
Feuille d’exercices no 10 : corrigé

MPSI Lycée Camille Jullian

5 janvier 2026

Exercice 1 (* à ***)

• 2x3 − 4x2 + x− 2

x2 − 4
=

2x2(x− 2) + x− 2

(x− 2)(x+ 2)
=

2x2 + 1

x+ 2
si x 6= 2. On en déduit aisément que

lim
x→2

2x3 − 4x2 + x− 2

x2 − 4
=

9

4
.

• En posant X = e−x, on aura lim
x→+∞

X = 0, et ex sin(e−x) =
sin(X)

X
a donc pour limite 1 (limite

classique de taux d’accroissement vue en cours). On en déduit que lim
x→+∞

ex sin(e−x) = 1.

• En factorisant par ex dans le ln,
x2

ln(ex + 1)
=

x2

x+ ln(1 + e−x)
=

x

1 + ln(1+e−x)
x

, donc

lim
x→+∞

x2

ln(1 + ex)
= +∞.

• Quantité conjuguée complètement superflue ici :
√
x2 + x− 1−x

√
x = x

(

√

1 +
1

x
− 1

x2
−√

x

)

,

donc lim
x→+∞

√
x2 + x− 1− x

√
x = −∞.

• xln(x)

(ln(x))x
= eln

2(x)−x ln(ln(x)). Or, lim
x→+∞

ln2(x) − x ln(ln(x)) = −∞ par croissance comparée.

Du coup, lim
x→+∞

xln(x)

(ln(x))x
= 0.

• L’encadrement −1

x
6

cos(x+ x2 − 1)

x
6

1

x
suffit à conclure par le théorème des gendarmes

que lim
x→+∞

cos(x+ x2 − 1)

x
= 0.

• On reconnait ici l’inverse du taux d’accroissement de la fonction arccos en 0 :

lim
x→π

2

arccos(x)− arccos(0)

x− 0
= arccos′(0) = − 1√

1− 0
= −1. Comme arccos(0) =

π

2
, on en

déduit que lim
x→0

x

arccos(x)− π
2

=
1

1
= 1.

• Encore une histoire d’encadrement :
1

x
− 1 < Ent

(

1

x

)

6
1

x
, donc 1 − x 6 xEnt

(

1

x

)

6 1

si x > 0 (sinon, l’encadrement est le même mais avec les inégalités dans l’autre sens). Dans
les deux cas, les deux membres extrêmes de l’encadrement ont pour limite 1 en 0, donc

lim
x→0

xEnt

(

1

x

)

= 1.

• On écrit x
1
x = e

ln(x)
x et on conclut immédiatement à l’aide de la croissance comparée que

lim
x→+∞

x
1
x = 1.

• Si x ∈ [0; 1[, x− Ent(x) = x, donc
x− Ent(x)
√

|x|
=

x√
x
=

√
x, donc lim

x→0+

x− Ent(x)
√

|x|
= 0. De
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l’autre côté, sur [−1; 1[, x − Ent(x) = x − 1, donc
x− Ent(x)
√

|x|
=

x− 1√
−x

, qui tend vers −∞

en 0−. Il n’y a donc pas de limite en 0.
• Encore un coup où −1 est racine du numérateur et du dénominateur. Le numérateur a pour

autre racine évidente 1, et le produit des racines vaut 1, donc −1 est en fait racine double
et le numérateur se factorise en (x − 1)(x + 1)2. Le dénominateur se factorise sous la forme
(x + 1)(ax2 + bx+ c) = ax3 + (a + b)x2 + (b + c)x + c ; par identification très facile, a = 1,

b = −1 et c = −2, donc
x3 + x2 − x− 1

x3 − 3x− 2
=

(x− 1)(x+ 1)

x2 − x− 2
=

(x− 1)(x+ 1)

(x+ 1)(x− 2)
=

x− 1

x− 2
si

x 6= −1. Suffisant pour conclure que lim
x→−1

x3 + x2 − x− 1

x3 − 3x− 2
=

2

3
.

• Encore du boulot pour le passage à l’exponentielle :

(

ln(x)

x

)
1
x

= e(ln(ln(x))−ln(x))/x. Tout ce

qui est dans l’exponentielle tend vers 0 par croissance comparée, donc lim
x→+∞

(

ln(x)

x

)
1
x

= 1.

• Il suffit d’écrire
sh(x)

ex
=

ex + e−x

2ex
=

1

2
+

1

2e2x
pour constater que lim

x→+∞

sh(x)

ex
=

1

2
.

• On peut écrire
2

sin2(x)
− 1

1− cos(x)
=

2

1− cos2(x)
− 1

1− cos(x)
=

2− (1 + cos(x))

(1− cos(x))(1 + cos(x))
=

1

1 + cos(x)
. On en déduit que lim

x→0

2

sin2(x)
− 1

1− cos(x)
=

1

2
.

• Il suffit ici de poser X = ln(x). Quand x tend vers 1, X tend vers 0, et ln(x) ln(ln(x)) =
X ln(X). Comme on sait, par croissance comparée, que lim

X→0
X ln(X) = 0, alors

lim
x→1

ln(x) ln(ln(x)) = 0.

• Quantité conjuguée :
√

x+
√

x+
√
x−√

x =
x+

√

x+
√
x− x

√

x+
√

x+
√
x+

√
x

=

√
x

√

1 +
1√
x

√
x

(

1 +

√

1 +

√

1

x
+

1

x
√
x

) , donc lim
x→+∞

√

x+
√

x+
√
x−√

x =
1

2
.

• xx+1 − (x + 1)x = xx
(

x−
(

1 +
1

x

)x)

. Or,

(

1 +
1

x

)x

= ex ln(1+ 1
x
). En posant X =

1

x
,

x ln

(

1 +
1

x

)

=
ln(1 +X)

X
, qui a pour limite 1 car X tend vers 0 (limite classique), donc

lim
x→+∞

(

1 +
1

x

)x

= e1 = e. Finalement, lim
x→+∞

x−
(

1 +
1

x

)x

= +∞, et lim
x→+∞

xx+1−(x+1)x =

+∞.

• x2 − 1

(
√
x− 1) ln(x)

=
(x+ 1)(x− 1)

(
√
x− 1) ln(x)

=
(x+ 1)(

√
x+ 1)(

√
x− 1)

(
√
x− 1) ln(x)

=
(x+ 1)(

√
x+ 1)

ln(x)
. Plus de

forme indéterminée, on a directement lim
x→1+

x2 − 1

(
√
x− 1) ln(x)

= +∞.

Exercice 2 (** à ***)

1. La fonction f1 est évidemment définie et continue sur R∗. En 0, une limite classique du cours
permet d’affirmer que lim

x→0
f(x) = 1, donc f1 est prolongeable par continuité en une fonction

g1 définie sur R en posant g1(0) = 1.

2. La fonction f2 est définie et continue sur R\{−1, 1}. Quand x tend vers −1, le numérateur
de f2 tend vers 2 et le dénominateur vers 0, on ne peut pas avoir de limite finie, et donc pas
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de prolongement par continuité. Par contre, f2(x) =
1− x

(1− x)(1 + x)
=

1

1 + x
si x 6= 1, donc

lim
x→1

f2(x) =
1

2
, et f2 est prolongeable par continuité en posant g2(1) =

1

2
.

3. La fonction f3 est définie et continue sur tous les intervalles de la forme ]kπ, (k + 1)π[, pour
k ∈ N. Si k 6= 0, (kπ)2 ln(kπ) est une constante non nulle, donc la fonction f3 ne peut pas
avoir de limite finie en kπ (en l’occurence, elle tend vers +∞ à gauche et −∞ à droite si k
est impair, et le contraire si k est pair, à cause du signe de sin(x) au voisinage de kπ). Par

contre,
x2 ln(x)

sin(x)
=

x

sin(x)
× x ln(x), donc par croissance comparée et en utilisant une limite

classique, lim
x→0

3(x) = 0, ce qui permet de prolonger par continuité en posant g3(0) = 0.

4. La fonction f4 est définie et continue sur tous les intervalles de la forme ]n, n+1[, pour n ∈ Z.
On peut même ajouter, pusique la fonction partie entière est continue à droite en chaque
entier, que lim

x→n+
f4(x) = f4(n) = n +

√
n− n = n. Par ailleurs, lim

x→n−

Ent(x) = n − 1, donc

lim
x→n−

f4(x) = n− 1 +
√

n− (n− 1) = n− 1 + 1 = n. Finalement, la fonction f4 est continue

sur R (pas be soin de prolonger quoi que ce soit ici, la fonction f4 est déjà définie sur R). Une
allure de la courbe :

0 1 2 3 4−1−2−3−4

0

1

2

3

4

−1

−2

−3

−4

5. La fonction f5 est définie et continue sur R\{1}. En 1, on peut écrire f5(x) =
x− 1− 3

(x− 1)2
=

x− 4

(x− 1)2
. Le dénominateur étant non nul quand x = 1, pas de limite finie en vue, et donc pas

de prolongement par continuité.

6. Cette drôle de fonction est définie et continue sur R\{1}. Comme lim
x→1−

1

1− x
= +∞, on

aura lim
x→1−

f6(x) = +∞, donc pas de prolongement possible. Pourtant, lim
x→1+

1

1− x
= −∞,

et par conséquent lim
x→1+

f6(x) = −1. On est en présence d’un cas assez rare : la fonction est

prolongeable « par continuité à droite » en posant g6(1) = −1. Une allure de la courbe :
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0 1 2 3−1−2−3

0

1

2

3

4

5

6

7

8

−1

−2

−3

−4

−5

−6

−7

−8

7. La fonction f7 est définie et continue sur R∗, et prolongeable par continuité en 0 en posant

g7(0) = 0 (croissance comparée). L’énoncé serait plus intéressant avec h7(x) =
x ln(x)

x− 1
, qui

est définie et continue sur ]0, 1[∪]1,+∞[, et prolongeable en 0 (même raisonnement que pour

f7) mais aussi en 1 en posant g7(1) = 1, à cause de la limite classique lim
x→1

ln(x)

x− 1
= 1.

8. La fonction f8 est définie sur R∗, et continue en a pour tout nombre a qui n’est pas de la forme
1

n
(pour un entier n ∈ Z∗) par continuité en n /∈ Z de la fonction partie entière. Supposons

donc dans un premier temps a =
1

n
, avec n > 0. On calcule lim

x→a−

1

x
= n+ (la fonction

inverse étant décroissante sur R+∗, il faut bien faire attention aux positions des limites), puis

f
x→a−8

(x) =
1

n
× n = 1. De l’autre côté, on aura lim

x→a+

1

x
= n−, la partie entière tendra donc

vers n − 1, ce qui implique que lim
x→a+

f8(x) =
n− 1

n
. Les limites à gauche et à droite étant

distinctes, f8 ne peut pas être continue en a. On aura le même problème si a =
1

n
avec n < 0

(limites différentes à gauche et à droite). Reste un cas un peu à part à traiter : celui de 0.

On peut toujours écrire l’encadrement
1

x
6 Ent

(

1

x

)

<
1

x
+ 1, donc 1 6 f8(x) 6 1 + x. Le

théorème des gandarmes prouve que alors que lim
x→0

f8(x) = 1, ce qui permet de prolonger f8

par continuité en 0 en posant g8(0) = 0. Ci-dessous une allure de la courbe de cette drôle
de fonction (tracée avec les pieds par le logiciel que j’utilise, qui n’est pas capable de traiter
correctement les points de discontinuité, d’où les traits verticaux qui ne devraient pas exister) :

0 1 2−1−2

0

1

2

3

9. En fait, cette fonction extrêmement étrange n’est pas si affreuse que ça à étudier, puisqu’on
peut l’expliciter intervalle par intervalle. Regardons d’abord ce qui se passe sur R+, et notons

4



hn(x) =
xn+1

(n+ 1)!
− xn

n!
. On constate que h′n(x) =

xn

n!
− xn−1

(n− 1)!
= hn−1(x). Par ailleurs,

hn(x) = 0 ⇔ n!xn+1 = (n+1)!xn, ce qui se produit lorsque x = 0 ou x =
(n+ 1)!

n!
= n+1. La

fonction hn est donc décroissante sur [0, n] et croissante sur [n,+∞], et surtout négative sur
[0, n+1] puisque’elle y est décroissante puis croissante et s’annule en 0 et en n+1, et positive

sur [n + 1,+∞[. On déduit de ces constations que, sur l’intervalle [0, 1],
x0

0!
>

x1

1!
>

x2

2!
etc,

donc f9(x) =
x0

0!
= 1. Sur [1, 2],

x0

0!
6

x1

1!
, mais

x1

1!
>

x2

2!
etc, donc f9(x) =

x1

1!
= x. De même,

sur chaque intervalle de la forme [n, n+1], f9(x) =
xn

n!
. Toutes ces fonctions étant continues,

et les changements de fonction s’effectuant à des points d’intersection de deux courbes de
fonctions continues, la fonction f sera continue sur R+. Sur R−, c’est extrêmement similaire,

la seule différence étant due au fait que les entiers impairs sont à oublier puisque
xn

n!
prend des

valeurs négatives sur R− lorsque n est impair (la valeur de f est donc constate côté négatif

jusqu’à x = −
√
2, valeur en-deça de laquelle on aura

x2

2
> 1, on conserve ensuite f9(x) =

x2

2

jusqu’à avoir
x4

24
=

x2

2
, soit lorsque x = −

√
12, et ainsi de suite). Voici un bout de la courbe

de la fonction f9 (les morceaux correspondant à des valeurs de n différentes sont de différentes
couleurs) :

0 1 2 3 4 5−1−2−3−4−5

0

1

2

3

4

5

6

7

8

9

10

Exercice 3 (***)

Seul 0 peut poser un problème de continuité à droite. Or, lim
x→0+

− 1

x2
= −∞, donc lim

x→0+
f(x) = 0, et

f est bien continue en 0. De plus, ∀x > 0, f ′(x) =
2

x3
e−

1
x2 . Posons X =

1

x
, on a lors f ′(x) = 2X3e−X2

,

qui par croissance comparée a pour limite 0 en +∞, donc f ′ est également continue en 0. On fait le

même type de calcul pour f ′′ : ∀x > 0, f ′′(x) =

(

6

x4
+

4

x6

)

e−
1
x2 , qui a également pour limite 0 en

0.
Pour les dérivées ultérieures, le principe est le même, mais pour tout traiter d’un seul coup, il est

nécessaire d’effectuer une récurrence pour prouver que la n-ième dérivée de la fonction f (sur ]0,+∞[)

peut s’écrire sous la forme
Pn(x)

xan
e−

1
x2 , où an est un entier naturel et Pn est un polynome. C’est

vrai pour n = 1 et même n = 2 d’après les calculs précédents. Supposons désormais que f (n)(x) =
Pn(x)

xan
e−

1
x2 . On peut dériver cette fonction sur ]0,+∞[ et obtenir

xanP ′

n(x)− annx
an−1Pn(x)

x2an
e−

1
x2 −
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2Pn(x)

xan+3
e−

1
x2 . Ceci est bien de la forme voulue, ce qui achève la récurrence. Or, un quotient de

polynomes multiplié par e−
1
x2 a toujours pour limite 0 en 0 (toujours de la croissance comparée),

donc la dérivée n-ième de f est continue en 0.

Exercice 4 (** à ***)

1. Par une récurrence facile, si f(x) = f(x2), on aura, pour tout entier naturel n, f(x) = f(x2
n

).
En effet, c’est vrai pour n = 1 (et même n = 0), et si on le suppose vrai pour un entier n,
alors f(x) = f(x2

n

) = f((x2
n

)2) = f(x2
n+1

). Si x ∈ [0, 1[, lim
n→+∞

x2
n

= 0 (mettez sous forme

exponentielle si ça ne vous semble pas clair), donc par continuité de f en 0, lim
n→+∞

f(x2
n

) =

f(0). Comme la suite (f(x2
n

)) est constante égale à f(x), on en déduit que ∀x ∈ [0, 1[,
f(x) = f(0). La fonction f est donc constate sur [0, 1[. En particulier, lim

x→1−
f(x) = f(0),

donc, par continuité de f en 1, f(1) = f(0). Occupons-nous maintenant des réels strictement
supérieurs à 1. On ne peut pas appliquer le même raisonnement que ci-dessus, mais par contre
on constate que f(x

1
2n ) = f(x) pour tout entier n, en appliquant simplement la remarque

initiale à x
1
2n . Cette fois-ci, lim

n→+∞

x
1
2n = 1 (puisque x

1
2n = e

ln(x)
2n , qui tend vers e0 = 1), et on

conclut comme tout à l’heure que f(x) = f(1) = f(0). La fonction f est donc constante sur
R+. Et sur R− ? Si x 6 0, x2 > 0, donc f(x) = f(x2) = f(0). Finalement, la fonction f est
constante. Réciproquement, toute fonction constante est évidemment solution du problème
posé.

2. Soit x ∈ R et (un) la suite récurrente définie par u0 = x et ∀n ∈ N, un+1 =
un + 1

2
. Par

une récurrence immédiate, on aura toujours f(un) = f(x) (en effet, c’est vrai pour u0 et

f(un+1) = f

(

un + 1

2

)

= f(un)). Étudions donc le comportement de la suite (un). Pour cela,

on pose g(x) =
x+ 1

2
, qui est une fonction affine strictement croissante admettant un unique

point fixe x = 1. De plus, g(x) − x 6 0 si x > 1, et g(x) − x > 0 si x 6 1. Si x > 1, on
prouve par une récurrence immédiate que ∀n ∈ N, un > 1, et la suite étant décroissante, elle
va nécessairement converger vers l’unique point fixe de la fonction, à savoir 1. De même, si
x 6 1, la suite est croissante majorée par 1, et converge vers 1. Dans tous les cas, on a donc
lim

n→+∞

un = 1, donc par continuité de la fonction f , lim
n→+∞

f(un) = f(1). La suite (f(un))

étant constante égale à f(x), on en déduit que f(x) = f(1). La fonction f est donc constante.
Réciproquement, les fonctions constantes sont solutions triviales du problème posé.

3. Comme dans les autres problèmes de cet exercice, il faut essayer d’itérer l’équation don-
née, en divisant par 2 plutôt qu’en multipliant (car c’est plus pratique pour trouver des li-

mites) : f(x) = f
(x

2

)

cos
(x

2

)

= f
(x

2

)

cos
(x

4

)

cos
(x

2

)

= f
(x

8

)

cos
(x

2

)

cos
(x

4

)

cos
(x

8

)

etc. Une récurrence simple permet de prouver que ∀n ∈ N, f(x) = f
( x

2n

)

n
∏

k=1

cos
( x

2k

)

:

c’est vrai au rang 0 puisque la condition est alors f(x) = f(x), et si on le suppose au

rang n, il suffit de remplacer le f
( x

2n

)

par f
( x

2n+1

)

cos
( x

2n+1

)

pour obtenir la relation

au rang n + 1. Reste l’astuce diabolique du jour : tout multiplier par sin
( x

2n

)

. En effet,

sin
( x

2n

)

n
∏

k=1

cos
( x

2k

)

=
sin(x)

2n
. Si ça ne vous semble pas clair c’est que vous avez du ou-

blier la formule de duplication sin(2x) = 2 sin(x) cos(x). Allez, prouvons-le quand même
par récurrence : au rang 0, sin(x) = sin(x) est vrai. Supposons la formule vrai au rang
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n, alors sin
( x

2n+1

)

cos
( x

2n+1

)

=
1

2
sin

(

2× 1

2n+1

)

=
1

2
sin
( x

2n

)

. Ne reste plus qu’à ap-

pliquer l’hypothèse de récurrence pour trouver
1

2
× sin(x)

2n
=

sin(x)

2n+1
. Bref, après ces cal-

culs fantastiquement élémentaires, il nous reste la relation sin
( x

2n

)

f(x) =
sin(x)

2n
f
( x

2n

)

.

Considérons un x 6= 0, alors à partir d’un certain rang sin
( x

2n

)

6= 0, et on peut écrire

f(x) =
sin(x)

2n sin( x
2n )

f
( x

2n

)

. Il ne reste plus qu’à faire gentiment tendre n vers +∞, alors

lim
n→+∞

x

2n
= 0, donc par continuité lim

n→+∞

f
( x

2n

)

= f(0) = 1 ; et
1

2n sin( x
2n )

a pour limite

1

x
(limite classique de

sin(x)

x
en 0). Finalement, la limite du tout quand n tend vers +∞

vaut
sin(x)

x
. Puisque la suite est constante, on en déduit que f(x) =

sin(x)

x
(prolongée par

continuité en 0 en posant f(0) = 1). On vérifie aisément que cette fonction est solution :

f(x) cos(x) =
sin(x) cos(x)

x
=

sin(2x)

2x
= f(2x).

4. Supposons donc f(0) = f(1) = 0. La fonction f est alors impaire puisque f(x) + f(−x) =

2f

(

x− x

2

)

= 2f(0) = 0. Par ailleurs, en prenant y = 2−x (pourquoi pas ?), on constate que

f(x)+f(2−x) = 2f

(

x+ 2− x

2

)

= 2f(1) = 0, donc f(x) = −f(2−x) = f(x−2). Ceci prouve

que la fonction f est 2-périodique. Or, une fonction périodique et continue est nécessairement
bornée. En effet, ici, f est sûrement bornée sur [0, 2] puisque l’image d’un segment par une
fonction continue est un segment, et f reprend ensuite les mêmes valeurs que sur [0, 2], donc les
bornes restent valables sur R. Or, si la fonction n’était pas nulle, il existerait certainement un
x tel que f(x) > 0 (puisque f est impaire). La relation initiale implique, en prenant x = y, que

f(x) =
1

2
f(2x), ou si on préfère que f(2x) = 2f(x). Par une récurrence facile, on prouve alors

que, pour tout entier n, f(2nx) = 2nf(x). En effet, c’est vrai au rang 0, et en le supposant au
rang n, f(2n+1x) = f(2×2nx) = 2f(2nx) = 2×2nf(x) = 2n+1f(x). En appliquant ceci à notre
x dont l’image est strictement positive, on obtiendra lim

n→+∞

f(2nx) = lim
n→+∞

2nf(x) = +∞, ce

qui est très contradictoire avec le fait que la fonction f est bornée. La fonction f est donc
nécessairement nulle.

Passons au cas général, et posons b = f(0) et a = f(1) − f(0). La fonction g : x 7→
f(x) − ax − b vérifie les hypothèses du cas particulier précédent : g(0) = f(0) − b = 0,

g(1) = f(1) − (f(1) − f(0)) − f(0) = 0, et g

(

x+ y

2

)

= f

(

x+ y

2

)

− a

(

x+ y

2

)

− b =

1

2
(f(x) + f(y)) − 1

2
(ax + ay) − 1

2
(b + b) =

1

2
(g(x) + g(y)). La fonction g est donc nulle.

Autrement dit, f(x) = ax + b, c’est-à-dire que f est une fonction affine. Réciproquement,
toutes les fonctions affines sont solutions du problème posé (on l’a déjà vérifié sans le dire en
faisant le petit calcul pour g).

5. En posant x = y dans la relation donnée, f

(

2x

3

)

= f(x). On peut appliquer successivement

cette nouvelle équation pour obtenir f

(

4x

9

)

= f

(

2x

3

)

= f(x) puis, pour tout entier naturel

n, f

(

2nx

3n

)

= f(x) (récurrence immédiate si on tient à être rigoureux). Or, lim
n→+∞

(

2

3

)n

x =

0, donc par continuité de f en 0, lim
n→+∞

f

(

2nx

3n

)

= f(0), ce qui prouve que f(x) = f(0).

Autrement dit, f est une fonction constante. Réciproquement, toutes les fonctions constantes
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sont solutions du problème.

6. Commençons par prouver par récurrence sur n que ∀(x, n) ∈ R × N, f(nx) = nf(x). C’est
trivialement vrai pour n = 0 (ou même pour n = 1, et, si on suppose f(nx) = nf(x), on peut
appliquer l’équation fonctionnelle avec y = nx pour obtenir f(x + nx) = f(x) + f(nx), soit
f((n+1)x) = f(x)+nf(x) = (n+1)f(x), ce qui prouve l’hérédité. En particulier, en posant
a = f(1), on aura f(n) = na pour tout entier naturel n (et donc bien sûr f(0) = 0). Posons
maintenant y = −x dans l’équation : f(x−x) = f(x)+f(−x), donc f(x)+f(−x) = f(0) = 0,
ce qui prouve que f est impaire et donc que l’égalité f(n) = na reste valable pour tout entier

relatif n. Supposons désormais x =
p

q
∈ Q (avec q > 0), alors f(qx) = f(p) = pa. Or

on a vu que f(qx) = qf(x), ce qui prouve que f(x) =
pa

q
= xa. Il ne reste plus qu’à

traiter le cas où x est irrationnel. Dans ce cas, il existe une suite (un) de nombres rationnels
convergeant vers x (densité de Q dans R). Par continuité de f en x, on peut donc écrire
f(x) = lim

n→+∞

f(un) = lim
n→+∞

una = xa, ce qui prouve que la relation f(x) = xa est valable

pour tout réel, et donc que f est une fonction linéaire.

Exercice 5 (*)

Supposons par l’absurde que f soit une fonction continue sur R à valeurs dans Z, et que f ne
soit pas constante. Autrement dit, on peut trouver deux réels x et y tels que f(x) = n et f(y) = p,
avec n 6= p. Mais alors, d’après le théorème des valeurs intermédiaires, tout réel compris entre n et p
admet des antécédents par la fonction f . Comme il existe certainement autre chose que des nombres
entiers entre n et p, ce n’est pas possible.

Exercice 6 (**)

1. L’hypothèse k-Lipschitzienne implique que
√
y − √

x 6 k(y − x) = k(
√
x +

√
y)(

√
y − √

x),

donc
√
x+

√
y >

1

k
. C’est évidemment complètement aberrant, il suffit de prendre x = 0 et y

suffisamment proche de 0 pour que
√
y <

1

k
(par exemple y =

1

4k2
). La fonction racine carrée

n’est donc pas Lipschitizienne sur [0,+∞[.

2. On utilise de même le produit par la quantité conjuguée : en supposant x < y,
√
y − √

x =
y − x√
x+

√
y
6

y − x

2
puisque

√
x > 1 et

√
y > 1 avec l’hypothèse qu’on travaille désormais sur

[1,+∞[. La fonction racine carrée est donc
1

2
-Lipschitizienne sur [1,+∞[.

Exercice 7 (**)

1. Posons g(x) = f(x)− x. Puisque f n’admet pas de point fixe, g ne s’annule jamais sur R. La
fonction g étant continue puisque f l’est, elle est donc de signe constant (sinon le théorème
des valeurs intermédiaires assurerait l’existence d’un réel annulant g). Supposons par exemple
g toujours strictement positive, ce qui revient à dire que f(x) > x pour tout réel. On a alors,
∀x ∈ R, f(f(x)) > f(x) > x, donc l’équation f ◦ f(x) = x ne peut pas avoir de solution.
C’est exactement pareil si g est strictement négative, en retournant simplement le sens des
inégalités strictes.

2. Posons g(x) = f(x) − x, la fonction g est continue puisque f l’est (étant Lipschitzienne).
De plus, ∀x ∈ R, |f(x) − f(0)| 6 k|x|, donc, si x > 0, f(0) − kx 6 f(x) 6 f(0) + kx, ce
qui implique f(0) − (k + 1)x 6 g(x) 6 f(0) + (k − 1)x. Cet encadrement, combiné avec
le fait que k − 1 < 0, suffit à prouver que lim

x→+∞

g(x) = −∞ (majoration par une fonction
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de limite −∞), et que lim
x→−∞

g(x) = +∞. On montre de même que, si x 6 0, on aura

f(0) + (k − 1)x 6 g(x) 6 f(0) − (k + 1)x, ce qui prouve cette fois-ci que lim
x→−∞

g(x) = +∞.

La définition des limites infinies assure en particulier qu’on peut trouver un réel a tel que
g(a) > 1 > 0 et un réel b tel que g(b) 6 −1 < 0. Le théorème des valeurs intermédiaires
appliqué entre ces deux valeurs donne alors l’existence d’un réel c tel que g(c) = 0, c’est-
à-dire d’un point fixe de f . Reste à prouver que ce point fixe est unique, en supposant par
l’absurde qu’il y en a deux. Si on les nomme x et y, l’hypothèse de Lipschitzianité donne alors
|f(y) − f(x)| 6 k|y − x|, c’està-dire |y − x| 6 k|y − x| puisque x et y sont supposés être des
points fixes. C’est fort gênant dans la mesure où on a supposé k < 1. L’hypothèse est donc
absurde, le point fixe est unique.

Exercice 8 (***)

Dans le cas n = 2, on pose g(x) = f

(

x+
1

2

)

−f(x). La fonction g est définie sur

[

0,
1

2

]

, continue

puisque f est supposée continue, et g(0) = f

(

1

2

)

− f(0) et g(1) = f(1)− f

(

1

2

)

= −g(0) puisque

f(1) = f(0). L’intervalle [g(0), g(1)] (dans ce sens ou dans l’autre, on ne sait pas lequel des deux
est le plus grand) contient donc certainement 0, et le théorème des valeurs intermédiaires permet

d’affirmer l’existence d’un x tel que g(x) = 0, c’est-à-dire f

(

x+
1

2

)

= f(x).

Le cas général se traite plus ou moins de la même façon : on pose g(x) = f

(

x+
1

n

)

− f(x),

g est continue sur

[

0,
n− 1

n

]

. Par ailleurs, g(0) = f

(

1

n

)

− f(0), g

(

1

n

)

= f

(

2

n

)

− f

(

1

n

)

, . . .,

g

(

n− 1

n

)

= f(1) − f

(

n− 1

n

)

. On constate que
n−1
∑

k=0

g

(

k

n

)

=
n−1
∑

k=0

f

(

k + 1

n

)

− f

(

k

n

)

= f(1) −

f(0) = 0 après un beau télescopage. Si la somme de ces n réels est nulle, il en existe nécessairement
un positif (au sens large) et un négatif (au moins). On conclut comme précédemment : l’intervalle
entre ces deux valeurs contient 0, donc 0 admet un antécédent par g, ce qui suffit à conclure.

Exercice 9 (***)

1. Appliquons la relation donnée à f(x) (qui est un réel comme un autre) : f(f(f(x))) = af(x)+
b. Par ailleurs, si on applique f aux deux membres de l’égalité de départ (avec x cette fois !), on
a f(f(fx))) = f(ax+ b). La comparaison des deux relations obtenues donne immédiatement
af(x) + b = f(ax+ b). On dérive alors cette relation par rapport à x pour trouver af ′(x) =
af ′(ax+ b), et on divise par a pour trouver l’égalité attendue (par hypothèse, a 6= 0).

2. On reconnait ici une suite arithmético-géométrique, appliquons donc la méthode habituelle (de
façon un peu plus formelle puisqu’on ne connait pas les valeurs de a et de b) : x = ax+b ⇔ x =

b

1− a
(avec les hypothèses faites, a 6= 1, donc 1−a 6= 0). On pose vn = un−

b

1− a
et on vérifie

que la suite (vn) est géométrique : vn+1 = un+1−
b

1− a
= aun+b− b

1− a
= aun−

ba

1− a
= avn.

La suite (vn) est donc géométrique de raison a, elle a donc une limite nulle puisque a ∈]0, 1[.
On en déduit immédiatement que lim

n→+∞

un =
b

1− a
.

3. La suite (un) construite dans la question 2 vérifiera toujours f ′(un+1) = f ′(un). En posant
u0 = x, on aura donc toujours f ′(un) = f ′(x). Or, d’après la question 2 et la continuité

supposée de f ′, lim
n→+∞

f ′(un) = f ′

(

b

1− a

)

, ce qui prouve que, ∀x ∈ R, f ′(x) = f ′

(

b

1− a

)

.
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La fonction f ′ est donc constante, et f est une fonction affine, son expression est de la forme
f(x) = cx+d. Reportons dans l’équation de départ pour retrouver les solutions du problème :
f(f(x)) = cf(x) + d = c2x + cd + d, ce qui impose les conditions x2 = a et d(c + 1) = b.

On a donc deux possibilités : c =
√
a et d =

b

1 +
√
1
, soit f(x) =

√
ax +

b

1 +
√
a
, ou bien

c = −√
a et d =

b

1−√
a

(on sait que a 6= 1, aucun problème d’existence possible pour d),

soit f(x) = −√
ax+

b

1−√
a
. Ces deux fonctions sont les seules solutions du probème.

4. Il faut essayer de se ramer au problème précédente : si f(ax + b) = f(x), alors en posant

y =
x− b

a
(valeur qui n’a pas été choisie au hasard, elle correspond à la réciproque de la

fonction affine x 7→ ax + b) et en lui appliquant la relation, on obtient f(y) = f

(

y

a
− b

a

)

,

avec désormais
1

a
∈]0, 1[. On retrouve exactement les mêmes expression que si a < 1.

Exercice 10 (*)

Le principe est le même à chaque fois : la fonction étudiée est continue, et les signes des valeurs
prises aux extrémités de l’intervalle sont opposés. Par le théorème des valeurs intermédiaires, la
fonction s’annule sur l’intervalle.

1. Posons f(x) = x2025 − x2024 + 1, f(−1) = −1− 1 + 1 = −1, et f(1) = 1− 1 + 1 = 1, donc f
s’annule sur I. Par dichotomie, on obtient successivement, en notant a la solution cherchée,
f(0) = −1 donc a ∈ [0, 1], puis f(0.5) ≃ 1 donc a ∈ [0.5, 1] etc. Il n’est pas très difficile de se
convaincre que la valeur de a est extrêment proche de −1 : x2025 − x2024 = x2024(x− 1), avec
x − 1 ∈ [−2,−1], donc x2024 doit être compris entre 0.5 et 1 pour que l’équation puisse être
vérifiée, ce qui implique ln 0.5 6 2024 ln(x) 6 1, donc e

0.5
2024 6 x 6 1, soit x = 1 à 0.001 près.

On a donc x ≃ 1 à 0.001 près.

2. Posons f(x) = lnx − x2 − 5

x+ 2
, f(1) = 0 − −4

3
=

4

3
, et f(10) = ln 10 − 95

12
< 0 (car par

exemple e4 > 24 > 16, donc 4 > ln 10, et
95

12
> 4 > ln 10), donc f s’annule sur I. Plutôt

que de couper exactement en 2, faisons une dichotomie avec des valeurs pas trop affreuses :
f(5) ≃ −1.24, donc a ∈ [1, 5], puis f(3) ≃ 0.30, donc a ∈ [3, 5], f(4) ≃ −0.44 donc a ∈ [3, 4],
f(3.5) ≃ −0.6 donc a ∈ [3, 3.5], f(3.25) ≃ 0.12 donc a ∈ [3.25, 3.5], f(3.375) ≃ 0.03 donc
a ∈ [3.375, 3.5], f(3.44) ≃ −0.02 donc a ∈ [3.375, 3.44], f(3.41) ≃ 0.001, donc a ∈ [3.41, 3.44],
et enfin f(3.425) ≃ −0.001 donc a ∈ [3.41, 3.425]. On a donc a ≃ 3.42 à 0.01 près.

3. Posons f(x) = 3x−1− ln(2+x2), f(0) = 0−1− ln 2 < 0 et f(1) = 3−1− ln 3 = 2− ln 3 > 0,
car e2 > 3, donc ln 3 < 2. La fonction s’annule donc sur I. Toujours le même principe, je vais
aller un peu plus vite : on calcule f(0.5) ≃ −0.31, puis f(0.75) ≃ 0.31, f(0.625) ≃ 0.003,
f(0.56) ≃ −0.16, f(0.59) ≃ −0.08 et f(0.61) ≃ −0.03, dont on déduit que a ≃ 0.62 à 0.01
près. Constatons que quand on tombe au milieu des calculs sur une valeur très proche de 0,
on a de bonnes chances d’être très près de la solution cherchée...

4. Posons f(x) = ex−2−x, f(ln 2) = 2−2−ln 2 < 0, et f(2 ln 2) = 4−2−2 ln 2 = 2(1−ln 2) > 0,
donc f s’annule sur I. Ici, les bornes de l’intervalles sont moyennement pratiques, mais elles
valent environ 0.7 et 1.4, ce qui permet de couper en 1 puis de prendre des valeurs plus rondes
ensuite : f(1) ≃ −0.28, f(1.2) ≃ 0.12, f(1.1) ≃ −0.10, f(1.15) ≃ 0.008, f(1.125) ≃ −0.04,
f(1.14) ≃ −0.01, donc a ≃ 1.14 à 0.01 près.

5. Posons f(x) = x3 − 3x2 + 1, f(−1) = −1 − 3 + 1 = −3 et f(1) = 1 − 3 + 1 = −1. Ca ne
marche pas ? Si, car f(0) = 1, donc f s’annule en fait au moins deux fois sur I : une fois sur
[−1, 0] et une autre sur [0, 1]. Pour la dichotomie, contentons-nous de déterminer une valeur
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approchée de la solutions se trouvant dans [0, 1] (on peut naturellement trouver également une
approximation de la deuxième racine dont on connait l’existence) : f(0.5) = .375, f(0.75) ≃
−0.27, f(0.625) ≃ 0.07, f(0.69) ≃ −0.10, f(0.66) ≃ −0.02, f(0.64) ≃ 0.03, donc a ≃ 0.65 à
0.01 près (pour les curieux, la racine appartenant à [−1, 0] vaut environ −0.53).

Exercice 11 (***)

1. La fonction fn étant somme de deux fonctions strictement croissantes (et d’une constante) sur
[0,+∞[, elle l’est également. Comme de plus elle est continue, f(0) = −4, et lim

x→+∞

fn(x) =

+∞, le théorème de la bijection nous permet d’affirmer l’existence d’un unique réel positif un
tel que fn(un) = 0.

2. u0 est solution positive de l’équation 1 + 9x2 − 4 = 0, soit x2 =
1

3
, donc u0 =

1√
3
. Pour

n = 1, l’équation devient 9x2 + x − 4 = 0, qui a pour discriminant ∆ = 1 + 144 = 145,
et admet deux racines dont une strictement positive (d’après la question précédente) qui ne

peut être que u1 =
−1 +

√
145

18
≃ 0.61. De même, u2 est solution positive de l’équation

10x2 = 4, d’où u2 =

√

2

5
≃ 0.63. Pour vérifier que un <

2

3
, il suffit de constater que

fn

(

2

3

)

=

(

2

3

)n

+ 9× 4

9
− 4 =

2n

3n
> 0, et d’appliquer la croissance stricte de la fonction fn

à l’inégalité 0 = fn(un) < fn

(

2

3

)

3. On a fn+1(x) − fn(x) = xn+1 + 9x2 − 4− xn − 9x2 + 4 = xn(x − 1). Cette expression étant
négative si x < 1, on en déduit que ∀x ∈]0; 1[, fn+1(x) < fn(x).

4. On a notamment, puisque 0 < un <
2

3
, fn+1(un) < fn(un) = 0. Comme par ailleurs

fn+1(un+1) = 0, on a donc fn+1(un) < fn+1(un+1), ce dont on déduit via stricte croissance
de fn+1 que un < un+1. Autrement dit, la suite (un) est strictement croissante.

5. La suite étant croissante et majorée par
2

3
, elle converge.

6. Comme 0 < un <
2

3
, 0 < unn <

(

2

3

)n

, donc via le théorème des gendarmes (et le fait que le

membre de droite est une suite géométrique de raison inférieure à 1, lim
n→+∞

unn = 0. Or, on a

par définition unn + 9u2n − 4 = 0 (puisque fn(un) = 0). On en déduit que lim
n→+∞

9u2n − 4 = 0,

soit lim
n→+∞

u2n =
4

9
. Comme un > 0, on a donc lim

n→+∞

un =
2

3
.

Exercice 12 (**)

1. La fonction est somme de deux fonctions strictement croissantes, donc est strictement crois-
sante sur R. De plus, lim

x→+∞

f(x) = +∞, et lim
x→−∞

f(x) = −∞, donc par théorème de la

bijection, f est bijective de R dans R.

2. C’est une conséquence immédiate de la bijectivité de f .

3. Par définition, f(xn) < f(xn+1), donc par stricte croissance de f , xn < xn+1, et la suite (xn)
est strictement croissante.

4. C’est un calcul d’images : f(lnn) = elnn + lnn = n + lnn > n si n > 1, donc on a f(xn) 6
f(lnn), d’où xn 6 lnn. De même, f(ln(n− ln n)) = eln(n−lnn)+ln(n− ln n) = n− lnn+ln(n−
lnn) = n−ln

n

n− lnn
< n puisque

n

n− lnn
< 1. On en déduit de même que ln(n−lnn) 6 xn.
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5. Comme lim
n→+∞

n − lnn = +∞ (croissance comparée), on a lim
n→+∞

ln(n − lnn) = +∞, d’où

par comparaison lim
n→+∞

xn = +∞. De plus,
ln(n− lnn)

lnn
6

xn
lnn

6 1, avec
ln(n− lnn)

lnn
=

lnn+ ln(1− lnn
n )

lnn
= 1 +

ln(1− lnn
n

lnn
. La quotient a pour limite 0, donc la suite (

xn
lnn

) est

encadrée par deux suites de limite 1. Via le théorème des gendarmes, on en déduit que

lim
n→+∞

xn
ln(n)

= 1.

Exercice 13 (**)

1. Calculons donc la dérivée f ′

n(x) = 5x4 + n. Cette dérivée est toujours strictement positive
(sauf en 0 pour n = 0), la fonction est donc strictement croissante, quel que soit l’entier n.

2. Comme de plus lim
x→−∞

f(x) = −∞ et lim
x→+∞

f(x) = +∞, chaque fonction fn est bijective de R

dans R. Chaque réel a donc un unique antécédent par fn et en particulier l’équation fn(x) = 0
admet une unique solution.

3. Constatons que fn

(

1

n

)

=
1

n5
+ 1 − 1 =

1

n5
> 0. Comme la fonction fn est strictement

croissante, et fn(un) = 0, on en déduit que un <
1

n
. Notons par ailleurs que fn(0) = −1, donc

par un raisonnement similaire on a toujours 0 < un. Le théorème des gendarmes permet donc
d’affirmer que lim

n→+∞

un = 0.

Démonstration subsidiaire : monotonie de la suite (un). Pour déterminer la monotonie
de la suite (un), il faut réussir à comparer un et un+1. Pour cela, dans le même esprit que
les calculs précédents, on va chercher à calculer fn(un) et fn(un+1). Le morceau facile, c’est
fn(un) = 0 (par définition). Plus compliqué, fn(un+1) = u5n+1 + nun+1 − 1. Or, on sait que,
par définition, fn+1(un+1) = 0, c’est-à-dire que u5n+1 + (n + 1)un+1 − 1 = 0, ou encore en
développant u5n+1 + nun + un+1 − 1 = 0, soit u5n+1 + nun+1 − 1 = −un+1. Autrement dit,
en reprenant le calcul précédent, fn(un+1) = −un+1 < 0 (puisqu’on a prouvé plus haut que
tous les termes de la suite étaient positifs). En particulier, fn(un+1) < fn(un). La fonction fn
étant strictement croissante, on en déduit que un+1 < un, donc la suite (un) est décroissante.

4. On sait que u5n + nun − 1 = 0, et lim
n→+∞

u5n = 0 (puisque le suite (un) tend vers 0), donc

lim
n→+∞

nun = 1.

Exercice 14 (***)

1. Sur R+∗, les fonctions fn sont strictement croissantes comme sommes de fonctions croissantes.
De plus, fn(0) = 1 et lim

x→+∞

fn(x) = +∞. La fonction fn effectue donc une bijection de R+∗

sur [1;+∞[, et en particulier 2 admet un unique antécédent par fn, que l’on peut donc noter
un.

2. On a déjà vu que fn(0) = 1, donc un > 0, et fn(1) = n+ 1 > fn(un) si n > 2. Par croissance
de la fonction fn, on a donc bien un < 1.

3. On peut utiliser la méthode classique : fn+1(x) = fn(x) + xn+1, donc fn+1(un) = fn(un) +
un+1
n = 2 + un+1

n . Comme un > 0, un+1
n > 0, et fn+1(un) > 2 = fn+1(un+1). Par croissance

de la fonction fn+1, on déduit que un > un+1, et la suite est donc décroissante. Comme elle
est minorée par 0, elle converge.

4. Nos connaissances sur les suites géométriques nous permettent d’affirmer que, ∀x 6= 1, fn(x) =
1− xn+1

1− x
. En particulier,

1− un+1
n

1− un
= 2. Or, comme la suite (un) est décroissante, on aura
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∀n > 2, un 6 u2 < 1, donc 0 < un+1
n < un+1

2 , avec lim
n→+∞

un+1
n = 0. Une petite application du

théorème des gendarmes permet donc d’affirmer que lim
n→+∞

un+1
n = 0. En passant à la limite

la relation obtenue ci-dessus, et en notant l la limite inconnue de la suite (un), on trouve alors
1

1− l
= 2, soit 1− l =

1

2
et l =

1

2
. On a prouvé que lim

n→+∞

un =
1

2
.

5. Je vois venir d’ici ceux qui se sont lancés dans une récurrence inutile pour cette question.

Reprenons donc les calculs des questions précédentes :
1− un+1

n

1− un
= 2, donc 1−un+1

n = 2−2un,

ou encore un+1
n = 2un − 1. Comme vn +

1

2
= un, celà revient à dire que

(

1

2
+ vn

)n+1

= 2vn.

Exercice 15 (**)

1. Inutile de calculer la moindre dérivée, on sait que l’exponentielle est croissante que la fonction

x 7→ 1

nx
est décroissante, donc gn est croissante sur ]0,+∞[. De plus, lim

x→0
gn(x) = −∞, et

lim
x→+∞

gn(x) = +∞ (aucune forme indéterminée), et la fonction gn est bien sûr continue, elle

est donc bijective de ]0,+∞[ sur R et en particulier s’annule une seule fois sur cet intervalle.

2. L’inégalité un > 0 est évidente. De plus, gn

(

1

n

)

= e
1
n − 1 > 0, puisque e

1
n > e0 = 1. La

fonction gn étant strictement croissante, on en déduit que un <
1

n
. Une application immédiate

du théorème des gendarmes donne alors limun = 0.

3. On calcule donc gn+1(x) − gn(x) = ex − 1

(n + 1)x
− ex +

1

nx
=

−n+ n+ 1

n(n+ 1)x
=

1

n(n+ 1)x
>

0. Cette expression est manifestement positive sur notre intervalle, ce qui implique que
gn+1(un+1) − gn(un+1) > 0. Comme gn+1(un+1) = 0 par définition de la suite, on a donc
gn(un+1) < 0, et en particulier gn(un+1) < gn(un). La fonction gn étant toujours croissante,
on en déduit que un+1 < un, et la suite (un) est donc décroissante.

4. Par définition, gn(un) = 0, donc eun − 1

nun
= 0. Autrement dit, nun =

1

eun = e−un
. Comme

on sait que la suite (un) tend vers 0, on en déduit immédiatement que limnun = 1.

Exercice 16 (***)

1. Par définition, u1 est solution positive de l’équation x2 − 2x− 1 = 0, qui a pour discriminant

∆ = 4 + 4 = 8, et admet donc pour solutions x1 =
2−

√
8

2
= 1−

√
2 < 0 (on oublie donc) et

x2 =
2 +

√
8

2
= 1 +

√
2. Puisque u1 > 0, on a donc u1 = 1 +

√
2.

2. La fonction fn étant polynômiale, elle est dérivable sur R, de dérivée f ′

n(x) = n(n + 1)xn −
(n + 1)nxn−1 = n(n + 1)xn−1(x − 1). Comme fn(0) = 0, fn(1) = n − (n + 1) = −1, et
lim

x→+∞

fn(x) = +∞, on peut dresser le tableau de variations suivant :

x 0 1 +∞

fn 0
❍❍❍❥−1

�✒
�

�

+∞

La fonction fn ne prend que des valeurs négatives sur l’intervalle [0, 1], l’équation fn(x) = 1
ne peut pas y avoir de solution. Sur [1,+∞[, fn est croissante et continue, donc bijective
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vers son intervalle image [−1,+∞[. Comme 1 appartient à cet intervalle image, l’équation
fn(x) = 1 admet donc une unique solution sur [1,+∞[, et par conséquent sur [0,+∞[.

3. Pour montrer un tel encadrement, on calcule les images des encadrants par fn : fn

(

1 +
1

n

)

=

n

(

n+ 1

n

)n+1

− (n + 1)

(

n+ 1

n

)n

=
(n+ 1)n+1

nn
− (n+ 1)n+1

nn
= 0 ; et fn

(

1 +
2

n

)

=

n

(

n+ 2

n

)n+1

−(n+1)

(

n+ 2

n

)n

= (n+2)

(

n+ 2

n

)n

−(n+1)

(

n+ 2

n

)n

=

(

1 +
2

n

)n

> 1.

Comme fn

(

1 +
1

n

)

< 1 < fn

(

1 +
2

n

)

, la croissance de fn sur l’intervalle [1,+∞[ (intervalle

auquel appartiennent 1 +
1

n
, un et 1 +

2

n
) assure que 1 +

1

n
< un < 1 +

2

n
. Le théorème des

gendarmes permet alors de dire que lim
n→+∞

un = 1.

4. On commence par écrire vn = en ln(1+β

n
) pour se rendre compte qu’il y a une forme indéter-

minée si jamais ça ne nous frappe pas sous la forme initiale. On peut ensuite poser x =
β

n
.

Comme lim
n→+∞

β

n
= 0 et lim

x→0

ln(1 + x)

x
= 1 (limite classique issue d’un taux d’accroissement),

on a lim
n→+∞

n ln(1 + β
n)

β
= 1. Ce qui se trouve dans notre exponentielle a donc pour limite β,

et lim
n→+∞

vn = eβ .

5. On écrit fn

(

1 +
β

n

)

= n

(

1 +
β

n

)n+1

− (n + 1)

(

1 +
β

n

)n

= (n + β)

(

1 +
β

n

)n

− (n +

1)

(

1 +
β

n

)n

= (β − 1)vn. D’après la question précédente, notre suite converge donc vers

(β − 1)eβ .

6. Posons donc g(x) = (x− 1)ex, la fonction g est dérivable sur R, de dérivée g′(x) = ex + (x−
1)ex = xex. Cette dérivée est du signe de x, on calule donc g(0) = −e0 = −1 ; lim

x→−∞

g(x) = 0

(croissance comparée classique), et lim
x→+∞

g(x) = +∞, pour dresser le tableau suivant :

x −∞ 0 +∞

g 0
❍❍❍❥−1

�✒
�

�

+∞

On conclut comme à la question 2 : la fonction g ne peut pas prendre la valeur 1 sur ]−∞, 0],
puis elle est bijective de [0,+∞[ vers [−1,+∞[, donc l’équation g(x) = 1 admet une unique
solution. Comme de plus g(1) = 0 < 1 et g(2) = e2 > 1, la croissance de g sur [0,+∞[ assure
que 1 < α < 2.

7. (a) Il suffit de recopier le résultat de la question 4 : lim
n→+∞

fn

(

1 +
α− ε

n

)

= (α− ε− 1)eα−ε

et lim
n→+∞

fn

(

1 +
α+ ε

n

)

= (α+ ε− 1)eα+ε.

(b) Par hypothèse, 1 < α− ε < α < α+ ε, donc g(α− ε) < g(α) < g(α+ ε) (par croissance de
la fonction g étudiée plus haut sur [1,+∞[). On en déduit que les deux limites calculées
à la question précédente sont respectivement strictement inférieure à 1 et strictement
supérieure à 1. Mais, en appliquant la définition de la limite, une suite qui a une limite
strictement inférieure à 1 prend nécessairement des valeurs inférieures ou égales à 1 à partir
d’un certain rang (on note cette limite 1− η, avec η > 0, et on applique la définition de la
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limite à ce η). À partir d’un certain rang, on aura donc nécessairement fn

(

1 +
α− ε

n

)

6

1 = fn(un), ce qui implique 1 +
α− ε

n
6 un par croissance de fn sur [1,+∞[, intervalle

auquel appartiennent bien nos deux valeurs. On montre la deuxième inégalité de la même
façon, et on en déduit un entier n0 (le maximum des deux entiers obtenus pour chaque
inégalité) à partir duquel l’encadrement souhaité sera vérifié.

(c) On constate déjà que 1 +
α− ε

n
6 un 6 1 +

α+ ε

n
⇔ α− ε

n
6 un − 1 6

α+ ε

n
⇔ α− ε 6

n(un − 1) 6 α+ ε. D’après la question précédente, on peut alors dire que, ∀ε ∈]0, α− 1[,
∃n0 ∈ N, ∀n > n0, α− ε 6 n(un − 1) 6 α+ ε. C’est exactement la définition de la limite,
qui permet de conclure que lim

n→+∞

n(un − 1) = α.

Exercice 17 (***)

1. C’est complètement évident, on fixe une valeur de x et on applique la définition de la conver-
gence uniforme pour constater qu’on retombe sur la définition de lim

n→+∞

fn(x) = f(x). En fait,

tout ce qu’on rajoute dans la convergence uniforme, c’est qu’une fois la valeur de ε fixée, le n0

de la définition doit être le même pour toutes les valeurs de x, ce qui n’a aucune raison de se
produire en général ! Un contre-exemple simple à la réciproque : on se place sur I =]0, 1[ et on

pose fn(x) = 1 si x <
1

n
, fn(x) = 0 sinon. La suite (fn) converge simplement vers la fonction

nulle puisque, à x fixé, on trouvera toujours un n0 à partir duquel x >
1

n
, et à partir de

cette valeur, on aura tout simplement fn(x) = 0. Pourtant, la convergence n’est pas uniforme
puisque l’écart maximal entre la limite 0 et la fonction fn vaut toujours 1 (atteint sur tout

l’intervalle

]

0,
1

n

[

), ce qui contredit par exemple à la définition de convergence uniforme pour

ε =
1

2
.

2. C’est un classique « tronçonnage d’ε » : fixons a ∈ I et commençons par appliquer la définition

de la convergence uniforme : ∃n0 ∈ N, ∀x ∈ I, |fn0(x)− f(x)| 6 ε

3
. La fonction fn0 étant par

ailleurs continue en a, ∃η > 0, x ∈]a− η, a+ η[⇒ |fn0(x)− fn0(a)| 6
ε

3
. Mais alors, pour ces

mêmes valeurs de x, on peut écrire |f(x) − f(a)| = |(f(x) − fn0(x)) + (fn0(x) − fn0(a)) +

(fn0(a)− f(a))| 6 |fn0(x)− f(x)|+ |fn0(x)− fn0(a)|+ |fn0(a)− f(a)| 6 ε

3
+

ε

3
+

ε

3
= ε par

simple application de l’inégalité triangulaire. On a bien prouvé que f était continue en a.

Pour un contre-exemple, pas besoin de chercher compliqué : posons fn(x) = xn et plaçons-
nous sur l’intervalle [0, 1]. Si x = 1 on aura toujours fn(x) = 1 donc lim

n→+∞

fn(1) = 1. Mais

si 0 6 x < 1, lim
n→+∞

xn = 0. La suite de fonctions (fn) converge donc vers la fonction

discontinue f définie par f(x) = 0 si x < 1, et f(1) = 1. Pourtant, toutes les fonctions fn
sont indiscutablement continues sur [0, 1].
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