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Exercice 1 (* a ***)

208 —4z? + 2 -2 22%(x -2 -2  227+1
v vt = w2+ _ ot si z # 2. On en déduit aisément que

z? —4 (x —2)(z+2) x+2
o2 — 4?4 —2 9
lim 5 = —.
z—2 x4 —4 4

sin(X)

En posant X = e *, onaura lim X =0, ete”sin(e™?) = a donc pour limite 1 (limite

T—+00
classique de taux d’accroissement vue en cours). On en déduit que lim e”sin(e™™) = 1.
T—+00

2 z? z

En factorisant par e* dans le In, (e £ 1) == e = " P donc

xT

562

lim — = )
e booln(l +ev) 10

1 1
Quantité conjuguée complétement superflueici: Va2 + z — 1—x/x = = < 1+ . ﬁ) )

donc lim vz?+z—1— 2z = —00.

T—+00
In(z)

(li(w = *@)—zh(n(@) O xll)rfoo In?(z) — xIn(In(z)) = —oo par croissance comparée.
In(z)

Du coup, xgrfww =0.
1 ; 2-1) 1

L’encadrement —— < cos(w +2 ) < — suffit & conclure par le théoréme des gendarmes
T x x

2
—1
que lim cos(z + ) = 0.

r——+00 x
On reconnait ici 'inverse du taux d’accroissement de la fonction arccos en O :

() — 0 1
mhﬁmg arccos(:vﬂ)g — grccos( ) = arccos’(0) = ~ =5 = —1. Comme arccos(0) = g, on en
1
déduit que m— 0 = - =1,

z—0arccos(r) — 5 1

1 1 1 1
Encore une histoire d’encadrement : — — 1 < Ent <—> < —,donc1l—z < zFEnt <—> <1
T T x x

si z > 0 (sinon, I'encadrement est le méme mais avec les inégalités dans l'autre sens). Dans
les deux cas, les deux membres extrémes de ’encadrement ont pour limite 1 en 0, donc

i 1
limx Ent | — | = 1.
z—0 X
Rt In(z) . o . )
On écrit x= = e = et on conclut immédiatement & l'aide de la croissance comparée que
. 1
lim z> = 1.
r—r+00

— F _E
Size[0:1], z — Ent(x) = 7, done 22 2®) 2 2 done lim £ EnU®)

Vel SN

= 0. De



x — Ent(x)

m_r

Pautre coté, sur [—1;1[, z — Ent(x) = = — 1, donc , qui tend vers —oo

en 0~. Il n’y a donc pas de limite en O.

e Encore un coup ot —1 est racine du numérateur et du dénominateur. Le numérateur a pour
autre racine évidente 1, et le produit des racines vaut 1, donc —1 est en fait racine double
et le numérateur se factorise en (z — 1)(x + 1)2. Le dénominateur se factorise sous la forme
(x 4+ 1)(az? + bz + ¢) = ax® + (a + b)z? + (b + ¢)z + c¢; par identification trés facile, a = 1,
b= 1ete= —2 donc x?’—;—xQ—x—l _ (x —1)(x +1) _ (x —1)(x+1) _z—1 .

x3 — 3z — 2 2 —x—2 (z+1)(z—-2) =z-2
B4t —r—1

2
—1. Suffisant 1 li =—.
T # uffisant pour conclure que lim —a——0—— 3

1
1 »
e Encore du boulot pour le passage a I'exponentielle : < n(w)) = e(n(n@))-In(@))/z Tyt ce
x

In @
qui est dans I'exponentielle tend vers 0 par croissance comparée, donc lim <Q> =1

r——+00 €T
sh * 1 1 h 1
o [l suffit d’écrire sh(z) S +e = -+ pour constater que lim sh(z) _
er 2e® 2 2% z—+oo ¥ 2
0 ¢ deri 2 1 2 1 2 — (1 + cos(x))
e On peut écrire - = - = =
P sin?(z) 1—cos(z) 1—cos?(z) 1—cos(z) (1—cos(x))(l+ cos(z))
1 2 1
——. 0 déduit li — = —.
1+ cos(z) fh en dedtt que xl—>r%s1n2(g:) 1—cos(z) 2

e Il suffit ici de poser X = In(z). Quand x tend vers 1, X tend vers 0, et In(z)In(Iln(z)) =
X In(X). Comme on sait, par croissance comparée, que )l(imOX In(X) =0, alors
_)

igrrﬁ In(x) In(In(z)) = 0.

e Quantité conjuguée : \/x + \/x +/x — /T =

1
Vit = X
donc hI_’I_l x+\/:c+\/5_\/§:§,

<1+\/1+,/—+x\/_>
o (4 1) = < <” >)o <1+1> — e*0+D) Bn posant X = <,
T X

In(1 + X)
X

1\” 1\*
lim (1 + —> = e! = e. Finalement, lim z— (1 + —> = +4o0,et lim 21— (2+1)% =
x x

x+\r—u
T+ r+Vr+x

, qui a pour limite 1 car X tend vers 0 (limite classique), donc

1
zIn (1—|——> =
T

T—>+00 T—r+00 T—>+00
—+00.
. z? -1 _ @+ he-1) _ @+he+Dr-1) @+ )EE+1) oo
(V- D)  (Vo—1)n(x) (V- Dlaa) (@)
forme indéterminée, on a directement lim x——l = +00.

a—1+ (vo — 1) In(z)
Exercice 2 (** a **¥)

1. La fonction fi est évidemment définie et continue sur R*. En 0, une limite classique du cours
permet d’affirmer que lin}) f(x) =1, donc fi est prolongeable par continuité en une fonction
Tr—r

g1 définie sur R en posant g;(0) = 1.

2. La fonction fo est définie et continue sur R\{—1,1}. Quand x tend vers —1, le numérateur
de f5 tend vers 2 et le dénominateur vers 0, on ne peut pas avoir de limite finie, et donc pas



1—
de prolongement par continuité. Par contre, fo(z) = a ] (1::_ ] =7 - siz # 1, donc
- T x

il_)ml fa(x) = %, et fa est prolongeable par continuité en posant go(1) = 3
3. La fonction f3 est définie et continue sur tous les intervalles de la forme |km, (kK + 1)7[, pour
k € N. Si k # 0, (kr)?In(km) est une constante non nulle, donc la fonction f3 ne peut pas
avoir de limite finie en k7 (en l'occurence, elle tend vers +00 a gauche et —oo a droite si k
est impair, et le contraire si k est pair, & cause du signe de sin(x) au voisinage de k). Par
2*In(z) @

contre, x xIn(z), donc par croissance comparée et en utilisant une limite

sin(z)  sin(z)
classique, lin%] 3(x) =0, ce qui permet de prolonger par continuité en posant gs(0) = 0.
T—

4. La fonction f4 est définie et continue sur tous les intervalles de la forme |n,n+ 1[, pour n € Z.
On peut méme ajouter, pusique la fonction partie entiére est continue & droite en chaque
entier, que lim+f4(ac) = fa(n) = n++/n—n = n. Par ailleurs, lim Ent(z) =n — 1, donc

Tr—n

T—n—

lim fy(x) =n—14+/n—(n—1)=n—1+1=n. Finalement, la fonction f4 est continue
T—n—

sur R (pas be soin de prolonger quoi que ce soit ici, la fonction f; est déja définie sur R). Une
allure de la courbe :

x—1—3_
(z—-1)2%

. Le dénominateur étant non nul quand z = 1, pas de limite finie en vue, et donc pas

5. La fonction f5 est définie et continue sur R\{1}. En 1, on peut écrire f5(z) =
r—4

(z—1)?
de prolongement par continuité.

6. Cette drole de fonction est définie et continue sur R\{1}. Comme lim
z—=1-1 —X

aura lim fg(x) = 400, donc pas de prolongement possible. Pourtant, lim
rz—1— z—1t 1—=x

et par conséquent lim+ fe(x) = —1. On est en présence d’un cas assez rare : la fonction est
z—1

= —007

prolongeable « par continuité a droite » en posant gg(1) = —1. Une allure de la courbe :



O= N W A UL O ®
T S
e e B L

7. La fonction f7 est définie et continue sur R*, et prolongeable par continuité en 0 en posant
xIn(x)
—1’
est définie et continue sur |0, 1{U]1, +o0], et prolongeable en 0 (méme raisonnement que pour
In(x)
=1.

g7(0) = 0 (croissance comparée). L’énoncé serait plus intéressant avec hr(z) =

f7) mais aussi en 1 en posant g7(1) = 1, & cause de la limite classique lim1 N
z—1x —

8. La fonction fg est définie sur R*, et continue en a pour tout nombre a qui n’est pas de la forme

— (pour un entier n € Z*) par continuité en n ¢ Z de la fonction partie entiére. Supposons
n

1
donc dans un premier temps a = —, avec n > 0. On calcule lim — = n* (la fonction
n z—a~ T

inverse étant décroissante sur R**, il faut bien faire attention aux positions des limites), puis

1 1
f  (z) = — xn = 1. De l'autre c6té, on aura lim — = n~, la partie entiére tendra donc
T—a~g n z—at X
n—1
vers n — 1, ce qui implique que lim+ fs(x) = . Les limites & gauche et & droite étant
r—a n

. . . 1
distinctes, fg ne peut pas étre continue en a. On aura le méme probléme si a = — avec n < 0

n
(limites différentes a gauche et a droite). Reste un cas un peu a part a traiter : celui de 0.

1 1
On peut toujours écrire 'encadrement — < Ent —> < —+1,donc 1< fg(x) <14z Le
T T T

théoréme des gandarmes prouve que alors que lir% fs(x) = 1, ce qui permet de prolonger fg
T—r

par continuité en 0 en posant gg(0) = 0. Ci-dessous une allure de la courbe de cette drole
de fonction (tracée avec les pieds par le logiciel que j’utilise, qui n’est pas capable de traiter
correctement les points de discontinuité, d’ou les traits verticaux qui ne devraient pas exister) :

9. En fait, cette fonction extrémement étrange n’est pas si affreuse que ¢a a étudier, puisqu’on
peut I'expliciter intervalle par intervalle. Regardons d’abord ce qui se passe sur R™, et notons



wnJrl " " xnfl
hn(z) = TS On constate que h'n(z) = PR = hp—1(z). Par ailleurs,
1 : - (n+1)!
hy(z) =0 < nlz"t! = (n+1)!2", ce qui se produit lorsque = 0 ou x = ————=n+l1la
n!

fonction hy, est donc décroissante sur [0, n] et croissante sur [n, +00], et surtout négative sur
[0,n+ 1] puisque’elle y est décroissante puis croissante et s’annule en 0 et en n+ 1, et positive

0 1 2
sur [n+ 1,4o00[. On déduit de ces constations que, sur I'intervalle [0, 1], o > % > % etc,
0 0 1 1 2 "1 ' '
donc fo(z) = % = 1. Sur [1, 2], % < %, mais % > :;—' etc, donc fo(x) = % = z. De méme,
n

x
sur chaque intervalle de la forme [n,n + 1], fo(z) = — Toutes ces fonctions étant continues,

et les changements de fonction s’effectuant a des points d’intersection de deux courbes de

fonctions continues, la fonction f sera continue sur R*. Sur R™, c’est extrémement similaire,
n

x
la seule différence étant due au fait que les entiers impairs sont & oublier puisque — prend des
n

valeurs négatives sur R~ lorsque n est impair (la valeur de f est donc constate coté négatif
2

x x
jusqu’a x = —v/2, valeur en-deca de laquelle on aura 5 > 1, on conserve ensuite fo(x) = 5
. R A . . .
jusqu’a avoir d =g soit lorsque x = —+/12, et ainsi de suite). Voici un bout de la courbe
de la fonction fy (les morceaux correspondant a des valeurs de n différentes sont de différentes
couleurs) :
0
S5 4 3 -2 -1 Jo 1 2 3 4 5
Exercice 3 (***)
Seul 0 peut poser un probléme de continuité a droite. Or, lim —— = —oo, donc lim flx)=0,et
5 z—0t T z—0t
1
f est bien continue en 0. De plus, Va > 0, f/(z) = —e 2. Posons X = —, onalors f(x) = 2X3e=X?
x x

qui par croissance comparée a pour limite 0 en +o00, donc f’ est également continue en 0. On fait le

6 4\ 1
méme type de calcul pour f” : Vo >0, f"(z) = (—4 + —6> e =2, qui a également pour limite 0 en
T x
0.
Pour les dérivées ultérieures, le principe est le méme, mais pour tout traiter d’'un seul coup, il est
nécessaire d’effectuer une récurrence pour prouver que la n-iéme dérivée de la fonction f (sur |0, +00])

P,(x)

n

1 .
peut s’écrire sous la forme e 22, ou a, est un entier naturel et P, est un polynome. C’est

vrai pour n = 1 et méme n = 2 d’aprés les calculs précédents. Supposons désormais que f (")(x) =

P,(x) 29 P! (2) — apnz®™ 1P, (z) o
xon

1
e »2. On peut dériver cette fonction sur |0, +oo] et obtenir e
m n



2P, (x) _1 . . : i
anigrg)e 22, Cecl est bien de la forme voulue, ce qui achéve la récurrence. Or, un quotient de
x n

_L . .. . . .
polynomes multiplié par e 22 a toujours pour limite 0 en 0 (toujours de la croissance comparée),

donc la dérivée n-iéme de f est continue en 0.

Exercice 4 (** a **¥)

1. Par une récurrence facile, si f(z) = f(z?), on aura, pour tout entier naturel n, f(z) = f(x").
En effet, c’est vrai pour n = 1 (et méme n = 0), et si on le suppose vrai pour un entier n,

alors f(z) = f(z2") = f((2¥")?) = f(22""). Siz € [0,1], nlim 22" = 0 (mettez sous forme

—+00
exponentielle si ¢a ne vous semble pas clair), donc par continuité de f en 0, liIJIrl f(2?") =
n——+0o0

f(0). Comme la suite (f(22")) est constante égale a f(z), on en déduit que Vo € [0,1],
f(xz) = f(0). La fonction f est donc constate sur [0,1[. En particulier, lir? f(z) = f(0),
r—1-

donc, par continuité de f en 1, f(1) = f(0). Occupons-nous maintenant des réels strictement
supérieurs & 1. On ne Peut pas appliquer le méme raisonnement que ci-dessus, mais par contre

on constate que f(z27) = f(x) pour tout entier n, en appliquant simplement la remarque
initiale & 227 . Cette fois-ci, hI_’I_l g =1 (puisque g = ¢ o , qui tend vers €® = 1), et on
n—-+0o0

conclut comme tout & I'heure que f(x) = f(1) = f(0). La fonction f est donc constante sur
R,. Et sur R-? Si x < 0, 22 > 0, donc f(z) = f(2?) = £(0). Finalement, la fonction f est
constante. Réciproquement, toute fonction constante est évidemment solution du probléme
posé.

1
Un + . Par

une récurrence immédiate, on aura toujours f(u,) = f(x) (en effet, c’est vrai pour ug et

2. Soit x € R et (uy) la suite récurrente définie par ug = x et Vn € N, up41 =

2
r+1

1 .
flups1) = f i+ ) = f(uy)). Etudions donc le comportement de la suite (uy,). Pour cela,

on pose g(x) = , qui est une fonction affine strictement croissante admettant un unique
point fixe z = 1. De plus, g(z) —2 < O0siz > l,et g(z) —x >20siz < 1. Siz > 1, on
prouve par une récurrence immeédiate que Vn € N, u,, > 1, et la suite étant décroissante, elle
va nécessairement converger vers ['unique point fixe de la fonction, a savoir 1. De méme, si
x < 1, la suite est croissante majorée par 1, et converge vers 1. Dans tous les cas, on a donc

lim w, = 1, donc par continuité de la fonction f, lim f(u,) = f(1). La suite (f(uy))
n——+0oo n—-+00

étant constante égale a f(x), on en déduit que f(x) = f(1). La fonction f est donc constante.
Réciproquement, les fonctions constantes sont solutions triviales du probléme posé.

3. Comme dans les autres problémes de cet exercice, il faut essayer d’itérer 1’équation don-
née, en divisant par 2 plutét qu’en multipliant (car c’est plus pratique pour trouver des li-

mites) « 1) = £ () eos () = 1 (5) cos (§) cos (5) = 7 (5) eos (3) o2 (3) e (§)

T T
etc. Une récurrence simple permet de prouver que Vn € N, f(z) = f (2—n> H cos <2_k> :
c’est vrai au rang 0 puisque la condition est alors f(z) = f(z), et si on le suppose au

x

rang n, il suffit de remplacer le f <2£n> par f ( > cos <W) pour obtenir la relation

2n+1

x
au rang n + 1. Reste l'astuce diabolique du jour : tout multiplier par sin <2—n) En effet,

z T sin(x
sin (2—n> H cos <2_k> = QEL ) Si ¢a ne vous semble pas clair c’est que vous avez du ou-

blier la formule de duplication sin(2z) = 2sin(z)cos(x). Allez, prouvons-le quand méme
par récurrence : au rang 0, sin(z) = sin(x) est vrai. Supposons la formule vrai au rang



I . T €T 1 . 1 1 . T N | .
n, alors sm(2n+1>cos <2n+1) = ism 2xﬁ = §Sm<2_n)' e reste plus qu’a ap-

1  sin(x sin(x
pliquer I’hypothése de récurrence pour trouver 3 X 22 ) = 2nil). Bref, apres ces cal-
T sin(x T
culs fantastiquement élémentaires, il nous reste la relation sin (—) flx) = (z) f (—)
2n 2n 2n
x
Considérons un x # 0, alors & partir d’un certain rang sin (2—n) # 0, et on peut écrire
sin(z) ( x > <o .
r) = —————f(=—]. Il ne reste plus qu’a faire gentiment tendre n vers +oo, alors
f(x) 2nSin(2%)f o plus q g v
lim — =0, d tinuite 1 f<x> FO0) = 15 et — limit
im — = 0, donc par continuité lim — ) = = 1; et ———— a pour limite
n—+o0 2™ P n—+oo” \ 27 2m Sln(Q%) P

sin(z) .

Sm(x). Puisque la suite est constante, on en déduit que f(z) = sin(z)

1
— (limite classique de n 0). Finalement, la limite du tout quand n tend vers +oo

vaut (prolongée par

x
continuité en 0 en posant f(0) = 1). On vérifie aisément que cette fonction est solution :
sin(z) cos(x)  sin(2x)
1),

(o) cos(r) = 2D o)
. Supposons donc f(0) = f(1) = 0. La fonction f est alors impaire puisque f(z) + f(—z) =
T—T

2 f<

= 2f(0) = 0. Par ailleurs, en prenant y = 2—x (pourquoi pas ?), on constate que

flaptf-a) =2f (5=
que la fonction f est 2-périodique. Or, une fonction périodique et continue est nécessairement
bornée. En effet, ici, f est stirement bornée sur [0,2] puisque I'image d’un segment par une
fonction continue est un segment, et f reprend ensuite les mémes valeurs que sur [0, 2], donc les
bornes restent valables sur R. Or, si la fonction n’était pas nulle, il existerait certainement un
x tel que f(x) > 0 (puisque f est impaire). La relation initiale implique, en prenant x = y, que

=2f(1) =0, donc f(z) = —f(2—x) = f(x—2). Ceci prouve

flx) = §f(2x), ou si on préfére que f(2z) = 2f(x). Par une récurrence facile, on prouve alors

que, pour tout entier n, f(2"z) = 2" f(x). En effet, c’est vrai au rang 0, et en le supposant au
rang n, f(2"1r) = f(2x2"x) = 2f(2"x) = 2x2" f(x) = 2" f(z). En appliquant ceci a notre

x dont I'image est strictement positive, on obtiendra lim f(2"z) = lim 2" f(z) = +oo, ce
n—+oo n—+oo

qui est trés contradictoire avec le fait que la fonction f est bornée. La fonction f est donc
nécessairement nulle.

Passons au cas général, et posons b = f(0) et a = f(1) — f(0). La fonction ¢ : = —
f(z) — ax — b vérifie les hypothéses du cas particulier précédent : g(0) = f(0) —b = 0,

(1) = F(1) = (F1) = 500 = £0) = 0. et g (52) = 7 (F52) <0 (F5E) -0

2 2
1 1 1
§(f(x) + f(y)) — i(ax + ay) — §(b +b) = i(g(x) + g(y)). La fonction g est donc nulle.
Autrement dit, f(z) = ax + b, c’est-a-dire que f est une fonction affine. Réciproquement,
toutes les fonctions affines sont solutions du probléme posé (on I'a déja vérifié sans le dire en
faisant le petit calcul pour g).

2x
. En posant = = y dans la relation donnée, f <? = f(z). On peut appliquer successivement

4 2
cette nouvelle équation pour obtenir f <§> =f <?x> = f(z) puis, pour tout entier naturel

2%y i 2)

n, f <_> = f(z) (récurrence immeédiate si on tient & étre rigoureux). Or, lim <_> T =
= n—-+4o00

2"y

0, donc par continuité de f en 0, lim f (— = f(0), ce qui prouve que f(x) = f(0).
n—-—+oo 3n
Autrement dit, f est une fonction constante. Réciproquement, toutes les fonctions constantes



sont solutions du probléme.

6. Commengons par prouver par récurrence sur n que ¥(z,n) € R x N, f(nz) = nf(z). Clest
trivialement vrai pour n = 0 (ou méme pour n = 1, et, si on suppose f(nz) = nf(x), on peut
appliquer I’équation fonctionnelle avec y = nx pour obtenir f(x + nz) = f(x) + f(nx), soit
f((n+1)z) = f(z)+nf(x) = (n+1)f(x), ce qui prouve 'hérédité. En particulier, en posant
a = f(1), on aura f(n) = na pour tout entier naturel n (et donc bien str f(0) = 0). Posons
maintenant y = —x dans 'équation : f(z—x) = f(x)+ f(—=z), donc f(z)+ f(—x) = f(0) =0,
ce qui prouve que f est impaire et donc que 1’égalité f(n) = na reste valable pour tout entier
relatif n. Supposons désormais r = g € Q (avec ¢ > 0), alors f(qx) = f(p) = pa. Or

a
on a vu que f(qr) = qf(x), ce qui prouve que f(z) = PO _ ra. Tl ne reste plus qu’a

traiter le cas ou x est irrationnel. Dans ce cas, il existe une suite (u,) de nombres rationnels

convergeant vers = (densité de Q dans R). Par continuité de f en z, on peut donc écrire

f(x) = lim f(u,) = lim wupa = za, ce qui prouve que la relation f(z) = xa est valable
n—-+00 n—-+00

pour tout réel, et donc que f est une fonction linéaire.

Exercice 5 (*)

Supposons par ’absurde que f soit une fonction continue sur R & valeurs dans Z, et que f ne
soit pas constante. Autrement dit, on peut trouver deux réels z et y tels que f(x) =n et f(y) = p,
avec n # p. Mais alors, d’aprés le théoréme des valeurs intermédiaires, tout réel compris entre n et p
admet des antécédents par la fonction f. Comme il existe certainement autre chose que des nombres
entiers entre n et p, ce n’est pas possible.

Exercice 6 (**)

1. L’hypothése k-Lipschitzienne implique que /¥ — vz < k(y — ) = k(v + /¥) (/¥ — V),

1
donc /x4 /y = T C’est évidemment complétement aberrant, il suffit de prendre x = 0 et y
1 1
suffisamment proche de 0 pour que \/y < T (par exemple y = @) La fonction racine carrée

n’est donc pas Lipschitizienne sur [0, +o00].

2. On utilise de méme le produit par la quantité conjuguée : en supposant x < y, \/y — /= =
y—r _y-z
VI+y o2

1
[1,+o0[. La fonction racine carrée est donc §—Lipschitizienne sur [1,4+ool.

puisque /z > 1 et \/y > 1 avec I'hypothése qu’on travaille désormais sur

Exercice 7 (**)

1. Posons g(z) = f(x) — x. Puisque f n’admet pas de point fixe, g ne s’annule jamais sur R. La
fonction g étant continue puisque f lest, elle est donc de signe constant (sinon le théoréme
des valeurs intermédiaires assurerait ’existence d’un réel annulant g). Supposons par exemple
g toujours strictement positive, ce qui revient a dire que f(x) > x pour tout réel. On a alors,
Ve € R, f(f(z)) > f(x) > x, donc léquation f o f(x) = x ne peut pas avoir de solution.
C’est exactement pareil si g est strictement négative, en retournant simplement le sens des
inégalités strictes.

2. Posons g(x) = f(x) — x, la fonction g est continue puisque f l'est (étant Lipschitzienne).
De plus, Vo € R, |f(z) — f(0)| < k|z|, donc, si x > 0, f(0) — kx < f(x) < f(0) + kz, ce
qui implique f(0) — (k + 1)z < g(x) < f(0) + (k — 1)x. Cet encadrement, combiné avec
le fait que £ — 1 < 0, suffit & prouver que xll)r_{loog(:c) = —oo (majoration par une fonction



de limite —o0), et que mErﬁnoog(w) = +4o00. On montre de méme que, si v < 0, on aura
f0)+ (k—1)z < g(z) < f(0) — (k + 1)z, ce qui prouve cette fois-ci que xgrzloog(x) = +o0.
La définition des limites infinies assure en particulier qu’on peut trouver un réel a tel que
g(a) =1 > 0 et un réel b tel que g(b) < —1 < 0. Le théoréme des valeurs intermédiaires
appliqué entre ces deux valeurs donne alors 'existence d’un réel ¢ tel que g(c) = 0, c’est-
a-dire d’un point fixe de f. Reste & prouver que ce point fixe est unique, en supposant par
I’absurde qu’il y en a deux. Si on les nomme z et y, I'hypothése de Lipschitzianité donne alors
|f(y) — f(z)] < kly — x|, c’esta~dire |y — x| < k|ly — x| puisque = et y sont supposés étre des
points fixes. C’est fort génant dans la mesure ot on a supposé k < 1. L’hypothése est donc
absurde, le point fixe est unique.

Exercice 8 (***)

1 1
Dans le cas n = 2, on pose g(x) = f | x + 3 — f(x). La fonction g est définie sur [0, 5} , continue
1

puisque f est supposée continue, et g(0) = f <§> — f(0) et g(1) = f(1)— f <%> = —g(0) puisque

f(1) = f(0). L'intervalle [g(0),g(1)] (dans ce sens ou dans l'autre, on ne sait pas lequel des deux
est le plus grand) contient donc certainement 0, et le théoréme des valeurs intermédiaires permet

1
d’affirmer l'existence d'un z tel que g(z) = 0, c’est-a-dire f (m + §> = f(z).

1
Le cas général se traite plus ou moins de la méme facon : on pose g(z) = flz+ — ) — f(z),
n

g est continue sur [0, n_—l] Par ailleurs, ¢g(0) = f <l> — f(0), g <l> =f <g> —f <l>, ey
n n n n n
n—1 n—1
g <n; 1> =f(1)—f (n;l) On constate que Zg <§> = kzzof (k—gl) —f <§> = f(Q1) -

k=0
f£(0) =0 aprés un beau télescopage. Si la somme de ces n réels est nulle, il en existe nécessairement
un positif (au sens large) et un négatif (au moins). On conclut comme précédemment : U'intervalle

entre ces deux valeurs contient 0, donc 0 admet un antécédent par g, ce qui suffit & conclure.

Exercice 9 (***)

1. Appliquons la relation donnée & f(x) (qui est un réel comme un autre) : f(f(f(z))) = af(x)+
b. Par ailleurs, si on applique f aux deux membres de ’égalité de départ (avec x cette fois!), on
a f(f(fx))) = f(ax +b). La comparaison des deux relations obtenues donne immédiatement
af(x)+ b= f(ax+b). On dérive alors cette relation par rapport & x pour trouver af’(z) =
af’(ax 4+ b), et on divise par a pour trouver 'égalité attendue (par hypothése, a # 0).

2. On reconnait ici une suite arithmético-géométrique, appliquons donc la méthode habituelle (de
fagon un peu plus formelle puisqu’on ne connait pas les valeurs de a et de b) : . = ax+b < x =

b
(avec les hypotheses faites, a # 1, donc 1 —a # 0). On pose v, = U, — 7 et on vérifie

1—-a —-a

que la suite (v,,) est géométrique : v, 1 = Upt1——— = auy+b— = Uy — = avy,.
1—a 1—a 1—a

La suite (vy,) est donc géométrique de raison a, elle a donc une limite nulle puisque a €]0,1][.

b
On en déduit immédiatement que lim wu, = .
n—-+oo 1—a

3. La suite (u,) construite dans la question 2 vérifiera toujours f’(up+1) = f'(un). En posant
ug = x, on aura donc toujours f'(u,) = f'(x). Or, d’aprés la question 2 et la continuité

b b
supposée de f’, ll)r_’l_l fuy) = f (1—>, ce qui prouve que, Vz € R, f'(z) = f’ ( )
n (o.¢] —Qa

1—a
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La fonction f’ est donc constante, et f est une fonction affine, son expression est de la forme
f(x) = cx+d. Reportons dans I’équation de départ pour retrouver les solutions du probléme :
f(f(x) = cf(x) +d = 2z + cd + d, ce qui impose les conditions z2 = a et d(c + 1) = b.

On a donc deux possibilités : ¢ = \Ja et d =

b b
A soit f(z) = ax + v ou bien

c=—yaetd= (on sait que a # 1, aucun probléme d’existence possible pour d),

b
1-+va
soit f(x) = —v/ax + 1_6\/5

. Ces deux fonctions sont les seules solutions du probéme.

. 1l faut essayer de se ramer au probléme précédente : si f(ax + b) = f(x), alors en posant

€ —

y = (valeur qui n’a pas été choisie au hasard, elle correspond a la réciproque de la

b
fonction affine x +— ax + b) et en lui appliquant la relation, on obtient f(y) = f <y - —),
a a

1
avec désormais — €]0, 1[. On retrouve exactement les mémes expression que si a < 1.
a

Exercice 10 (*)

Le principe est le méme a chaque fois : la fonction étudiée est continue, et les signes des valeurs
prises aux extrémités de l'intervalle sont opposés. Par le théoréme des valeurs intermédiaires, la
fonction s’annule sur 'intervalle.

1.

. Posons f(z) = Inz —

Posons f(r) = 220% — 2202 11 f(-1)=—-1-1+1=—1,et f(1)=1—-1+1=1, donc f
s’annule sur I. Par dichotomie, on obtient successivement, en notant a la solution cherchée,
f(0) = =1 donc a € [0, 1], puis f(0.5) ~ 1 donc a € [0.5,1] etc. Il n’est pas trés difficile de se
convaincre que la valeur de a est extrément proche de —1 : 22025 — 2024 — 22024(3, _ 1) avec
r —1 € [-2,-1], donc 22924 doit étre compris entre 0.5 et 1 pour que I'équation puisse étre
vérifiée, ce qui implique In0.5 < 2024 In(x) < 1, donc e 3051 <2 <1, s0it z =1 4 0.001 prés.
On a donc x ~ 1 & 0.001 pres.

22 -5 —4 4 95
T2 1) =0—— == 10) = In10 — 22
+27f() 0 3 3 e f(10) n10 D < 0 (car par

95
exemple e* > 2% > 16, donc 4 > In 10, et B > 4 > In10), donc f s’annule sur I. Plutot

que de couper exactement en 2, faisons une dichotomie avec des valeurs pas trop affreuses :
f(5) ~ —1.24, donc a € [1,5], puis f(3) ~ 0.30, donc a € [3,5], f(4) ~ —0.44 donc a € [3,4],
f(3.5) ~ —0.6 donc a € [3,3.5], f(3.25) ~ 0.12 donc a € [3.25,3.5], f(3.375) ~ 0.03 donc
a € [3.375,3.5], f(3.44) ~ —0.02 donc a € [3.375,3.44], f(3.41) ~ 0.001, donc a € [3.41, 3.44],
et enfin f(3.425) ~ —0.001 donc a € [3.41, 3.425]. On a donc a ~ 3.42 & 0.01 prés.

. Posons f(z) =3z—1-In(2+2?), f(0)=0—-1-In2<0et f(1)=3—-1-In3=2-1n3 >0,

car e > 3, donc In 3 < 2. La fonction s’annule donc sur 1. Toujours le méme principe, je vais
aller un peu plus vite : on calcule f(0.5) ~ —0.31, puis f(0.75) ~ 0.31, f(0.625) ~ 0.003,
£(0.56) ~ —0.16, f(0.59) ~ —0.08 et f(0.61) ~ —0.03, dont on déduit que a ~ 0.62 & 0.01
prés. Constatons que quand on tombe au milieu des calculs sur une valeur trés proche de 0,
on a de bonnes chances d’étre trés prés de la solution cherchée...

. Posons f(z) =e*—2—z, f(In2) =2—-2-In2 <0, et f(2In2) =4-2-2In2 =2(1-1n2) > 0,

donc f s’annule sur I. Ici, les bornes de 'intervalles sont moyennement pratiques, mais elles
valent environ 0.7 et 1.4, ce qui permet de couper en 1 puis de prendre des valeurs plus rondes
ensuite : f(1) ~ —0.28, f(1.2) ~ 0.12, f(1.1) ~ —0.10, f(1.15) ~ 0.008, f(1.125) ~ —0.04,
f(1.14) ~ —0.01, donc a ~ 1.14 4 0.01 preés.

. Posons f(z) = 2% =322 +1, f(-1) = -1-3+1=-3et f(1)=1-3+1=—1. Cane

marche pas? Si, car f(0) =1, donc f s’annule en fait au moins deux fois sur I : une fois sur
[—1,0] et une autre sur [0,1]. Pour la dichotomie, contentons-nous de déterminer une valeur
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approchée de la solutions se trouvant dans [0, 1] (on peut naturellement trouver également une
approximation de la deuxiéme racine dont on connait 'existence) : f(0.5) = .375, f(0.75) ~
—0.27, £(0.625) ~ 0.07, £(0.69) ~ —0.10, £(0.66) ~ —0.02, £(0.64) ~ 0.03, donc a ~ 0.65 &
0.01 prés (pour les curieux, la racine appartenant a [—1,0] vaut environ —0.53).

Exercice 11 (**%*)

1. La fonction f,, étant somme de deux fonctions strictement croissantes (et d’'une constante) sur
[0, 4+00], elle I'est également. Comme de plus elle est continue, f(0) = —4, et lirf fu(z) =
T—r1+00

400, le théoréme de la bijection nous permet d’affirmer I’existence d’un unique réel positif u,,
tel que fp,(u,) = 0.

1 1
2. ug est solution positive de I'équation 1 + 922 — 4 = 0, soit z? = 3’ donc ug = % Pour

n = 1, Péquation devient 922 + 2 — 4 = 0, qui a pour discriminant A = 1 4 144 = 145,
et admet deux racines dont une strictement positive (d’aprés la question précédente) qui ne

-1+ 145

peut étre que u; = 13 ~ (0.61. De méme, us est solution positive de 1’équation

2
1022 = 4, d’oit uy = 5 ~ 0.63. Pour vérifier que u, < 3 il suffit de constater que

2 2\" 4 2m
fn <§> = <§> +9 x g 4= 3n > 0, et d’appliquer la croissance stricte de la fonction f,

3

3. On a foy1(w) — folx) = 2™ + 922 —4 — 2™ — 922 + 4 = 2"(x — 1). Cette expression étant
négative si z < 1, on en déduit que Yz €]0;1[, fnii(z) < fu(x).

2
a Uinégalité 0 = f,,(up) < fn <—>

2
4. On a notamment, puisque 0 < wu, < =, faot1(un) < fu(u,) = 0. Comme par ailleurs

fr+1(uns1) = 0, on a donc fri1(un) < frnt1(unst1), ce dont on déduit via stricte croissance
de fnt1 que uy, < up4q. Autrement dit, la suite (u,,) est strictement croissante.

2
5. La suite étant croissante et majorée par 3’ elle converge.

2 2\"
6. Comme 0 < u, < -, 0 <yl < <—> , donc via le théoréme des gendarmes (et le fait que le

3 3
membre de droite est une suite géométrique de raison inférieure a 1, liI_’I_l ur = 0. Or, on a
n—-+00
par définition u” + 9u2 — 4 = 0 (puisque f,,(u,) = 0). On en déduit que lirf 92 —4 =0,
n—-+00

I 4 . 2
soit lim u? = —. Comme u, >0, on a donc lim u, = —.
n—+o0 9 n—+00 3

Exercice 12 (**)

1. La fonction est somme de deux fonctions strictement croissantes, donc est strictement crois-

sante sur R. De plus, lim f(z) = +oo, et lim f(z) = —oo, donc par théoréme de la
T—>+00 T—>—00

bijection, f est bijective de R dans R.

2. C’est une conséquence immédiate de la bijectivité de f.

3. Par définition, f(z,) < f(xn+1), donc par stricte croissance de f, x, < xp41, et la suite (x;,)
est strictement croissante.

4. Cest un calcul d’images : f(Inn) = e™” +Inn=n+Inn >nsin > 1, doncon a f(x,) <
f(lnn), d’ott 2, < Inn. De méme, f(In(n—Inn)) = ™72 Ln(n—Inn) = n—Inn+In(n—

Inn) =n—In < m puisque < 1. On en déduit de méme que In(n—Inn) < x,.

n—Inn n—Inn

11



5. Comme lim n —Inn = 400 (croissance comparée), on a lim In(n —Inn) = +oo, d'on
n—+o0o n—+oo
In(n —Inn)

In(p—lnn) 2, ., Wr-lon)

par comparaison lim xz, = +oo. De plus,

| n—-+o0 1 Inn S lnn Inn
Inn+In(1 — 22 In(1 — 22 x
( ) =1+ g La quotient a pour limite 0, donc la suite (——) est
Inn ] Inn, ) nn
encadrée par deux suites de limite 1. Via le théoréme des gendarmes, on en déduit que
. L,
1 =1
n—1>I—Iklooln(n)

Exercice 13 (**)

1. Calculons donc la dérivée f/(z) = 5x* + n. Cette dérivée est toujours strictement positive
(sauf en 0 pour n = 0), la fonction est donc strictement croissante, quel que soit U'entier n.

2. Comme de plus lim f(z) = —ccet lim f(x) = 400, chaque fonction f,, est bijective de R
T—>—00 T—>+00

dans R. Chaque réel a donc un unique antécédent par f,, et en particulier I'équation f,(xz) =0
admet une unique solution.

1 1 1

3. Constatons que f, <—> = —<+1-1= — > 0. Comme la fonction f, est strictement
n n n

croissante, et f,(u,) = 0, on en déduit que u,, < —. Notons par ailleurs que f,(0) = —1, donc

par un raisonnement similaire on a toujours 0 < u,,. Le théoréme des gendarmes permet donc

d’affirmer que lim wu, = 0.
n——+0o

Démonstration subsidiaire : monotonie de la suite (uy). Pour déterminer la monotonie
de la suite (u,), il faut réussir & comparer u, et u,,1. Pour cela, dans le méme esprit que
les calculs précédents, on va chercher a calculer f,(u,) et f,(up+1). Le morceau facile, c’est
fn(un) = 0 (par définition). Plus compliqué, fy,(unt1) = u?LJrl + nupy1 — 1. Or, on sait que,
par définition, fni1(unt1) = 0, clest-a-dire que ud,; + (n + 1)upy1 — 1 = 0, ou encore en
développant u?LJrl + nu, + Upr1 — 1 = 0, soit u?LJrl + nupt1 — 1 = —upy1. Autrement dit,
en reprenant le calcul précédent, f,(upt+1) = —up+1 < 0 (puisqu’on a prouvé plus haut que
tous les termes de la suite étaient positifs). En particulier, f,(un4+1) < fn(uy). La fonction f,
étant strictement croissante, on en déduit que u,11 < uy,, donc la suite (u,) est décroissante.

4. On sait que u) +nu, —1 = 0, et lim u? = 0 (puisque le suite (u,) tend vers 0), donc

n—-+o0o n

lim nu, = 1.
n—-+o0o

Exercice 14 (**%*)

1. Sur R**, les fonctions f,, sont strictement croissantes comme sommes de fonctions croissantes.
De plus, f,(0) =1 et hrf fn(x) = 4+00. La fonction f, effectue donc une bijection de RT*
T—r+00

sur [1; 400, et en particulier 2 admet un unique antécédent par f,, que 'on peut donc noter
Up,-

2. On a déja vu que f,(0) = 1, donc u,, > 0, et f(1) =n+1> fy(uy,) si n > 2. Par croissance
de la fonction f,, on a donc bien u, < 1.

3. On peut utiliser la méthode classique : f,11(x) = fu(x) + 2" donc fri1(un) = fu(un) +
u =2 4wt Comme u, > 0, u™ >0, et fr11(un) > 2 = fri1(uns1). Par croissance
de la fonction f,11, on déduit que u, > un,y1, et la suite est donc décroissante. Comme elle
est minorée par 0, elle converge.

4. Nos connaissances sur les suites géométriques nous permettent d’affirmer que, Va # 1, f,(z) =

1— xn—f—l _ . n+l

. En particulier, 1

1 1 = 2. Or, comme la suite (u,) est décroissante, on aura
—x — Up,
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Vn > 2, u, <ug < 1, donc 0 < ult! < ul T avec lirf u™*1 = 0. Une petite application du
n——+0oo

théoréme des gendarmes permet donc d’affirmer que lir_’I_l u?*! = 0. En passant a la limite
n—-+00
la relation obtenue ci-dessus, et en notant [ la limite inconnue de la suite (u, ), on trouve alors
1 1
—— =2,s0it 1 =l ==-¢et [ ==. On aprouvé que lim wu, = —.
1-1 2 2 P e SRt T g
5. Je vois venir d’ici ceux qui se sont lancés dans une récurrence inutile pour cette question.
_ . n+1
Reprenons donc les calculs des questions précédentes : 17” =2, donc 1—ut =2—2u,,

+1
1 . ) 1 "
ou encore uﬁ“ = 2u,, — 1. Comme v,, + 5= Uy, cela revient a dire que 3 + v = 2u,,.

Exercice 15 (**)

1. Inutile de calculer la moindre dérivée, on sait que I’exponentielle est croissante que la fonction

1
x — — est décroissante, donc g, est croissante sur ]0,+o00[. De plus, lir%gn(x) = —o00, et
nx T—
lirf gn(z) = +00 (aucune forme indéterminée), et la fonction g, est bien str continue, elle
T—r+00

est donc bijective de ]0, +o00[ sur R et en particulier s’annule une seule fois sur cet intervalle.
1

2. L’inégalité u, > 0 est évidente. De plus, g, <—> —en —1> 0, puisque en >e =1 La
n

fonction g, étant strictement croissante, on en déduit que u,, < —. Une application immédiate
n

du théoréme des gendarmes donne alors lim u,, = 0.
1 1 -—n+n+1 1

T T

3. On calcule d _ RN S 1 _
n caleule done gni1(w) = ga(w) = € (n+1)x ‘ +nx n(n+ 1)z n(n+ 1)z

0. Cette expression est manifestement positive sur notre intervalle, ce qui implique que
In+1(Un+1) — gn(tpg1) > 0. Comme gp41(upt1) = 0 par définition de la suite, on a donc
gn(tuny1) < 0, et en particulier g, (up+1) < gn(uy,). La fonction g, étant toujours croissante,
on en déduit que u, 1 < Uy, et la suite (uy,) est donc décroissante.

>

1 1
4. Par définition, g,(u,) = 0, donc e¥» — — = 0. Autrement dit, nu,, = ——— . Comme
Ny, ein = g7 Un

on sait que la suite (uy,) tend vers 0, on en déduit immédiatement que lim nu,, = 1.

Exercice 16 (***)

1. Par définition, u; est solution positive de I'équation 22 — 2z — 1 = 0, qui a pour discriminant

_2\/§ =1—+/2 < 0 (on oublie donc) et

=1+ /2. Puisque u; > 0, on a donc u; = 1+ /2.

A =4+4 =28, et admet donc pour solutions x; =

2+4/8

2

2. La fonction f, étant polynomiale, elle est dérivable sur R, de dérivée f!(z) = n(n + 1)a" —
(n + Dna™ ! = n(n + 1)z" Yz — 1). Comme f,(0) =0, fo(1) =n—(n+1) = —1, et

lirf fn(z) = 400, on peut dresser le tableau de variations suivant :
T—r+00

Z2

x |0 1 +o00

+00
fu |0 /
\_1

La fonction f,, ne prend que des valeurs négatives sur I'intervalle [0, 1], ’équation f,(x) =1
ne peut pas y avoir de solution. Sur [1,+o00], f, est croissante et continue, donc bijective
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vers son intervalle image [—1,+oo[. Comme 1 appartient a cet intervalle image, I’équation
fn(xz) =1 admet donc une unique solution sur [1, +oo[, et par conséquent sur [0, +ool.

1
3. Pour montrer un tel encadrement, on calcule les images des encadrants par f, : fn <1 + —) =
n

n+1 n n n
n(n—{—l) _(n+1)<n+1> U R fn<1+%> _

n n nm" nm"

n (”:2>n+1—(n+1) <n:2>" = (n+2) (”Zz>n—(n+1) (”ZQY _ <1+%>n > 1.

1 2
Comme f, <1 + —) <1< fy <1 + —>, la croissance de f,, sur l'intervalle [1, +o0o[ (intervalle
n n

2
auquel appartiennent 1+ —, u, et 1 + —) assure que 1 + — < u,, < 1 + —. Le théoréme des
n n n
gendarmes permet alors de dire que lim wu, = 1.
n—-+0o

. B . .1,
4. On commence par écrire v, = ¢"™1+%) pour se rendre compte quil y a une forme indéter-
o o . B
minée si jamais ¢a ne nous frappe pas sous la forme initiale. On peut ensuite poser x = —.
n
: . In(l+x - L :
Comme lim p =0et hm(i) = 1 (limite classique issue d’un taux d’accroissement),
n—+oon z—0 X
- nln(l+5) . . .
on a 11141_1 ——— 2~ = 1. Ce qui se trouve dans notre exponentielle a donc pour limite 3,
n——+00
et lim v, = éP.
n—+o0o

5 5 n+1 ,8 n ﬂ n
5. On écrit fo(1+—) =n(14+— —(n+1)(14= =m+p)(1+=) —(n+
n n n n
n
1+ é) = (8 — 1)v,. D’aprés la question précédente, notre suite converge donc vers
n

(B —1)éP.
6. Posons donc g(z) = (x — 1)e”, la fonction g est dérivable sur R, de dérivée ¢'(z) = e* + (z —
1)e® = xe®. Cette dérivée est du signe de x, on calule donc g(0) = —e® = —1; lim g(x) =0
T—r—00

(croissance comparée classique), et liril g(x) = 400, pour dresser le tableau suivant :
T—r+00

T |—00 0 +o00

g9 0\_1/

On conclut comme & la question 2 : la fonction g ne peut pas prendre la valeur 1 sur | — oo, 0],
puis elle est bijective de [0, +oo[ vers [—1, +o00[, donc I'équation g(z) = 1 admet une unique
solution. Comme de plus g(1) =0 < 1 et g(2) = €? > 1, la croissance de g sur [0, +o0o[ assure
que 1 < a < 2.

o — &

7. (a) Il suffit de recopier le résultat de la question 4 : lim f, <1 +
n——+oo

> = (a—e—1)e

et lim f, <1+ a—!—e) = (a+¢e—1)e*t=.
n

n—-+o0o
(b) Par hypothése, 1 < a—e < a < a+e¢, donc g(a—¢) < g(a) < gla+¢) (par croissance de
la fonction g étudiée plus haut sur [1,+oo[). On en déduit que les deux limites calculées
a la question précédente sont respectivement strictement inférieure & 1 et strictement
supérieure & 1. Mais, en appliquant la définition de la limite, une suite qui a une limite
strictement inférieure & 1 prend nécessairement des valeurs inférieures ou égales & 1 & partir
d’un certain rang (on note cette limite 1 — 7, avec n > 0, et on applique la définition de la
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limite & ce ). A partir d’un certain rang, on aura donc nécessairement f;, (1 + ) <
n

a—c¢
1 = fu(uy), ce qui implique 1 + —— < w,, par croissance de f, sur [1,4o00], intervalle
n
auquel appartiennent bien nos deux valeurs. On montre la deuxiéme inégalité de la méme
fagon, et on en déduit un entier ngy (le maximum des deux entiers obtenus pour chaque

inégalité) a partir duquel ’encadrement souhaité sera vérifié.

a—+¢€ oa—¢€ a—+¢€
& Sup,—1<

n n n
n(u, — 1) < a+ e. D’aprés la question précédente, on peut alors dire que, Ve €]0,a — 1],
Ing € N, Vn = ng, a« —e < n(u, — 1) < a+e. Cest exactement la définition de la limite,
qui permet de conclure que lim n(u, — 1) = a.

n—-+o00

a—¢
(c) On constate déja que 1 + —— < u,, < 1+ Sa—e<
n

Exercice 17 (**%*)

1. C’est complétement évident, on fixe une valeur de x et on applique la définition de la conver-
gence uniforme pour constater qu’on retombe sur la définition de linILl fn(x) = f(x). En fait,
n—-+0oo

tout ce qu’on rajoute dans la convergence uniforme, c¢’est qu’une fois la valeur de ¢ fixée, le ng
de la définition doit étre le méme pour toutes les valeurs de x, ce qui n’a aucune raison de se
produire en général! Un contre-exemple simple & la réciproque : on se place sur I =|0, 1] et on

1
pose fp(z) =1six < —, f(z) = 0 sinon. La suite (f,,) converge simplement vers la fonction
n

1
nulle puisque, a x fixé, on trouvera toujours un ng a partir duquel z > —, et a partir de
n

cette valeur, on aura tout simplement f,(x) = 0. Pourtant, la convergence n’est pas uniforme
puisque l'écart maximal entre la limite 0 et la fonction f,, vaut toujours 1 (atteint sur tout

1
I'intervalle } 0,— [), ce qui contredit par exemple & la définition de convergence uniforme pour
n

1
€= —.
2

2. C’est un classique « trongonnage d’e » : fixons a € I et commengons par appliquer la définition
€
de la convergence uniforme : Ing € N, Vx € I, |fn,(z) — f(2)| < 3 La fonction f,, étant par

ailleurs continue en a, In > 0, x €la — n,a + N[= | fn, () — fro(a)] < ° . Mais alors, pour ces
mémes valeurs de x, on peut écrire |f(z) — f(a)| = [(f(x) — fn,(z)) + (];no (xg) - 5"0(“)) +
(Fao@) = £(@)] < Fao(x) = F@)]+ [ Fao(x) ~ Faola)| + |fuola) — F(@) < 5+ 5 + - = par

simple application de I'inégalité triangulaire. On a bien prouvé que f était continue en a.

Pour un contre-exemple, pas besoin de chercher compliqué : posons f,,(z) = 2™ et plagons-
nous sur Uintervalle [0,1]. Si z = 1 on aura toujours f,(x) = 1 donc hr—Ikl fn(1) = 1. Mais
n—-+00

si0 <z <1, liI_’I_I 2" = 0. La suite de fonctions (f,) converge donc vers la fonction
n—-+o0o

discontinue f définie par f(xz) = 0si z < 1, et f(1) = 1. Pourtant, toutes les fonctions f,
sont indiscutablement continues sur [0, 1].
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