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Une fois qu’on a passé les bornes, il n’y a plus de limite.

ALPHONSE ALLAIS.

Un prof de maths explique & un PCSI comment montrer que lim = 00.

T8 —
Le PCSI assure avoir parfaitement compris.

Pour vérifier, le prof lui demande ce que vaut lim .
z—=5L — D

=10,

Et le PCSI répond, trés fier de lui : lim

5L —

Pour les derniers chapitres d’analyse du premier semestre, nous allons revenir en détail sur les
outils élémentaires d’études de fonctions, en définissant rigoureusement les notions et en effectuant
le plus possible de démonstrations. Pour les limites, ce sera trés simple si vous avez bien assimilé le
chapitre correspondant sur les suites. Quant & la continuité, ce n’est finalement qu’une question de
limites (notion locale) qu’on étend sur un intervalle (notion globale). Elle méne toutefois a quelques
théorémes d’analyse fondamentaux que nous aborderons en fin de chapitre, dont le fameux théoréme
des valeurs intermédiaires que vous connaissez déja bien mais que vous appliquez en général fort mal,
a ne pas confondre avec son cousin le théoréme de la bijection. Nous reviendrons également sur un
type de suites bien particulier (les suites implicites) dont la définition et 1’étude font intervenir des
fonctions.

Objectifs du chapitre :

e savoir calculer des limites efficacement.

e comprendre la différence entre théoréme des valeurs intermédiaires et théoréme de la bijection,
et reconnaitre les situations permettant d’utiliser chacun d’eux.

e connaitre les méthodes classiques d’étude de suites implicites.

1 Limites de fonctions.

1.1 Limites en 4o0.

Définition 1. Une fonction f définie sur un voisinage de +o0o admet pour limite [ € R en +oo si
Ve > 0, 3xg € R, Vo > xo, |f(z) — | < e.

On définit de méme une limite finie quand z tend vers —oo en remplagant simplement la condition
Va > xg par Vo < xp.



On le note respectivement lim f(z) =let lim f(z) =1.
T—+00 T——00

Remarque 1. Cette définition étant strictement identique & celle qu’on a vue dans le cadre des suites,
nous allons rapidement passer a la suivante. Notons qu’elle est méme plus facile & manier que dans
le cas des suites puisqu’on n’a pas besoin de s’embéter & prendre des parties entiéres pour la valeur
de xg si on veut 'appliquer & un calcul pratique de limite.

Définition 2. Une fonction f définie définie au voisinage de +o0o admet pour limite +o00 (respecti-

vement —oo) en +oo si VM € R, 3xg € R, Vo > zg, f(x) > M (resp. f(z) < M).

On le note liril f(z) = +o0 (resp. —0), et on définit bien str de fagon similaire des limites infinies
T—r+00

en —oo.

La encore, les définitions sont rigoureusement les mémes que pour les suites, et se manipulent exac-
tement de la méme fagon.

1.2 Limites en a € R.

Définition 3. Une fonction f définie sur un voisinage de a admet pour limite [ € R quand x tend
vers a si Ve >0, In >0, |z —a| <n=|f(z) — | <e. On note alors lim f(z) =1 ou f(x) — [
Tr—a Tr—a

Remarque 2. Cette définition est au fond assez naturelle : on est aussi proche que souhaité de [ quitte
a se mettre suffisamment prés de a au départ. Si f est définie en a et y admet une limite, elle est
nécessairement égale a f(a).

Sur cette illustration, on a lim2 f(x) = —1, avec un € égal 4 0.2 et le n qui en découle qui vaut environ
T—r

0.23. Le principe est, qu’une fois choisie la largeur du « tube » autour de la limite, on arrive & délimiter
un intervalle (symétrique) autour de z (ici autour de 2) dans lequel la courbe représentative de la
fonction va étre « enfermée » dans le rectangle délimité par les deux intervalles. Bien sfir, cela doit
rester vrai quelle que soit la valeur choisie pour ¢, le réel n dépendant nécessairement de ¢.

0 \ } T i T }
0 « k> 3

Exemple : Montrons a l'aide de cette définition que limlav2 = 1. Fixons donc (comme on le faisait
T—
pour les suites) un € > 0, on souhaite vérifier la condition |22 —1| < ¢, soit |z — 1| x |z +1| < e. Quitte

a imposer 1 < 5 (on chercher simplement une valeur convenable de toute fagon), 5 <le+1] < 2

2e 2 1
donc il faut avoir |z + 1] < 3 La constante 1 = min <§, 5) convient donc.

Définition 4. Une fonction f définie sur un voisinage du réel a admet pour limite 400 (resp. —o0)
quand z tend vers a si VM € R, 3In > 0,0 < |z —a| < n = f(x) = M (resp. f(x) < M). On note
alors lim f(z) = £oo.

Tr—a



Remarque 3. La notion de voisinage, méme si elle peut paraitre extrémement rudimentaire, permet

d’unifier toutes les différentes définitions de la limite qu’on a données depuis le début du chapitre. Que

a et [ soient finis ou infinis, on pourra toujours traduire la limite lim f(x) = [ de la fagon suivante :
r—a

pour tout voisinage V de I, f~1(V) est un voisinage de a (je vous laisse vérifier). Elle permet aussi
de donner des démonstrations simples et élégantes de la plupart des propriétés élémentaires sur les
limites. On évitera toutefois un recours trop systématique a cette notion qui est a la frontiére du
programime.

Proposition 1. La limite d’une fonction f (que ce soit en a ou en +00), lorsqu’elle existe,
est unique.

Démonstration. C’est exactement la méme preuve que dans le cas des suites. [l

Proposition 2. Une fonction admettant une limite finie en a est bornée au voisinage de
a.

Démonstration. Comme dans le cas des suites, il suffit de prendre par exemple € = 1 dans la définition
pour trouver un intervalle sur lequel f est bornée. O

Définition 5. La fonction f admet pour limite ! (cette limite pouvant trés bien étre infinie) a
gauche quand x tend vers a si on remplace dans la définition de la limite la condition |x —a| < 7
par la condition = € [a — 1, a[. On définit de méme une notion de limite a droite en remplagant la
condition par x €]a,a + 7n]. On le note respectivement lim f(z) =1let lim f(z)=1
x—a~ z—at
Remarque 4. Clairement, f admet pour limite [ en a si et seulement si lim f(z) = lim f(z)=1.
x—a~ z—at

Exemple : La fonction partie entiére admet en chaque entier naturel des limites & gauche et & droite

qui sont distinctes. Ainsi, lim Ent(x) = 2, mais lim Ent(x) = 1.
z—2F 2~

Théoréme 1. Toutes les propriétés vues dans le chapitre sur les suites concernant les

opérations et les limites, ainsi que les inégalités et les limites, restent valables sur les

fonctions, que ce soit en oo ou en a € R.

Démonstration. Encore une fois, les preuves seraient les mémes que dans le cadre des suites numé-
riques, du moins quand les limites sont calculées en +0o0. On ne s’embétera pas a démontrer les
autres cas, qui sont tout aussi fastidieux, mais pas vraiment plus compliqués. [l

Remarque 5. On ne redémontrera pas non plus a l'aide de nos belles définitions les limites classiques
de fonctions usuelles, et encore moins celles plus techniques du type « croissances comparées » vues
en début d’année. On pourra bien évidemment continuer & les utiliser dans les exercices.



Proposition 3. Soient f et g deux fonctions telles que lim f(z) = b et lirr})g(m) = [, alors
r—ra xr—

limgo f(x) =1 (a, b et [ étant ici des éléments de R, aucune raison de distinguer les limites
Tr—a

infinies).

Démonstration. C’est la seule démonstration que je ferai a ’aide de voisinages pour ne pas avoir a
distinguer plein de cas. Soit donc V' un voisinage de [. Puisque linr%7 g(z) =1, g1 (V) est un voisinage
T—r

de b, qu’on va noter W. De méme, f~!(W) est un voisinage de a. On en déduit donc que f~1(g~1(V))
est un voisinage de a. Or, f~1(g71(V)) = (g o f)~1(V) (revenez a la définition de ce qu’est I'image
réciproque d’un ensemble par une fonction si vous n’étes pas convaincus), ce qui prouve la limite
voulue. 0

Théoréme 2. Caractérisation séquentielle de la limite.

Une fonction f admet pour limite | quand z tend vers a si et seulement si, toute suite (uy,)
convergeant vers a vérifie que lim f(u,) = I.
n——+oo

Remarque 6. Ce théoréme est en fait souvent utilisé « dans 'autre sens », c’est-a-dire en exploitant
sa contraposée : si on arrive a trouver une suite (u,) convergeant vers a mais pour laquelle (f(u,))
n’admet pas pour limite [, alors on peut affirmer que f n’a pas pour limite [ quand z tend vers a.
Cette constatation est souvent utilisée sous 'une des formes suivantes pour prouver qu’une fonction
donnée n’a pas de limite quand z tend vers a :

e s’il existe une suite (uy,) vérifiant lirf u, = a, mais telle que (f(u,)) n’a pas de limite (ou
n——+0o0

une limite infinie), alors f ne peut pas avoir de limite (ou pas de limite finie) quand z tend
Vers a.

e s’il existe deux suites (uy,) et (v,) convergeant toutes les deux vers a, mais telles que f(uy,)
et (f(v,)) admettent des limites différentes, alors f ne peut pas avoir de limite quand x tend
vers a (par unicité de la limite).

Démonstration. Le sens réciproque est évident, c’est la composition d’une limite de suite par une
fonction. Pour 'autre sens, on va en fait démontrer la réciproque : supposons que f n’admet pas
pour limite [ lorsque x tend vers a. Pour simplifier, on prendra des valeurs finies pour a et [ méme
si la caractérisation reste vraie avec des limites infinies. Si on prend la négation de la définition de
la limite, 3¢ > 0, Vp > 0, 3z € [a —n,a+n], |f(x) — | > e. Fixons donc un tel ¢, et prenons comme

valeurs de n les nombres 7, = —. Pour chacune de ces valeurs de 7,, on peut donc trouver un réel u,,

1 1
dans l'intervalle [a ——,a+ —], pour lequel |f(x) —I| > . Par construction, la suite (u,,) converge
n n

vers a (puisque a — — < u, < a+ —, c’est une application du théoréme des gendarmes), et pourtant
n n

f(uy) ne peut pas converger vers | puisque cette suite est toujours a une distance de [ plus grande
que €. Ceci démontre la contraposée du sens direct du théoréme, et donc le théoréme lui-méme. [

1
Exemple : Soit f la fonction définie sur R* par f(z) = cos <—>, on aimerait savoir si f admet
T

une limite quand z tend vers 0. La logique voudrait que ce ne soit pas le cas (on est dans la méme
situation que pour la fonction z — cos(x) quand x tend vers +00, et on sait bien qu’il n’y a de limite
a ces endroits), pour le prouver, on va choisir des suites tendant vers 0 pour lesquelles il est facile



1
de voir que (f(uy)) n’aura pas toujours le méme comportement. Posons d’abord u,, = ——, la suite
(uy) converge évidemment vers 0 et f(u,) = cos(2nm) = 1, donc la suite (f(un)) est constante et

converge vers 1. Mais si on pose ensuite v, = , la suite (vy,) tend également vers 0, et cette

(2n + 1)m

fois-ci f(v,) = —1. La fonction f ne peut donc pas avoir de limite en 0. On peut en fait prouver,

avec un tout petit peu plus de motivation, que, quel que soit le réel [ € [—1, 1], on peut construire

une suite (uy) qui converge vers 0 et telle que lirf f(uy) = 1. Cela revient a dire que la fonction f
n—-+0oo

« se rapproche de tous les réels de I'intervalle [—1, 1] a la fois ».

Théoréme 3. Théoréme de la limite monotone.
Toute fonction monotone définie sur un intervalle I admet en tout point de I une limite &

gauche et une limite & droite.

Remarque 7. Ces limites peuvent trés bien étre infinies. Si I = [a,b] est un intervalle fermé, le
théoréme n’assure bien entendu que la présence d’une limite a droite en a, et d’une limite & gauche
en b.

Démonstration. Méme démonstration que pour les suites. [l

2 Continuité.

2.1 Définitions.

Définition 6. Soit f une fonction définie sur un intervalle I et a € I, f est continue en a si
lim £(z) = /().

La fonction f est continue & gauche en a si lim f(x) = f(a), et continue a droite en a si

i f(z) = /(o) o

Exemple : La fonction partie entiére (notre exemple préféré quand il s’agit de continuité) est
continue a droite en tout réel, mais elle n’est pas continue a gauche en a (et donc pas continue du
tout) lorsque a € Z.

Définition 7. Une fonction f est continue sur un intervalle [ si elle est continue en tout point
de I.

Théoréme 4. Toute fonction obtenue & l'aide d’opérations usuelles (somme, produit,
quotient, composée) effectuées sur des fonctions continues est elle-méme continue. Par
ailleurs, toutes les fonctions usuelles (sauf la partie entiére) sont continues sur tous les
intervalles ou elles sont définies.

Remarque 8. Ces résultats (au moins la premiére partie du théoréme) découlent de fagon triviale
des résultats équivalents pour les limites, on ne refrea aucune démonstration. Lorsqu’on utilisera ce
type de résultats pour justifier la continuité d’une fonction dans un exercice, on les désignera sous le
terme générique trés flou de « théorémes généraux » sur la continuité (ce qui revient en gros a dire
« ga ne pose aucun probléme, inutile de détailler »).



Proposition 4. Soit f une fonction définie sur un intervalle de la forme I =]a,b]
(ou I = [bya]) et admettant une limite finie | quand z tend vers a, alors on
peut prolonger f de maniére unique en une fonction g continue sur [a,b] en posant
{ glx) = f(x) sl z#a

fla) =1

continuité de f en a.

. La fonction g est alors appelée prolongement par

Remarque 9. Les mathématiciens les plus paresseux ont souvent tendance & noter de la méme fagon
la fonction et son prolongement, en se contentant de donner une explication du type « on prolonge
f par continuité en a en posant f(a) =1 » mais c’est bien sr un gros abus de notation, la fonction
g n’a pas le méme domaine de définition que f.

Exemple : La fonction f : 2 — xlnz est définie sur R™ et prolongeable par continuité & R* en
posant g(0) = 0 (et bien str g(z) = zln(z) si z > 0), puisque 1in%]:r3 In(z) = 0 (croissance comparée).
d

Définition 8. Soit f une fonction définie sur un intervalle I et K un réel strictement positif, f est
K-Lipschitzienne sur I si V(z,y) € I?, |f(y) — f(z)| < K|y — =|.

Remarque 10. Cela signifie simplement que la fonction f multiplie les distances au maximum par
K. Le nom étrange donné a ces fonctions est simplement celui du mathématicien allemand Rudolf
Lipschitz.

Proposition 5. Toute fonction K-Lipschitzienne sur un intervalle I y est continue.

Démonstration. C’est évident : ona 0 < |f(y)— f(z)| < K|y—=x|, avec lim K |[y—x| = 0, donc, d’aprés
y—x
le théoréme des gendarmes, lim|f(y) — f(z)| = 0, ce qui revient bien a dire que lim f(y) = f(z),
y—T y—z

c’est-a-dire que f est continue en x. O

2.2 Propriétés globales.

Cette derniére partie sera simplement consacrée & un alignement de gros théorémes fondamentaux
pour la compréhension de la notion de continuité, & commencer par le plus célébre d’entre eux :

Théoréme 5. Théoréme des valeurs intermédiaires.

Soit f une fonction continue sur le segment [a,b] et ¢ un réel compris entre f(a) et f(b),
alors il existe un réel = € [a, b] tel que f(z) = c.




Remarque 11. Quoi que veuillent bien en dire des générations d’éléves, le théoréme des valeurs
intermédiaires ne garantit pas le moins du monde 'unicité du réel x, c’est un simple théoréme
d’existence. Si on doit prouver qu'une équation du type f(z) = ¢ admet une solution unique sur un
intervalle, ce n’est donc pas lui qu'’il faut invoquer, mais son cousin le théoréme de la bijection (que
nous allons revoir plus bas).

Démonstration. Supposons par exemple f(a) < ¢ < f(b) (la démonstration est identique aux signes
prés si les inégalités sont en sens contraire) et posons A = {z € [a,b] | f(x) < c}. L’ensemble A est non
vide puisqu’il contient a et borné par définition, donc il admet une borne supérieure qu’on notera x.
Notons alors y = f(z). Par caractérisation de la borne supérieure, on peut construire une suite (x,)
d’éléments de A convergeant vers xg. Par continuité de la fonction f, on aura alors . EIEOO f(zn) =v.

Or, f(z,,) < c par construction, ce qui implique que y < c¢. Par ailleurs, par construction de xg comme
borne supérieure de ’ensemble A, tout réel strictement supérieur & xg a une image par f strictement

1 1
supérieure & c. En particulier, f <m0 + —> > ¢, donc lim f|xzog+ — | = c. Cette limite existe
n n—-+00 n

nécessairement et est égale a f(xg) par continuité de f, donc on a a la fois f(zg) < c et f(zg) = ¢,
ce qui prouve que f(zg) = c et démontre le théoréme. Les plus attentifs d’entre vous objecteront

que les valeurs xg + — n’appartiennent pas nécessairement & l'intervalle I, mais ce sera en fait le
n

cas & partir d'un certain rang, sauf si zo = b. Mais dans ce cas le fait que f(zg) < ¢, qu’on a déja
démontré, est en contradiction avec nos hypothéses. O

Exercice : Soit f une fonction continue sur [0,1] et & valeurs dans [0, 1], on demande de prouver
que f admet nécessairement un point fixe sur son intervalle de définition [0, 1]. Puisqu’il s’agit de
prouver 'existence d’une solution & une équation (ici f(x) = x), appliquer le théoréme des valeurs
intermédiaires est naturel. Attention tout de méme, il est indispensable de faire passer tout ce qui
est variable du méme coté du signe égal apour pouvoir exploiter le théoréme. Autrement dit, on ne
va pas l'appliquer & la fonction f, mais a la fonction g définie par g(x) = f(x) — x. Cette fonction
est certainement continue sur [0, 1], et vérifie g(0) = f(0) = 0 (puisque la fonction f est a valeurs
dans [0,1]), et g(1) = f(1) —1 < 0 (pour la méme raison, f(1) < 1). Le réel 0 est donc compris entre
g(0) et g(1), on peut appliquer le théoréme des valeurs intermédiaires pour affirmer I’existence d’un
réel x tel que g(x) = 0, c’est-a-dire f(x) = x.



Corollaire 1. L’image d’un intervalle par une fonction continue est un intervalle.

Démonstration. En effet, soit f continue sur I, et J = f(I). Si x et y sont deux éléments appartenant
a J, alors par définition, il existe deux réels a et b appartenant a I, tels que f(a) = x et f(b) = y.
D’apreés le théoréme des valeurs intermédiaires, toute valeur comprise entre x et y ademt alors un
antécédent dans I par la fonction f, ce qui revient & dire que cette valeur appartient également a J.
C’est exactement la définition d’un intervalle : tout nombre compris entre deux valeurs de I'intervalle
appartient aussi & I'intervalle. O

Remarque 12. La nature (ouvert, fermé, borné) de 'intervalle image n’est pas toujours la méme que
celle de l'intervalle de départ. Par exemple, si f(z) = 22, f([~2,1[) = [0,4]. Si f est la fonction
inverse, f([1,+o0]) =]0,1].

Théoréme 6. Théoréme du maximum (ou théoréme des bornes atteintes).

L’image d’un segment par une fonction continue est un segment.

(=)

Remarque 13. Autrement dit, une fonction continue sur un segment [a, b] y est bornée, et atteint for-
cément son minimum et son maximum. Ce résultat ressemble énormément au précédent, et pourtant
il est plus profond, et ne se démontre pas uniquement & ’aide du théoréme des valeurs intermédiaires.



Démonstration. Soit donc une fonction f définie et continue sur un segment [a,b]. Commengons par

prouver par I’absurde que f est bornée sur [a, b]. Supposons par exemple que f n’est pas pas majorée.

Il existe alors, pour tout entier naturel n, un réel z, dans l'intervalle [a,b] tel que f(z,) = n (la

valeur n étant prise entiére par souci de commodité). La suite (z,,) étant bornée, elle admet, d’aprés

le théoréme de Bolzano-Weierstrafs, une sous-suite y, convergeant vers un réel c. Par continuité

de f, on devrait donc avoir lim f(y,) = f(c). Or, f(x,) > n implique lim f(z,) = oo,
n—-+0o0o n——+0o00

et la limite est donc la méme pour la sous-suite (f(yy)). On a obtenu une absurdité, la fonction
est donc nécessairement majorée. Elle est minorée pour les mémes raisons. Le fait qu’elle atteint
ses bornes découle de la caractérisation de la borne supérieure : notons par exemple M la borne
supérieure des valeurs prises par f, alors on peut construire une suite (z,) d’éléments de [a, b] telle

que liIJIrl f(x,) = M. Cette suite (z,,) admet, toujours d’aprés notre ami Bolzano, une sous-suite
n—-+0oo

convergeante (y,). En notant [ sa limite (qui appartient nécessairement & l'intervalle [a,b] puisque
celui-ci est fermé) on aura par construction (et par continuité de f) f(I) = lirf fyn) = M, ce qui
n——+0o0

prouve que M est en fait un maximum. O

Théoréme 7. Théoréme de la bijection.

Soit f une fonction continue et strictement monotone sur un intervalle 7. Alors f est
bijective de I vers J = f(I) et sa réciproque ¢ est continue et strictement monotone (de
méme monotonie que f) sur J.

Démonstration. Supposons f croissante (I’autre cas est trés similaire). On sait déja que f(I) (qu'on
notera J dans la suite de la démonstration) est un intervalle (premier corollaire du théoréme des
valeurs intermédiaires), et de plus f est injective car strictement monotone, donc bijective de I vers
J (elle est par définition surjective si on prend J comme ensemble d’arrivée). On peut donc définir
sa réciproque g sur J. De plus, si y et 3 sont deux éléments de J tels que y < 7/, il existe deux
réels = et 2’ dans I tels que y = f(z) et ¥y = f(a’). Par croissance de la fonction f, on doit avoir
x < 2’,donc g(y) =z < 2’ = g(y') et g est strictement croissante sur J. Enfin, soit y € J, 2 = g(y)
et € > 0 (et tel que [x — e,z + €] C I, sinon il n’y a pas de probléme). Notons y; = f(z — ¢),
y2 = f(z+¢€). Posons n = min(y — y1,y2 —y). On a alors [y —n,y + 1] C [y1, y2], donc par croissance
de g, g([y — n,y +n]) C [x — ,2 + €]. Ceci prouve la continuité de g en y. O

Théoréme 8. Soit f une fonction continue et injective sur un intervalle I, alors f est

strictement monotone sur I.

Démonstration. Ce théoréme, qui énonce une espéce de réciproque du théoréme de la bijection, sera
admis. Il n’est pas trés dur de se convaincre que ce résultat, ou plutoét sa contraposée, est logique
a partir du théoréme des valeurs intermédiaires : si f n’est pas strictement monotone, on peut par
exemple trouver trois valeurs x, y et z dans l'intervalle telles que = < y < z, mais f(y) > f(x) et
f(y) > f(z). Dans ce cas, tout réel compris entre le max(f(x), f(z)) et f(y) admettra (au moins)
deux antécédents par f, 'un dans l'intervalle |z, y[ et I'autre dans l'intervalle |y, z[, ce qui contredit
I'injectivité de f. O



Proposition 6. Méthode de dichotomie.

Soit f une fonction continue sur un segment |[a, b], telle que f(a)f(b) < 0 (autrement dit,

f(a) et f(b) sont de signe opposé). On construit deux suites récurrentes (a,) et (b,) en

. o an +0b :
posant ag = a et by = b puis en procédant ainsi : Vn € N, on pose ¢, = — 5 © et si

flan)f(cn) <0, on pose ap+1 = ay, et b1 = ¢,. Dans le cas contraire on pose a,4+1 = ¢,
et bp+1 = by. Les deux suites (a,) et (b,) sont alors adjacentes, et elles convergent vers

une limite commune « vérifiant f(a) = 0. De plus, on a Vn € N, b, — a,, = o ce qui
majore I’erreur commise en approchant a par a, ou b,,.

Démonstration. La croissance de la suite (a,) et la décroissance de (b, ) découlent de fagon immédiate

.. . } b—a

de leur définition (on a toujours a, < ¢, < b,). Prouvons donc laffirmation b, — a,, = on par
) b—a e . .

récurrence. Aurang 0, on aby—ag =b—a = 0 donc la proriété est vraie. Supposons la vraie au

. bn — an bn — an

rang n. On a alors, au choix, by41 — Gnt1 = —ap = 5 ou byl —Gpr1 =bp—cp = 7
. , R ) b—a 1 b—a

Dans les deux cas, en exploitant I'hypothése de récurrence, bp1 — a1 = X = = ce

n n+1"’
qui prouve la propriété au rang n + 1. Les deux suites (a,) et (b,) sont don2c bien %%djacgntes, et
convergent vers un méme réel a.

Reste a prouver que f(a) = 0. Par construction, on aura toujours f(a,) du méme signe que f(a)
donc, la fonction étant continue, par passage a la limite, f(«) aura également le méme signe que
f(a). De méme, f(b,) a le méme signe que f(b), ce qui implique que f(«) aussi. Comme f(a) et f(b)
sont supposeés de signe opposé, la seule possibilité est f(a) = 0. [l

Exemple d’utilisation : On cherche & déterminer les solutions éventuelles de I'équation 234+2x+1 =
0. On pose pour cela f(z) = 23 + 22 + 1. Cette fonction f est dérivable et f/(z) = 322 +2 > 0. La
fonction f est donc strictement croissante et bijective de R dans R, et s’annule en particulier une seule
fois. Notons « la valeur correspondante, et cherchons & déterminer une valeur approchée de « par
dichotomie. Il faut commencer par trouver un premier encadrement de o pour déterminer les valeurs

initiales a et b des deux suites que 1’on va construire. On constate que f(0) =1 et f(—1) = —2, donc

1
la racine de f se trouve dans l'intervalle [—1,0]. On calcule ensuite g —5) =73~ 1+1= —3 <0,

8
1 ) 1 1 1 31 1 1 )
donc a € [—5,0} Puis on calcule ¢ <_Z> =~61"3 +1= o1 > 0, donc « € [—5,—1]. On sait

donc déja que a >~ ——, & — prés. On aura naturellement recours a la calculatrice ou & l'ordinateur

pour effectuer ce genre de calculs de fagon plus poussée. Remarquons que pour obtenir une valeur

a
approchée a ¢ > 0 prés, il suffit de choisir n tel que < g, c’est-a-dire un nombre d’étapes qui

27L
croit de facon logarithmique si la variable recherchée est le nombre de décimales exacte de la valeur

approchée.

3 Suites implicites.

Dans cette derniére partie, nous allons donner un exemple détaillé (sous forme d’exercice) d’étude
d’un type de suites intervenant fréquemment dans les exercices, et pour lesquelles il faut donc avoir
certains réflexes a adopter, méme si aucun résultat précis ne sera énoncé sous forme de théoréme (on
se contentera de donner en fin d’exercice un rappel des méthodes). Une suite implicite est la plupart
du temps définie par une condition du type f,(u,) = 0, ou f,, désigne une suite de fonctions ayant
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généralement une équation trés similaire mais faisant bien sir intervenir comme paramétre I’entier
naturel n. Nous reverrons la suite étudiée dans cet exercice dans un chapitre ultérieur pour affiner
encore les résultats démontrés en fin d’exercice.

Exercice : On définit pour tout cet exercice la fonction f,, par f,(z) = e* — nz.

1.

Etudier les variations des fonctions f,, et prouver que l’équation fn(x) = 0 admet deux
solutions lorsque n > 3. On notera u, la plus petite de ces deux solutions.

2. Montrer que, Vn > 3, u, > 0.

3. Déterminer le signe de fy,+1(uy), en déduire la monotonie de la suite (uy,).

Faire une représentation graphique des premiéres fonctions f,, permettant d’illustrer les ré-
sultats déja démontrés.

5. Montrer la convergence de (uy,), puis prouver par l’absurde que lirf Uy, = 0.
n——+0oo
6. Déterminer la valeur de lim nu,,.
n——+0o00
Solution :
1. Toutes les fonctions sont définies, continues et dérivables sur R, de dérivée f) () = e* —n. La

fonction f, admet donc un extremum en In(n), de valeur f,(In(n)) = n — nln(n). De plus,
lim f,(z) = 400 (on suppose ici n > 1, on va de toute facon trés rapidement se restreindre
T——00

a des valeurs de n au moins égales a 3), et lim f,(z) = +oo par croissance comparée. On
T—r—+00

peut donc dresser le tableau de variations suivant :

T |—00 In(n) +00

+00 +00
NS
)

n(l —In(n

Pour que 'équation f,(z) = 0 puisse avoir des solutions, il faut que son minimum soit
négatif, donc que In(n) > 1, ce qui implique bien n > 3. Dans ce cas, la fonction est continue
et strictement monotone sur chacun des deux intervalles | — oo,In(n)] et [In(n), +oo|, donc
bijective de chacun de ces intervalles vers [n(1 — In(n)),4+oo[. Comme 0 appartient & cet
intervalle image, il admet un unique antécédent par f,, dans chacun des deux intervalles ou
elle est monotone, ce qui prouve que I'équation f,(z) = 0 admet exactement deux solutions
(la seule valeur commune entre les deux intervalles, In(n), a une image non nulle par f,). En
notant u, la plus petite des deux, on peut déja affirmer que u,, < In(n).

. 11 suffit de calculer f,(0) = 1 pour constater que f,(0) > f,(uy). La fonction f, étant

décroissante sur lintervalle | — oo,In(n)] auquel appartiennent 0 et u,, on en déduit que
0 < up.

. On calcule f,41(uy) = e — (n + 1)u,. Mais, par définition, f,(u,) = €“» — nu,, = 0, donc
e = nuy, ce qui permet de simplifier notre calcul : f,+1(uy) = nu, — (n+ 1)u, = —uy,. En

particulier, f,+1(u,) < 0 puisque u, > 0. Comme par ailleurs f,,11(up+1) = 0, on peut donc
affirmer que fp+1(un) < fant1(unt1), et la décroissance de la fonction f,41 sur l'intervalle
| — 00,In(n 4 1)] (auquel appartiennent u,, et u,11) permet de conclure que u, > up+1. La
suite (uy) est donc strictement décroissante.

. Les deux points essentiels a visualiser sont les suivants : les courbes sont décroissantes (sur

les intervalles qui nous intéressent) et surtout la courbe de f,, est au-dessus de celle de w41
(c’était le sens du premier calcul de la question précédente), ce qui explique qu’elle coupe
I’axe des abscisses aprés cette derniére, et donc que wy > Up4q -
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5. La suite est décroissante et minorée par 0, elle converge certainement, vers une limite [ > 0.

Si on avait [ > 0, on pourrait en déduire que liI_’I_l nu, = +00. Or on sait que, par définition
n—-+00

de la suite, on a toujours nu, = e“*. On devrait donc avoir une limite infinie pour e*», ce qui
n’est pas compatible avec le fair que la suite (u, ) converge. C’est absurde, on a nécessairement

lim wu, = 0.
n—-+o0o

6. Il suffit de reprendre I’égalité déja exploitée dans la question précédente : puisque ligr_l Uy =0,
n——+00

ona lim e =1. Or, e*” = nu,, donc lim nwu, = 1. On notera bientot ceci de la fagon
n——+00 n—-+0o0o

suivante : u, ~ — (ce qui signifie que les deux suites ont le méme ordre de grandeur quand
n—+oo N

n tend vers +o0). Nous verons méme bient6t comment obtenir des informations beaucoup

1
plus précises, pour commencer un ordre de grandeur de I’écart entre u,, et —, a ’aide des
n

développements limités.

Pour conclure, donnons une petite liste plus générale des méthodes & connaitre pour ’étude de ce
type de suites. On débutera de toute fagon toujours par I’étude des variations des fonctions f,.

e on utilisera systématiquement le théoréme de la bijection pour justifier I'existence et 'unicité
de la solution a I’équation définissant w,,.

e pour majorer ou minorer une telle suite par un réel M, on se contente de calculer f, (M) et
d’utiliser la monotonie des fonctions f, pour conclure.

e pour étudier la monotonie de la suite, on tentera d’exprimer f,,+1(uy,) (ou f(unp+1)) sous une
forme simple (le but est de pouvoir déterminer son signe), pour le comparer & fp11(tpn41)
(qui est nul par hypothése). La encore, les variations de f,, permettront de conclure.

e pour déterminer la limite éventuelle de la suite, on tentera de passer a la limite dans la relation
fn(uy) = 0. On aura par ailleurs réguliérement recours a un raisonnement par I’absurde.
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