Devoir Surveillé nº 4

PTSI B Lycée Eiffel

15 décembre 2018

Exercice 0 (mise en jambes)

Les questions de cet exercice sont indépendantes :

- 1. Résoudre l'équation $z^3 + (3i 3)z^2 (3 + 4i)z + 1 7i = 0$.
- 2. Déterminer le terme général de la suite (u_n) définie par $u_0=3$ et la relation de récurrence $u_{n+1}=-2u_n+6$.
- 3. Calculer $\int_0^{\frac{\pi}{3}} \cos^3(x) \sin(x) dx$ en effectuant au prélable une linéarisation.

Exercice 1

Soit z = a + ib un nombre complexe de module 1. On note alors $f(z) = \left| 1 - z + \frac{z^2}{2} \right|$.

- 1. Calculer f(z) lorsque z = i, puis lorsque $z = e^{i\frac{\pi}{3}}$.
- 2. Expliquer pourquoi on a nécessairement $0 \leqslant f(z) \leqslant \frac{5}{2}$.
- 3. Rappeler quelle relation relie a et b lorsque z est de module 1. En déduire une expression de $\text{Re}(z^2)$ en fonction de a uniquement.
- 4. Déterminer un polynôme du second degré P tel que f(z) = P(a) (en notant toujours a la partie réelle de z).
- 5. Étudier la fonction f, et en déduire son maximum et son minimum sur l'intervalle [-1,1].
- 6. En déduire un encadrement de f(z) meilleur que celui de la question 2. Les bornes de ce nouvel encadrement peuvent-elles être atteintes?

Exercice 2

Soit f l'application définie sur $\mathbb{C}\setminus\{i\}$ par $f(z)=\frac{z-1-i}{\overline{z}+i}$.

- 1. Calculer les images par f de 1 (sous forme algébrique et sous forme exponentielle), de 1 + 3i (sous forme algébrique), de $e^{i\frac{\pi}{3}}$ (sous forme algébrique).
- 2. Déterminer les antécédents éventuels par f du nombre 1, puis ceux de 2 et 2-i.
- 3. Calculer f(z) sous forme algébrique.
- 4. Déterminer l'ensemble des nombres complexes z tels que $f(z) \in \mathbb{R}$. On donnera bien entendu une interprétation géométrique assortie d'un petit dessin.
- 5. Déterminer de même l'ensemble des nombres complexes z tels que $f(z) \in i\mathbb{R}$.
- 6. Déterminer l'ensemble des nombres complexes z pour lesquels |f(z)| = 2.

Exercice 3

On considère deux suites (u_n) et (v_n) définies par les conditions suivantes : $u_0 = 2$ et pour tout entier naturel n, on pose $v_n = \frac{3}{u_n}$ puis $u_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Calculer les valeurs exactes de v_0 , u_1 , v_1 et u_2 . Donner une valeur approchée à 10^{-2} près de v_2 . Cette valeur approchée est-elle une valeur approchée par défaut ou par excès?
- 2. Montrer que les deux suites (u_n) et (v_n) sont bornées par $\frac{3}{2}$ et par 2.
- 3. Montrer que, pour tout entier naturel n, on a $u_{n+1} v_{n+1} = \frac{(u_n v_n)^2}{2(u_n + v_n)}$. En déduire que $u_n \geqslant v_n$.
- 4. Déterminer la monotonie des deux suites (u_n) et (v_n) . Que peut-on en conclure sur les deux suites?
- 5. Montrer, en utilisant les résultats des questions précédentes, que $u_{n+1} v_{n+1} \leqslant \frac{u_n v_n}{6}$.
- 6. En déduire que $u_n v_n \leqslant \frac{1}{2 \times 6^n}$.
- 7. Que peut-on dire sur les deux suites (u_n) et (v_n) au vu des résultats des questions 4 et 6? Déterminer la valeur de leur limite commune l.
- 8. Déterminer une valeur de n pour laquelle on peut être certain que u_n représente une valeur approchée à 10^{-10} près de sa limite l (on cherche une formule théorique, on ne cherchera pas à faire l'application numérique!). Combien de décimales de l la valeur de u_4 permettrait-elle de calculer avec certitude?

Exercice 4

On considère l'équation $z^n+z+1=0$ d'inconnue $z\in\mathbb{C},$ n étant un entier naturel supérieur ou égal à 2.

- 1. Déterminer les solutions de l'équation lorsque n=2. Quels sont leurs modules?
- 2. On s'intéresse maintenant au cas n=3, et on définit une fonction f sur \mathbb{R} par $f(t)=t^3+t+1$.
 - (a) En étudiant la fonction f, vérifier que l'équation $z^3 + z + 1 = 0$ admet exactement une solution réelle qu'on notera r vérifiant $-1 < r < -\frac{1}{2}$ (on ne cherchera pas à déterminer la valeur exacte de r).
 - (b) En notant z_1 et z_2 les deux autres solutions de l'équation, prouver que $z_1+z_2=-r$ et $z_1z_2=-\frac{1}{r}$.
 - (c) Donner un encadrement de $|z_1 + z_2|$ et de $|z_1 z_2|$.
 - (d) En supposant que $|z_1| \ge 2$, que peut-on dire sur $|z_2|$? Justifier que $|z_1| < 1 + |z_2|$ et aboutir à une contradiction.
 - (e) Montrer que toutes les solutions de l'équation sont de module strictement inférieur à 2.
- 3. On souhaite généraliser le résultat précédent à un entier naturel $n \geqslant 2$ quelconque :
 - (a) Étudier la fonction définie sur $[2, +\infty[$ par $g(t) = t^n t 1$ (variations, limite, signe, courbe).
 - (b) Montrer qu'une solution de l'équation $z^n + z + 1 = 0$ vérifie nécessairement |z| < 2.
 - (c) Que pensez-vous de la réciproque de cette dernière implication?