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Exercice 1 (**)

On vérifie toutes les propriétés nécessaires pour avoir une loi de groupe :

la loi * est bien une lci car z # 0 et 2/ # 0 (par hypothése sur ’ensemble sur lequel s’applique
x, donc za’ # 0, et (z2/,xy’ + y2'™) € R* x R.

la loi x est associative : ((z,y)*(2/,y))* (", y") = (z2/, 2t/ +y2"™)x (2", y") = (xa'2"  za'y" +
2y 2" g™, et (z,y)* (2, ) (2", ") = (z,y)*(@'2", 2"y +y'2"™) = (z2'2", za'y" +
xy' "™ 4+ yamx"™). Les deux résultats obtenus sont les mémes, ce qui prouve lassociativité.
Notons que la loi x n’est commutative que pour n = 1. ensuite, on aura par exemple (1,1) x

(2,1) = (2,1 +27), mais (2,1)* (1, 1) = (2,3).

e le couple (1,0) sera élément neutre de la loi % : (1,0) % (x,y) = (z,y) et (z,y)x(1,0) = (z,y).
e un couple (z,y) admet pour symétrique (2/,y’) si (z,y) * (/,y") = (1,0), donc si zz’ =1 et

zy' +yx’™ = 0, soit 2’ = — (toujours bien défini puisque = # 0 et ¢y’ = —nLH (également bien
x x
1
défini). Vérifions que le symétrique est bien le méme « dans l'autre sens » : <, — nyl) *
x  x

(x,y) = (1, J_ 3_1 X w") = (1,0). Tout couple est donc symétrisable pour la loi *.
r

Exercice 2 (*)

1.

La loi est manifestivement commutative (x et y jouent un role symétrique dans la définition).
Pour I'associativité, calculons (zxy)*z = (z+y+22y?)xz = o+y+a?y’+ 2+ (2 +y+22y?)?22 =
x4y 4z +22y? + 2222 + 222 + 2tyte? + 2wy2? + 2239222 + 2229322, Cette expression n’a
aucune raison de donner une opération associative (aucune symétrie entre les trois variables a
l'arrivée), cherchons donc un contre-exemple : (1x1)*x2 =3x2=30et 1% (1x2) = 1x7 = 57.
Effectivement, x n’est pas le moins du monde associative (et ne peut donc pas étre une loi de

groupe).

. Oui, 0 est un élément neutre assez évident.

. Par définition, 1 % 2 = 0 signifie que 1 + x + 2? = 0, équation qui n’a aucune solution réelle.

Méme principe pour 'équation 1 x = 1 qui se raméne & = + 22 = 0 et admet donc deux
solutions : I’élément neutre x = 0 (normal) mais aussi ’élément = —1 (ce qui prouve que,
pour la loi x on ne peut pas « simplifier » une égalité du type 1z = 1 par 1).

Exercice 3 (*)

1.

Le reste d’une division par 5 étant toujours un entier naturel strictement inférieur a 5, le seul
risque serait que ce reste soit égal 4 0. Or, si x € F, x ne peut avoir pour facteurs dans sa
décomposition en facteurs premiers que des 2 et des 3 (ou méme aucun facteur premier si
x = 1), et ce sera également le cas pour z¥, que que soit l'entier y > 1. En particulier, z¥
ne contiendra jamais de facteur 5 et ne sera donc jamais divisible par 5, ce qui prouve que le
reste de sa division par 5 ne peut pas étre nul. La loi x est donc bien une lci. On remplit le
tyableau de loi « & la main » en calculant toutes les puissances, par exemple 23 = 8 = 3[5],



donc 2x3 = 3, ou 42 = 16 = 1[5] donc 4x2 = 1. Dans le tableau qui suit, 'opérande de gauche
est indiqué en ligne et celui de droite en colonne, comme d’habitude (la loi n’est clairement
pas commutative) :

S e [
DN = W
el e R R S

2. Ce n’est pas du tout une loi de groupe, elle ne vérifie pas la « régle du Sudoku » et on peut
trouver par exemple des contre-exemples a I'existence de I’élément neutre ou a l’associativité
(2% 1)*x3 =3 mais 2+ (1%3) =2).

3. Le seul élément a pour lequel a x2 = 1 est a = 1, on est donc ramenés & la résolution de
I'équation 3z = 1, qui donne comme unique solution = = 4 (a chaque fois, on lit simplement
dans le tableau).

La deuxiéme équation ne peut avoir de solutions puisque 4 x a est toujours égal & 1 ou 4,
jamais a 2.

Enfin, pour la derniére, on doit nécessairement avoir 3 x x = 2, donc 'unique solution est
T =3.

Exercice 4(*)

1. Le plus simple est de faire le tableau complet de la loi de groupe méme si ¢’estun peu laborieux,
z—1
= r—1
en calculant toutes les composées, par exemple f5o0 f3(z) = ——" = < 1—z = fe(x).
-1 _ _
On constate ainsi que la loi o est interne sur G, 'associativité est évidente (la composition
est toujours associative), le neutre est bien présent dans G (c’est fi) et tout élément de G

admet une réciproque appartenant a GG, donc c’est un groupe. Il n’est pas abélien, par exemple

f3ofs = fa# f50 f3.

(o[ filfel Sl falfs] fs
Sl il Lol fa]falfs| fo
follfo | fa|fi|fs| fe| fa
sl fs|filfolfel|l fallfs
Jol| fa| Je | fs | J1] f3 | fo
Ssllfs | Ja|fo | Ja] 1| S5
Je || fo|[s | fa|fs| fa| S

2. Un sous-groupe a deux éléments contient nécessairement le neutre fi, et un deuxiéme élément
qui est sa propre réciproque (pour avoir la stabilité par symétrisation). Réciproquement, un
sous-ensemble constitué de deux tels éléments sera un sous-groupe. On a donc trois sous-

groupes a deux éléments : {f1, fa}, {f1, f5} et {f1, f6}-

3. Oui, H; est un sous-groupe, les stabilités sont évidentes & partir du tableau de la loi de groupe.
Par contre, Hy n’en est pas du tout un, par exemple fo 0 fo = f3 ¢ Hs.

Exercice 5 (*)

Les deux opérations A et N sont certainement des Ici. De plus, on a prouvé en début d’année
que 'opération A était associative, commutative et distributive par rapport a I'intersection, preuves
que je vais donc me dispenser de refaire ici! L’intersection est elle-méme associative et commutative.



Il reste donc & vérifier la présence des deux éléments neutres et la symétrisabilité pour la différence
symétrique. Le neutre pour lintersection est E tout entier, le neutre pour l'opération A est () :
AAD = (AUD\(ANO) = A\D = A. Enfin, tout élément de P(E) admet un symétrique pour
lopération A qui est tout simplement lui-méme : AAA = (AU A)\(ANA) = A\A = (. On est
bien en présence d’'un anneau commutatif. Les unités de cet anneau sont les sous-ensembles de E
admettant un symétrique pour l'opération d’intersection, c¢’est-a-dire uniquement ’ensemble E lui-
méme (A admet un symétrique pour N si et seulement s’il existe B C F tel que AN B = E, ce qui
implique immédiatement A = B = F).

Exercice 6 (*)

On va en fait montrer que Q[v/3] est un sous-corps de R. Pour cela, on doit vérifier les propriétés
suivantes :

e Q[v3] est un sous-groupe additif de R. En effet, il contient 1’élément neutre 0 (il suffit de
prendre a = b = 0, est stable par somme : (a + bv/3) + (¢ +dv/3) = (a +¢) + (b + d)V/3, avec
a + b et ¢+ d rationnels comme somme de rationnels. Et il est stable par passage a 'opposé
de facon évidente.

° @[\/g] est un sous-anneau de R. En plus de ce qui précéde, on vérifie que notre sous-ensemble
contient le neutre multiplicatif 1 (c’est le cas en posant a = 1 et b = 0), et qu’il est stable
par produit : (a + bv/3)(c + dv3) = ac + adv/3 + bey/3 + 3bd = (ac + 3bd) + (ad + bc)V/3.
Les deux coefficients ac + 3bd et ad + be étant bien rationels, notre ensemble est stable par
multiplication, c’est bien un sous-anneau de R.

e Enfin, pour avoir un sous-corps, il faut que notre ensemble (privé de 0) soit stable par passage
a linverse. Il suffit pour le prouver d’avoir en téte le produit par la quantité conjuguée :

1 _a- /3 B a _ b
a+b/3 a®—3b>  a®2—3b> a®—3b?
dénominateur a? — 3b? ne peut pas s’annuler car v/3 est un nombre irrationnel). On a bien

prouvé qu’il s’agit d’un sous-corps de R.

V3, qui appartient bien & notre ensemble (le

Exercice 7 (**)

1. Vérifions que 7, est un morphisme de groupes multiplicatifs : si (x,y) € G?, alors 7,(x)7,(y) =
aza taya~! 1 ! = 7,(zy). De plus, 7, est a valeurs dans G, ce qui prouve
que 7, est un endomorphisme. Enfin, 7, a une réciproque assez évidente qui est 7,-1 puisque
Ta-1(Ta(7)) = a Y aza™ )a = exe = x et 74(7,-1(7)) = ala tax)a ! = exe = e. Ce calcul
n’est d’ailleurs qu’un cas particulier de celui qu’on va faire a la question suivante.

= areya - = arya

2. Calculons : 7,(1(2)) = a(brb 1 a™t = (ab)z(ab)™! = 74(x), donc 7, 0 7, = T4 De fagon
évidente, 7. = idg.

3. On a déja prouvé que application (appelons 1a ¢) était a valeurs dans Aut(G), mais aussi qu’il
s’agissait d’'un morphisme (c’est le calcul de la question précédente). Reste donc & déterminer
son noyau : p(a) = idg & 7, = idg. Autrement dit, on doit avoir, Vz € G, aza™! =z, ce
qu’on peut écrire sous la forme ax = xa. L’élément a doit donc commuter avec tous les autres
éléments du groupe G. On appelle 'ensemble de ces éléments centre du groupe G, et on le

note habituellement Z(G).

Exercice 8 (***)

1. Dans un groupe additif, un élément est d’ordre fini §’il vérifie x+z+---+2x = nx = 0, ce qui
n’est le cas dans R que de 0 lui-méme (dont on peut dire qu’il est d’ordre 1, c’est d’ailleurs
le seul élément vérifiant cette propriété). Dans C*, un élément z est d’ordre fini s’il existe un
entier n tel que 2™ = 1, autrement dit si z est une racine n-éme de l'unité pour un certain
entier n. On peut écrire cet ensemble sous la forme (J, ey« Un.



2. L’ensemble H contient 1’élément neutre multiplicatif 1 puisque 2° = 1. De plus, si on considére
deux éléments de H de la forme z* et !, alors leur produit ¥ peut toujours étre ramené a
une puissance de x strictement inférieure & n en utilisant le fait que ™ =1 : soit k+1 < n et il
n’y a rien a faire, soit zFt! = 2" x 2F =" = 21" avec k+1—n < n. L’ensemble H est donc
stable par multiplication. Il I'est également par passage a I'inverse puisque (2*)~! n=k (
effet, par hypothése, zFz" % = 2™ = 1). La seule valeur de k pour laquelle 2" % pourrait ne
pas appartenir & H est k = 0, mais dans ce cas 2 = 1 est son propre inverse. Finalement, H
est bien un sous-groupe multiplicatif de G.

=X en

3. De facon assez évidente, (z71)¥ = (2¥)~1. On peut le prouver rigoureusement en faisant une
petite récurrence : c’est vrai de fagon évidente au rang 1, et en le supposant au rang k, alors
(z=DEHlghtl — g=1(z=Nkgky = 2712 = 1, ce qui prouve I'hérédité (le produit dans I'autre
sens se simplifie de la méme fagon). En particulier, on a donc (z7!) = 2™ = 1, ce qui prouve
que £~ est aussi d’ordre fini. Il ne peut pas avoir un ordre strictement plus petit que x, car
7% =1= 2F =1 d’aprés ce qui précede, donc les deux éléments ont bien le méme ordre.

1)k 1

4. On peut en fait simplifier écriture de (yzy=)* en yz¥y—! (1a encore c’est une récurrence

facile si on veut étre rigoureux, c’est évident au rang 1, et une fois supposé au rang k, on
écrit (yxy )P = (yoy Y (yry™HF = yaylyaFy! = yaFtly~! en simplifiant « par le
milieu »). On en déduit notamment que (yaxy )" = ya"y~! = yy~! = 1, ce qui prouve que
yxy~! est d’ordre fini. Encore une fois, 'ordre ne peut pas étre plus petit, car en supposant
(yzy~")* = 1, on aurait yz¥y~! = 1, donc yx* = y puis 2* = 1, ce qui est exclu si k < n.

5. Supposons donc (zy)" = zyxyxy...xy = 1, et notons z = (yz)" = yzryz...yz, alors xz =
(xy)"z = x, ce qu'on a le droit de simplifier par x pour obtenir z = 1, donc yz est d’ordre
fini. De plus l'ordre de yx est nécessairement inférieur ou égal a celui de xy. Mais I’argument
étant bien str symétrique, 'ordre de xy doit lui-méme étre inférieur ou égal & celui de yz, ce
qui prouve que les ordres des deux éléments sont nécessairement égaux.

Exercice 9 (**)

1. C’est assez évident : si I’élément neutre appartient & chacun des sous-groupes, il appartiendra
aussi a leur intersection. Supposons désormais que = et y soient deux éléments appartenant
a chacun des sous-groupes de l'intersection, alors o« y~! (en notant la loi x et le symétrique
comme un inverse) appartient aussi a chacun de ces sous-groupes (puisque ces sous-groupes
sont stables par x et par passage au symétrique), donc appartient également & leur intersection,
qui est donc un sous-groupe de G.

2. Notons C; le centralisateur de x. L’élément neutre commutant avec tous les éléments de G,
il commute en particulier avec x et appartient donc a C,. Supposons maintenant que deux
éléments x et y appartient & C,. On a donc y x x = x xy (on garde les notations de la
premiére question) et z x x = x * z. En composant cette deuxiéme égalité par 271 & droite,
on en déduit z+x x 27! = % 2% 27! = z, puis en composant a gauche par ce méme 2z,
27 xzhxxz! 1 1 Lwx (ce qui prouve au passage la stabilité de C,
par symétrisation). On peut maintenant écrire x x y x 2l =yxrxzl =yxzlxa, ce qui
prouve que y x 2~ ! € Cy, et donc que C, est bien un sous-groupe de G.

=z xx,s0it xxzT =27

3. Notons Z(G) le centre de G (notation traditionnelle pour cet ensemble). Absolument aucune
vérification a faire dans cette question, on peut tout bétement utiliser les deux précédentes :
Z(G) = Ugzeq O est un sous-groupe de G en tant qu’intersection de sous-groupes de G' (un
élément qui appartient a tous les centralisateurs est par définition un élément qui commute
avec tout le monde).

Exercice 10 (**%*)

1. Vérifions les trois propriétés :



e la relation est réflexive car Vo € G, x = x x e, ot ’élément neutre e appartient nécessaire-
ment au sous-groupe H.

e si xRy, il existe un élément z € H tel que y = = * z, mais cela implique y x z~
271 est le symétrique de z, qui appartient aussi & H (c’est un sous-groupe, il est stable
par symétrisation). La relation est donc symétrique.

e si Ry et yRw, il existe deux éléments z et 2’ de H tels que y = x * 2z et w = y* z’. Mais
alors © = (xx 2) % 2/ = x* (2 % 2), avec zx 2/ € H puisqu’'un sous-groupe est stable par x.
Ceci prouve la transitivité de la relation.

L=z, ou

La classe d’équivalence de = est simplement 1’ensemble (souvent noté x x H des éléments
x * z lorsque z parcourt H. Tous ces éléments sont nécessairement distincts car, dans un
groupe, txz=xx2 = 2= 2.

2. D’apreés ce qu'on a dit & la question précédente, toute classe d’équivalence contient autant
d’éléments que le sous-groupe H. D’ailleurs, H lui-méme correspond a la classe d’équivalence
de I’élément neutre e.

3. On sait que G est I'union disjointe des classes d’équivalence, qui contiennent chacune |H|
éléments (on note ici |[H| le nombre d’éléments de I'ensemble fini H). En notant k le nombre
de classes d’équivalence, on a donc |G| = k|H]|, et le nombre d’éléments de G est donc multiple
de celui de H.

4. Puisqu’un nombre premier n’a pour diviseurs que 1 et lui-méme, les sous-groupes ne peuvent
contenir qu’un seul élément (forcément égal a I’élément neutre), ou tous les éléments. Il n’y a
donc que les deux sous-groupes triviaux : {e} et G tout entier.

Exercice 11 (**)
1. Effectuons toutes les vérifications d’usage :

e A contient le neutre additif 0 (il suffit de poser p = 0) et il est stable par soustraction : si

p q 2"p —2"¢q

x:2—nety:2—malorsm—yzw

besoin de s’embéter a se demander si la fraction se simplifie), donc A est un sous-groupe
additif de Q.

e A contient le neutre multiplicatif 1 (on pose par exemple p = 1 et n = 0, mais il existe

plein d’autres possibilités tout aussi valables!).

e A est stable par produit : 2% X 2% = 2ffma

, avec n+m € N et 2™p — 2"q € Z (méme pas

c’est complétement évident.

2. On doit donc chercher les éléments de A inversibles dans A, autrement dit les éléments de
n

la forme on dont I'inverse — a lui aussi un dénominateur qui est une puissance de 2. Quitte

a supposer la fraction réduite, cela signifie que p est lui-méme de la forme +2%, avec k € N
(sa décomposition en facteurs premiers ne peut pas contenir d’autre facteur premier que 2).
Autrement dit, les seules unités dans A sont les nombres de la forme x = +2*, avec k € Z.
3. L’ensemble des décimaux peut étre défini par D = {% (p,n) € Z x N}. La vérification du
faut que D est un sous-anneau de QQ est alors rigoureusement la méme que pour I’ensemble
A, ¢a n’a aucun intérét de tout refaire. Les éléments inversibles de D sont alors ceux qui ont
un numérateur (aprés simplification) de la forme +2¥5! (cette fois-ci le dénominateur 10" a
deux facteurs premiers qui sont 2 et 5), ce qui donne finalement comme éléments inversibles

tous les éléments de la forme = +2F5! avec (k,1) € Z2.

Exercice 12 (***)

1. Si x est un élément nilpotent non nul, on peut écrire x x z"~! = 0, avec "~ # 0 quitte
a choisir le plus petit entier n pour lequel ™ = 0 (cet entier est d’ailleurs appelé indice de



nilpotence de 'élément z). On a alors un produit de deux éléments non nuls qui égal a 0, ce
qui prouve que A n’est pas intégre. Par contraposée, si A est intégre, 0 est le seul élément
nilpotent.

2. Commencons par le produit : si 2 et y commutent, on peut écrire, Vk > 1, (zy)* = 2%y*. En
prenant k = n, ou n est l'indice de nilpotence de x, on a alors (zy)" = 0y™ = 0, ce qui prouve
la nilpotence de zy (I'indice de nilpotence de zy sera logiquement le plus petit parmi ceux de
x et de y).

Pour la somme, on fait appel & notre ami Newton : notons n l'indice de nilpotence de x

n+m
et m celui de y, alors (x + y)"*"™ = Z <Z> zFy"*™m=F Dans cette somme, tous les termes
k=0

a partir de l'indice n sont nuls car on a alors x " = ( puisque z™ = 0. Mais tous
ceux qui précédent sont nuls car si k < n, n +m — k > m, donc 4" % = 0. Finalement,
on est en train de calculer une somme de termes nuls, donc (x + y)"t™ = 0, ce qui prouve la
nilpotence de x + y (les plus attentifs auront remarqué qu’on pouvait en fait se contenter de
(x 4+ y)"™™~! pour obtenir une valeur nulle, n + m — 1 est en général I'indice de nilpotence
de z +v).

3. 1l faut penser a exploiter la factorisation de a™ — b™ évoquée en cours. Ici, on 'applique pour
a =1 et b=z (éléments qui commutent toujours puisque le neutre 1 commute avec tout le

k k—

=" X

n—1 n—1
monde) : 1 —2" = (1—x) Z z¥. Or, 2" = 0, donc en posant y = Z z¥, on a plus simplement
k=0 k=0

(1 —x)y =1 (et similairement y(1 — z) = 1, ce qui prouve que 1 — = est bien inversible, et
que son inverse est .

Exercice 13 (**)

1. On peut par exemple appliquer I'hypothése a I'opposé de z : (—z)? = —x, donc 2% = —=z.

Mais comme par ailleurs 2 = z, on a donc —x = z, ce qui implique bien 2z = 0. Autrement
possibilité : on applique I’hypothése a I'élément 2+1 : (z+1)? = z+1, donc 22 4+22+1 = z+1,

ce qui donne bien 2z = 0 puisque 22 = z.

2. Soient z,y € A% alors (x +vy)? = x+y, donc 22 +y® + 2y +yr =2 +y. Or 22 = v et y% =y,
ce qui permet de simplifier ’'égalité en xy + yz = 0, donc zy = —yz. Or, comme tout élément
de A, yx vérifie —yx = yx, donc on a bien xy = yx et les deux éléments commutent toujours.

3. Développons : zy(x +y) = zyz + ry? = 2%y + 2y? puisque = et y commutent. Mais ces carrés
ne servent a rien, donc xy(x +y) = xy + xy = 2xy = 0.

4. Supposons que A contienne un élément x différent de 0 et de 1. En appliquant la question
précédente, 1 x (1 + x) = 0, donc (1 + x) = 0. Or, x # 0 par hypothése, et 1 4+ = ne peut
pas étre nul sinon on aurait x = —1 = 1, ce qui est aussi exclu. Un produit de deux éléments
non nuls est donc nul, l'anneau n’est pas intégre.

Exercice 14 (***)

1. Les vérifications ne sont pas trés difficiles : Z[a] contient tous les entiers relatifs (en posant
g = 0) donc a fortiori les deux éléments neutres 0 et 1. La stabilité par somme ou par
soustraction est évidente : p+ ag+p' +aq¢ = (p+p') + alqg+ ¢') € Z[a], donc Z]a] est un
sous-groupe additif de C. Il ne reste plus pour avoir un sous-anneau qu’a vérifier la stabilité
par produit : (p+ aq)(p' +aq’) = pp’ +a(pqd + p'q) +a?qq’. Or, par hypothése, « est solution
de I'équation 22 + z +2 = 0, donc a? = —a — 2, ce qui permet d’écrire (p + aq)(p’ + aq') =
(pp' —2qq") + a(pq +p'q—qq') € Z]a] (les coefficients étant tous entiers), donc Z[a] est aussi
stable par produit, c¢’est un sous-anneau de C.



. Notre équation étant a coefficients réels, ses racines sont conjuguées, donc « + @ est la somme
des racines de 22 + z + 2, soit o + @ = —1 et de méme aa = 2.

3. D’aprés la question précédente, @ = —1 — a, donc p+ag=p+aqg=p—q— aq € Z[a).

4. En effet, (p+aq)(p+aq) = p? +pq(a+a) +pgaa = p? — pq+2¢>. Cette valeur est clairement

a. Pour que cet inverse appartienne a Z[a], on doit avoir

€ Z. Or, si p et ¢ sont de signe opposé,

entiére, et tout aussi clairement positive si p et ¢ sont de signe opposé. Dans le cas contraire,
P2 —pg+2¢% > p? —2pq+¢* = (p— q)2 > 0, donc notre entier est toujours un entier naturel.
Z —
. Sauf dans le cas ot z = 0, z sera toujours inversible dans C, d’inverse — = % -
2Z p*—pq+2q
q p—q
p? — pq + 2¢* p? — pq + 2¢*
et ———————- € Z. Clest évidemment le cas si le dénominateur est égal a 1. Sinon,
p* —2pq +2q »
ar différence, on doit aussi avoir ————
P p? — 2pg + 24
p? —2pg+ 24 est trés supérieur a p ou & g, donc la fraction ne peut siirement pas se simplifier.
S’ils sont de méme signe (positif, sinon on change tous les signes), avec par exemple p < ¢,
p? +2¢% — pq = p* +2¢> — ¢*> > ¢® + p? qui est & nouveau largement supérieur a p et ¢. Il est
donc impossible d’obtenir des coefficients entiers quand p? + 2¢> — pg # 1.
. C’est évident puisque dans ce cas p® 4+ 2¢%> — pq est une somme de trois entiers strictement
positifs, donc stirement pas égal a 1.

. On a déja fait le calcul plus haut : dans ce cas, p? +2¢*> — pq = p® + ¢2, donc ne peut pas non
plus étre égal a 1.

. Les seuls candidats possibles sont ceux pour lesquels p = 0 ou ¢ = 0. Si p = 0, z est un entier
relatif, et p? + 2¢®> — pg = 1 seulement si z = £1. Si p = 0, on doit cette fois avoir 2¢*> = 1, ce
qui est évidemment impossible avec ¢ entier relatif. Les seules unités de Z[a] sont donc 1 et
—1.



