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Une fois qu’on a passé les bornes, il n’y a plus de limite.

Alphonse Allais.

Un prof de maths explique à un PCSI comment montrer que lim
x→8

1

x− 8
= ∞.

Le PCSI assure avoir parfaitement compris.

Pour vérifier, le prof lui demande ce que vaut lim
x→5

1

x− 5
.

Et le PCSI répond, très fier de lui : lim
x→5

1

x− 5
= 5.

Pour les derniers chapitres d’analyse du premier semestre, nous allons revenir en détail sur les
outils élémentaires d’études de fonctions, en définissant rigoureusement les notions et en effectuant
le plus possible de démonstrations. Pour les limites, ce sera très simple si vous avez bien assimilé le
chapitre correspondant sur les suites. Quant à la continuité, ce n’est finalement qu’une question de
limites (notion locale) qu’on étend sur un intervalle (notion globale). Elle mène toutefois à quelques
théorèmes d’analyse fondamentaux que nous aborderons en fin de chapitre, dont le fameux théorème
des valeurs intermédiaires que vous connaissez déjà bien mais que vous appliquez en général fort mal,
à ne pas confondre avec son cousin le théorème de la bijection. Nous reviendrons également sur un
type de suites bien particulier (les suites implicites) dont la définition et l’étude font intervenir des
fonctions.

Objectifs du chapitre :

• savoir calculer des limites efficacement.
• comprendre la différence entre théorème des valeurs intermédiaires et théorème de la bijection,

et reconnaitre les situations permettant d’utiliser chacun d’eux.
• connaitre les méthodes classiques d’étude de suites implicites.

1 Limites de fonctions.

1.1 Limites en ±∞.

Définition 1. Une fonction f définie sur un voisinage de +∞ admet pour limite l ∈ R en +∞ si
∀ε > 0, ∃x0 ∈ R, ∀x > x0, |f(x)− l| < ε.

On définit de même une limite finie quand x tend vers −∞ en remplaçant simplement la condition
∀x > x0 par ∀x 6 x0.
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On le note respectivement lim
x→+∞

f(x) = l et lim
x→−∞

f(x) = l.

Remarque 1. Cette définition étant strictement identique à celle qu’on a vue dans le cadre des suites,
nous allons rapidement passer à la suivante. Notons qu’elle est même plus facile à manier que dans
le cas des suites puisqu’on n’a pas besoin de s’embêter à prendre des parties entières pour la valeur
de x0 si on veut l’appliquer à un calcul pratique de limite.

Définition 2. Une fonction f définie définie au voisinage de +∞ admet pour limite +∞ (respecti-
vement −∞) en +∞ si ∀M ∈ R, ∃x0 ∈ R, ∀x > x0, f(x) > M (resp. f(x) 6 M).

On le note lim
x→+∞

f(x) = +∞ (resp. −∞), et on définit bien sûr de façon similaire des limites infinies

en −∞.

Là encore, les définitions sont rigoureusement les mêmes que pour les suites, et se manipulent exac-
tement de la même façon.

1.2 Limites en a ∈ R.

Définition 3. Une fonction f définie sur un voisinage de a admet pour limite l ∈ R quand x tend
vers a si ∀ε > 0, ∃η > 0, |x− a| 6 η ⇒ |f(x)− l| 6 ε. On note alors lim

x→a
f(x) = l ou f(x) →

x→a
l.

Remarque 2. Cette définition est au fond assez naturelle : on est aussi proche que souhaité de l quitte
à se mettre suffisamment près de a au départ. Si f est définie en a et y admet une limite, elle est
nécessairement égale à f(a).

Sur cette illustration, on a lim
x→2

f(x) = −1, avec un ε égal à 0.2 et le η qui en découle qui vaut environ

0.23. Le principe est, qu’une fois choisie la largeur du « tube » autour de la limite, on arrive à délimiter
un intervalle (symétrique) autour de x (ici autour de 2) dans lequel la courbe représentative de la
fonction va être « enfermée » dans le rectangle délimité par les deux intervalles. Bien sûr, cela doit
rester vrai quelle que soit la valeur choisie pour ε, le réel η dépendant nécessairement de ε.

0 1 2 3

0

−1

−2

epsilon

eta

Exemple : Montrons à l’aide de cette définition que lim
x→1

x2 = 1. Fixons donc (comme on le faisait

pour les suites) un ε > 0, on souhaite vérifier la condition |x2−1| < ε, soit |x−1|×|x+1| < ε. Quitte

à imposer η 6
1

2
(on chercher simplement une valeur convenable de toute façon),

1

2
6 |x + 1| 6

3

2
,

donc il faut avoir |x+ 1| 6
2ε

3
. La constante η = min

(

2ε

3
,
1

2

)

convient donc.

Définition 4. Une fonction f définie sur un voisinage du réel a admet pour limite +∞ (resp. −∞)
quand x tend vers a si ∀M ∈ R, ∃η > 0, 0 < |x − a| 6 η ⇒ f(x) > M (resp. f(x) 6 M). On note
alors lim

x→a
f(x) = ±∞.
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Remarque 3. La notion de voisinage, même si elle peut paraître extrêmement rudimentaire, permet
d’unifier toutes les différentes définitions de la limite qu’on a données depuis le début du chapitre. Que
a et l soient finis ou infinis, on pourra toujours traduire la limite lim

x→a
f(x) = l de la façon suivante :

pour tout voisinage V de l, f−1(V ) est un voisinage de a (je vous laisse vérifier). Elle permet aussi
de donner des démonstrations simples et élégantes de la plupart des propriétés élémentaires sur les
limites. On évitera toutefois un recours trop systématique à cette notion qui est à la frontière du
programme.

Proposition 1. La limite d’une fonction f (que ce soit en a ou en ±∞), lorsqu’elle existe,
est unique.

Démonstration. C’est exactement la même preuve que dans le cas des suites.

Proposition 2. Une fonction admettant une limite finie en a est bornée au voisinage de
a.

Démonstration. Comme dans le cas des suites, il suffit de prendre par exemple ε = 1 dans la définition
pour trouver un intervalle sur lequel f est bornée.

Définition 5. La fonction f admet pour limite l (cette limite pouvant très bien être infinie) à

gauche quand x tend vers a si on remplace dans la définition de la limite la condition |x − a| 6 η

par la condition x ∈ [a− η, a[. On définit de même une notion de limite à droite en remplaçant la
condition par x ∈]a, a+ η]. On le note respectivement lim

x→a−
f(x) = l et lim

x→a+
f(x) = l.

Remarque 4. Clairement, f admet pour limite l en a si et seulement si lim
x→a−

f(x) = lim
x→a+

f(x) = l.

Exemple : La fonction partie entière admet en chaque entier naturel des limites à gauche et à droite
qui sont distinctes. Ainsi, lim

x→2+
Ent(x) = 2, mais lim

x→2−
Ent(x) = 1.

Théorème 1. Toutes les propriétés vues dans le chapitre sur les suites concernant les
opérations et les limites, ainsi que les inégalités et les limites, restent valables sur les
fonctions, que ce soit en ±∞ ou en a ∈ R.

Démonstration. Encore une fois, les preuves seraient les mêmes que dans le cadre des suites numé-
riques, du moins quand les limites sont calculées en +∞. On ne s’embêtera pas à démontrer les
autres cas, qui sont tout aussi fastidieux, mais pas vraiment plus compliqués.

Remarque 5. On ne redémontrera pas non plus à l’aide de nos belles définitions les limites classiques
de fonctions usuelles, et encore moins celles plus techniques du type « croissances comparées » vues
en début d’année. On pourra bien évidemment continuer à les utiliser dans les exercices.
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Proposition 3. Soient f et g deux fonctions telles que lim
x→a

f(x) = b et lim
x→b

g(x) = l, alors

lim
x→a

g ◦f(x) = l (a, b et l étant ici des éléments de R, aucune raison de distinguer les limites

infinies).

Démonstration. C’est la seule démonstration que je ferai à l’aide de voisinages pour ne pas avoir à
distinguer plein de cas. Soit donc V un voisinage de l. Puisque lim

x→b
g(x) = l, g−1(V ) est un voisinage

de b, qu’on va noter W . De même, f−1(W ) est un voisinage de a. On en déduit donc que f−1(g−1(V ))
est un voisinage de a. Or, f−1(g−1(V )) = (g ◦ f)−1(V ) (revenez à la définition de ce qu’est l’image
réciproque d’un ensemble par une fonction si vous n’êtes pas convaincus), ce qui prouve la limite
voulue.

Théorème 2. Caractérisation séquentielle de la limite.

Une fonction f admet pour limite l quand x tend vers a si et seulement si, toute suite (un)
convergeant vers a vérifie que lim

n→+∞

f(un) = l.

Remarque 6. Ce théorème est en fait souvent utilisé « dans l’autre sens », c’est-à-dire en exploitant
sa contraposée : si on arrive à trouver une suite (un) convergeant vers a mais pour laquelle (f(un))
n’admet pas pour limite l, alors on peut affirmer que f n’a pas pour limite l quand x tend vers a.
Cette constatation est souvent utilisée sous l’une des formes suivantes pour prouver qu’une fonction
donnée n’a pas de limite quand x tend vers a :

• s’il existe une suite (un) vérifiant lim
n→+∞

un = a, mais telle que (f(un)) n’a pas de limite (ou

une limite infinie), alors f ne peut pas avoir de limite (ou pas de limite finie) quand x tend
vers a.

• s’il existe deux suites (un) et (vn) convergeant toutes les deux vers a, mais telles que f(un)
et (f(vn)) admettent des limites différentes, alors f ne peut pas avoir de limite quand x tend
vers a (par unicité de la limite).

Démonstration. Le sens réciproque est évident, c’est la composition d’une limite de suite par une
fonction. Pour l’autre sens, on va en fait démontrer la réciproque : supposons que f n’admet pas

pour limite l lorsque x tend vers a. Pour simplifier, on prendra des valeurs finies pour a et l même
si la caractérisation reste vraie avec des limites infinies. Si on prend la négation de la définition de
la limite, ∃ε > 0, ∀η > 0, ∃x ∈ [a− η, a+ η], |f(x)− l| > ε. Fixons donc un tel ε, et prenons comme

valeurs de η les nombres ηn =
1

n
. Pour chacune de ces valeurs de ηn, on peut donc trouver un réel un

dans l’intervalle

[

a−
1

n
, a+

1

n

]

, pour lequel |f(x)− l| > ε. Par construction, la suite (un) converge

vers a (puisque a−
1

n
< un < a+

1

n
, c’est une application du théorème des gendarmes), et pourtant

f(un) ne peut pas converger vers l puisque cette suite est toujours à une distance de l plus grande
que ε. Ceci démontre la contraposée du sens direct du théorème, et donc le théorème lui-même.

Exemple : Soit f la fonction définie sur R
∗ par f(x) = cos

(

1

x

)

, on aimerait savoir si f admet

une limite quand x tend vers 0. La logique voudrait que ce ne soit pas le cas (on est dans la même
situation que pour la fonction x 7→ cos(x) quand x tend vers ±∞, et on sait bien qu’il n’y a de limite
à ces endroits), pour le prouver, on va choisir des suites tendant vers 0 pour lesquelles il est facile
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de voir que (f(un)) n’aura pas toujours le même comportement. Posons d’abord un =
1

2nπ
, la suite

(un) converge évidemment vers 0 et f(un) = cos(2nπ) = 1, donc la suite (f(un)) est constante et

converge vers 1. Mais si on pose ensuite vn =
1

(2n + 1)π
, la suite (vn) tend également vers 0, et cette

fois-ci f(vn) = −1. La fonction f ne peut donc pas avoir de limite en 0. On peut en fait prouver,
avec un tout petit peu plus de motivation, que, quel que soit le réel l ∈ [−1, 1], on peut construire
une suite (un) qui converge vers 0 et telle que lim

n→+∞

f(un) = l. Cela revient à dire que la fonction f

« se rapproche de tous les réels de l’intervalle [−1, 1] à la fois ».

Théorème 3. Théorème de la limite monotone.
Toute fonction monotone définie sur un intervalle I admet en tout point de I une limite à
gauche et une limite à droite.

Remarque 7. Ces limites peuvent très bien être infinies. Si I = [a, b] est un intervalle fermé, le
théorème n’assure bien entendu que la présence d’une limite à droite en a, et d’une limite à gauche
en b.

Démonstration. Même démonstration que pour les suites.

2 Continuité.

2.1 Définitions.

Définition 6. Soit f une fonction définie sur un intervalle I et a ∈ I, f est continue en a si
lim
x→a

f(x) = f(a).

La fonction f est continue à gauche en a si lim
x→a−

f(x) = f(a), et continue à droite en a si

lim
x→a+

f(x) = f(a).

Exemple : La fonction partie entière (notre exemple préféré quand il s’agit de continuité) est
continue à droite en tout réel, mais elle n’est pas continue à gauche en a (et donc pas continue du
tout) lorsque a ∈ Z.

Définition 7. Une fonction f est continue sur un intervalle I si elle est continue en tout point
de I.

Théorème 4. Toute fonction obtenue à l’aide d’opérations usuelles (somme, produit,
quotient, composée) effectuées sur des fonctions continues est elle-même continue. Par
ailleurs, toutes les fonctions usuelles (sauf la partie entière) sont continues sur tous les
intervalles où elles sont définies.

Remarque 8. Ces résultats (au moins la première partie du théorème) découlent de façon triviale
des résultats équivalents pour les limites, on ne refrea aucune démonstration. Lorsqu’on utilisera ce
type de résultats pour justifier la continuité d’une fonction dans un exercice, on les désignera sous le
terme générique très flou de « théorèmes généraux » sur la continuité (ce qui revient en gros à dire
« ça ne pose aucun problème, inutile de détailler »).
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Proposition 4. Soit f une fonction définie sur un intervalle de la forme I =]a, b]
(ou I = [b, a[) et admettant une limite finie l quand x tend vers a, alors on
peut prolonger f de manière unique en une fonction g continue sur [a, b] en posant
{

g(x) = f(x) si x 6= a

f(a) = l
. La fonction g est alors appelée prolongement par

continuité de f en a.

Remarque 9. Les mathématiciens les plus paresseux ont souvent tendance à noter de la même façon
la fonction et son prolongement, en se contentant de donner une explication du type « on prolonge
f par continuité en a en posant f(a) = l » mais c’est bien sûr un gros abus de notation, la fonction
g n’a pas le même domaine de définition que f .

Exemple : La fonction f : x 7→ x lnx est définie sur R
+∗ et prolongeable par continuité à R

+ en
posant g(0) = 0 (et bien sûr g(x) = x ln(x) si x > 0), puisque lim

x→0
x ln(x) = 0 (croissance comparée).

Définition 8. Soit f une fonction définie sur un intervalle I et K un réel strictement positif, f est
K-Lipschitzienne sur I si ∀(x, y) ∈ I2, |f(y)− f(x)| 6 K|y − x|.

Remarque 10. Cela signifie simplement que la fonction f multiplie les distances au maximum par
K. Le nom étrange donné à ces fonctions est simplement celui du mathématicien allemand Rudolf
Lipschitz.

Proposition 5. Toute fonction K-Lipschitzienne sur un intervalle I y est continue.

Démonstration. C’est évident : on a 0 6 |f(y)−f(x)| 6 K|y−x|, avec lim
y→x

K|y−x| = 0, donc, d’après

le théorème des gendarmes, lim
y→x

|f(y) − f(x)| = 0, ce qui revient bien à dire que lim
y→x

f(y) = f(x),

c’est-à-dire que f est continue en x.

2.2 Propriétés globales.

Cette dernière partie sera simplement consacrée à un alignement de gros théorèmes fondamentaux
pour la compréhension de la notion de continuité, à commencer par le plus célèbre d’entre eux :

Théorème 5. Théorème des valeurs intermédiaires.

Soit f une fonction continue sur le segment [a, b] et c un réel compris entre f(a) et f(b),
alors il existe un réel x ∈ [a, b] tel que f(x) = c.
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0

1
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4
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f(a)

f(b)

c

x

Remarque 11. Quoi que veuillent bien en dire des générations d’élèves, le théorème des valeurs
intermédiaires ne garantit pas le moins du monde l’unicité du réel x, c’est un simple théorème
d’existence. Si on doit prouver qu’une équation du type f(x) = c admet une solution unique sur un
intervalle, ce n’est donc pas lui qu’il faut invoquer, mais son cousin le théorème de la bijection (que
nous allons revoir plus bas).

Démonstration. Supposons par exemple f(a) < c < f(b) (la démonstration est identique aux signes
près si les inégalités sont en sens contraire) et posons A = {x ∈ [a, b] | f(x) 6 c}. L’ensemble A est non
vide puisqu’il contient a et borné par définition, donc il admet une borne supérieure qu’on notera x0.
Notons alors y = f(x). Par caractérisation de la borne supérieure, on peut construire une suite (xn)
d’éléments de A convergeant vers x0. Par continuité de la fonction f , on aura alors lim

n→+∞

f(xn) = y.

Or, f(xn) 6 c par construction, ce qui implique que y 6 c. Par ailleurs, par construction de x0 comme
borne supérieure de l’ensemble A, tout réel strictement supérieur à x0 a une image par f strictement

supérieure à c. En particulier, f

(

x0 +
1

n

)

> c, donc lim
n→+∞

f

(

x0 +
1

n

)

> c. Cette limite existe

nécessairement et est égale à f(x0) par continuité de f , donc on a à la fois f(x0) 6 c et f(x0) > c,
ce qui prouve que f(x0) = c et démontre le théorème. Les plus attentifs d’entre vous objecteront

que les valeurs x0 +
1

n
n’appartiennent pas nécessairement à l’intervalle I, mais ce sera en fait le

cas à partir d’un certain rang, sauf si x0 = b. Mais dans ce cas le fait que f(x0) 6 c, qu’on a déjà
démontré, est en contradiction avec nos hypothèses.

Exercice : Soit f une fonction continue sur [0, 1] et à valeurs dans [0, 1], on demande de prouver
que f admet nécessairement un point fixe sur son intervalle de définition [0, 1]. Puisqu’il s’agit de
prouver l’existence d’une solution à une équation (ici f(x) = x), appliquer le théorème des valeurs
intermédiaires est naturel. Attention tout de même, il est indispensable de faire passer tout ce qui
est variable du même côté du signe égal apour pouvoir exploiter le théorème. Autrement dit, on ne
va pas l’appliquer à la fonction f , mais à la fonction g définie par g(x) = f(x) − x. Cette fonction
est certainement continue sur [0, 1], et vérifie g(0) = f(0) > 0 (puisque la fonction f est à valeurs
dans [0, 1]), et g(1) = f(1)− 1 6 0 (pour la même raison, f(1) 6 1). Le réel 0 est donc compris entre
g(0) et g(1), on peut appliquer le théorème des valeurs intermédiaires pour affirmer l’existence d’un
réel x tel que g(x) = 0, c’est-à-dire f(x) = x.
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Corollaire 1. L’image d’un intervalle par une fonction continue est un intervalle.

Démonstration. En effet, soit f continue sur I, et J = f(I). Si x et y sont deux éléments appartenant
à J , alors par définition, il existe deux réels a et b appartenant à I, tels que f(a) = x et f(b) = y.
D’après le théorème des valeurs intermédiaires, toute valeur comprise entre x et y ademt alors un
antécédent dans I par la fonction f , ce qui revient à dire que cette valeur appartient également à J .
C’est exactement la définition d’un intervalle : tout nombre compris entre deux valeurs de l’intervalle
appartient aussi à l’intervalle.

Remarque 12. La nature (ouvert, fermé, borné) de l’intervalle image n’est pas toujours la même que
celle de l’intervalle de départ. Par exemple, si f(x) = x2, f([−2, 1[) = [0, 4]. Si f est la fonction
inverse, f([1,+∞[) =]0, 1].

Théorème 6. Théorème du maximum (ou théorème des bornes atteintes).

L’image d’un segment par une fonction continue est un segment.

0 1 2−1−2

0

1

2

3

4

−1

−2

a b

m

M

Remarque 13. Autrement dit, une fonction continue sur un segment [a, b] y est bornée, et atteint for-
cément son minimum et son maximum. Ce résultat ressemble énormément au précédent, et pourtant
il est plus profond, et ne se démontre pas uniquement à l’aide du théorème des valeurs intermédiaires.
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Démonstration. Soit donc une fonction f définie et continue sur un segment [a, b]. Commençons par
prouver par l’absurde que f est bornée sur [a, b]. Supposons par exemple que f n’est pas pas majorée.
Il existe alors, pour tout entier naturel n, un réel xn dans l’intervalle [a, b] tel que f(xn) > n (la
valeur n étant prise entière par souci de commodité). La suite (xn) étant bornée, elle admet, d’après
le théorème de Bolzano-Weierstraß, une sous-suite yn convergeant vers un réel c. Par continuité
de f , on devrait donc avoir lim

n→+∞

f(yn) = f(c). Or, f(xn) > n implique lim
n→+∞

f(xn) = +∞,

et la limite est donc la même pour la sous-suite (f(yn)). On a obtenu une absurdité, la fonction
est donc nécessairement majorée. Elle est minorée pour les mêmes raisons. Le fait qu’elle atteint
ses bornes découle de la caractérisation de la borne supérieure : notons par exemple M la borne
supérieure des valeurs prises par f , alors on peut construire une suite (xn) d’éléments de [a, b] telle
que lim

n→+∞

f(xn) = M . Cette suite (xn) admet, toujours d’après notre ami Bolzano, une sous-suite

convergeante (yn). En notant l sa limite (qui appartient nécessairement à l’intervalle [a, b] puisque
celui-ci est fermé) on aura par construction (et par continuité de f) f(l) = lim

n→+∞

f(yn) = M , ce qui

prouve que M est en fait un maximum.

Théorème 7. Théorème de la bijection.

Soit f une fonction continue et strictement monotone sur un intervalle I. Alors f est
bijective de I vers J = f(I) et sa réciproque g est continue et strictement monotone (de
même monotonie que f) sur J .

Démonstration. Supposons f croissante (l’autre cas est très similaire). On sait déjà que f(I) (qu’on
notera J dans la suite de la démonstration) est un intervalle (premier corollaire du théorème des
valeurs intermédiaires), et de plus f est injective car strictement monotone, donc bijective de I vers
J (elle est par définition surjective si on prend J comme ensemble d’arrivée). On peut donc définir
sa réciproque g sur J . De plus, si y et y′ sont deux éléments de J tels que y < y′, il existe deux
réels x et x′ dans I tels que y = f(x) et y′ = f(x′). Par croissance de la fonction f , on doit avoir
x < x′, donc g(y) = x < x′ = g(y′) et g est strictement croissante sur J . Enfin, soit y ∈ J , x = g(y)
et ε > 0 (et tel que [x − ε, x + ε] ⊂ I, sinon il n’y a pas de problème). Notons y1 = f(x − ε),
y2 = f(x+ ε). Posons η = min(y− y1, y2− y). On a alors [y− η, y+ η] ⊂ [y1, y2], donc par croissance
de g, g([y − η, y + η]) ⊂ [x− ε, x+ ε]. Ceci prouve la continuité de g en y.

Théorème 8. Soit f une fonction continue et injective sur un intervalle I, alors f est
strictement monotone sur I.

Démonstration. Ce théorème, qui énonce une espèce de réciproque du théorème de la bijection, sera
admis. Il n’est pas très dur de se convaincre que ce résultat, ou plutôt sa contraposée, est logique
à partir du théorème des valeurs intermédiaires : si f n’est pas strictement monotone, on peut par
exemple trouver trois valeurs x, y et z dans l’intervalle telles que x < y < z, mais f(y) > f(x) et
f(y) > f(z). Dans ce cas, tout réel compris entre le max(f(x), f(z)) et f(y) admettra (au moins)
deux antécédents par f , l’un dans l’intervalle ]x, y[ et l’autre dans l’intervalle ]y, z[, ce qui contredit
l’injectivité de f .
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Proposition 6. Méthode de dichotomie.

Soit f une fonction continue sur un segment [a, b], telle que f(a)f(b) < 0 (autrement dit,
f(a) et f(b) sont de signe opposé). On construit deux suites récurrentes (an) et (bn) en

posant a0 = a et b0 = b puis en procédant ainsi : ∀n ∈ N, on pose cn =
an + bn

2
, et si

f(an)f(cn) < 0, on pose an+1 = an et bn+1 = cn. Dans le cas contraire on pose an+1 = cn
et bn+1 = bn. Les deux suites (an) et (bn) sont alors adjacentes, et elles convergent vers

une limite commune α vérifiant f(α) = 0. De plus, on a ∀n ∈ N, bn − an =
b− a

2n
, ce qui

majore l’erreur commise en approchant α par an ou bn.

Démonstration. La croissance de la suite (an) et la décroissance de (bn) découlent de façon immédiate

de leur définition (on a toujours an 6 cn 6 bn). Prouvons donc l’affirmation bn − an =
b− a

2n
par

récurrence. Au rang 0, on a b0−a0 = b−a =
b− a

20
, donc la proriété est vraie. Supposons la vraie au

rang n. On a alors, au choix, bn+1−an+1 = cn−an =
bn − an

2
, ou bn+1−an+1 = bn− cn =

bn − an

2
.

Dans les deux cas, en exploitant l’hypothèse de récurrence, bn+1 − an+1 =
b− a

2n
×

1

2
=

b− a

2n+1
, ce

qui prouve la propriété au rang n + 1. Les deux suites (an) et (bn) sont donc bien adjacentes, et
convergent vers un même réel α.
Reste à prouver que f(α) = 0. Par construction, on aura toujours f(an) du même signe que f(a)
donc, la fonction étant continue, par passage à la limite, f(α) aura également le même signe que
f(a). De même, f(bn) a le même signe que f(b), ce qui implique que f(α) aussi. Comme f(a) et f(b)
sont supposés de signe opposé, la seule possibilité est f(α) = 0.

Exemple d’utilisation : On cherche à déterminer les solutions éventuelles de l’équation x3+2x+1 =
0. On pose pour cela f(x) = x3 + 2x+ 1. Cette fonction f est dérivable et f ′(x) = 3x2 + 2 > 0. La
fonction f est donc strictement croissante et bijective de R dans R, et s’annule en particulier une seule
fois. Notons α la valeur correspondante, et cherchons à déterminer une valeur approchée de α par
dichotomie. Il faut commencer par trouver un premier encadrement de α pour déterminer les valeurs
initiales a et b des deux suites que l’on va construire. On constate que f(0) = 1 et f(−1) = −2, donc

la racine de f se trouve dans l’intervalle [−1, 0]. On calcule ensuite g

(

−
1

2

)

= −
1

8
−1+1 = −

1

8
< 0,

donc α ∈

[

−
1

2
, 0

]

. Puis on calcule g

(

−
1

4

)

= −
1

64
−

1

2
+ 1 =

31

64
> 0, donc α ∈

[

−
1

2
,−

1

4

]

. On sait

donc déjà que α ≃ −
3

8
, à

1

8
près. On aura naturellement recours à la calculatrice ou à l’ordinateur

pour effectuer ce genre de calculs de façon plus poussée. Remarquons que pour obtenir une valeur

approchée à ε > 0 près, il suffit de choisir n tel que
b− a

2n
< ε, c’est-à-dire un nombre d’étapes qui

croît de façon logarithmique si la variable recherchée est le nombre de décimales exacte de la valeur
approchée.

3 Suites implicites.

Dans cette dernière partie, nous allons donner un exemple détaillé (sous forme d’exercice) d’étude
d’un type de suites intervenant fréquemment dans les exercices, et pour lesquelles il faut donc avoir
certains réflexes à adopter, même si aucun résultat précis ne sera énoncé sous forme de théorème (on
se contentera de donner en fin d’exercice un rappel des méthodes). Une suite implicite est la plupart
du temps définie par une condition du type fn(un) = 0, où fn désigne une suite de fonctions ayant
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généralement une équation très similaire mais faisant bien sûr intervenir comme paramètre l’entier
naturel n. Nous reverrons la suite étudiée dans cet exercice dans un chapitre ultérieur pour affiner
encore les résultats démontrés en fin d’exercice.

Exercice : On définit pour tout cet exercice la fonction fn par fn(x) = ex − nx.

1. Étudier les variations des fonctions fn, et prouver que l’équation fn(x) = 0 admet deux
solutions lorsque n > 3. On notera un la plus petite de ces deux solutions.

2. Montrer que, ∀n > 3, un > 0.

3. Déterminer le signe de fn+1(un), en déduire la monotonie de la suite (un).

4. Faire une représentation graphique des premières fonctions fn permettant d’illustrer les ré-
sultats déjà démontrés.

5. Montrer la convergence de (un), puis prouver par l’absurde que lim
n→+∞

un = 0.

6. Déterminer la valeur de lim
n→+∞

nun.

Solution :

1. Toutes les fonctions sont définies, continues et dérivables sur R, de dérivée f ′

n(x) = ex−n. La
fonction fn admet donc un extremum en ln(n), de valeur fn(ln(n)) = n − n ln(n). De plus,
lim

x→−∞

fn(x) = +∞ (on suppose ici n > 1, on va de toute façon très rapidement se restreindre

à des valeurs de n au moins égales à 3), et lim
x→+∞

fn(x) = +∞ par croissance comparée. On

peut donc dresser le tableau de variations suivant :

x −∞ ln(n) +∞

fn

+∞

❅
❅
❅❘
n(1− ln(n))

�✒
�

�

+∞

Pour que l’équation fn(x) = 0 puisse avoir des solutions, il faut que son minimum soit
négatif, donc que ln(n) > 1, ce qui implique bien n > 3. Dans ce cas, la fonction est continue
et strictement monotone sur chacun des deux intervalles ] − ∞, ln(n)] et [ln(n),+∞[, donc
bijective de chacun de ces intervalles vers [n(1 − ln(n)),+∞[. Comme 0 appartient à cet
intervalle image, il admet un unique antécédent par fn dans chacun des deux intervalles où
elle est monotone, ce qui prouve que l’équation fn(x) = 0 admet exactement deux solutions
(la seule valeur commune entre les deux intervalles, ln(n), a une image non nulle par fn). En
notant un la plus petite des deux, on peut déjà affirmer que un < ln(n).

2. Il suffit de calculer fn(0) = 1 pour constater que fn(0) > fn(un). La fonction fn étant
décroissante sur l’intervalle ] − ∞, ln(n)] auquel appartiennent 0 et un, on en déduit que
0 < un.

3. On calcule fn+1(un) = eun − (n + 1)un. Mais, par définition, fn(un) = eun − nun = 0, donc
eun = nun, ce qui permet de simplifier notre calcul : fn+1(un) = nun − (n+ 1)un = −un. En
particulier, fn+1(un) < 0 puisque un > 0. Comme par ailleurs fn+1(un+1) = 0, on peut donc
affirmer que fn+1(un) < fn+1(un+1), et la décroissance de la fonction fn+1 sur l’intervalle
] − ∞, ln(n + 1)] (auquel appartiennent un et un+1) permet de conclure que un > un+1. La
suite (un) est donc strictement décroissante.

4. Les deux points essentiels à visualiser sont les suivants : les courbes sont décroissantes (sur
les intervalles qui nous intéressent) et surtout la courbe de fn est au-dessus de celle de un+1

(c’était le sens du premier calcul de la question précédente), ce qui explique qu’elle coupe
l’axe des abscisses après cette dernière, et donc que un > un+1 :
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5. La suite est décroissante et minorée par 0, elle converge certainement, vers une limite l > 0.
Si on avait l > 0, on pourrait en déduire que lim

n→+∞

nun = +∞. Or on sait que, par définition

de la suite, on a toujours nun = eun . On devrait donc avoir une limite infinie pour eun , ce qui
n’est pas compatible avec le fair que la suite (un) converge. C’est absurde, on a nécessairement
lim

n→+∞

un = 0.

6. Il suffit de reprendre l’égalité déjà exploitée dans la question précédente : puisque lim
n→+∞

un = 0,

on a lim
n→+∞

eun = 1. Or, eun = nun, donc lim
n→+∞

nun = 1. On notera bientôt ceci de la façon

suivante : un ∼
n→+∞

1

n
(ce qui signifie que les deux suites ont le même ordre de grandeur quand

n tend vers +∞). Nous verons même bientôt comment obtenir des informations beaucoup

plus précises, pour commencer un ordre de grandeur de l’écart entre un et
1

n
, à l’aide des

développements limités.

Pour conclure, donnons une petite liste plus générale des méthodes à connaître pour l’étude de ce
type de suites. On débutera de toute façon toujours par l’étude des variations des fonctions fn.

• on utilisera systématiquement le théorème de la bijection pour justifier l’existence et l’unicité
de la solution à l’équation définissant un.

• pour majorer ou minorer une telle suite par un réel M , on se contente de calculer fn(M) et
d’utiliser la monotonie des fonctions fn pour conclure.

• pour étudier la monotonie de la suite, on tentera d’exprimer fn+1(un) (ou fn(un+1)) sous une
forme simple (le but est de pouvoir déterminer son signe), pour le comparer à fn+1(un+1)
(qui est nul par hypothèse). Là encore, les variations de fn permettront de conclure.

• pour déterminer la limite éventuelle de la suite, on tentera de passer à la limite dans la relation
fn(un) = 0. On aura par ailleurs régulièrement recours à un raisonnement par l’absurde.
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