Exercice à travailler n°24 : corrigé

PTSI B Lycée Eiffel

31 mai 2021

Des matrices de projections et de symétries.

1. Soit on calcule les images des trois vecteurs de la base canonique (par exemple $f(1,0,0) = \left(\frac{3}{2}, -3, \frac{9}{2}\right)$) et on les recopie en colonnes dans une matrice carrée, soit on écrit directement sur les lignes de la matrice les coefficients des trois variables x, y et z dans l'expression de f.

Dans tous les cas, $M = \begin{pmatrix} \frac{3}{2} & 1 & \frac{1}{2} \\ -3 & -2 & -1 \\ \frac{9}{2} & 3 & \frac{3}{2} \end{pmatrix}$.

- 2. On obtient $M^2 = M$. Par exemple, le coefficient en haut à gauche de M^2 sera égal à $\frac{3}{2} \times \frac{3}{2} + 1 \times (-3) + \frac{1}{2} \times \frac{9}{2} = \frac{9}{4} 3 + \frac{9}{4} = \frac{3}{2}$. Cette égalité se traduit au niveau de l'application par $f^2 = f$, ce qui prouve que l'application f est une projection.
- 3. On commence par déterminer l'espace F sur lequel on projette, donc on détermine $\ker(f)$: $\begin{cases} \frac{3}{2}x + y + \frac{1}{2}z = 0 \\ -3x 2y z = 0 \end{cases}$ La dernière équation est clairement équivalente à la pre- $\frac{9}{2}x + 3y + \frac{3}{2}z = 0$ mière (tout est simplement multiplié par trois), et la deuxième aussi (multipliée pat -2 cette fois-ci), il ne reste donc que la condition z = -3x 2y, soit F = Vect((1,0,-3),(0,1,-2)). Pour l'image, on sait qu'elle va être de dimension 1 (théorème du rang), donc il suffit de calculer une image non nulle, par exemple celle du deuxième vecteur de la base canonique, pour obtenir Im(f) = Vect((1,-2,3)).
- 4. La famille $\mathcal{B} = ((1, -2, 3), (1, 0, -3), (0, 1, -2))$ est en effet une base de \mathbb{R}^3 puisqu'elle est obtenue en regroupant les bases de deux sous-espaces vectoriels supplémentaires de \mathbb{R}^3 . En notant e_1 , e_2 et e_3 les trois vecteurs composant cette base, on a par construction $f(e_1) = e_1$;

$$f(e_2) = 0$$
 et $f(e_3) = 0$, donc $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

5. Aucun calcul nécessaire en effet, pour une symétrie par rapport à F parallèlement à G, on aura

toujours
$$p(e_1) = e_1$$
, mais $p(e_2) = -e_2$ et $p(e_3) = -e_3$, donc $Mat_{\mathcal{B}}(s) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

Pour la matrice dans la base canonique, le plus simple est d'utiliser que s=2p-id, donc

1

$$Mat_{can}(s) = 2M - I_3 = \begin{pmatrix} 2 & 2 & 1 \\ -6 & -5 & -2 \\ 9 & 6 & 2 \end{pmatrix}.$$