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Problème : étude des ensembles réticulés.

I. Quelques exemples simples.

1. La stabilité par produit et par somme de carrés de l’ensemble Z est triviale (un produit,
un carré ou une somme d’entiers restant évidemment entière). De plus, les seuls éléments
de Z appartenant à D sont −1, 0 et 1, ils sont en nombre fini. On en déduit que Z est un
ensemble réticulé. L’ensemble R ne peut pas contre évidemment pas être réticulé puisque
son intersection avec D est l’intervalle [−1, 1], qui n’est pas vraiment un ensemble fini (les
stabilités sont par contre vérifiées, là aussi de façon triviale). L’ensemble Zi n’étant pas stable
par produit (par exemple, i× i = −1 /∈ Zi), on peut aussi l’exclure assez rapidement. Enfin,
A =] − ∞,−2] ∪ [2,+∞[ est bien un ensemble réticulé : les éléments de A sont les réels de
valeur absolue supérieure ou égale à 2, un produit de tels éléments reste réel et a une valeur
absolue supérieure ou égale à 4, donc appartient à A. De même, les carrés d’éléments de A
sont des réels au moins égaux à 4, leur somme appartient donc à l’intervalle [8,+∞[ qui est
inclus dans A. Enfin, l’intersection de A avec D est vide.

2. L’ensemble A = {0} est réticulé (c’est assez trivial à vérifier une fois de plus) et vérifie
clairement N(A) = 1. L’ensemble Z∗ est réticulé (le produit de deux entiers non nul n’est
jamais nul, le carré d’un entier non nul est toujours strictement positif, donc la somme de
deux tels carrés n’est jamais nulle), et vérifie Z∗ ∩D = {−1, 1}, donc N(Z∗) = 2.

3. Si (z, z′) ∈ A2, par hypothèse, z2 et z′2 sont des entiers relatifs, donc (zz′)2 = z2z′2 ∈ Z, ce
qui prouve que zz′ ∈ A, donc que A est stable par produit. De plus, z2 + z′2 ∈ Z comme
somme d’éléments de Z, donc A est également stable par somme de carrés. Reste à déterminer
l’intersection de A avec D. Si z ∈ A∩D, alors |z2| = |z|2 ⩽ 1, donc z2 ∈ {−1, 0, 1} (on rappelle
que z2 est supposé entier relatif). Les seuls nombres complexes ayant un carré égal à 1, 0 ou
−1 sont en nombre fini, il y en a exactement cinq : 0, ±1 et ±i. L’ensemble A est donc réticulé,
et N(A) = 5.

II. Propriétés générales des ensembles réticulés.

1. C’est assez évident. Supposons A et B réticulés. Si (z1, z2) ∈ A∩B, alors (z1, z2) ∈ A2, donc
z1z2 ∈ A et z21 + z22 ∈ A. De même, (z1, z2) ∈ B2, donc z1z2 ∈ B et z21 + z22 ∈ B. On a donc
z1z2 ∈ A∩B et z21 +z22 ∈ A∩B, ce qui prouve la stabilité par produit et par somme de carrés
de l’intersection. Enfin, (A ∩ B) ∩D ⊂ A ∩D est fini si A ∩D est fini, donc A ∩ B est bien
réticulé. On a ici prouvé que l’intersection de deux ensembles réticulés était réticulée, mais
c’est exactement le même principe pour une intersection quelconque (même infinie).

2. L’énoncé aurait du dire que n ∈ N∗ et pas n ∈ N. La propriété est évidente à cause de la
stabilité par produit, on peut en faire une démonstration rigoureuse par récurrence : z ∈ A
par hypothèse, et zn ∈ A ⇒ zn+1 = zn × z ∈ A par stabilité de A par produit. Si l’ensemble
A contenait un nombre z vérifiant |z| ∈]0, 1[, alors il contiendrait aussi tous les nombres zn,
qui vérifient tous |zn| = |zn| < 1, donc zn ∈ D, mais qui sont tous distincts deux à deux

1



puisqu’ils n’ont pas le même module. Il y aurait donc une infinité d’éléments dans A ∩D, ce
qui contredit le fait que A puisse être un ensemble réticulé.

3. La stabilité de B par produit est claire : si z21 ∈ A et z22 ∈ A, alors (z1z2)
2 = z21z

2
2 ∈ A par

stabilité de A par produit. La stabilité par somme de carrés est encore plus claire puisqu’on
a supposé A stable par somme : z21 ∈ A, z22 ∈ A, donc z21 + z22 ∈ A. Enfin, les éléments de B
vérifiant |z| ⩽ 1 sont des racines carrées complexes d’éléments de A vérifiant nécessairement
eux aussi |z| ⩽ 1. Par hypothèse, il y a N(A) tels éléments dans l’ensemble A. Chacun de ces
éléments admet deux racines carrées complexes appartenant donc à B, sauf 0 (s’il appartient
à A) qui n’en a qu’une. On aura donc N(B) = 2N(A) si 0 /∈ A, et N(B) = 2N(A) − 1 si
0 ∈ A.

4. Le fait d’ajouter 0 à l’ensemble ne perturbe pas la stabilité par produit puisque ∀z ∈ A,
z × 0 = 0 ∈ A ∪ {0}, et 0 × 0 = 0 ∋ A ∪ {0}. Pas de problème non plus pour la somme de
carrés : 02 + 02 = 0 et ∀z ∈ A, z2 + 02 = z2 ∈ A puisque A est stable par produit. Dans les
deux cas, la somme de carrés reste dans l’ensemble A ∪ {0}. Enfin, l’intersection de A ∪ {0}
avec l’ensemble D est égale à (A ∩D) ∪ {0}, ce qui prouve à la fois qu’elle est finie (et donc
que A ∪ {0} est bien réticulé) et que N(A ∪ {0}) = N(A) + 1.

5. La stabilité par produit ne peut pas être perturbée par le fait qu’on élimine 0 de l’ensemble,
puisque le produit de deux nombres non nuls ne sera jamais nuls. Le fait que l’intersection
avec D reste fini est évident. Le seul problème peut donc venir de la stabilité par somme de
carrés, qui ne sera plus vérifiée s’il existe dans A deux éléments non nuls z1 et z2 pour lesquels
z21 + z22 = 0. Dans ce cas, on aurait z21 = −z22 , donc z1 = ±iz2, soit effectivement

z1
z2

= ±i. Il

s’agit bien d’une équivalence : si deux tels éléments existent, on a une somme de carrés nulle,
donc n’appartenant plus à A\{0}.

III. Des exemples plus sophistiqués.

1. L’ensemble Z[i] est clairement stable par produit : si z1 = a + ib et z2 = c + id (avec a, b, c
et d tous entiers relatifs), alors z1z2 = ac− bd+ i(ad+ bc) est bien un élément de Z[i]. Pour
la même raison, Z[i] est stable par passage au carré, et il est trivialement stable par somme,
donc stable par somme de carrés. Enfin, les seuls éléments de Z[i] ayant un module inférieur
ou égal à 1 sont 0, ±1 et ±i, donc Z[i] est réticulé, et N(Z[i]) = 5.

2. On sait bien que la somme des racines cubiques de l’unité est nulle, donc que 1 + j + j2 = 0.
On en déduit que j2 = −1 − j ∈ Z[j]. Vérifions la stabilité par produit de l’ensemble : si
z1 = a+ jb et z2 = c+ jd, alors z1z2 = ac+ j(ad+ bc) + j2bd = ac+ j(ad+ bc)− bd− bdj =
ac−bd+j(ad+bc−bd), qui est bien un élément de Z[j] (tous les coefficients étant ici entiers).
Comme pour la question précédente, la stabilité par somme de carrés est alors évidente puisque
Z[j] est stable par somme (et donc par élévation au carré d’après ce qui précède).

3. L’ensemble Z[j]∩D contient déjà au moins 0, 1, j et j2. Mais on peut aussi ajouter −j = 1+j2

à la liste, et aussi −j2 = 1 + j. Enfin, on a comme septième élément −1 = j + j2. En fait,
notre ensemble contient 0 et les six racines sixièmes de l’unité complexes.

4. Calculons |a+ bj|2 =

∣∣∣∣∣a− b

2
+ i

√
3

2

∣∣∣∣∣ =
(
a− b

2

)2

+
3

4
b2. Ah ben le calcul est fini avant d’avoir

vraiment commencé. Sachant que a et b sont des nombres entiers, si on veut avoir |a+bj|2 ⩽ 1

(ce qui est indispensable pour que notre nombre appartienne à D), on doit donc avoir
3

4
b2 ⩽ 1,

donc b ∈ {−1, 0, 1}. Si b = 0, on en déduit alors que a2 ⩽ 1, ce qui impose a = 0 (donc z = 0),

ou a = ±1 (donc z = ±1). Passons au cas où b = 1, alors on veut
(
a− 1

2

)2

⩽
1

4
, ce qui

impose a = 0 ou a = 1, donc z = j ou z = 1 + j = −j2. Enfin, si b = −1, on veut cette

fois-ci
(
a+

1

2

)2

⩽
1

4
, ce qui impose a = 0 ou a = −1, donc z = −j ou z = −1− j = j2. On
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retrouve exactement les sept éléments déjà obtenus à la question précédente, ce qui prouve
que Z[j] ∩D = {0} ∪ U6.

5. On a tout ce qu’il faut : il est stable par produit, par somme de carrés et a une intersection
avec D finie. De plus, N(Z[j]) = 7.

6. D’après la question II.5, il faut prouver qu’on ne peut avoir
a+ bj

c+ dj
= ±i, On peut en fait

se contenter du cas où
a+ bj

c+ dj
= i, puisqu’un quotient égal à −i serait aisément transformé

en quotient égal à i en changeant les signes de a et b. Si une telle égalité était vérifiée, on

aurait donc i =
(a+ bj)(c+ dj)

|c+ dj|2
. Or j = j2, ce qui donnerait donc un numérateur égal à

(a+bj)(c+dj2) = ac+bd+bcj+adj2 = ac+bd− 1

2
bc+

√
3

2
bci− 1

2
ad−

√
3

2
adi. En identifiant

les parties imaginaires de notre quotient censé être égal à i, on trouve alors 1 =

√
3
2 (bc− ad)

|c+ dj|2
,

donc
√
3 =

2|c+ dj|2

bc− ad
. Or, le quotient obtenu à droite est clairement un nombre rationnel (on

rappelle qu’on a calculé plus haut le carré du module des éléments de Z[j]), alors que
√
3 est

irrationnel. C’est une absurdité, ce qui prouve qu’on ne peut pas avoir
a+ bj

c+ dj
= i, et donc

que Z[j]\{0} est bien réticulé. Bien entendu, N(Z[j]\{0}) = N(Z[i])− 1 = 6.

7. D’après la question II.3, il suffit de poser A = {z ∈ C | z2 ∈ Z[j]} pour obtenir un ensemble
réticulé vérifiant N(A) = 2N(Z[j]− 1) = 13.

IV. Taille des ensembles réticulés.

1. Soit donc un ensemble E ⊂ U non vide et fini, et choisissons z ∈ E. En notant n le nombre
d’éléments de l’ensemble E, et z1, . . . , zn les éléments de l’ensemble, on constate que ∀i ∈
{1, . . . , n}, zzi = zj pour un certain entier j ∈ {1, . . . , n}, puisque l’ensemble E est stable par
produit. De plus, l’application i 7→ zj est injective car zi ̸= zi′ ⇒ zzi ̸= zzi′ (le nombre z ne
pouvant pas être nul puisqu’il appartient à U). L’ensemble des zj atteints lorsque i varie entre

1 et n est donc simplement l’ensemble E, ce qui prouve que
n∏

i=1

(zzi) =

n∏
i=1

zi, et donc que

zn
n∏

i=1

zi =
n∏

i=1

zi. Ce produit n’étant pas nul, zn = 1, donc z est une racine n-ème de l’unité.

On a donc prouvé que E ⊂ Un. Or, E contient n éléments, et Un aussi, donc cette inclusion
est une égalité.

2. La question II.2 prouve que B ne contient aucun nombre de module strictement inférieur à
1 (puisqu’il ne contient pas 0 par définition), donc c’est un sous-ensemble de U stable par
produit, il ne reste plus qu’à appliquer le résultat de la question précédente.

3. (a) Si zn = 1, alors (z2)p = 1, donc z2 ∈ Up. Réciproquement, si z2 ∈ Up, alors z ∈ Un,
donc tout élément de Up est un carré d’un élément de A. Par stabilité de A par somme de
carrés, la somme de deux éléments de Up appartient donc à A.

(b) Si n est un multiple de 4, l’entier p est pair, donc −1 ∈ Up, et −1 + 1 = 0 est une somme
d’éléments de Up, donc appartient à A. Pour la fin de la question, l’énoncé aurait du
faira apparaître un p plutôt qu’un n dans l’exponentielle. Une factorisation classique par

l’angle moitié donne e
i 2π

p − 1 = e
i 2π

p

(
e
i 2π

p − e
−i 2π

p

)
= e

i 2π
p × 2i sin

(
π

p

)
, dont le module

est simplement égal à sin

(
π

p

)
. Or, e

i 2π
p − 1 est la somme de deux racines p-èmes de

l’unité, donc appartient à A d’après la question a, et a donc un module supérieur ou égal
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à 1 d’après le II.2. Cela suppose sin

(
π

p

)
⩾

1

2
, donc p ⩽ 6 si on se souvient de ses valeurs

de sinus classiques.

(c) Comme −1 /∈ Up cette fois-ci, on va plutôt calculer
∣∣∣e 2kiπ

p + 1
∣∣∣ = 2

∣∣∣∣cos(kπ

p

)∣∣∣∣ (même

factorisation par l’angle moitié que ci-dessus, je ne détaille pas). L’élément dont on a calculé
le module appartient à A pour tout entier naturel k, et en notant p = 2q + 1 (puisque

p est supposé impair), on aura, en choissant k = q, 2
∣∣∣∣cos(kπ

p

)∣∣∣∣ = 2 cos

(
qπ

2q + 1

)
=

2 cos

(
π

2
− π

2(2q + 1)

)
= 2 sin

(
π

2p

)
, qui doit encore une fois être supérieur ou égal à 1.

Cette fois-ci, avec le facteur 2 devant p au dénominateur, on obtient bien la condition
nécessaire p ⩽ 3.

4. De façon similaire aux questions précédentes, il suffit de prouver que tout élément de U⋉ est
le carré d’un élément de Un. Or, l’application définie sur Un par z 7→ z2 est à valeurs dans U⋉
(si zn = 1, alors (z2)n = (zn)2 = 1), et elle est injective : si z2 = (z′)2, alors z = z′ ou z = −z′.
Or, deux racines n-èmes de l’unité ne peuvent pas être opposées lorsque n est impair : on sait

qu’elles sont de la forme ei
2kπ
n , elles ne peuvent être opposées que si

2k′π

n
≡ 2kπ

n
+π[2π], soit

2(k′ − k) ≡ n[2n], ce qui est impossible (2(k′ − k) est un entier pair, sa congruence modulo
2n qui est aussi pair ne peut pas donner un entier impair). L’application z 7→ z2 est donc
bijective dans Un est donc bien bijective, ce qui prouve que tout élément de Un est carré d’un
élément de Un, et donc qu’une somme d’éléments de Un est somme de carrés d’éléments de A,
et appartient donc à A. On refait alors exactement le même calcul qu’à la quesion précédente
pour en déduire que n ⩽ 3. Si on veut prouver que n = 1, il n’y a qu’un seul cas à éliminer,
celui où n = 3. Si ce cas était possible, on aurait donc A ∩ D = U3 = {1, j, j2}. Mais alors
12 + j2 = 1 + j2 = −j ∈ A, ce qui fait déjà un quatrième élément dans A ∩ D. Le seul cas
possible est donc bien n = 1.

5. En reprenant les questions précédentes, et les notations correspondantes :

• si n est impair, alors N(A) = 1 ou N(A) = 2 (si on ajoute 0 dans l’ensemble).
• si n est pair mais pas divisible par 4, alors

n

2
⩽ 3, donc n = 2 ou n = 6. On peut donc

avoir N(A) = 2 (mais on le savait déjà), N(A) = 3, N(A) = 6 ou N(A) = 7.
• si n est un multiple de 4, alors

n

2
⩽ 6, donc n ∈ {4, 8, 12}. Mais dans ce cas, on sait

que 0 appartient nécessairement à A, et donc que les seules possibilités sont N(A) = 5,
N(A) = 9 et N(A) = 13.

En ajoutant le cas où N(A) = 0 (l’intersection A ∩D ayant le droit d’être vide), on trouve
bien les neuf valeurs annoncées : 0, 1, 2, 3, 5, 6, 7, 9, 13.

6. On a vu en cours de route les ensemble de taille 0, 1, 2 (dans la première partie), l’ensemble Z
vérifie N(A) = 3, on a croisé l’ensemble Z[i] qui vérifie N(A) = 5 et l’ensemble Z[j] qui vérifie
N(A) = 7. Il suffit de supprimer 0 à ce dernier pour avoir un ensemble de taille 6, et on a vu
plus haut comment en déduire un ensemble de taille 13. Enfin, on peut construire un ensemble
de taille 9 en considérant A = {z ∈ Z | z2 ∈ Z[i]}, qui aura pour taille 2N(Z[i]) − 1 = 9.
Toutes les tailles possibles sont donc celles de vrais ensembles réticulés. Les curieux iront
regarder sur le web des représentations graphiques de ces ensembles.
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