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Probléme : étude des ensembles réticulés.

I. Quelques exemples simples.

1. La stabilité par produit et par somme de carrés de ensemble Z est triviale (un produit,
un carré ou une somme d’entiers restant évidemment entiére). De plus, les seuls éléments
de Z appartenant a D sont —1, 0 et 1, ils sont en nombre fini. On en déduit que Z est un
ensemble réticulé. L’ensemble R ne peut pas contre évidemment pas étre réticulé puisque
son intersection avec D est lintervalle [—1, 1], qui n’est pas vraiment un ensemble fini (les
stabilités sont par contre vérifiées, 1a aussi de fagon triviale). L’ensemble Zi n’étant pas stable
par produit (par exemple, i X i = —1 ¢ Zi), on peut aussi 'exclure assez rapidement. Enfin,
A =] — 00, —2] U [2,+00[ est bien un ensemble réticulé : les éléments de A sont les réels de
valeur absolue supérieure ou égale a 2, un produit de tels éléments reste réel et a une valeur
absolue supérieure ou égale & 4, donc appartient & A. De méme, les carrés d’éléments de A
sont des réels au moins égaux a 4, leur somme appartient donc a I'intervalle [8, 400 qui est
inclus dans A. Enfin, l'intersection de A avec D est vide.

2. L’ensemble A = {0} est réticulé (c’est assez trivial a vérifier une fois de plus) et vérifie
clairement N(A) = 1. L’ensemble Z* est réticulé (le produit de deux entiers non nul n’est
jamais nul, le carré d’un entier non nul est toujours strictement positif, donc la somme de
deux tels carrés n’est jamais nulle), et vérifie Z* N D = {—1,1}, donc N(Z*) = 2.

3. Si (z,2') € A% par hypothése, 22 et 22 sont des entiers relatifs, donc (22')? = 2222 € Z, ce

qui prouve que zz' € A, donc que A est stable par produit. De plus, 22 + 2> € Z comme
somme d’éléments de Z, donc A est également stable par somme de carrés. Reste & déterminer
I'intersection de A avec D. Si z € AND, alors |2%| = |2|? < 1, donc 22 € {—1,0, 1} (on rappelle
que 22 est supposé entier relatif). Les seuls nombres complexes ayant un carré égal a 1, 0 ou
—1 sont en nombre fini, il y en a exactement cing : 0, £1 et 4. L’ensemble A est donc réticulé,

et N(A) =5.

II. Propriétés générales des ensembles réticulés.

1. C'est assez évident. Supposons A et B réticulés. Si (21, 22) € AN B, alors (21, 22) € A2, donc
2129 € A et 23 + 25 € A. De méme, (21, 20) € B2, donc 2129 € B et 22 + 22 € B. On a donc
2129 € ANB et 22 + 22 € AN B, ce qui prouve la stabilité par produit et par somme de carrés
de l'intersection. Enfin, (AN B)N D C AN D est fini si AN D est fini, donc AN B est bien
réticulé. On a ici prouvé que 'intersection de deux ensembles réticulés était réticulée, mais
c’est exactement le méme principe pour une intersection quelconque (méme infinie).

2. L’énoncé aurait du dire que n € N* et pas n € N. La propriété est évidente & cause de la
stabilité par produit, on peut en faire une démonstration rigoureuse par récurrence : z € A
par hypothése, et 2™ € A = 2"t = 2™ x z € A par stabilité de A par produit. Si ’ensemble
A contenait un nombre z vérifiant |z| €]0, 1[, alors il contiendrait aussi tous les nombres 2",
qui vérifient tous [2"| = |2"| < 1, donc 2" € D, mais qui sont tous distincts deux a deux



puisqu’ils n’ont pas le méme module. Il y aurait donc une infinité d’éléments dans AN D, ce
qui contredit le fait que A puisse étre un ensemble réticulé.

3. La stabilité de B par produit est claire : si 2§ € A et 25 € A, alors (2122)? = 2723 € A par
stabilité de A par produit. La stabilité par somme de carrés est encore plus claire puisqu’on
a supposé A stable par somme : 27 € A, 25 € A, donc 27 + 22 € A. Enfin, les éléments de B
vérifiant |z| < 1 sont des racines carrées complexes d’éléments de A vérifiant nécessairement
eux aussi |z| < 1. Par hypothese, il y a N(A) tels éléments dans ’ensemble A. Chacun de ces
éléments admet deux racines carrées complexes appartenant donc & B, sauf 0 (s'il appartient
a A) qui n’en a qu'une. On aura donc N(B) = 2N(A) si 0 ¢ A, et N(B) = 2N(A) — 1 si
0e€ A

4. Le fait d’ajouter 0 & l’ensemble ne perturbe pas la stabilité par produit puisque Vz € A,
z2x0=0€ AU{0}, et 0 x0 =0 > AU {0}. Pas de probléme non plus pour la somme de
carrés : 02+ 02 =0et Vz € A, 22 + 0% = 22 € A puisque A est stable par produit. Dans les
deux cas, la somme de carrés reste dans ’ensemble A U {0}. Enfin, l'intersection de AU {0}
avec ’ensemble D est égale & (AN D) U {0}, ce qui prouve a la fois qu’elle est finie (et donc
que AU {0} est bien réticulé) et que N(AU {0}) = N(A) + 1.

5. La stabilité par produit ne peut pas étre perturbée par le fait qu’on élimine 0 de ’ensemble,
puisque le produit de deux nombres non nuls ne sera jamais nuls. Le fait que I'intersection
avec D reste fini est évident. Le seul probléme peut donc venir de la stabilité par somme de
carrés, qui ne sera plus vérifiée s’il existe dans A deux éléments non nuls z; et zo pour lesquels

. . . . 21 .
22 4+ 22 = 0. Dans ce cas, on aurait 27 = —z3, donc 21 = Fizs, soit effectivement — = +i. Il
22

s’agit bien d’une équivalence : si deux tels éléments existent, on a une somme de carrés nulle,
donc n’appartenant plus a A\{0}.

III. Des exemples plus sophistiqués.

1. L’ensemble Z[i] est clairement stable par produit : si z; = a +ib et zo0 = ¢+ id (avec a, b, ¢
et d tous entiers relatifs), alors 2129 = ac — bd + i(ad + bc) est bien un élément de Z[i]. Pour
la méme raison, Z[i] est stable par passage au carré, et il est trivialement stable par somme,
donc stable par somme de carrés. Enfin, les seuls éléments de Z[i] ayant un module inférieur
ou égal a 1 sont 0, £1 et £i, donc Z[i] est réticulé, et N(Z[i]) = 5.

2. On sait bien que la somme des racines cubiques de 1'unité est nulle, donc que 1+ j + j2 = 0.
On en déduit que j2 = —1 — j € Z[j]. Vérifions la stabilité par produit de I’ensemble : si
21 = a+ jbet 20 = ¢+ jd, alors 2129 = ac + j(ad + be) + j2bd = ac + j(ad + be) — bd — bdj =
ac—bd+ j(ad+bc—bd), qui est bien un élément de Z[j] (tous les coefficients étant ici entiers).
Comme pour la question précédente, la stabilité par somme de carrés est alors évidente puisque
Z[j] est stable par somme (et donc par élévation au carré d’aprés ce qui précede).

3. L’ensemble Z[j]N D contient déja au moins 0, 1, j et 52. Mais on peut aussi ajouter —j = 1+ ;2
a la liste, et aussi —j2 = 1 + j. Enfin, on a comme septiéme élément —1 = j + j2. En fait,
notre ensemble contient O et les six racines sixiémes de I'unité complexes.

b b\ 2
a— 3 + z\gg = (a — 2) +Zb2. Ah ben le calcul est fini avant d’avoir

vraiment commencé. Sachant que a et b sont des nombres entiers, si on veut avoir |a+ b5/

4. Calculons |a + bj|* =

1

<
(ce qui est indispensable pour que notre nombre appartienne & D), on doit donc avoir ZbZ <1,

donc b € {—1,0,1}. Si b= 0, on en déduit alors que a? < 1, ce qui impose a = 0 (donc z = 0),

2
1
ou a = £1 (donc z = +1). Passons au cas ot b = 1, alors on veut (a — 2) < 1 e qui
impose a = 0 oua =1, donc z = jou z = 1+ j = —j2. Enfin, si b = —1, on veut cette

2
fois-ci (a—i— 2) < T ce qui impose a =0 oua = —1,donc z=—jouz=—1—75=32 On



retrouve exactement les sept éléments déja obtenus & la question précédente, ce qui prouve
que Z[j] N D = {0} U Us.

5. On a tout ce qu’il faut : il est stable par produit, par somme de carrés et a une intersection
avec D finie. De plus, N(Z[j]) = 7.

. . . a+bj . .
6. D’aprés la question I1.5, il faut prouver qu’on ne peut avoir ‘7 = =4, On peut en fait

c+dj

= ¢, puisqu’un quotient égal & —i serait aisément transformé

se contenter du cas ou

+
c+dj
en quotient égal & ¢ en changeant les signes de a et b. Si une telle égalité était vérifiée, on

b . di‘ _
(CH_’ ‘QS; '7). Or j = j2, ce qui donnerait donc un numérateur égal a
c+aj

1 1
(a+bj)(c+dj?) = ac+bd+bej+ adj? = ac+bd — §bc—|— \ggbci— iad— \ggadi. En identifiant

@(bc— ad)
lc + dj|?

aurait donc 7 =

les parties imaginaires de notre quotient censé étre égal a 4, on trouve alors 1 =

)

2|lc+d : . . .
donc /3 = u Or, le quotient obtenu & droite est clairement un nombre rationnel (on

ad
rappelle qu’on a calculé plus haut le carré du module des éléments de Z[j]), alors que v/3 est

b
at ‘7 = 4, et donc

irrationnel. C’est une absurdité, ce qui prouve qu’on ne peut pas avoir n
c

que Z[j]\{0} est bien réticulé. Bien entendu, N(Z[j]\{0}) = N(Z[i]) — 1 = 6.
7. D’aprés la question 1.3, il suffit de poser A = {z € C | 22 € Z[j]} pour obtenir un ensemble
réticulé vérifiant N(A) = 2N (Z[j] — 1) = 13.

IV. Taille des ensembles réticulés.

1. Soit donc un ensemble £ C U non vide et fini, et choisissons z € E. En notant n le nombre
d’éléments de l'ensemble FE, et z1,..., 2z, les éléments de I’ensemble, on constate que Vi €
{1,...,n}, zz; = z; pour un certain entier j € {1,...,n}, puisque I'ensemble E est stable par
produit. De plus, 'application ¢ — z; est injective car z; # 2y = z2z; # 22y (le nombre z ne
pouvant pas étre nul puisqu’il appartient a U). L’ensemble des zj atteints lorsque 1 varie entre

1 et n est donc simplement I’ensemble E, ce qui prouve que H 22;) sz, et donc que
i=1 i=1
z H zi = H z;. Ce produit n’étant pas nul, 2z’ = 1, donc z est une racine n-éme de 'unité.
=1

On a donc prouvé que E C U,. Or, F contient n éléments, et U,, aussi, donc cette inclusion
est une égalité.

2. La question 1.2 prouve que B ne contient aucun nombre de module strictement inférieur a
1 (puisqu’il ne contient pas 0 par définition), donc c’est un sous-ensemble de U stable par
produit, il ne reste plus qu’a appliquer le résultat de la question précédente.

3.(a) Si 2" = 1, alors (22)? = 1, donc 2% € Up,. Réciproquement, si z? € Uy, alors z € U,,

donc tout élément de U, est un carré d’un élément de A. Par stabilité de A par somme de
carrés, la somme de deux éléments de U, appartient donc & A.

(b) Si n est un multiple de 4, I'entier p est pair, donc —1 € Up, et —1 4+ 1 = 0 est une somme
d’éléments de U,, donc appartient a A. Pour la fin de la question, I’énoncé aurait du
faira apparaitre un p plut()t qu'un n dans l'exponentielle. Une factorisation classique par

271' 27 _ 27 277 T
'angle moitié donne e » — 1 = ¢'» (el po—e ' ) =e'r X 2ZSIH< >, dont le module
p
T ;2m
est simplement égal & sin () Or, e — 1 est la somme de deux racines p-émes de

p
I’'unité, donc appartient a A d’aprés la question a, et a donc un module supérieur ou égal



1
a 1 d’aprés le I1.2. Cela suppose sin <7T> > 2 donc p < 6 si on se souvient de ses valeurs
p

cos | —
p

factorisation par ’angle moitié que ci-dessus, je ne détaille pas). L’élément dont on a calculé

le module appartient & A pour tout entier naturel k, et en notant p = 2¢g + 1 (puisque

()] =20 (555)
cos | — = 2cos =
p 2g+1

™ m . T D . .
2cos | = — ———— ) = 2sin | — |, qui doit encore une fois étre supérieur ou égal a 1.
2 2(2¢+1) 2p

Cette fois-ci, avec le facteur 2 devant p au dénominateur, on obtient bien la condition
nécessaire p < 3.

de sinus classiques.

2kim
er +1| =2

(c) Comme —1 ¢ U, cette fois-ci, on va plutét calculer (méme

p est supposé impair), on aura, en choissant k = ¢, 2

. De fagon similaire aux questions précédentes, il suffit de prouver que tout élément de U, est
le carré d’un élément de U,,. Or, application définie sur U,, par z — 22 est & valeurs dans U,
(si 2" = 1, alors (22)" = (2™)% = 1), et elle est injective : si 22 = (2/)?, alors z = 2/ ou 2 = —2'.
Or, deux racines n-émes de 'unité ne peuvent pas étre opposées lorsque n est impair : on sait
2k’ 2km
T on
2(K' — k) = n[2n], ce qui est impossible (2(k’ — k) est un entier pair, sa congruence modulo
2n qui est aussi pair ne peut pas donner un entier impair). L’application z ++ 22 est donc
bijective dans U,, est donc bien bijective, ce qui prouve que tout élément de U,, est carré d’un
élément de Uy, et donc qu’'une somme d’éléments de U,, est somme de carrés d’éléments de A,
et appartient donc & A. On refait alors exactement le méme calcul qu’a la quesion précédente
pour en déduire que n < 3. Si on veut prouver que n = 1, il n’y a qu’'un seul cas a éliminer,
celui ot n = 3. Si ce cas était possible, on aurait donc AN D = Uz = {1, 4, j2}. Mais alors
12+ 42 =14 42 = —j € A, ce qui fait déja un quatriéme élément dans A N D. Le seul cas
possible est donc bien n = 1.

qu’elles sont de la forme ei%Tﬂ, elles ne peuvent étre opposées que si + 7[27], soit

. En reprenant les questions précédentes, et les notations correspondantes :

e si n est impair, alors N(A) =1 ou N(A) =2 (si on ajoute 0 dans I’ensemble).

e si n est pair mais pas divisible par 4, alors — < 3, donc n = 2 ou n = 6. On peut donc
avoir N(A) = 2 (mais on le savait déja), N(A) =3, N(A) =6 ou N(A) =T.

e si n est un multiple de 4, alors g < 6, donc n € {4,8,12}. Mais dans ce cas, on sait

que 0 appartient nécessairement & A, et donc que les seules possibilités sont N(A) = 5,

N(A) =9 et N(A) = 13.

En ajoutant le cas o N(A) = 0 ('intersection A N D ayant le droit d’étre vide), on trouve
bien les neuf valeurs annoncées : 0,1,2,3,5,6,7,9,13.

. On a vu en cours de route les ensemble de taille 0, 1, 2 (dans la premiére partie), ’ensemble Z
vérifie N(A) = 3, on a croisé 'ensemble Z[i] qui vérifie N(A) = 5 et 'ensemble Z[j] qui vérifie
N(A) = 7. 1l suffit de supprimer 0 & ce dernier pour avoir un ensemble de taille 6, et on a vu
plus haut comment en déduire un ensemble de taille 13. Enfin, on peut construire un ensemble
de taille 9 en considérant A = {z € Z | 22 € Z[i]}, qui aura pour taille 2N (Z[i]) — 1 = 9.
Toutes les tailles possibles sont donc celles de vrais ensembles réticulés. Les curieux iront
regarder sur le web des représentations graphiques de ces ensembles.



