TD nº 6 : révisions pour le DS5

PTSI B Lycée Eiffel

21 janvier 2021

Exercice 1

On considère deux suites (u_n) et (v_n) définies par les conditions suivantes : $u_0 = 2$ et pour tout entier naturel n, on pose $v_n = \frac{3}{u_n}$ puis $u_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Calculer les valeurs exactes de v_0 , u_1 , v_1 et u_2 . Donner une valeur approchée à 10^{-2} près de v_2 . Cette valeur approchée est-elle une valeur approchée par défaut ou par excès?
- 2. Montrer que les deux suites (u_n) et (v_n) sont bornées par $\frac{3}{2}$ et par 2.
- 3. Montrer que, pour tout entier naturel n, on a $u_{n+1} v_{n+1} = \frac{(u_n v_n)^2}{2(u_n + v_n)}$. En déduire que $u_n \ge v_n$.
- 4. Déterminer la monotonie des deux suites (u_n) et (v_n) . Que peut-on en conclure sur les deux suites?
- 5. Montrer, en utilisant les résultats des questions précédentes, que $u_{n+1} v_{n+1} \leqslant \frac{u_n v_n}{6}$.
- 6. En déduire que $u_n v_n \leqslant \frac{1}{2 \times 6^n}$.
- 7. Que peut-on dire sur les deux suites (u_n) et (v_n) au vu des résultats des questions 4 et 6? Déterminer la valeur de leur limite commune l.
- 8. Déterminer une valeur de n pour laquelle on peut être certain que u_n représente une valeur approchée à 10^{-10} près de sa limite l (on cherche une formule théorique, on ne cherchera pas à faire l'application numérique!). Combien de décimales de l la valeur de u_4 permettrait-elle de calculer avec certitude?

Exercice 2

On considère dans cet exercice la matrice $M=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 6 & -5 & 6 \\ 3 & -3 & 4 \end{array}\right)$.

- 1. Calculer M^2 et M^3 . Déterminer une relation entre $M^3,\,M$ et I.
- 2. En déduire que M est une matrice inversible, et donner son inverse M^{-1} (on donnera la matrice explicite).
- 3. Montrer que, pour tout entier naturel n, il existe un réel u_n tel que $M^n = \begin{pmatrix} 1 & 0 & 0 \\ 2u_n & 1 2u_n & 2u_n \\ u_n & -u_n & 1 + u_n \end{pmatrix}$.
- 4. Déterminer une expression de u_n en fonction de n, et en déduire la valeur de M^n .
- 5. La formule obtenue à la question précédente reste-t-elle valable lorsque n=-1?
- 6. Retrouver l'expression de la matrice M^{-1} à l'aide d'un pivot de Gauss (sur les matrices ou sur un système).

Exercice 3

On pose, pour tout entier naturel
$$n \ge 1$$
, $u_n = \sum_{k=0}^n \frac{1}{\binom{n}{k}}$; $v_n = n! u_n$ et $w_n = \sum_{k=0}^n k \frac{n!}{\binom{n}{k}}$.

- 1. Calculer les valeurs prises par ces trois suites pour n = 1, n = 2 et n = 3.
- 2. Expliquer pourquoi $w_n = \sum_{k=0}^n (n-k) \frac{n!}{\binom{n}{k}}$. En déduire que $w_n = \frac{nv_n}{2}$.
- 3. Montrer en exploitant le résultat de la question précédente que $u_{n+1} = 1 + \frac{n+2}{2n+2}u_n$.
- 4. En déduire les valeurs de u_5 , u_6 et u_7 .
- 5. On pose enfin $t_n = \frac{2^n u_n}{n+1}$. Déterminer une relation entre t_{n+1} et t_n .
- 6. En déduire que $u_n = \frac{n+1}{2^n} \sum_{k=0}^n \frac{2^k}{k+1}$.

Exercice 4

On définit dans cet exercice
$$A = \begin{pmatrix} 4 & -3 & -1 \\ 4 & -4 & -2 \\ -2 & 3 & 3 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$

- 1. Calculer l'inverse de la matrice P (méthode au choix).
- 2. Calculer le produit $P^{-1}AP$ (on doit obtenir une matrice diagonale). On notera pour la suite $D = P^{-1}AP$.
- 3. Montrer que, $\forall n \in \mathbb{N}, A^n = PD^nP^{-A}$. En déduire l'expression explicite de A^n .
- 4. Résoudre le système linéaire $\begin{cases} 5x & -3y & -z = 5 \\ 4x & -3y & -2z = -2 \\ -2x & +3y & +4z = 16 \end{cases}$

Que peut-on en déduire concernant la matrice A + I?

- 5. Calculer A^2 et A^3 et déterminer une relation entre les matrices A^2 , A et I_3 (la matrice A^3 ne sert pas pour cette partie de la question).
- 6. Déduire du résultat de la question précédente si la matrice A est inversible, et si oui, donner explicitement son inverse.
- 7. Montrer que, $\forall n \in \mathbb{N}$, il existe deux réels a_n et b_n tels que $A^n = a_n A + b_n I$.
- 8. Calculer a_n et b_n , et retrouver la valeur de A^n obtenue à la question 3 (il est bien sûr interdit d'utiliser cette même question 3 pour répondre à celle-ci).
- 9. La formule obtenue pour A^n reste-t-elle valable lorsque n=-1?
- 10. La formule obtenue pour A^n reste-t-elle valable lorsque n=-2?
- 11. On souhaite désormais calculer le **commutant** de la matrice A, c'est-à-dire l'ensemble de toutes les matrices M vérifiant AM = MA.
 - (a) Déterminer les matrices qui commutent avec la matrice D obtenue à la question 2.

2

- (b) Montrer que, en posant $N = P^{-1}MP$, M commute avec A si et seulement si N commute avec D.
- (c) En déduire les matrices commutant avec A (on essaiera de les exprimer comme combinaisons linéaires de certaines matrices fixées, quelque chose du genre $M = aM_1 + bM_2 + \dots$, avec (a, b, \dots) variant dans \mathbb{R}).