Exercice à travailler n° 18 : corrigé

PTSI B Lycée Eiffel

15 mars 2021

Une banale suite d'intégrales.

1. Calculons donc $I_0 = \int_0^{\frac{\pi}{6}} \sin(3x) \ dx = \left[-\frac{\cos(3x)}{3} \right]_0^{\frac{\pi}{6}} = -0 + \frac{1}{3} = \frac{1}{3}$. Ensuite on va faire une IPP pour calculer $I_1 = \int_0^{\frac{\pi}{6}} x \sin(3x) \ dx$: on pose bien sûr u(x) = x, donc u'(x) = 1 et $v'(x) = \sin(3x)$ qu'on va primitiver en $v(x) = -\frac{\cos(3x)}{3}$. On obtient alors $I_1 = \left[-x \frac{\cos(3x)}{3} \right]_0^{\frac{\pi}{6}} + \frac{1}{3} \int_0^{\frac{\pi}{6}} \cos(3x) \ dx = 0 + \frac{1}{3} \left[\frac{\sin(3x)}{3} \right]_0^{\frac{\pi}{6}} = \frac{1}{9}$.

Enfin, on va avoir besoin d'une double IPP pour le dernier calcul, celui de $I_2 = \int_0^{\frac{\pi}{6}} x^2 \sin(3x) \, dx$: on pose d'abord $u(x) = x^2$, donc u'(x) = 2x et $v'(x) = \sin(3x)$ qu'on va continuer à primitiver en $v(x) = -\frac{\cos(3x)}{3}$. On obtient alors $I_2 = \left[-x^2\frac{\cos(3x)}{3}\right]_0^{\frac{\pi}{6}} + \frac{2}{3}\int_0^{\frac{\pi}{6}} x\cos(3x) \, dx$. Le crochet s'annule toujours, on calcule l'intégrale restante en effectuant une nouvelle IPP où on pose u(x) = x, donc u'(x) = 1, et $v'(x) = \cos(3x)$, qu'on intègre en $v(x) = \frac{\sin(3x)}{3}$. Autrement dit, $I_2 = \frac{2}{3}\left[\frac{x\sin(3x)}{3}\right]_0^{\frac{\pi}{6}} - \frac{2}{9}\int_0^{\frac{\pi}{6}} \sin(3x) \, dx = \frac{2}{3} \times \frac{\pi}{18} - \frac{2}{9} \times \frac{1}{3} = \frac{\pi}{27} - \frac{2}{27}$.

- 2. Il s'agit simplement de généraliser le calcul effectué à la question précédente. On part donc de $I_{n+2}=\int_0^{\frac{\pi}{6}}x^{n+2}\sin(3x)\ dx$ et on effectue une première IPP en posant $u(x)=x^{n+2}$, donc $u'(x)=(n+2)x^{n+1}$, et $v'(x)=\sin(3x)$, donc $v(x)=-\frac{\cos(3x)}{3}$. On trouve alors $I_{n+2}=\left[-\frac{x^{n+2}\cos(3x)}{3}\right]_0^{\frac{\pi}{6}}+\frac{n+2}{3}\int_0^{\frac{\pi}{6}}x^{n+1}\cos(3x)\ dx$. Le crochet s'annule, et on fait une deuxième IPP en posant $u(x)=x^{n+1}$, donc $u'(x)=(n+1)x^n$, et $v'(x)=\cos(3x)$ pour obtenir $v(x)=\frac{\sin(3x)}{3}$. Il ne reste plus qu'à écrire la fin du calcul : $I_{n+2}=\frac{n+2}{3}\left[x^{n+1}\frac{\sin(3x)}{3}\right]_0^{\frac{\pi}{6}}-\frac{(n+2)(n+1)}{3}\int_0^{\frac{\pi}{6}}x^n\sin(3x)\ dx$, soit $I_{n+2}=\frac{n+2}{3}\left(\frac{\pi}{6}\right)^{n+1}-\frac{(n+2)(n+1)}{3}I_n$.
- 3. On applique donc pour commencer la relation de récurrence pour n = 1: $I_3 = \frac{3}{9} \times \left(\frac{\pi}{6}\right)^2 \frac{3 \times 2}{9} \times \frac{1}{9} = \frac{\pi^2}{108} \frac{2}{27}$. De même, pour n = 2, $I_4 = \frac{4}{9} \left(\frac{\pi}{6}\right)^3 \frac{4}{3} \left(\frac{\pi}{27} \frac{2}{27}\right) = \frac{\pi^3}{486} \frac{4}{81}\pi + \frac{8}{81}$.
- 4. Heureusement, on n'a pas du tout besoin des calculs précédents. Pour la monotonie, on procède comme d'habitude, soit en calculant $I_{n+1}-I_n$, soit en procédant par inégalités successives. Utilisons donc cette dernière méthode : lorsque $x \in \left[0, \frac{\pi}{6}\right]$, on aura $0\sin(3x) \leqslant 1$ et surtout $0 \leqslant x < 1$, donc $x^{n+1}\sin(3x) \leqslant x^n\sin(3x)$. On peut intégrer cette inégalité entre 0 et $\frac{\pi}{6}$

pour obtenir immédiatement $I_{n+1} \leq I_n$, la suite est donc décroissante (ce qui sautait de toute façon aux yeux au vu des premières valeurs calculées).

Comme de plus la suite est minorée par 0 (c'est trivial, on intégre une fonction positive), elle converge nécessairement.

5. Il n'y a pas vraiment besoin d'être très intelligent : on reprend l'inégalité $\sin(3x) \leqslant 1$ pour écrire $I_n \leqslant \int_0^{\frac{\pi}{6}} x^n \ dx = \left[\frac{x^{n+1}}{n+1}\right]_0^{\frac{\pi}{6}} = \frac{1}{n+1} \left(\frac{\pi}{6}\right)^{n+1}$. Cette expression ayant une limite nulle (la suite géométrique tend vers 0 et le facteur devant aussi), le théorème des gendarmes permet facilement de conclure que $\lim_{n \to +\infty} I_n = 0$.