Feuille d'exercices n°3 : corrigé

PTSI B Lycée Eiffel

3 octobre 2017

Vrai-Faux

- 1. C'est vrai, elle est certes périodique de période π , mais a fortiori elle l'est également de période 2π .
- 2. Non, c'est n'importe quoi, le signe n'est pas bon, et c'est celle du cosinus.
- 3. Non, les premières valeurs de x sont correctes, mais pour les autres il faut prendre $x = \frac{2\pi}{3} + k\pi$.
- 4. Non, elle est à valeurs dans $[0, \pi]$, mais définie sur [-1, 1].
- 5. Vrai!

Exercice 1 (*)

En constatant que $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$, on peut simplement appliquer les formules d'addition pour obtenir $\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} + \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$. On obtient de même $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$, puis en effectuant le quotient $\tan\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}$.

Pour $\frac{\pi}{24}$, pas vraiment d'autre choix que de passer par les formules de duplication : $2 \times \frac{\pi}{24} = \frac{\pi}{12}$, donc $\cos\left(\frac{\pi}{12}\right) = 2\cos^2\left(\frac{\pi}{24}\right) - 1$. On en déduit que $\cos\left(\frac{\pi}{24}\right) = \sqrt{\frac{1}{2}\left(\cos\left(\frac{\pi}{12}\right) + 1\right)} = \sqrt{\frac{\sqrt{6} + \sqrt{2} + 4}{8}}$.

En exploitant ensuite la relation $\cos^2 + \sin^2 = 1$, on trouve $\sin\left(\frac{\pi}{24}\right) = \sqrt{\frac{4 - \sqrt{6} - \sqrt{2}}{8}}$, puis enfin

 $\tan\left(\frac{\pi}{24}\right) = \sqrt{\frac{4-\sqrt{6}-\sqrt{2}}{4+\sqrt{6}+\sqrt{2}}}$, ce qu'on peut essayer de simplifier si on a du temps à perdre (mais on n'obtient rien de très simple).

Exercice 2 (** à ***)

- 1. Cela se produit si $2x = \frac{\pi}{4} + k\pi$, soit $x = \frac{\pi}{8} + k\frac{\pi}{2}$, ce qu'on note également $x \equiv \frac{\pi}{8} \left[\frac{\pi}{2} \right]$.
- 2. $\sin\left(x + \frac{3\pi}{4}\right) = \cos\left(\frac{x}{4}\right) \Leftrightarrow \cos\left(\frac{\pi}{2} x \frac{3\pi}{4}\right) = \cos\left(\frac{x}{4}\right) \Leftrightarrow -x \frac{\pi}{4} \equiv \frac{x}{4}[2\pi] \text{ ou } -x \frac{\pi}{4} \equiv -\frac{x}{4}[2\pi] \Leftrightarrow \frac{5x}{4} \equiv -\frac{\pi}{4}[2\pi] \text{ ou } \frac{3x}{4} \equiv -\frac{\pi}{4}[2\pi], \text{ donc } \mathcal{S} = \left\{-\frac{\pi}{5} + k\frac{8\pi}{5}, -\frac{\pi}{3} + k\frac{3\pi}{5} \mid k \in \mathbb{Z}\right\}.$
- 3. Il suffit d'utiliser la formule de transformation produit/somme : $\cos\left(x + \frac{\pi}{6}\right)\cos\left(x \frac{\pi}{6}\right) = \frac{1}{2} \Leftrightarrow \frac{1}{2}\left(\cos(2x) + \cos\left(\frac{\pi}{3}\right)\right) = \frac{1}{2} \Leftrightarrow \cos(2x) = 1 \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \Leftrightarrow 2x \equiv \frac{\pi}{3}[2\pi] \text{ ou } 2x \equiv -\frac{\pi}{3}[2\pi], \text{ donc } S = \left\{\frac{\pi}{6} + k\pi, -\frac{\pi}{6} + k\pi \mid k \in \mathbb{Z}\right\}.$

4. Beaucoup moins compliqué que ça n'en a l'air, il suffit d'y croire :

$$\sin(3x)\cos^{3}(x) + \sin^{3}(x)\cos(3x) = \frac{3}{4}$$

$$\Leftrightarrow (3\sin(x) - 4\sin^{3}(x))\cos^{3}(x) + \sin^{3}(x)(4\cos^{3}(x) - 3\cos(x)) = \frac{3}{4}$$

$$\Leftrightarrow \sin(x)\cos^{3}(x) - \sin^{3}(x)\cos(x) = \frac{1}{4}$$

$$\Leftrightarrow \sin(x)\cos(x)(\cos^{2}(x) - \sin^{2}(x)) = \frac{1}{4}$$

$$\Leftrightarrow \frac{1}{2}\sin(2x)\cos(2x) = \frac{1}{4}$$

$$\Leftrightarrow \sin(4x) = 1$$
On a donc $4x \equiv \frac{\pi}{2}[2\pi]$ et $S = \left\{\frac{\pi}{8} + k\frac{\pi}{2} \mid k \in \mathbb{Z}\right\}$.

5. L'équation ne peut avoir de sens que si $x \in [-1;1]$ et $2x \in [-1;1]$, donc $x \in \left[-\frac{1}{2};\frac{1}{2}\right]$. On peut ensuite prendre le sin de chaque côté de l'équation. Comme $\arccos(x) \in [0;\pi]$, $\sin(\arccos(x)) > 0$, et $\sin(\arccos(x)) = \sqrt{1-\cos^2(\arccos(x))} = \sqrt{1-x^2}$. Quant au sinus de $\arcsin(2x)$, il vaut évidemment 2x, ce qui donne la condition nécessaire $2x = \sqrt{1-x^2}$. Les solutions de l'équation sont donc forcément positives et vérifient, en élevant au carré l'égalité précédente, $4x^2 = 1 - x^2$, soit $x^2 = \frac{1}{5}$, donc $x = \frac{\sqrt{5}}{5}$ (la solution négative ayant déjà été exclue). Cette valeur est bien inférieure à $\frac{1}{2}$, donc $\mathcal{S} = \left\{\frac{\sqrt{5}}{5}\right\}$.

Exercice 3 (**)

Parmi les douze mille méthodes possibles, on peut commencer par utiliser la formule de duplication $\cos(2a) = 2\cos^2(a) - 1$ pour la mettre sous la forme $\cos^2(a) = \frac{1}{2}(\cos(2a) + 1)$. En notant S la somme qu'on nous demandait de calculait, on a donc $S = \sum_{k=1}^4 \frac{1}{2} \left(\cos\left(\frac{2k\pi}{9}\right) + 1\right) = \frac{\cos(\frac{2\pi}{9}) + \cos(\frac{4\pi}{9}) + \cos(\frac{6\pi}{9}) + \cos(\frac{8\pi}{9})}{2} + 2$. Or on sait très bien que $\cos\left(\frac{6\pi}{9}\right) = \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$. De plus, en utilisant une superbe transformation somme-produit, on peut écrire que $\cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) = 2\cos\left(\frac{3\pi}{9}\right)\cos\left(\frac{\pi}{9}\right) = \cos\left(\frac{\pi}{9}\right)$ (les deux autres facteurs se simplifient). Or, ça tombe merveilleusement bien, $\cos\left(\frac{8\pi}{9}\right) = \cos\left(\pi - \frac{\pi}{9}\right) = -\cos\left(\frac{\pi}{9}\right)$. Il ne reste donc plus que $S = -\frac{1}{4} + 2 = \frac{7}{4}$.

Exercice 4 (**)

Il suffit d'appliquer une deuxième fois la formule de duplication des tangentes : $\tan(4x) = \tan(2x + \tan(x))$

$$2x) = \frac{2\tan(2x)}{1 - \tan^2(2x)} = \frac{\frac{4\tan(x)}{1 - \tan^2(x)}}{1 - \frac{4\tan^2(x)}{(1 - \tan^2(x))^2}} = \frac{4\tan(x)(1 - \tan^2(x))}{1 - 6\tan^2(x) + \tan^4(x)}.$$

Appliquons la formule à $x = \arctan\left(\frac{1}{5}\right)$ (qui a évidemment pour tangente $\frac{1}{5}$) pour obtenir

$$\tan(4x) = \frac{\frac{4}{5} \times (1 - \frac{1}{25})}{1 - \frac{6}{6} + \frac{1}{625}} = \frac{20 \times 24}{625 - 150 + 1} = \frac{480}{476} = \frac{120}{119}. \text{ Calculons maintenant } \tan\left(\frac{\pi}{4} + \arctan\left(\frac{1}{239}\right)\right) = \frac{1 + \frac{1}{239}}{1 - \frac{1}{239}} = \frac{240}{238} = \frac{120}{119}. \text{ Ca vous rappelle quelque chose? Les deux angles } 4\arctan\left(\frac{1}{5}\right) \text{ et } \frac{\pi}{4} - \arctan\left(\frac{1}{239}\right) \text{ ont la même tangante, et ils sont tous les deux positifs et plus petits que } \frac{\pi}{2} \text{ (pour le deuxième c'est évident, pour le premier, il faut vérifier que } \tan\left(\frac{\pi}{8}\right) > \frac{1}{5}\text{), ce qui permet de conclure à l'égalité des deux angles, ce qui prouve la formule de Machin. Pour être complets, calculons donc les lignes trigonométriques de $\frac{\pi}{8}$ en utilisant que $2 \times \frac{\pi}{8} = \frac{\pi}{4}.$ On en déduit par exemple que $2\cos^2\left(\frac{\pi}{8}-1\right) = \frac{\sqrt{2}}{2}, \text{ donc } \cos^2\left(\frac{\pi}{8}\right) = \frac{\sqrt{2}+2}{4}, \text{ donc } \cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{\sqrt{2}+2}}{2}. \text{ On aura ensuite } \sin\left(\frac{\pi}{8}\right) = \sqrt{1-\cos^2\left(\frac{\pi}{8}\right)} = \frac{\sqrt{2-\sqrt{2}}}{2}. \text{ On obtient enfin } \tan\left(\frac{\pi}{8}\right) = \sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}} = \sqrt{\frac{6-4\sqrt{2}}{2}} = \sqrt{\frac{3-2\sqrt{2}}{2}} \text{ (qui pour les plus curieux peut se simplifier en } \sqrt{2}-1\text{). En tout cas, ce nombre a pour carré } 3-2\sqrt{2}, \text{ dont on veut prouver qu'il est supérieur à } \frac{1}{25}, \text{ ce qui revient à dire que } 74-50\sqrt{2}>0, \text{ soit } \sqrt{2} < \frac{37}{25}. \text{ En élevant au carré, on a bien } 2 < \frac{1\,369}{625}, \text{ donc tout va bien (ouf!)}.$$$

La deuxième formule est plus simple : $\tan\left(\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)\right) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{6}} = \frac{\frac{5}{6}}{\frac{5}{6}} = 1$. Comme on sait par ailleurs que $\tan\left(\frac{\pi}{4}\right) = 1 > \frac{1}{2} > \frac{1}{3}$, il est facile de voir que $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) < \frac{\pi}{2}$, ce qui achève la démonstration de l'égalité.

Exercice 5 (***)

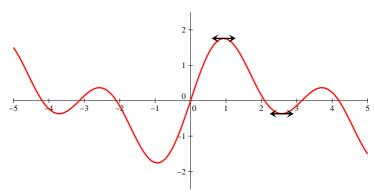
• La fonction f est définie sur \mathbb{R} , 2π -périodique et impaire. On va donc restreindre son étude à l'intervalle $[0;\pi]$. Elle est dérivable, de dérivée $f'(x) = \cos(x) + 2\cos(2x) = \cos(x) + 2(2\cos^2(x) - 1) = 4\cos^2(x) + \cos(x) - 2$. En posant $X = \cos(x)$, on se ramène à l'étude du signe du trinome $4X^2 + X - 2$, qui a pour discriminant $\Delta = 1 + 32 = 33$, et admet donc pour racines $X_1 = \frac{-1 + \sqrt{33}}{8}$ et $X_2 = \frac{-1 - \sqrt{33}}{8}$. Ces valeurs n'étant certainement pas des cosinus d'angles remarquables, on ne peut que les exprimer à l'aide de la fonction arccos (les deux valeurs sont comprises entre -1 et 1). Comme arccos est une fonction décroissante, $\arccos(X_1) < \arccos(X_2)$, et le tableau de variations ressemble à ceci :

x	0	$x_1 = \arccos(X$	$\zeta_1)$	$x_2 = \arccos(x_2)$	X_2) π
f'(x)	+	0	_	0	+
f	0	$f(x_1)$		$f(x_2)$	0

On peut, si on est vraiment très motivé, chercher à calculer les valeurs du minimum et du maximum, mais on va tomber sur des valeurs affreuses. Par exemple, $f(x_1) = \sin(\arccos(X_1)) + \sin(2\arccos(X_1)) = \sin(\arccos(X_1)) + 2\sin(\arccos(X_1))\cos(\arccos(X_1))$ en appliquant la formule de duplication. Or, $\sin(\arccos(X_1)) = \sqrt{1-\cos^2(\arccos(X_1))}$ (les sinus sont positifs puisqu'on est dans $[0;\pi]$), donc $\sin(\arccos(X_1)) = \sqrt{1-X_1^2}$, avec $X_1^2 = \frac{1+33-2\sqrt{33}}{64} = \frac{34-2\sqrt{33}}{64}$, soit $\sin(\arccos(X_1)) = \sqrt{\frac{30+2\sqrt{33}}{64}} = \frac{\sqrt{30+2\sqrt{33}}}{8}$. On obtient alors $f(x_1) = \frac{\sqrt{30+2\sqrt{33}}}{64}$

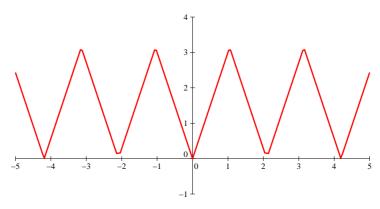
 $\frac{\sqrt{30+2\sqrt{33}}}{\frac{8}{8}} + 2\frac{\sqrt{30+2\sqrt{33}}}{\frac{8}{8}} \frac{\sqrt{33}-1}{8} = \frac{\sqrt{30+2\sqrt{33}}}{8} + \frac{(\sqrt{33}-1)\sqrt{30+2\sqrt{33}}}{32}$

 $=\frac{(\sqrt{33}+3)\sqrt{30+2\sqrt{33}}}{32}.$ C'est très laid et fort peu expoitable, on se dispensera donc de tenter un calcul du minimum.



• La fonction g est définie sur \mathbb{R} , car $\cos(3x)$ étant toujours compris entre -1 et 1, on tombe toujours dans l'intervalle de définition de la fonction arccos. La fonction est de plus paire (puisque cos l'est), et $\frac{2\pi}{3}$ périodique (comme $x\mapsto\cos(3x)$). On peut donc restreindre l'intervalle d'étude à $\left[0;\frac{\pi}{3}\right]$. Or, sur cet intervalle, on constate que $3x\in[0;\pi]$, donc arccos $(\cos(3x))=3x$. La courbe représentative de g sur cet intervalle est donc un segment de droite, et le reste s'en déduit par la symétrie et la périodicité.

Les plus courageux auront calculé la dérivée : $g'(x) = -3\sin(3x) \times \frac{-1}{\sqrt{1-\cos^2(3x)}} = \frac{3\sin(3x)}{\sqrt{\sin^2(3x)}} = \frac{3\sin(3x)}{\sqrt{\sin^2(3x)}}$ = $3\frac{\sin(3x)}{|\sin(3x)|}$, qui vaut 3 ou -3 selon le signe de $\sin(3x)$. On retrouve alors l'allure de la courbe.



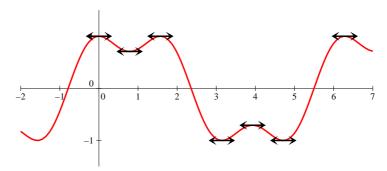
• La fonction h est définie sur \mathbb{R} , 2π -périodique, mais ni paire ni impaire. On va donc restreindre son étude à l'intervalle $[0;2\pi]$. On peut la dériver : $h'(x) = -3\sin(x)\cos^2(x) + 3\cos(x)\sin^2(x) = 3\sin(x)\cos(x)(\sin(x) - \cos(x))$. Le dernier facteur s'annule en $\frac{\pi}{4}$ et en $\frac{5\pi}{4}$, ce qui permet d'établir le tableau de variations suivant :

4

x	0	$\frac{\pi}{4}$ $\frac{7}{2}$	$\frac{\tau}{2}$ π		$\frac{5\pi}{4}$	$\frac{\pi}{2}$ 2π
$\cos(x)$	+	+ () –	_	_	0 +
$\sin(x)$	0 +	+	+ 0	_	_	- 0
$\sin(x) - \cos(x)$	_	0 +	+	+	0 –	_
h'(x)	0 -	0 + 0) – 0	+	0 –	0 + 0
h		$\frac{\sqrt{2}}{2}$		1	$\frac{\sqrt{2}}{2}$	-1

Calcul des valeurs intéressantes : $f(0) = 1^3 + 0^3 = 1$; $f\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^3 + \left(\frac{\sqrt{2}}{2}\right)^3 = 1$

 $\frac{2\sqrt{2}}{8} + \frac{2\sqrt{2}}{8} = \frac{\sqrt{2}}{2}$; les deniers calculs sont extrêmement similaires. On peut enfin tracer une fort belle courbe :



• La fonction i ne peut être définie que si $x \ge 0$ (à cause de la racine carrée) et si $\frac{\sqrt{x}}{1+x} \in [-1;1]$ à cause du arccos. Puisqu'on a déjà supposé $x \ge 0$, cela revient à dire qu'on doit avoir $\sqrt{x} \le 1+x$, soit en élevant au carré $x \le 1+2x+x^2$, ce qui est toujours le cas. On a donc $\mathcal{D}_i = \mathbb{R}^+$. On peut dériver la fonction i, ce qui donne $i'(x) = \frac{\frac{1+x}{2\sqrt{x}} - \sqrt{x}}{(1+x)^2} \times \frac{-1}{\sqrt{1-\frac{x}{(1+x)^2}}} = \frac{1+x}{\sqrt{1-\frac{x}{(1+x)^2}}}$

$$-\frac{1-x}{2\sqrt{x}(1+x)^2} \times \frac{1+x}{\sqrt{(1+x)^2-x}} = \frac{x-1}{2\sqrt{x}(1+x)\sqrt{x^2+x+1}}.$$
 On peut constater en passant

 $2\sqrt{x}(1+x)^2$ $\sqrt{(1+x)^2-x}$ $2\sqrt{x}(1+x)\sqrt{x^2+x+1}$. On peur constant en passant que la fonction i n'est pas dérivable en 0 (il y aura une tangente verticale puisque la dérivée y a une limite infinie), et la dérivée, bien qu'assez laide, est simplement du signe de x-1.

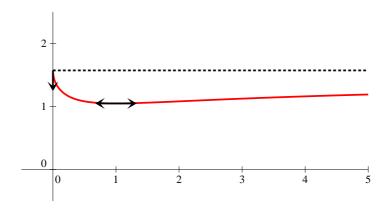
La fonction admet donc un minimum en 1, de valeur $i(1) = \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}$. Par ailleurs,

 $f(0) = \arccos(0) = \frac{\pi}{2}$, et comme $\lim_{x \to +\infty} \frac{\sqrt{x}}{x+1} = 0$, on aura également $\lim_{x \to +\infty} i(x) = \frac{\pi}{2}$. On peut donc dresser le tableau de variations suivant :

JU.	illations salvaile.					
	\boldsymbol{x}	0	1	$+\infty$		
	i	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$		

5

Et tracer une dernière et magnifique courbe :



Exercice 6 (**)

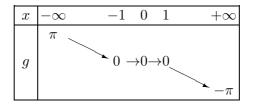
- 1. Reprenez la construction donnée dans le cours, à l'aide du cercle trigonométrique, du sinus et de la tangente. On peut tout interpréter en termes de longueur : $\sin(h)$ (remplacez le x du cours par un h) est la hauteur du triangle intérieur au cercle, dont les sommets sont O, M et le point I de coordonnées (1,0). La valeur de $\tan(h)$ est la hauteur du triangle extérieur au cercle et tangent extérieurement au point I. Quant à x, c'est par définition la longueur de l'arc de cercle reliant le point I à M. Ainsi, l'aire du petit triangle vaut $\frac{1}{2}\sin(h)$, celle du triangle extérieur vaut $\frac{1}{2}\tan(h)$, et la portion de disque contenue entre les deux a pour aire $\pi \times \frac{h}{2\pi} = \frac{h}{2}$. En multipliant tout par 2, on obtient $\sin(h) \le h \le \tan(h)$.
- 2. L'inégalité de droite a déjà été prouvée. Celle de gauche s'obtient en partant de $h \le \tan(h)$ et en mulptiliant de chaque côté par $\cos(h)$. En divisant tout cela par h, on a alors $\cos(h) \le \frac{\sin(h)}{h} \le 1$. Comme $\cos(0) = 1$, $\frac{\sin(h)}{h}$ est enacdré par deux expressions tendant vers 1 en 0, donc $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$.
- 3. Puisque $\sin(0) = 0$, on en déduit facilement que $\lim_{h\to 0} \frac{\sin^2(h)}{h} = 0$. Or, $\frac{\sin^2(h)}{h} = \frac{1-\cos^2(h)}{h} = (1+\cos(h))\frac{1-\cos(h)}{h}$. Le premier terme ayant pour limite 2 en 0, le deuxième doit nécessairement avoir une limite nulle pour que le produit tende vers 0.
- 4. Revenons à la définition de la dérivée : le taux d'accroissement du cos en x vaut $\tau_x(h) = \frac{\cos(x+h) \cos(x)}{h}$. En utilisant les formules d'addition, on trouve $\tau_x(h) = \frac{\cos(x)\cos(h) \sin(x)\sin(h) \cos(x)}{h} = \cos(x)\frac{\cos(h) 1}{h} \sin(x)\frac{\sin(h)}{h}$. Le premier quotient tend vers 0, le deuxième vers 1, donc $\lim_{h\to 0} \tau_x(h) = -\sin(x)$, ce qui donne bien la dérivée que vous connaissez par coeur pour le cosinus.
- 5. Même principe, cette fois-ci $\tau_x(h) = \frac{\sin(x+h) \sin(x)}{h} = \frac{\cos(x)\sin(h) + \sin(x)\cos(h) \sin(x)}{h} = \cos(x)\frac{\sin(h)}{h} + \sin(x)\frac{1 \cos(h)}{h}$. Les mêmes limites que tout à l'heure permettent de conclure.

Exercice 7 (**)

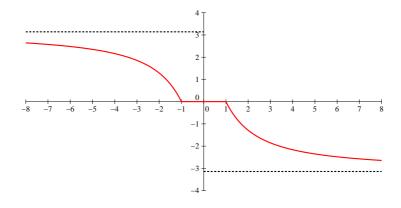
1. La fonction arctan étant définie sur \mathbb{R} , la seule condition pour que x appartienne au domaine de définition de f est $\frac{2x}{1+x^2} \in [-1,1]$, ou encore $-1-x^2 \leqslant 2x \leqslant 1+x^2$ (on peut multiplier par

 $1+x^2$ qui est toujours positif). Autrement dit, on doit avoir simultanément $-1-2x-x^2 \le 0$, soit $-(1+x)^2 \le 0$, ce qui est toujours vrai; et $1-2x+x^2 \ge 0$ soit $(1-x)^2 \ge 0$, ce qui est toujours vrai aussi. Finalement, $\mathcal{D}_f = \mathbb{R}$. Qui plus est, la fonction f est impaire, on peut donc restreindre son étude à l'intervalle $[0,+\infty[$.

- 2. Calculons : f(0) = 0 (on sait que f est impaire!), $f(1) = \arcsin(1) 2\arctan(1) = \frac{\pi}{2} 2 \times \frac{\pi}{4} = 0$, et $f(\sqrt{3}) = \arcsin\left(\frac{\sqrt{3}}{2}\right) 2\arctan(\sqrt{3}) = \frac{\pi}{3} 2\frac{\pi}{3} = -\frac{\pi}{3}$.
- 3. La dérivée existe si $f(x) \notin \{-1,1\}$, ce qui ne se produit que si x=-1 ou x=1 (voir les calculs de la première question). Quand elle est définie, on peut écrire $f(x)=\arcsin(u(x))-2\arctan(x)$ avec $u(x)=\frac{2x}{1+x^2}$, et on peut calculer $u'(x)=\frac{2(1+x^2)-4x^2}{(1+x^2)^2}=\frac{2(1-x^2)}{(1+x^2)^2}$, puis $f'(x)=\frac{u'(x)}{\sqrt{1-u^2(x)}}-\frac{2}{1+x^2}=\frac{2(1-x^2)}{(1+x^2)^2}\times\frac{1}{\sqrt{1-\frac{4x^2}{(1+x^2)^2}}}-\frac{2}{1+x^2}=\frac{2(1-x^2)}{(1+x^2)^2}\times\frac{1}{\sqrt{1-\frac{4x^2}{(1+x^2)^2}}}-\frac{2}{1+x^2}=\frac{2(1-x^2)}{(1+x^2)^2}\times\frac{1}{\sqrt{1-x^2}}$
- 4. Si $x \in [-1,1]$, $1-x^2 \ge 0$, et $f'(x) = \frac{2}{1+x^2} \frac{2}{1+x^2} = 0$. La fonction f est donc constate sur [-1,1], et même nulle sur cet intervalle vu les valeurs calculées plus haut.
- 5. Si $x \ge 1$, on a désormais $f'(x) = -\frac{2}{1+x^2} \frac{2}{1+x^2} = -\frac{4}{1+x^2}$, donc $f(x) = -4\arctan(x) + k$. La constante k est par exemple obtenue en regardant pour $x = \sqrt(3) : -\frac{\pi}{3} = -4 \times \frac{\pi}{3} + k$, donc $k = \pi$, et $f(x) = \pi 4\arctan(x)$.
- 6. On sait que la fonction arctan est croissante sur \mathbb{R} , ce qui donne facilement les variations de la fonction f. On utilise aussi l'imparité pour compléter le tableau, la seule chose restant à calculer est la limite de f lorsque x tend vers $+\infty$. On l'obtient sans problème avec la forme initiale ou avec la forme simplifiée : $\lim_{x\to +\infty} f(x) = -\pi$. D'où le tableau complet suivant :



Et voila la courbe :



Exercice 8 (**)

- 1. Il faut bien évidemment que $x \in [-1,1]$ pour que $\arcsin(x)$ soit défini. De plus, on a la condition $\frac{1+x}{1-x} \ge 0$ (la fonction arctan étant définie sur \mathbb{R} , ce sera la seule condition supplémentaire), ce qui est le cas si $x \in [-1,1[$ (un petit tableau de signes si besoin). Finalement, $\mathcal{D}_f = [-1,1[$.
- 2. Pour dériver, procédons par étapes. En posant $g(x) = \frac{1+x}{1-x}$, on obtient d'abord $g'(x) = \frac{2}{(1-x)^2}$. On compose ensuite par la racine carrée pour obtenir $\frac{g'(x)}{2\sqrt{g(x)}} = \frac{1}{(1-x)^2}\sqrt{\frac{1-x}{1+x}} = \frac{1}{\sqrt{(1+x)(1-x)^3}}$. Il ne reste plus qu'à ajouter l'arctangente pour obtenir la deuxième moitié de la dérivée de $f: f'(x) = \frac{1}{\sqrt{1-x^2}} \frac{2}{\sqrt{(1+x)(1-x)^3}} \times \frac{1}{1+\frac{1+x}{1-x}} = \frac{1}{\sqrt{1-x^2}} \frac{2}{\sqrt{(1+x)(1-x)^3}} \times \frac{1-x}{2} = \frac{1}{\sqrt{1-x^2}} \frac{1}{\sqrt{(1+x)(1-x)}} = 0$. La fonction f est donc constante. Comme $f(0) = \arcsin(0) 2\arctan(1) = -\frac{\pi}{2}$, on en déduit que, $\forall x \in [-1,1[$, $f(x) = -\frac{\pi}{2}$.
- 3. Posons donc $x = \cos(\theta)$ (ce qui est certainement faisable puisque $x \in [-1,1[$. On peut alors écrire $\arcsin(x) = \arcsin(\cos(\theta)) = \frac{\pi}{2} \arccos(\cos(\theta)) = \frac{\pi}{2} \theta$ (on peut toujours choisir $\theta \in [0,\pi]$). Par ailleurs, $\frac{1+x}{1-x} = \frac{1+\cos(\theta)}{1-\cos(\theta)} = \frac{(1+\cos(\theta))^2}{1-\cos^2(\theta)} = \frac{(1+\cos(\theta))^2}{\sin^2(\theta)}$, donc $\sqrt{\frac{1+x}{1-x}} = \frac{1+\cos(\theta)}{\sin(\theta)}$ (sur $[0,\pi]$, le sinus est nécessairement positif). Avec un bon feeling, ou plutôt en regardant bien ce qu'on veut obtenir à la fin, on peut alors penser à tout exprimer en fonction de l'angle $\frac{\theta}{2}$: les formules de duplication assurent que $\cos(\theta) = 2\cos^2\left(\frac{\theta}{2}\right) 1$, et $\sin(\theta) = 2\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\theta}{2}\right)$, on en déduit que $\frac{1+\cos(\theta)}{\sin(\theta)} = \frac{2\cos^2(\frac{\theta}{2})}{2\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})} = \frac{\cos(\frac{\theta}{2})}{\sin(\frac{\theta}{2})} = \frac{1}{\tan(\frac{\theta}{2})}$. En utilisant l'une des nombreuses formules du cours, $\frac{1}{\tan(\frac{\theta}{2})} = \tan\left(\frac{\pi}{2} \frac{\theta}{2}\right)$, ce qui permet, en ajoutant l'arctangente, de simplifier f(x) sous la forme $f(x) = \frac{\pi}{2} \theta 2\left(\frac{\pi}{2} \frac{\theta}{2}\right) = -\frac{\pi}{2}$. On retrouve le même résultat qu'à la question précédente.

Exercice 9 (***)

- 1. La fonction cos étant définie sur \mathbb{R} , le domaine de définition de T_n est le même que celui de la fonction arccos, c'est-à-dire le segment [-1,1].
- 2. Calculons: $T_n(1) = \cos(n \arccos(1)) = \cos(0) = 1$; $T_n(0) = \cos(n \arccos(0)) = \cos\left(\frac{n\pi}{2}\right)$ (qui vaut 0 si n est impair, 1 si n est multiple de 4 et -1 si n est pair mais pas multiple de 4); et $T_n(-1) = \cos(n\pi) = (-1)^n$.
- 3. Si $x \in [0, \pi]$, on peut simplifier $\arccos(\cos(x))$ pour trouver $T_n(\cos(x)) = \cos(nx)$, donc g(x) = 0. De plus, g est une fonction paire, car cos est paire, elle s'annule donc aussi sur $[-\pi, 0]$. Enfin, g est 2π -périodique tout comme cosinus, donc, étant nulle sur une période, elle est toujours nulle. Cela prouve bien que $\forall x \in \mathbb{R}, T_n(\cos(x)) = \cos(nx)$.
- 4. C'est du simple calcul : $T_0(x) = \cos(0) = 1$ (polynôme constant) ; $T_1(x) = \cos(\arccos(x)) = x$ (dans ce sens-là, ça marche toujours, du moins bien évidemment pour les valeurs de x pour

lesquelles arccos est définie); $T_2(x) = \cos(2\arccos(x)) = 2\cos^2(\arccos(x)) - 1 = 2x^2 - 1$ en utilisant les formules de duplication; et $T_3(x) = 4x^3 - 3x$ de même, en utilisant cette fois la formule de triplication du cosinus.

- 5. (a) Le plus simple est de partir de la formule de transformation produit-somme appliquée avec $b=(n+1)a, \text{ ce qui donne } \cos(a)\cos((n+1)a)=\frac{1}{2}(\cos(a+(n+1)a)+\cos((n+1)a-a))=\frac{1}{2}(\cos((n+2)a)-\cos(na)).$ La formule demandée en découle immédiatement.
 - (b) On applique tout simplement la formule précédente en choisissant $a = \arccos(x)$ (et on simplifie bien sûr le $\cos(\arccos(x))$ en x).
 - (c) Encore du calcul bête : $T_3(x) = 2xT_2(x) T_1(x) = 2x(2x^2 1) x = 4x^3 3x$; puis $T_4(x) = 2xT_3(x) T_2(x) = 2x(4x^3 3x) (2x^2 1) = 8x^4 8x^2 + 1$; et enfin $T_5(x) = 2xT_4(x) T_3(x) = 2x(8x^4 8x^2 + 1) (4x^3 3x) = 16x^5 20x^3 + 5x$.
- 6. Il faut simplement chercher les valeurs de x pour lesquelles $n \arccos(x) = \frac{\pi}{2} + k\pi = (2k+1)\frac{\pi}{2}$, ce qui revient bien à dire que $x = \cos\left(\frac{(2k+1)\pi}{2n}\right)$. La seule chose à comprendre, c'est qu'on peut se restreindre aux valeurs de k comprises entre 0 et n-1, mais pour les autres valeurs de k, on va tout simplement retomber sur les mêmes valeurs du cosinus! Par exemple $\cos\left(\frac{(2n+1)\pi}{2n}\right) = \cos\left(\pi + \frac{\pi}{2n}\right) = \cos\left(\pi \frac{\pi}{2n}\right) = \cos\left(\frac{(2n-1)\pi}{2n}\right)$. De toute façon, les valeurs de x_k , pour k compris entre 0 et n-1, sont toutes distinctes (ce sont des cosinus d'angles distincts compris entre 0 et π), et T_n , qui est un polynôme de degré n, ne peut pas avoir plus de n racines distinctes.

Exercice 10 (**)

- 1. Les fonctions sh et arctan étant toutes deux définies sur \mathbb{R} , arctan \circ sh l'est aussi. C'est moins évident pour la deuxième moitié puisque la fonction arccos n'est définie que sur [-1,1], mais ça tombe bien, la fonction th est justement à valeurs dans cette intervalle, ce qui permet d'affirmer que $\mathcal{D}_f = \mathbb{R}$.
- 2. La fonction f est toujours dérivable (th ne prend jamais les valeurs 1 et -1 qui sont les seules pour lesquelles arccos n'est pas dérivable), et $f'(x) = \frac{\sinh'(x)}{1 + \sinh^2(x)} \frac{\tanh'(x)}{\sqrt{1 \th^2(x)}}$. Or, on sait bien que $\sinh'(x) = \cosh(x)$ et que $\cosh^2(x) \sinh^2(x) = 1$ (c'est la seule formule de trigonométrie hyperbolique à connaitre), donc $1 + \sinh^2(x) = \cosh^2(x)$, et notre premier quotient se simplifie en $\frac{1}{\cosh(x)}$ (qui est bien défini sur $\mathbb R$ puisque la fonction ch ne s'annule jamais). Pour la deuxième moitié, on peut utiliser les résultats vus dans le problème de la feuille d'exercices : $\sinh'(x) = \frac{1}{\cosh^2(x)}$, et $1 \sinh^2(x) = \frac{1}{\cosh^2(x)}$ également. Comme ch est une fonctionn strictement positive, $\frac{1}{\sqrt{1 \sinh^2(x)}} = \cosh(x)$, et la deuxième moitié de notre dérivée se simplifie exactement comme la première pour donner la conclusion inattendue que f'(x) = 0. La fonction f est donc constante sur $\mathbb R$, égale à $f(0) = \arctan(0) + \arccos(0) = 0 + \frac{\pi}{2} = \frac{\pi}{2}$.
- donc constante sur \mathbb{R} , égale à $f(0) = \arctan(0) + \arccos(0) = 0 + \frac{\pi}{2} = \frac{\pi}{2}$.

 3. Rappelons qu'une des expression de la fonction th est $\operatorname{th}(x) = \frac{e^{2x} 1}{e^{2x} + 1}$, ce qui permet de transformer l'équation à résoudre en équation équivalente $13(e^{2x} 1) = 5(e^{2x} + 1)$, soit
 - $e^{2x} = \frac{18}{8} = \frac{9}{4}$. On en déduit que $2x = \ln\left(\frac{9}{4}\right) = 2\ln(3) 2\ln(2)$, donc l'unique solution est $x = \ln(3) \ln(2)$.

4. La fonction arctan étant strictement croissante sur \mathbb{R} , l'équation $\arctan(y) = \frac{\pi}{2} - \arccos\left(\frac{5}{13}\right)$ ne peut avoir qu'au plus une solution (peut-être zéro). Or, on sait que, si $x = \ln(3) - \ln(2)$, alors $\operatorname{th}(x) = \frac{5}{13}$, et qu'alors $f(x) = \arctan(\operatorname{sh}(x)) + \arccos(\operatorname{th}(x)) = \frac{\pi}{2}$, ce qui prouve que $y = \operatorname{sh}(x)$ est une solution de l'équation. Il ne reste donc plus qu'à calculer la valeur de $\operatorname{sh}\left(\ln\left(\frac{3}{2}\right)\right) = \frac{e^{\ln(\frac{3}{2})} + e^{-\ln(\frac{3}{2})}}{2} = \frac{\frac{3}{2} + \frac{2}{3}}{2} = \frac{13}{12}$.

Problème

- I. Calcul de $\cos\left(\frac{\pi}{5}\right)$.
 - 1. (a) On sait que $\cos(2x) = 2\cos^2(x) 1$, donc $\cos(4x) = 2\cos^2(2x) 1 = 2(2\cos^2(x) 1)^2 1 = 2(4\cos^4(x) 4\cos^2(x) + 1) 1 = 8\cos^4(x) 8\cos^2(x) + 1$.
 - (b) En posant $x = \frac{\pi}{5}$, on aura $4x = \frac{4\pi}{5} = \pi x$, donc $\cos(4x) = -\cos(x)$. Au vu de la relation précédente, on a donc $8\alpha^4 8\alpha^2 + 1 = -\alpha$, soit $8\alpha^4 8\alpha^2 + x + 1 = 0$.
 - (c) La racine la plus évidente est $-1:8(-1)^4-8(-1)^2-1+1=0$. On peut donc factoriser: $8x^4-8x^2+x+1=(x+1)(ax^3+bx^2+cx+d)=ax^4+(a+b)x^3+(b+c)x^2+(c+d)x+d$. On a donc a=8; a+b=0, soit b=-8; b+c=-8 soit c=0; c+d=1 soit d=1. Soit $8x^4-8x^2+x+1=(x+1)(8x^3-8x^2+1)$. Reste à trouver une deuxième racine, $x=\frac{1}{2}$ convient puisque $\frac{8}{8}-\frac{8}{4}+1=1-2+1=0$. On peut donc à nouveau factoriser: $8x^3-8x^2+1=\left(x-\frac{1}{2}\right)(ex^2+fx+g)=ex^3+\left(f-\frac{1}{2}e\right)x^2+\left(g-\frac{1}{2}f\right)x-\frac{1}{2}g$. Par identification, on obtient e=8; $f-\frac{1}{2}e=-8$, soit f=-4; $g-\frac{1}{2}f=0$ soit g=-2. Finalement, $8x^4-8x^2+x+1=(x+1)\left(x-\frac{1}{2}\right)(8x^2-4x-2)$.
 - (d) Déterminons les racines du dernier facteur obtenu ci-dessus. Le trinome $4x^2-2x-1$ (on peut factoriser par 2) a pour discriminant $\Delta=4+16=20$, et admet deux racines $x_1=\frac{2+\sqrt{20}}{8}=\frac{1+\sqrt{5}}{4}$, et $x_2=\frac{1-\sqrt{5}}{4}$. La valeur de α est donc celle d'une des quatre racines trouvées pour l'équation. Ce n'est sûrement pas -1 puisque $\alpha>0$ (c'est le cosinus d'un angle inférieur à $\frac{\pi}{2}$), pas non plus x_2 qui est également négative, et ça ne peut pas être $\frac{1}{2}$ puisqu'on sait qu'il s'agit du cosinus de l'angle $\frac{\pi}{3}$, et que la fonction cosinus ne peut pas prendre deux fois cette valeur avant $\frac{\pi}{2}$. Finalement, $\alpha=\cos\left(\frac{\pi}{5}\right)=\frac{1+\sqrt{5}}{4}$.
 - 2. (a) Prenons plutôt les choses à l'envers : $\sin(4x) = 2\sin(2x)\cos(2x) = 4\sin(x)\cos(x)(2\cos^2(x) 1)$ 1) = $2\sin(x)(4\cos^2(x) - 2\cos(x))$, donc pour tous les angles vérifiant $\sin(x) \neq 0$, $\frac{\sin(4x)}{2\sin(x)} = 4\cos^2(x) - 2\cos(x) = \cos(3x) + \cos(x)$ puisqu'on sait que $\cos(3x) = 4\cos^3(x) - 3\cos(x)$.
 - (b) On a donc $\cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{3\pi}{5}\right) = \frac{\sin(\frac{4\pi}{5})}{2\sin(\frac{\pi}{5})}$. Or, $\sin\left(\frac{4\pi}{5}\right) = \sin\left(\pi \frac{\pi}{5}\right) = \sin\left(\frac{\pi}{5}\right)$. Finalement, $\alpha + \cos\left(\frac{3\pi}{5}\right) = \frac{1}{2}$.
 - (c) À l'aide de la formule de transformation d'un produit en somme, $\alpha \times \cos\left(\frac{3\pi}{5}\right) = \frac{1}{2}\cos\left(\frac{4\pi}{5}\right) + \frac{1}{2}\cos\left(\frac{-2\pi}{5}\right)$. Or, $\cos\left(\frac{4\pi}{5}\right) = \cos\left(\pi \frac{\pi}{5}\right) = -\cos\left(\frac{\pi}{5}\right)$; et de même

$$\cos\left(-\frac{2\pi}{5}\right) = \cos\left(\frac{2\pi}{5}\right) = -\cos\left(\frac{3\pi}{5}\right). \text{ Au vu du résultat de la question précédente, on a donc } \alpha\cos\left(\frac{3\pi}{5}\right) = -\frac{1}{2}\times\frac{1}{2} = -\frac{1}{4}.$$

(d) Le réel α est donc solution de l'équation $x^2 - \frac{1}{2}x - \frac{1}{4}$, dont le discriminant est $\Delta = \frac{1}{4} + 1 = \frac{5}{4}$, et qui admet pour racines $x_1 = \frac{\frac{1}{2} + \frac{\sqrt{5}}{2}}{2} = \frac{1 + \sqrt{5}}{4}$, et $x_2 = \frac{1 - \sqrt{5}}{4}$. Comme dans la première partie de l'exercice, on conclut pour des raisons de signe que $\alpha = \frac{1 + \sqrt{5}}{4}$. On a au passage prouvé que $\cos\left(\frac{3\pi}{5}\right) = \frac{1 - \sqrt{5}}{4}$.

II. Même chose avec $\cos\left(\frac{\pi}{17}\right)$!

- 1. Si $\sin\left(\frac{h}{2}\right) = 0$, c'est que $\frac{h}{2} \equiv 0[\pi]$, donc $h \equiv 0[2\pi]$. Mais alors on a , pour tout entier k, $\cos(a+kh) = \cos(a)$ et $\sin(a+kh) = \sin(a)$, donc $S_n(a,h) = n\sin(a)$ et $C_n(a,h) = n\cos(a)$.
- 2. Je donne le calcul avec les complexes car c'est quand même plus agréable : $C_n(a,h) + iS_n(a,h) = \sum_{k=0}^{n-1} e^{i(a+kh)} = e^{ia} \frac{1-e^{inh}}{1-e^{ih}} = e^{ia} \frac{e^{i\frac{nh}{2}}2i\sin(\frac{nh}{2})}{e^{i\frac{h}{2}}2i\sin(\frac{h}{2})} = e^{i(a+(n-1)\frac{h}{2})} \frac{\sin(\frac{nh}{2})}{\sin(\frac{h}{2})}$. Il ne reste plus qu'à prendre les parties réelle et imaginaire pour obtenir les formules demandées.
- 3. Parmi les quatre cosinus dont x_1 est la somme, seul le dernier est négatif puisque $\frac{3\pi}{17} \in \left[0, \frac{\pi}{2}\right]$, $\frac{5\pi}{17} \in \left[0, \frac{\pi}{2}\right]$ et $\frac{7\pi}{17} \in \left[0, \frac{\pi}{2}\right]$. De plus, $\cos\left(\frac{11\pi}{17}\right) = -\cos\left(\frac{6\pi}{17}\right)$ et $\cos\left(\frac{6\pi}{17}\right) < \cos\left(\frac{5\pi}{17}\right)$, donc $\cos(5\theta) + \cos(11\theta) > 0$, et x_1 , obtenu en ajoutant encore deux termes positifs, est bien positif.
- 4. La somme $x_1 + x_2$ est exactement de la forme $C_n(a, h)$, avec $a = \theta$, $h = 2\theta$ et n = 8. D'après la question 2, on a donc $x_1 + x_2 = \frac{\sin(8\theta)\cos(8\theta)}{\sin(\theta)} = \frac{1}{2}\frac{\sin(16\theta)}{\sin(\theta)}$. Mais $16\theta = \frac{16\pi}{17} = \pi \theta$, donc $\sin(16\theta) = \sin(\theta)$ et $x_1 + x_2 = \frac{1}{2}$.
- 5. Il faut y croire:

$$x_1 x_2 = \cos(3\theta)\cos(\theta) + \cos(3\theta)\cos(9\theta) + \cos(3\theta)\cos(13\theta) + \cos(3\theta)\cos(15\theta) + \cos(5\theta)\cos(\theta) + \cos(5\theta)\cos(\theta) + \cos(5\theta)\cos(13\theta) + \cos(5\theta)\cos(15\theta) + \cos(7\theta)\cos(\theta) + \cos(7\theta)\cos(\theta) + \cos(7\theta)\cos(13\theta) + \cos(7\theta)\cos(15\theta) + \cos(11\theta)\cos(\theta) + \cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)\cos(11\theta)$$

On utilise les formules de transformation produit/somme et on obtient x_1x_2 , comme sommes des cosinus des 32 angles suivants (on peut oublier les signes puisques le cos est pair) : 4θ , 2θ , 12θ , 6θ , 16θ , 10θ , 18θ , 12θ , 6θ , 4θ , 14θ , 4θ , 18θ , 8θ , 20θ , 10θ , 8θ , 6θ , 16θ , 2θ , 20θ , 6θ , 22θ , 8θ , 12θ , 10θ , 20θ , 2θ , 24θ , 2θ , 26θ et 4θ . Or, $26\theta \equiv -8\theta[2\pi]$, donc $\cos(26\theta) = \cos(8\theta)$. De même, $\cos(24\theta) = \cos(10\theta)$, $\cos(22\theta) = \cos(12\theta)$, $\cos(20\theta) = \cos(14\theta)$ et $\cos(18\theta) = \cos(16\theta)$. En regroupant tout ceci, on obtient $x_1x_2 = 2(\cos(2\theta) + \cos(4\theta) + \cos(6\theta) + \cos(8\theta) + \cos(10\theta) + \cos(12\theta) + \cos(14\theta) + \cos(14\theta) + \cos(16\theta)$). La parenthèse vaut $C_8(2\theta, 2\theta) = \frac{\sin(8\theta)\cos(9\theta)}{\sin(\theta)}$, avec $\cos(9\theta) = \cos(\frac{\pi}{2} - 8\theta) = -\cos(8\theta)$, d'où $x_1x_2 = -2(x_1 + x_2) = -1$.

6. On connait la somme et le produit de x_1 et x_2 , ils sont solutions de l'équation $x^2 - \frac{1}{2}x - 1 = 0 \Leftrightarrow 2x^2 - x - 2 = 0$, de discriminant 1 + 16 = 17. Comme on l'a vu plus haut, $x_1 > 0$, donc on a $x_1 = \frac{1 + \sqrt{17}}{4}$ et $x_2 = \frac{1 - \sqrt{17}}{4}$.

- 7. Allons-y: $y_1y_2 = \cos(3\theta)\cos(7\theta) + \cos(3\theta)\cos(11\theta) + \cos(5\theta)\cos(7\theta) + \cos(5\theta)\cos(11\theta) = \frac{1}{2}(\cos(10\theta) + \cos(4\theta) + \cos(14\theta) + \cos(8\theta) + \cos(12\theta) + \cos(2\theta) + \cos(16\theta) + \cos(6\theta)) = \frac{1}{4}x_1x_2 = \frac{1}{4}$.

 De même, $y_3y_4 = \cos(\theta)\cos(9\theta) + \cos(\theta)\cos(15\theta) + \cos(13\theta)\cos(9\theta) + \cos(13\theta)\cos(15\theta) = \frac{1}{2}(\cos(10\theta) + \cos(8\theta) + \cos(16\theta) + \cos(14\theta) + \cos(22\theta) + \cos(4\theta) + \cos(28\theta) + \cos(2\theta)) = -\frac{1}{4}(\cos(10\theta) + \cos(8\theta) + \cos(16\theta) + \cos(14\theta) + \cos(22\theta) + \cos(4\theta) + \cos(28\theta) + \cos(2\theta)) = -\frac{1}{4}(\cos(10\theta) + \cos(12\theta) + \cos(12\theta$
- 8. y_1 et y_2 ayant pour somme x_1 et produit $-\frac{1}{4}$, ils sont solutions de l'équation $x^2-x_1x-\frac{1}{4}$, donc le discriminant vaut $x_1^2+1=\frac{1}{2}x_1+2=\frac{17+\sqrt{17}}{8}$ et les solutions $\frac{1+\sqrt{17}\pm\sqrt{34+2\sqrt{17}}}{8}$. La solution positive est égale à y_1 , car y_2 est somme de deux cosinus négatifs. De même, on obtient $y_3=\frac{1-\sqrt{17}+\sqrt{34-2\sqrt{17}}}{8}$ et $y_4=\frac{1-\sqrt{17}-\sqrt{34-2\sqrt{17}}}{8}$.
- 9. De plus en plus facile : $\cos(\theta)\cos(13\theta) = \frac{1}{2}(\cos(14\theta) + \cos(12\theta)) = \frac{1}{2}(-\cos(5\theta) \cos(3\theta)) = -\frac{y_1}{2}$. Comme de plus $\cos(\theta) + \cos(13\theta) = y_3$, les réels $\cos(\theta)$ et $\cos(13\theta)$ sont solutions de l'équation $x^2 y_3x \frac{y_1}{2}$, $\cos(\theta)$ étant la solution positive. Le discriminant de l'équation vaut $y_3^2 + 2y_1 = \frac{1 + 17 + 34 2\sqrt{17} 2\sqrt{17} + 2\sqrt{34 2\sqrt{17}} 2\sqrt{578 34\sqrt{17}}}{64} + \frac{1 + \sqrt{17} + \sqrt{34 + 2\sqrt{17}}}{4} = \frac{68 + 12\sqrt{17} + 2\sqrt{34 2\sqrt{17}} + 16\sqrt{34 + 2\sqrt{17}} 2\sqrt{578 34\sqrt{17}}}{64}$ et on a ensuite $\cos\left(\frac{\pi}{17}\right) = \frac{1 \sqrt{17} + \sqrt{34 2\sqrt{17}} + \sqrt{68 + 12\sqrt{17} + 2\sqrt{34 2\sqrt{17}} + 16\sqrt{34 + 2\sqrt{17}} 2\sqrt{578 34\sqrt{17}}}}{16}$.

Étonnant, non?