Programme de colle nº 12

PTSI B Lycée Eiffel

semaine du 18/01 au 22/01 2021

La colle débutera par une question de cours portant sur l'énonciation d'un théorème, de définitions, ou la rédaction de l'une des démonstrations indiquées **en gras** dans le présent programme de colles. Tout élève ne sachant pas répondre correctement à cette question de cours se soumettra aux conséquences désagréables de sa paresse, lesdites conséquences étant laissées à la libre appréciation du colleur (mais les châtiments corporels étant hélas interdits, cela se limitera en général à une note en-dessous de la moyenne).

Chapitre 8 : Suites numériques.

- Notations générales (terme général, terme d'indice n d'une suite, on fera évidemment attention à ne pas confondre u_n et (u_n)), différents types de définition possibles d'une suite (formule explicite, relation de récurrence simple, double ou pire, définition implicite).
- Vocabulaire général sur les suites (suites monotones, suites majorées, minorées, bornées).
- Suites usuelles:
 - suites arithmétiques : définition par récurrence, formule explicite pour le terme général, monotonie, sommes partielles
 - suites géométriques : définition par récurrence, formule explicite, monotonie, sommes partielles
 - suites arithmético-géométriques : équation de point fixe associée, calcul du terme général de la suite (on doit revérifier à chaque fois que la suite auxiliaire définie par $v_n = u_n \alpha$ est géométrique)
 - suites récurrentes linéaires d'ordre 2 : équation caractéristique, formules pour le calcul du terme général (l'analogie avec les équations différentielles, tout comme dans le cas des suites arithmético-géométriques, a été soulignée, mais aucune connaissance n'est exigible dans le cas de « seconds membres » pour ces équations, les élèves devront être guidés si vous souhaitez poser ce genre d'exercices)
- Limites de suites :
 - définition des limites (finies et infinies) « avec des ε , exemples très simples de manipulation (tout exercice centré sur ces définitions qu'on n'utilise jamais en pratique est à exclure)
 - Unicité de la limite
 - sous-suites, convergence des sous-suites d'une suite convergente
 - théorème de convergence monotone
 - résultats classiques sur les manipulations des limites (sommes, produits, inverse), limites de suites arithmétiques et géométriques
 - les résultats classiques du type croissance comparée ont été évoqués sans être réellement revus, mais ils sont bien sûr censés être maîtrisés par les élèves
 - théorèmes de comparaison, thorème des gendarmes
 - suites adjacentes, définition et théorème de convergence (l'idée de la démonstration doit être connue)

Chapitre 9 : Calcul matriciel, systèmes.

- Calcul matriciel élémentaire :
 - définition des matrices et notation des ensembles de matrices $\mathcal{M}_{n,p}(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{R})$, vocabulaire de base (taille d'une matrice, matrices carrées, diagonales, trangulaires, matrices nulles, matrices identité I_n)
 - somme de matrices, produit d'une matrice par un réel, produit matriciel, propriétés (à savoir démontrer : le produit d'une matrice A par une matrice identité de taille compatible est égal à A)
 - transposition, matrices symétriques et antisymétriques
 - puissances d'une matrice carrée, exemples de calcul de puissance à l'aide de suites récurrentes (typiquement en partant d'une relation du type $A^2 = aA + bI_3$), formule du binôme de Newton matricielle et exemples
 - PAS de calcul d'inverse (ni même la définition!) pour cette semaine

Prévisions pour la semaine prochaine : calcul matriciel, avec inversion, pivot de Gauss et résolution de systèmes linéaires.