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Exercice 1 (**)

On vérifie toutes les propriétés nécessaires pour avoir une loi de groupe :

• la loi ⋆ est bien une lci car x ̸= 0 et x′ ̸= 0 (par hypothèse sur l’ensemble sur lequel s’applique
⋆, donc xx′ ̸= 0, et (xx′, xy′ + yx′n) ∈ R∗ × R.

• la loi ⋆ est associative : ((x, y)⋆(x′, y′))⋆(x′′, y′′) = (xx′, xy′+yx′n)⋆(x′′, y′′) = (xx′x′′, xx′y′′+
xy′x′′n+yx′nx′′n), et (x, y)⋆((x′, y′)⋆(x′′, y′′)) = (x, y)⋆(x′x′′, x′y′′+y′x′′n) = (xx′x′′, xx′y′′+
xy′x′′n + yx′nx′′n). Les deux résultats obtenus sont les mêmes, ce qui prouve l’associativité.
Notons que la loi ⋆ n’est commutative que pour n = 1. ensuite, on aura par exemple (1, 1) ⋆
(2, 1) = (2, 1 + 2n), mais (2, 1) ⋆ (1, 1) = (2, 3).

• le couple (1, 0) sera élément neutre de la loi ⋆ : (1, 0) ⋆ (x, y) = (x, y) et (x, y) ⋆ (1, 0) = (x, y).
• un couple (x, y) admet pour symétrique (x′, y′) si (x, y) ⋆ (x′, y′) = (1, 0), donc si xx′ = 1 et

xy′+yx′n = 0, soit x′ =
1

x
(toujours bien défini puisque x ̸= 0 et y′ = − y

xn+1
(également bien

défini). Vérifions que le symétrique est bien le même « dans l’autre sens » :
(
1

x
,− y

xn−1

)
⋆

(x, y) =
(
1,

y

x
− y

xn−1
× xn

)
= (1, 0). Tout couple est donc symétrisable pour la loi ⋆.

Exercice 2 (*)

1. La loi est manifestivement commutative (x et y jouent un rôle symétrique dans la définition).
Pour l’associativité, calculons (x⋆y)⋆z = (x+y+x2y2)⋆z = x+y+x2y2+z+(x+y+x2y2)2z2 =
x+ y + z + x2y2 + x2z2 + y2z2 + x4y4z2 + 2xyz2 + 2x3y2z2 + 2x2y3z2. Cette expression n’a
aucune raison de donner une opération associative (aucune symétrie entre les trois variables à
l’arrivée), cherchons donc un contre-exemple : (1⋆1)⋆2 = 3⋆2 = 30 et 1⋆ (1⋆2) = 1⋆7 = 57.
Effectivement, ⋆ n’est pas le moins du monde associative (et ne peut donc pas être une loi de
groupe).

2. Oui, 0 est un élément neutre assez évident.

3. Par définition, 1 ⋆ x = 0 signifie que 1 + x+ x2 = 0, équation qui n’a aucune solution réelle.
Même principe pour l’équation 1 ⋆ x = 1 qui se ramène à x + x2 = 0 et admet donc deux
solutions : l’élément neutre x = 0 (normal) mais aussi l’élément x = −1 (ce qui prouve que,
pour la loi ⋆ on ne peut pas « simplifier » une égalité du type 1 ⋆ x = 1 par 1).

Exercice 3 (*)

1. Le reste d’une division par 5 étant toujours un entier naturel strictement inférieur à 5, le seul
risque serait que ce reste soit égal à 0. Or, si x ∈ E, x ne peut avoir pour facteurs dans sa
décomposition en facteurs premiers que des 2 et des 3 (ou même aucun facteur premier si
x = 1), et ce sera également le cas pour xy, que que soit l’entier y ⩾ 1. En particulier, xy

ne contiendra jamais de facteur 5 et ne sera donc jamais divisible par 5, ce qui prouve que le
reste de sa division par 5 ne peut pas être nul. La loi ⋆ est donc bien une lci. On remplit le
tyableau de loi « à la main » en calculant toutes les puissances, par exemple 23 = 8 ≡ 3[5],
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donc 2⋆3 = 3, ou 42 = 16 ≡ 1[5] donc 4⋆2 = 1. Dans le tableau qui suit, l’opérande de gauche
est indiqué en ligne et celui de droite en colonne, comme d’habitude (la loi n’est clairement
pas commutative) :

⋆ 1 2 3 4

1 1 1 1 1

2 2 4 3 1

3 3 4 2 1

4 4 1 4 1

2. Ce n’est pas du tout une loi de groupe, elle ne vérifie pas la « règle du Sudoku » et on peut
trouver par exemple des contre-exemples à l’existence de l’élément neutre ou à l’associativité
((2 ⋆ 1) ⋆ 3 = 3 mais 2 ⋆ (1 ⋆ 3) = 2).

3. Le seul élément a pour lequel a ⋆ 2 = 1 est a = 1, on est donc ramenés à la résolution de
l’équation 3⋆x = 1, qui donne comme unique solution x = 4 (à chaque fois, on lit simplement
dans le tableau).

La deuxième équation ne peut avoir de solutions puisque 4 ⋆ a est toujours égal à 1 ou 4,
jamais à 2.

Enfin, pour la dernière, on doit nécessairement avoir 3 ⋆ x = 2, donc l’unique solution est
x = 3.

Exercice 4(*)

1. Le plus simple est de faire le tableau complet de la loi de groupe même si c’estun peu laborieux,

en calculant toutes les composées, par exemple f5◦f3(x) =
x−1
x

x−1
x − 1

=
x− 1

−1
= 1−x = f6(x).

On constate ainsi que la loi ◦ est interne sur G, l’associativité est évidente (la composition
est toujours associative), le neutre est bien présent dans G (c’est f1) et tout élément de G
admet une réciproque appartenant à G, donc c’est un groupe. Il n’est pas abélien, par exemple
f3 ◦ f5 = f4 ̸= f5 ◦ f3.

◦ f1 f2 f3 f4 f5 f6

f1 f1 f2 f3 f4 f5 f6
f2 f2 f3 f1 f5 f6 f4
f3 f3 f1 f2 f6 f4 f5
f4 f4 f6 f5 f1 f3 f2
f5 f5 f4 f6 f2 f1 f3
f6 f6 f5 f4 f3 f2 f1

2. Un sous-groupe à deux éléments contient nécessairement le neutre f1, et un deuxième élément
qui est sa propre réciproque (pour avoir la stabilité par symétrisation). Réciproquement, un
sous-ensemble constitué de deux tels éléments sera un sous-groupe. On a donc trois sous-
groupes à deux éléments : {f1, f4}, {f1, f5} et {f1, f6}.

3. Oui, H1 est un sous-groupe, les stabilités sont évidentes à partir du tableau de la loi de groupe.
Par contre, H2 n’en est pas du tout un, par exemple f2 ◦ f2 = f3 /∈ H2.

Exercice 5 (*)

Les deux opérations ∆ et ∩ sont certainement des lci. De plus, on a prouvé en début d’année
que l’opération ∆ était associative, commutative et distributive par rapport à l’intersection, preuves
que je vais donc me dispenser de refaire ici ! L’intersection est elle-même associative et commutative.
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Il reste donc à vérifier la présence des deux éléments neutres et la symétrisabilité pour la différence
symétrique. Le neutre pour l’intersection est E tout entier, le neutre pour l’opération ∆ est ∅ :
A∆∅ = (A ∪ ∅)\(A ∩ ∅) = A\∅ = A. Enfin, tout élément de P(E) admet un symétrique pour
l’opération ∆ qui est tout simplement lui-même : A∆A = (A ∪ A)\(A ∩ A) = A\A = ∅. On est
bien en présence d’un anneau commutatif. Les unités de cet anneau sont les sous-ensembles de E
admettant un symétrique pour l’opération d’intersection, c’est-à-dire uniquement l’ensemble E lui-
même (A admet un symétrique pour ∩ si et seulement s’il existe B ⊂ E tel que A ∩ B = E, ce qui
implique immédiatement A = B = E).

Exercice 6 (*)

On va en fait montrer que Q[
√
3] est un sous-corps de R. Pour cela, on doit vérifier les propriétés

suivantes :

• Q[
√
3] est un sous-groupe additif de R. En effet, il contient l’élément neutre 0 (il suffit de

prendre a = b = 0, est stable par somme : (a+ b
√
3) + (c+ d

√
3) = (a+ c) + (b+ d)

√
3, avec

a+ b et c+ d rationnels comme somme de rationnels. Et il est stable par passage à l’opposé
de façon évidente.

• Q[
√
3] est un sous-anneau de R. En plus de ce qui précède, on vérifie que notre sous-ensemble

contient le neutre multiplicatif 1 (c’est le cas en posant a = 1 et b = 0), et qu’il est stable
par produit : (a + b

√
3)(c + d

√
3) = ac + ad

√
3 + bc

√
3 + 3bd = (ac + 3bd) + (ad + bc)

√
3.

Les deux coefficients ac + 3bd et ad + bc étant bien rationels, notre ensemble est stable par
multiplication, c’est bien un sous-anneau de R.

• Enfin, pour avoir un sous-corps, il faut que notre ensemble (privé de 0) soit stable par passage
à l’inverse. Il suffit pour le prouver d’avoir en tête le produit par la quantité conjuguée :

1

a+ b
√
3

=
a− b

√
3

a2 − 3b2
=

a

a2 − 3b2
− b

a2 − 3b2
√
3, qui appartient bien à notre ensemble (le

dénominateur a2 − 3b2 ne peut pas s’annuler car
√
3 est un nombre irrationnel). On a bien

prouvé qu’il s’agit d’un sous-corps de R.

Exercice 7 (**)

1. Vérifions que τa est un morphisme de groupes multiplicatifs : si (x, y) ∈ G2, alors τa(x)τa(y) =
axa−1aya−1 = axeya−1 = axya−1 = τa(xy). De plus, τa est à valeurs dans G, ce qui prouve
que τa est un endomorphisme. Enfin, τa a une réciproque assez évidente qui est τa−1 puisque
τa−1(τa(x)) = a−1(axa−1)a = exe = x et τa(τa−1(x)) = a(a−1ax)a−1 = exe = e. Ce calcul
n’est d’ailleurs qu’un cas particulier de celui qu’on va faire à la question suivante.

2. Calculons : τa(τb(x)) = a(bxb−1)a−1 = (ab)x(ab)−1 = τab(x), donc τa ◦ τb = τab. De façon
évidente, τe = idG.

3. On a déjà prouvé que l’application (appelons là φ) était à valeurs dans Aut(G), mais aussi qu’il
s’agissait d’un morphisme (c’est le calcul de la question précédente). Reste donc à déterminer
son noyau : φ(a) = idG ⇔ τa = idG. Autrement dit, on doit avoir, ∀x ∈ G, axa−1 = x, ce
qu’on peut écrire sous la forme ax = xa. L’élément a doit donc commuter avec tous les autres
éléments du groupe G. On appelle l’ensemble de ces éléments centre du groupe G, et on le
note habituellement Z(G).

Exercice 8 (***)

1. Dans un groupe additif, un élément est d’ordre fini s’il vérifie x+x+ · · ·+x = nx = 0, ce qui
n’est le cas dans R que de 0 lui-même (dont on peut dire qu’il est d’ordre 1, c’est d’ailleurs
le seul élément vérifiant cette propriété). Dans C∗, un élément z est d’ordre fini s’il existe un
entier n tel que zn = 1, autrement dit si z est une racine n-ème de l’unité pour un certain
entier n. On peut écrire cet ensemble sous la forme

⋃
n∈N∗ Un.
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2. L’ensemble H contient l’élément neutre multiplicatif 1 puisque x0 = 1. De plus, si on considère
deux éléments de H de la forme xk et xl, alors leur produit xk+l peut toujours être ramené à
une puissance de x strictement inférieure à n en utilisant le fait que xn = 1 : soit k+ l < n et il
n’y a rien à faire, soit xk+l = xn×xk+l−n = xk+l−n, avec k+ l−n < n. L’ensemble H est donc
stable par multiplication. Il l’est également par passage à l’inverse puisque (xk)−1 = xn−k (en
effet, par hypothèse, xkxn−k = xn = 1). La seule valeur de k pour laquelle xn−k pourrait ne
pas appartenir à H est k = 0, mais dans ce cas x0 = 1 est son propre inverse. Finalement, H
est bien un sous-groupe multiplicatif de G.

3. De façon assez évidente, (x−1)k = (xk)−1. On peut le prouver rigoureusement en faisant une
petite récurrence : c’est vrai de façon évidente au rang 1, et en le supposant au rang k, alors
(x−1)k+1xk+1 = x−1(x−1)kxkx = x−1x = 1, ce qui prouve l’hérédité (le produit dans l’autre
sens se simplifie de la même façon). En particulier, on a donc (x−1) = xn = 1, ce qui prouve
que x−1 est aussi d’ordre fini. Il ne peut pas avoir un ordre strictement plus petit que x, car
x−k = 1 ⇒ xk = 1 d’après ce qui précède, donc les deux éléments ont bien le même ordre.

4. On peut en fait simplifier l’écriture de (yxy−1)k en yxky−1 (là encore c’est une récurrence
facile si on veut être rigoureux, c’est évident au rang 1, et une fois supposé au rang k, on
écrit (yxy−1)k+1 = (yxy−1)(yxy−1)k = yxy−1yxky−1 = yxk+1y−1 en simplifiant « par le
milieu »). On en déduit notamment que (yxy−1)n = yxny−1 = yy−1 = 1, ce qui prouve que
yxy−1 est d’ordre fini. Encore une fois, l’ordre ne peut pas être plus petit, car en supposant
(yxy−1)k = 1, on aurait yxky−1 = 1, donc yxk = y puis xk = 1, ce qui est exclu si k < n.

5. Supposons donc (xy)n = xyxyxy . . . xy = 1, et notons z = (yx)n = yxyx . . . yx, alors xz =
(xy)nx = x, ce qu’on a le droit de simplifier par x pour obtenir z = 1, donc yx est d’ordre
fini. De plus l’ordre de yx est nécessairement inférieur ou égal à celui de xy. Mais l’argument
étant bien sûr symétrique, l’ordre de xy doit lui-même être inférieur ou égal à celui de yx, ce
qui prouve que les ordres des deux éléments sont nécessairement égaux.

Exercice 9 (**)

1. C’est assez évident : si l’élément neutre appartient à chacun des sous-groupes, il appartiendra
aussi à leur intersection. Supposons désormais que x et y soient deux éléments appartenant
à chacun des sous-groupes de l’intersection, alors x ⋆ y−1 (en notant la loi ⋆ et le symétrique
comme un inverse) appartient aussi à chacun de ces sous-groupes (puisque ces sous-groupes
sont stables par ⋆ et par passage au symétrique), donc appartient également à leur intersection,
qui est donc un sous-groupe de G.

2. Notons Cx le centralisateur de x. L’élément neutre commutant avec tous les éléments de G,
il commute en particulier avec x et appartient donc à Cx. Supposons maintenant que deux
éléments x et y appartient à Cx. On a donc y ⋆ x = x ⋆ y (on garde les notations de la
première question) et z ⋆ x = x ⋆ z. En composant cette deuxième égalité par z−1 à droite,
on en déduit z ⋆ x ⋆ z−1 = x ⋆ z ⋆ z−1 = x, puis en composant à gauche par ce même z−1,
z−1 ⋆ z ⋆ x ⋆ z−1 = z−1 ⋆ x, soit x ⋆ z−1 = z−1 ⋆ x (ce qui prouve au passage la stabilité de Cx

par symétrisation). On peut maintenant écrire x ⋆ y ⋆ z−1 = y ⋆ x ⋆ z−1 = y ⋆ z−1 ⋆ x, ce qui
prouve que y ⋆ z−1 ∈ Cx, et donc que Cx est bien un sous-groupe de G.

3. Notons Z(G) le centre de G (notation traditionnelle pour cet ensemble). Absolument aucune
vérification à faire dans cette question, on peut tout bêtement utiliser les deux précédentes :
Z(G) =

⋃
x∈GCx est un sous-groupe de G en tant qu’intersection de sous-groupes de G (un

élément qui appartient à tous les centralisateurs est par définition un élément qui commute
avec tout le monde).

Exercice 10 (***)

1. Vérifions les trois propriétés :
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• la relation est réflexive car ∀x ∈ G, x = x ⋆ e, où l’élément neutre e appartient nécessaire-
ment au sous-groupe H.

• si xRy, il existe un élément z ∈ H tel que y = x ⋆ z, mais cela implique y ⋆ z−1 = x, où
z−1 est le symétrique de z, qui appartient aussi à H (c’est un sous-groupe, il est stable
par symétrisation). La relation est donc symétrique.

• si xRy et yRw, il existe deux éléments z et z′ de H tels que y = x ⋆ z et w = y ⋆ z′. Mais
alors x = (x ⋆ z) ⋆ z′ = x ⋆ (z ⋆ z′), avec z ⋆ z′ ∈ H puisqu’un sous-groupe est stable par ⋆.
Ceci prouve la transitivité de la relation.

La classe d’équivalence de x est simplement l’ensemble (souvent noté x ⋆ H des éléments
x ⋆ z lorsque z parcourt H. Tous ces éléments sont nécessairement distincts car, dans un
groupe, x ⋆ z = x ⋆ z′ ⇒ z = z′.

2. D’après ce qu’on a dit à la question précédente, toute classe d’équivalence contient autant
d’éléments que le sous-groupe H. D’ailleurs, H lui-même correspond à la classe d’équivalence
de l’élément neutre e.

3. On sait que G est l’union disjointe des classes d’équivalence, qui contiennent chacune |H|
éléments (on note ici |H| le nombre d’éléments de l’ensemble fini H). En notant k le nombre
de classes d’équivalence, on a donc |G| = k|H|, et le nombre d’éléments de G est donc multiple
de celui de H.

4. Puisqu’un nombre premier n’a pour diviseurs que 1 et lui-même, les sous-groupes ne peuvent
contenir qu’un seul élément (forcément égal à l’élément neutre), ou tous les éléments. Il n’y a
donc que les deux sous-groupes triviaux : {e} et G tout entier.

Exercice 11 (**)

1. Effectuons toutes les vérifications d’usage :

• A contient le neutre additif 0 (il suffit de poser p = 0) et il est stable par soustraction : si

x =
p

2n
et y =

q

2m
alors x− y =

2mp− 2nq

2n+m
, avec n+m ∈ N et 2mp− 2nq ∈ Z (même pas

besoin de s’embêter à se demander si la fraction se simplifie), donc A est un sous-groupe
additif de Q.

• A contient le neutre multiplicatif 1 (on pose par exemple p = 1 et n = 0, mais il existe
plein d’autres possibilités tout aussi valables !).

• A est stable par produit :
p

2n
× q

2m
=

pq

2n+m
, c’est complètement évident.

2. On doit donc chercher les éléments de A inversibles dans A, autrement dit les éléments de

la forme
p

2n
dont l’inverse

2n

p
a lui aussi un dénominateur qui est une puissance de 2. Quitte

à supposer la fraction réduite, cela signifie que p est lui-même de la forme ±2k, avec k ∈ N
(sa décomposition en facteurs premiers ne peut pas contenir d’autre facteur premier que 2).
Autrement dit, les seules unités dans A sont les nombres de la forme x = ±2k, avec k ∈ Z.

3. L’ensemble des décimaux peut être défini par D =
{ p

10n
| (p, n) ∈ Z× N

}
. La vérification du

faut que D est un sous-anneau de Q est alors rigoureusement la même que pour l’ensemble
A, ça n’a aucun intérêt de tout refaire. Les éléments inversibles de D sont alors ceux qui ont
un numérateur (après simplification) de la forme ±2k5l (cette fois-ci le dénominateur 10n a
deux facteurs premiers qui sont 2 et 5), ce qui donne finalement comme éléments inversibles
tous les éléments de la forme x = ±2k5l, avec (k, l) ∈ Z2.

Exercice 12 (***)

1. Si x est un élément nilpotent non nul, on peut écrire x × xn−1 = 0, avec xn−1 ̸= 0 quitte
à choisir le plus petit entier n pour lequel xn = 0 (cet entier est d’ailleurs appelé indice de
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nilpotence de l’élément x). On a alors un produit de deux éléments non nuls qui égal à 0, ce
qui prouve que A n’est pas intègre. Par contraposée, si A est intègre, 0 est le seul élément
nilpotent.

2. Commençons par le produit : si x et y commutent, on peut écrire, ∀k ⩾ 1, (xy)k = xkyk. En
prenant k = n, où n est l’indice de nilpotence de x, on a alors (xy)n = 0yn = 0, ce qui prouve
la nilpotence de xy (l’indice de nilpotence de xy sera logiquement le plus petit parmi ceux de
x et de y).

Pour la somme, on fait appel à notre ami Newton : notons n l’indice de nilpotence de x

et m celui de y, alors (x + y)n+m =
n+m∑
k=0

(
n

k

)
xkyn+m−k. Dans cette somme, tous les termes

à partir de l’indice n sont nuls car on a alors xk = xn × xk−n = 0 puisque xn = 0. Mais tous
ceux qui précédent sont nuls car si k < n, n + m − k > m, donc yn+m−k = 0. Finalement,
on est en train de calculer une somme de termes nuls, donc (x+ y)n+m = 0, ce qui prouve la
nilpotence de x+ y (les plus attentifs auront remarqué qu’on pouvait en fait se contenter de
(x + y)n+m−1 pour obtenir une valeur nulle, n +m − 1 est en général l’indice de nilpotence
de x+ y).

3. Il faut penser à exploiter la factorisation de an − bn évoquée en cours. Ici, on l’applique pour
a = 1 et b = x (éléments qui commutent toujours puisque le neutre 1 commute avec tout le

monde) : 1−xn = (1−x)
n−1∑
k=0

xk. Or, xn = 0, donc en posant y =
n−1∑
k=0

xk, on a plus simplement

(1 − x)y = 1 (et similairement y(1 − x) = 1, ce qui prouve que 1 − x est bien inversible, et
que son inverse est y.

Exercice 13 (**)

1. On peut par exemple appliquer l’hypothèse à l’opposé de x : (−x)2 = −x, donc x2 = −x.
Mais comme par ailleurs x2 = x, on a donc −x = x, ce qui implique bien 2x = 0. Autrement
possibilité : on applique l’hypothèse à l’élément x+1 : (x+1)2 = x+1, donc x2+2x+1 = x+1,
ce qui donne bien 2x = 0 puisque x2 = x.

2. Soient x, y ∈ A2, alors (x+ y)2 = x+ y, donc x2+ y2+xy+ yx = x+ y. Or x2 = x et y2 = y,
ce qui permet de simplifier l’égalité en xy+ yx = 0, donc xy = −yx. Or, comme tout élément
de A, yx vérifie −yx = yx, donc on a bien xy = yx et les deux éléments commutent toujours.

3. Développons : xy(x+ y) = xyx+xy2 = x2y+xy2 puisque x et y commutent. Mais ces carrés
ne servent à rien, donc xy(x+ y) = xy + xy = 2xy = 0.

4. Supposons que A contienne un élément x différent de 0 et de 1. En appliquant la question
précédente, 1 × x(1 + x) = 0, donc x(1 + x) = 0. Or, x ̸= 0 par hypothèse, et 1 + x ne peut
pas être nul sinon on aurait x = −1 = 1, ce qui est aussi exclu. Un produit de deux éléments
non nuls est donc nul, l’anneau n’est pas intègre.

Exercice 14 (***)

1. Les vérifications ne sont pas très difficiles : Z[α] contient tous les entiers relatifs (en posant
q = 0) donc a fortiori les deux éléments neutres 0 et 1. La stabilité par somme ou par
soustraction est évidente : p + αq + p′ + αq′ = (p + p′) + α(q + q′) ∈ Z[α], donc Z[α] est un
sous-groupe additif de C. Il ne reste plus pour avoir un sous-anneau qu’à vérifier la stabilité
par produit : (p+αq)(p′+αq′) = pp′+α(pq′+ p′q)+α2qq′. Or, par hypothèse, α est solution
de l’équation z2 + z + 2 = 0, donc α2 = −α− 2, ce qui permet d’écrire (p+ αq)(p′ + αq′) =
(pp′− 2qq′)+α(pq′ + p′q− qq′) ∈ Z[α] (les coefficients étant tous entiers), donc Z[α] est aussi
stable par produit, c’est un sous-anneau de C.
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2. Notre équation étant à coefficients réels, ses racines sont conjuguées, donc α+α est la somme
des racines de z2 + z + 2, soit α+ α = −1 et de même αα = 2.

3. D’après la question précédente, α = −1− α, donc p+ αq = p+ αq = p− q − αq ∈ Z[α].
4. En effet, (p+αq)(p+αq) = p2+pq(α+α)+pqαα = p2−pq+2q2. Cette valeur est clairement

entière, et tout aussi clairement positive si p et q sont de signe opposé. Dans le cas contraire,
p2 − pq+2q2 ⩾ p2 − 2pq+ q2 = (p− q)2 ⩾ 0, donc notre entier est toujours un entier naturel.

5. Sauf dans le cas où z = 0, z sera toujours inversible dans C, d’inverse
z

zz
=

p− q

p2 − pq + 2q2
−

q

p2 − pq + 2q2
α. Pour que cet inverse appartienne à Z[α], on doit avoir

p− q

p2 − pq + 2q2
∈ Z

et
q

p2 − 2pq + 2q2
∈ Z. C’est évidemment le cas si le dénominateur est égal à 1. Sinon,

par différence, on doit aussi avoir
p

p2 − 2pq + 2q2
∈ Z. Or, si p et q sont de signe opposé,

p2−2pq+2q2 est très supérieur à p ou à q, donc la fraction ne peut sûrement pas se simplifier.
S’ils sont de même signe (positif, sinon on change tous les signes), avec par exemple p ⩽ q,
p2 + 2q2 − pq ⩾ p2 + 2q2 − q2 ⩾ q2 + p2 qui est à nouveau largement supérieur à p et q. Il est
donc impossible d’obtenir des coefficients entiers quand p2 + 2q2 − pq ̸= 1.

6. C’est évident puisque dans ce cas p2 + 2q2 − pq est une somme de trois entiers strictement
positifs, donc sûrement pas égal à 1.

7. On a déjà fait le calcul plus haut : dans ce cas, p2 +2q2 − pq ⩾ p2 + q2, donc ne peut pas non
plus être égal à 1.

8. Les seuls candidats possibles sont ceux pour lesquels p = 0 ou q = 0. Si p = 0, z est un entier
relatif, et p2 +2q2 − pq = 1 seulement si z = ±1. Si p = 0, on doit cette fois avoir 2q2 = 1, ce
qui est évidemment impossible avec q entier relatif. Les seules unités de Z[α] sont donc 1 et
−1.
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