contente des valeurs de x et de y positives depuis le début de I'exercice.
Ce quart de cercle est représenté en rouge sur la figure en fin d’exercice.

2
On calcule cette fois us(z,y) = 3 (( 5 > + y2> , donc ug(z,y) = 1si (22 +9?)2 +4y? =

8, soit (ac2 + y2)2 = 8 — 49%. Cette condition ne peut étre vérifice que si 8 — 4y? > 0, soit
y < V2. On aura alors (tout étant positif) 22 + y? = /8 — 492, soit (quand cela a un sens)
x = 1\/v/8—4y? —y2. On pose donc h(y) = //8 — 4y? — y2, la fonction étant définie si
y < /2, mais aussi si /8 — 4y2 > 12, soit 8 —4y? > y* ou encore y* +4y? — 8 < 0. En posant
Y = 4?2, le trinome Y? + 4Y — 8 a pour discriminant A = 16 4+ 32 = 48 = (4\/3)2, et admet

—4— 43 —4+ 43

pour racines Y] = < 0,et Yo = = 2v/3 -2 > 0. On en déduit que

Y doit étre compris entre Y7 et Yo pour que h soit définie, ce qui donne en remontant aux
valeurs de y, D, = [0,v/2v/3 — 2] (la borne supérieure étant facilement plus petite que v/2).

Elle est dérivable sur cet intervalle sauf en \/2v/3 — 2 ou sa courbe admettra une tangente
verticale, et strictement décroissante sur son domaine de définition (c’est évident méme sans
expliciter la dérivée, puisque y — /8 — 432 et y +— —y? sont toutes les deux décroissantes
sur ce segment, et qu’on compose par la racine carrée qui est croissante). On peut calculer
h(0) = /22 et h(\/2v/3 —2) = 0. Les plus courageux constateront qu'il y a une tangente
horizontale en 0. L’ensemble Cs est obtenu en prenant la courbe représentative de la fonction
h et en la symétrisant par rapport a la droite d’équation y = x, puisque h exprime = en
fonction de y (autrement dit, (z,y) € C3 si * = h(y), ou encore si y = h~!(x), en notant
bien stir h~! la réciproque de la fonction h. L’ensemble C3 est représenté en bleu sur la figure
ci-dessous.
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12. Siun point (x,y) appartient a la fois a Cy et a Cs, la suite (u,(x,y)) aura deux termes consécu-
tifs égaux a 1, elle est donc nécessairement constante égale & 1, ce qui implique que z =y = 1.
Autrement dit, le point de coordonnées (1, 1) est le seul & appartenir aux deux ensembles. La
courbe Cs est donc en-dessous du quart de cercle Cy sur Uintervalle [0, 1] (puisqu’elle coupe

Paxe des ordonnées en \/2v/3 — 2 < \/5) et au-dessus ensuite. Une allure des deux ensembles :

13. Tout point (z,y) qui se trouve & la fois a 'intérieur (strictement) de Cs et a Uintérieur de Cs
vérifie ug < 1 et ug < 1 (les inégalités auraient du étre strictes dans I’énoncé), donc appartient
a I’ensemble Fj puisque la suite va alors converger vers 0. De méme, tout point strictement &
Iextérieur de Cs et de C3 appartiendra nécessairement a Fo,. Ce magnifique probléme était un
extrait (seulement!) d’un vieux probléme de concours PT (Centrale 1989, a I’époque on savait
rigoler), oll on se proposait ensuite de faire beaucoup mieux, en prouvant que toute demi-droite
issue de l'origine dans (R*)? contenait exactement un point (z,y) appartenant & E7, tous les
points de la demi-droite étant situés du coté de ce point contenant 1’origine appartenant &
Ey et tous les autres & Eo,. Autrement dit, il existe une courbe traversant le quart de plan
depuis 'axe des ordonnées jusqu’a ’axe des abscisses et correspondant a I’ensemble E7. Les
points situés en-dessous de cette courbe sont dans Fj, ceux situés a ’extérieur sont dans F.
Cette courbe se situe quelque part entre les courbes Cy et Cs.
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