TD nº 7 : révisions pour le Devoir Bilan

PTSI Lycée Eiffel

25 février 2021

Exercice

On définit dans cet exercice une fonction f par $f(z) = |z^3 - z + 2|$, où $z \in \mathbb{C}$. Le but de l'exercice est de déterminer la valeur maximale prise par f lorsque z parcourt l'ensemble des nombres complexes de module 1.

- 1. Exprimer $\cos(2x)$ et $\cos(3x)$ en fonction de $\cos(x)$, lorsque x est un nombre réel quelconque (on démontrera la formule donnée pour $\cos(3x)$).
- 2. Calculer f(z) lorsque z = 1; $z = e^{i\frac{\pi}{3}}$; z = i et $z = e^{-i\frac{\pi}{4}}$.
- 3. On pose maintenant $z=e^{i\theta}$, avec $\theta\in\mathbb{R}$. Montrer que $f(z)^2=4g(\cos(\theta))$, où $g(x)=4x^3-x^2-4x+2$.
- 4. Étudier les variations de la fonction g sur l'intervalle [-1,1], et déterminer en particulier son maximum sur cet intervalle.
- 5. Conclure.

Problème

Dans tout ce problème, on définit la fonction $f: \mathbb{R} \to \mathbb{R}$ par $f(x) = \arctan(x+1)$.

A. Étude de la fonction f.

- 1. Donner le domaine de définition de f.
- 2. Étudier les variations de la fonction f, et dresser son tableau de variations complet.
- 3. Tracer la courbe représentative de f en précisant ses asymptotes éventuelles, son point d'abscisse 0, ainsi que sa tangente en son point d'abscisse -1.

B. Résolution numérique d'une équation.

- 1. Montrer que l'équation f(x) = x admet une unique solution α , et que $\alpha \in \left[1, \frac{\pi}{2}\right]$. On donne la valeur $\arctan(2) \simeq 1.1$.
- 2. On définit une suite (u_n) par $\left\{ \begin{array}{l} u_0=1 \\ \forall n\in\mathbb{N}, \quad u_{n+1}=f(u_n) \end{array} \right.$
 - (a) Montrer que, $\forall n \in \mathbb{N}, u_n \in \left[1, \frac{\pi}{2}\right]$.
 - (b) Montrer que, $\forall x \in \left[1, \frac{\pi}{2}\right], |f'(x)| \leqslant \frac{1}{5}.$
 - (c) En déduire rigoureusement que, $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{5}|u_n \alpha|$.
 - (d) Montrer que $\lim_{n \to +\infty} u_n = \alpha$.

- (e) Déterminer un entier naturel n_0 tel que u_{n_0} soit une valeur approchée de α à 10^{-2} près (on ne demande pas de calculer la valeur de u_{n_0} correspondante).
- 3. On introduit maintenant la fonction $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{\arctan(x+1) \alpha}{x \alpha} \end{cases}$, définie sur $\mathbb{R} \setminus \{\alpha\}$. Montrer que la fonction g est prolongeable par continuité en α , et préciser ce prolongement.

C. Résolution d'une équation différentielle.

- 1. À l'aide d'une intégration par parties, déterminer une primitive de la fonction f sur \mathbb{R} après avoir justifié son existence.
- 2. Résoudre sur $\mathbb R$ l'équation différentielle $\left\{\begin{array}{ll} y'-f(x)y=0\\ y(0)=1 \end{array}\right.$

D. Étude d'une somme.

On définit dans cette partie la somme $S_n = \sum_{k=1}^n \arctan\left(\frac{1}{1+k+k^2}\right)$, pour tout entier naturel n.

- 1. Montrer en détaillant le raisonnement effectué que $\forall x \in [1, +\infty[, f(x) f(x-1) = \arctan\left(\frac{1}{1+x+x^2}\right)]$.
- 2. En déduire la convergence de la suite (S_n) , et préciser sa limite.

E. Calcul matriciel.

On considère dans cette partie l'application $u: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathcal{M}_2(\mathbb{R}) \\ (x,y) & \mapsto & \left(\begin{array}{ccc} f(x) & f'(x) \\ f(y) & f'(y) \end{array} \right) \end{array} \right.$

- 1. Expliquer rapidement pourquoi u est une application de \mathbb{R}^2 dans $\mathcal{M}_2(\mathbb{R})$.
- 2. L'application u est-elle injective?
- 3. L'application u est-elle surjective?
- 4. On note A la matrice u(0, -1).
 - (a) Écrire explicitement la matrice A.
 - (b) Vérifier que $A^2 = \left(\frac{\pi}{4} + 1\right)A \frac{\pi}{4}I$, où on a noté I la matrice identité dans $\mathcal{M}_2(\mathbb{R})$.

2

- (c) Montrer l'existence de deux suites de réels (x_n) et (y_n) telle que, $\forall n \in \mathbb{N}, A^n = x_n A + y_n I.$
- (d) Expliciter x_n et y_n en fonction de n. Pour cette question, on pourra (mais ce n'est pas une obligation) étudier les deux suites auxiliaires u et v définies par $u_n = x_n + y_n$ et $v_n = \frac{\pi}{4}x_n + y_n$.
- (e) En déduire une forme simplifiée de A^n .