TD nº 8 : révisions pour le Concours Blanc

PTSI B Lycée Eiffel

23 mai 2019

Exercice 1

On note dans tout cet exercice $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

On notera par ailleurs f l'endomorphisme de \mathbb{R}^3 ayant pour matrice A dans la base canonique (base qui sera notée \mathcal{B} dans la suite de l'exercice).

On note enfin
$$F = \left\{ \begin{pmatrix} a+c & b & c \\ b & a+2c & b \\ c & b & a+c \end{pmatrix} \mid (a,b,c) \in \mathbb{R}^3 \right\}.$$

A. Calcul matriciel.

- 1. Calculer A^2 et montrer que $A^3 = 2A$.
- 2. Déterminer une base de $\ker(f)$ et de $\ker(f \sqrt{2}id)$.
- 3. Soient $u=(1,0,-1), v=(1,\sqrt{2},1)$ et $w=(1,-\sqrt{2},1)$. Montrer que (u,v,w) est une base de \mathbb{R}^3 , qu'on notera \mathcal{B}' .
- 4. Écrire la matrice de passage de la base canonique \mathcal{B} vers \mathcal{B}' . On notera P cette matrice.
- 5. Déterminer l'inverse P^{-1} de la matrice P.
- 6. Écrire la matrice A' de l'application f dans la base \mathcal{B}' .

B. Étude d'une application linéaire.

- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, et que la famille (I, A, A^2) en constitue une base.
- 2. Montrer que, $\forall M \in F$, $AM \in F$.
- 3. Soit $g: \left\{ \begin{array}{ccc} F & \to & F \\ M & \mapsto & AM \end{array} \right.$
 - (a) Montrer que $g \in \mathcal{L}(F)$.
 - (b) Écrire la matrice de g dans la base (I, A, A^2) .
 - (c) Montrer que $g \circ g \circ g = 2g$.
 - (d) Montrer que $\operatorname{Im}(g^2 2id) \subset \ker(g)$.
 - (e) Déterminer une base de $\ker(g)$.
 - (f) Déterminer $\dim(\operatorname{Im}(g))$.
 - (g) Résoudre dans F l'équation $g(M) = A + A^2$.

Exercice 2

On pose pour tout cet exercice $f(x) = \frac{\ln(1+x)}{x}$. On rappelle que $\ln(3) \simeq 1, 1$ et $\ln(2) \simeq 0, 7$.

I. Étude de la fonction f.

- 1. Déterminer le domaine de définition \mathcal{D}_f de la fonction f.
- 2. Montrer que $f(x) = o(\sqrt{x})$.
- 3. Calculer un développement limité à l'ordre 2 en 0 de f(x).
- 4. Montrer que f est prolongeable par continuité en 0. On notera g ce prolongement.
- 5. Montrer que g est dérivable en 0. On précisera l'équation de la tangente à la courbe représentative de g en son point d'abscisse 0, ainsi que la position relative de cette tangente et de la courbe au voisinage de 0.
- 6. La fonction g est-elle de classe C^1 en 0?
- 7. Étudier les variations de la fonction g et dresser son tableau de variations complet. On pourra utiliser la fonction auxiliaire $k: x \mapsto x (1+x) \ln(1+x)$.
- 8. Tracer une allure soignée de la courbe représentative de la fonction g.
- 9. Montrer que g réalise une bijection de $]-1,+\infty[$ vers un intervalle à préciser.
- 10. Donner un développement limité à l'ordre 2 en 1 de la réciproque g^{-1} de la fonction g (on pourra exploiter l'égalité $g^{-1}(g(x)) = x$).

II. Étude d'une suite récurrente.

- 1. Montrer que l'équation f(x) = x admet une unique solution dans l'intervalle $\left[\frac{1}{2}, 1\right]$. On notera cette solution α .
- 2. Soit (u_n) la suite définie par $u_0 = 1$ et, $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - (a) Montrer que, $\forall n \in \mathbb{N}, u_n \in \left[\frac{1}{2}, 1\right]$.
 - (b) En admettant que la dérivée f' est strictement croissante sur l'intervalle $\left[\frac{1}{2},1\right]$, montrer que, $\forall x \in \left[\frac{1}{2},1\right]$, $|f'(x)| \leq 0.4$.
 - (c) Montrer que, $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq 0.4|u_n \alpha|$.
 - (d) En déduire que $|u_n \alpha| \leq \frac{1}{2} \times 0.4^n$, puis déterminer la limite de la suite (u_n) .
 - (e) Déterminer un entier n_0 tel que u_{n_0} soit une valeur approchée de α à 10^{-2} près (on donnera le résultat à l'aide d'une partie entière).

III. Dérivées successives de la fonction f.

On notera dans cette partie $f^{(n)}$ la dérivée n-ème de la fonction f (avec $n \in \mathbb{N}$).

- 1. Prouver que f est deux fois dérivable sur $]0,+\infty[$, et calculer f''(x).
- 2. Montrer que, $\forall n \in \mathbb{N}^*, \ \exists T_n \in \mathbb{R}[X], \ \exists a_n \in \mathbb{R}, \ \text{tels que}$

$$\forall x > 0, \ f^{(n)}(x) = \frac{T_n(x)}{x^n(1+x)^n} + a_n \frac{\ln(1+x)}{x^{n+1}}$$

- 3. Exprimer a_n en fonction de n.
- 4. On pose $u(x) = \ln(1+x)$ et $v(x) = \frac{1}{x}$.
 - (a) Déterminer les dérivées d'ordre k des fonctions u et v sur $]0, +\infty[$ (pour $k \in \mathbb{N}^*$).
 - (b) En déduire une expression de $f^{(n)}(x)$, puis celle du polynôme T_n (on ne cherchera pas à calculer explicitement chacun des coefficients du polynôme). Vérifier que l'expression obtenue pour n=2 est correcte.