TD n°2 : corrigé

PTSI B Lycée Eiffel

21 septembre 2017

Exercice 1

1. On passe tout du même côté et on met au même dénominateur (sans le développer!) pour obtenir $\frac{(2x+3)(2x-3)-4x(x-1)}{(x-1)(2x-3)} \leq 0$, soit $\frac{4x-9}{(x-1)(2x-3)} \leq 0$. Il ne reste plus qu'à faire un tableau de signes :

x		1 -	$\frac{3}{2}$	<u>9</u> 4
4x-9	1	_	- () +
(x-1)(2x-3)	+ () – () +	+
$\frac{4x-9}{(x-1)(2x-3)}$	-	+	- () +

On peut conclure : $S =]-\infty, 1[\cup]\frac{3}{2}, \frac{9}{4}].$

- 2. On commence par tout écrire à base d'exponentielles : $e^x + e^{-x} + 2e^x 2e^{-x} = 2$, soit $3e^x 2 e^{-x} = 0$. En multipliant tout par e^x et en posant $X = e^x$, on se ramène à l'équation du second degré $3X^2 2X 1 = 0$. Elle a pour discriminant $\Delta = 4 + 12 = 16$ et admet deux racines $X_1 = \frac{2-4}{6} = -\frac{1}{3}$ et $X_2 = \frac{2+4}{6} = 1$. La première valeur aobtenue n'est pas possible vu le changement de variable effectué, la seule solution restante est donc $x = \ln(1) = 0$.
- 3. Le plus simple est de tout faire passer du même côté et de faire un tableau :

x	0 1
1-x	$1-x$ $1-x$ \emptyset $x-1$
2x	$-2x \emptyset 2x \qquad 2x$
1-x - 2x + 3	x+4 $4-3x$ $2-x$

On peut maintenant résoudre sur chaque intervalle : sur $]-\infty,0]$, l'inéquation devient $x+4 \le 0$, soit $x \le -4$, on conserve donc l'intervalle $]-\infty,-4]$; sur l'intervalle [0,1], on est ramenés à résoudre $4-3x \le 0$, soit $x \ge \frac{4}{3}$, ce qui ne se produit jamais sur cet intervalle ; enfin, sur $[1,+\infty[$, on se ramène à $2-x \le 0$, soit $x \ge 2$, et on garde l'intervalle $[2,+\infty[$. Finalement, $\mathcal{S}=]-\infty,-4] \cup [2,+\infty[$.

4. Essayons de faire le calcule dans l'autre sens, on souhaite obtenir un membre de gauche à l'équation de la forme $aX^2+bX+c=a\left(x+\frac{1}{x}\right)^2+b\left(x+\frac{1}{x}\right)+c=ax^2+2a+\frac{a}{x^2}+bx+\frac{b}{x}+c=\frac{ax^4+bx^3+(2a+c)x^2+bx+a}{x^2}$. Comme 0 n'est pas solution de l'équation initiale (ce qui est indispensable pour avoir le droit de faire ce changement de variable, une multiplication ou une division par x^2 ne changera pas les solutions, et notre second membre est donc équivalent à celui de l'équation de départ dès que $a=1,\ b=2$ et 2a+c=-1 (par identification, les deux dernières conditions étant identiques aux deux premières). On est donc ramenés à la résolution de l'équation équivalent $X^2+2X-3=0$, qui a pour discriminant $\Delta=4+12=16$,

1

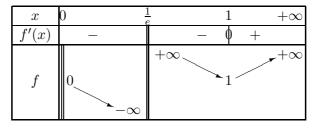
et admet donc pour solutions $X_1 = \frac{-2-4}{2} = -3$ et $X_2 = \frac{-2+4}{2} = 1$. Il reste à remonter jusqu'aux valeurs de x: si $x + \frac{1}{x} = X_1 = -3$, alors $x^2 + 3x + 1 = 0$, cette équation a pour discriminant $\Delta = 9 - 4 = 5$ et admet comme racines $x_1 = \frac{-3 - \sqrt{5}}{2}$ et $x_2 = \frac{-3 + \sqrt{5}}{2}$. De même on aura $x + \frac{1}{x} = 1$ si $x^2 - x + 1 = 0$, ce qui donne $\Delta = -3$, donc pas d'autre solution réelle. Finalement, $S = \left\{ \frac{-3 - \sqrt{5}}{2}, \frac{-3 + \sqrt{5}}{2} \right\}$.

Exercice 2

- 1. La fonction f est définie quand x > 0 (à cause du ln) et quand $1 + \ln(x) \neq 0$, soit $x \neq e^{-1}$. Autrement dit, $\mathcal{D}_f = \mathbb{R}^{+*} \setminus \left\{ \frac{1}{e} \right\}$.
- 2. Il y a donc quatre limites à calculer :

 - $\lim_{x\to 0} 1 + \ln(x) = -\infty$, donc $\lim_{x\to 0} f(x) = 0$ (pas de forme indéterminée). $\lim_{x\to 0} 1 + \ln(x) = 0^-$, donc $\lim_{x\to \frac{1}{e}} f(x) = -\infty$ (le numérateur a une limite finie positive). $\lim_{x\to \frac{1}{e}^-} 1 + \ln(x) = 0^-$, donc $\lim_{x\to \frac{1}{e}} f(x) = +\infty$. $\lim_{x\to \frac{1}{e}^+} 1 + \ln(x) = 0^-$, donc $\lim_{x\to \frac{1}{e}} f(x) = +\infty$. enfin $\lim_{x\to 0} f(x) = +\infty$ par croissance comparée (le x du numérateur l'emporte sur le $\ln(x)$).

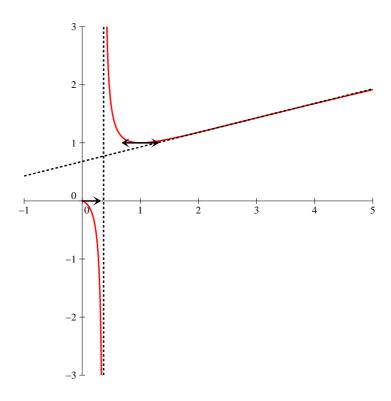
 - enfin, $\lim_{x \to +\infty} f(x) = +\infty$ par croissance comparée (le x du numérateur l'emporte sur le $\ln(x)$ du dénominateur, on peut factoriser ce dénominateur par $\ln(x)$ pour être extrêmement rigoureux).
- 3. La fonction f est sans problème dérivable sur son ensemble de définition, et $f'(x) = \frac{1 + \ln(x) 1}{(1 + \ln(x))^2} =$ $\frac{\ln(x)}{(1+\ln(x))^2}$. Autrement dit, f'(x) est du signe de $\ln(x)$, ce qui permet de dresser le tableau suivant, en calculant en passant f(1) = 1:



- 4. Pour simplifier le calcul de la limite, on peut poser $X = \ln(x)$, de façon à avoir f'(x) = $\frac{X}{(1+X)^2}$. Attention tout de même, lorsque x tend vers 0, X va tendre vers $-\infty$. Or, $\lim_{X\to-\infty}\frac{X}{(1+X)^2}=0$ (quotient des termes de plus haut dogré), done lier f(x) of T0 (quotient des termes de plus haut degré), donc $\lim_{x\to 0} f'(x) = 0$. Il y a donc en 0 une tangente horizontale à la courbe représentative de f.
- 5. Calculons donc $f(e) = \frac{e}{1 + \ln(e)} = \frac{e}{2}$, puis $f'(e) = \frac{1}{(1+1)^2} = \frac{1}{4}$. L'équation de la tangente T est donc $y = \frac{1}{4}(x-e) + \frac{e}{2} = \frac{x+e}{4}$. Pour l'étude de la position relative, on veut résoudre l'inéquation $\frac{x}{1+\ln(x)} \ge \frac{x+e}{4}$. L'inéquation ne peut pas être vérifiée sur $\left[0,\frac{1}{e}\right]$ (ce qui est à gauche est négatif, et à droite c'est positif), dans l'intervalle restant on peut multiplier par le dénominateur pour obtenir $4x \ge (x+e)(1+\ln(x))$, soit $3x-x\ln(x)-e\ln(x)-e \ge 0$.

Malheureusement, ça ne se résout pas facilement. Posons donc $g(x) = 3x - x \ln(x) - e \ln(x) - e$, on a $g'(x) = 3 - \ln(x) - 1 - \frac{e}{x} = 2 - \ln(x) - \frac{e}{x}$, puis $g''(x) = -\frac{1}{x} + \frac{e}{x^2} = \frac{e - x}{x^2}$. La fonction g' est donc croissante sur]0,e] et décroissante ensuite, comme g'(e)=0, on en déduit que g' est toujours négative, et que g elle-même est donc décroissante. Comme g(e)=0, on aura $g(x) \geq 0$ sur]0,e], et $g(e) \leq 0$ ensuite. On en déduit que la courbe est au-dessus de sa tangente sur $\left[\frac{1}{e},e\right]$, et en-dessous sur $[e,+\infty[$.

6. Voici la courbe:



Exercice 3

- 1. Il faut évidemment que ce qui se trouve sous la racine carrée soit positif, soit $x^2 + mx 2 \ge 0$. Ce trinome a pour discriminant $\Delta = m^2 + 8$ (qui est toujours positif, quelle que soit la valeur de m), et a pour racines $x_1 = \frac{-m \sqrt{m^2 + 8}}{2}$ et $x_2 = \frac{-m + \sqrt{m^2 + 8}}{2}$. L'équation est définie à l'extérieur de ces deux racines (non, je n'ai pas envie d'écrire les deux intervalles).
- 2. Élevons l'équation au carré (ce n'est pas une équivalence mais peu importe) pour obtenir $x^2 2x 2 = (2x + 1)^2 = 4x^2 + 4x + 1$, soit $3x^2 + 6x + 3 = 0$, ou encore $3(x + 1)^2 = 0$. La seule solution possible est donc x = -1, dont on vérifie facilement qu'elle n'est pas solution de l'équation initiale (elle est dans l'ensemble de définition de l'équation, mais le membre de gauche vaut $\sqrt{1} = 1$, et celui de droite vaut -1 lorsque x = -1). Du coup, $S = \emptyset$.
- 3. Calculons donc $\Delta=(4-m)^2-36=m^2-8m+16-36=m^2-8m-20=(m+2)(m-10)$ (la factorisation est facile à trouver si on a la curiosité d'aller regarder la suite de l'énoncé). Si -2 < m < 10, le discriminant est strictement négatif et l'équation n'a donc pas de solution. Lorsque m=-2, $\Delta=0$ et il y a une solution unique : $x=\frac{m-4}{6}=-1$. Lorsque m=10, on a également $\Delta=0$, et une seule solution : $x=\frac{m-4}{6}=1$. Si m<-2 ou m>10, il y aura deux solutions : $x_1=\frac{m-4-\sqrt{(m+2)(m-10)}}{6}$, et $x_2=\frac{m-4+\sqrt{(m+2)(m-10)}}{6}$.

- 4. Commençons par la première inéquation. Elle ne peut jamais être vérifiée si m<1 (le membre de gauche est alors négatif et celui de droite positif). Lorsque $m\geq 1$, on peut élever au carré pour trouver $m^2-2m+1\geq m^2-8m-20$, soit $6m+21\geq 0$, ce qui donne $m\geq -\frac{7}{2}$. Il ne faut garder que les solutions où l'inéquation est définie et où $m\geq 1$, soit $[10,+\infty[$. On procède de même pour la deuxième inéquation : elle est toujours vraie quand $m\geq 1$, et si m<1, on élève au carré pour obtenir de même $m\leq -\frac{7}{2}$. On garde les solutions dans les intervalles $\left[-\infty,-\frac{7}{2}\right]$ et $[10,+\infty[$.
- 5. On élève l'équation au carré en gardant à l'esprit que les seules solutions valides seront celles pour lesquelles le second membre est initialement positif, c'est-à-dire celles pour lesquelles $x \geq -\frac{1}{2}$. On obtient alors l'équation $x^2 mx 2 = 4x^2 + 4x + 1$, qui est exactement l'équation de la question 3. Il reste alors à vérifier que les solutions potentielles de l'équation sont bien supérieures ou égales à $-\frac{1}{2}$, ce qui revient à vérifier que $\frac{m-4-\sqrt{(m+2)(m-10)}}{6} \geq -\frac{1}{2}$, soit $m-4-\sqrt{(m+2)(m-10)} \geq 3$, c'est la première inéquation de la question 4. Sans surprise, on aura de même $x_2 \geq -\frac{1}{2}$ si la deuxième inéquation de la question 4 est vérifiée. On peut donc distinguer les cas suivants :
 - si $m \in]-2,10[$, l'équation n'a pas de solutions.
 - si $m \in \left[-\frac{7}{2}, -2 \right]$, l'équation n'a toujours pas de solutions car les solutions potentielles ne sont pas dans le bon intervalle.
 - si $m \le -\frac{7}{2}$, seule la solution x_2 est valable : $S = \left\{ \frac{m-4+\sqrt{(m+2)(m-10)}}{6} \right\}$
 - enfin, si $m \ge 10$, les deux solutions sont valables (il s'agit d'une seule solution double dans le cas particulier où m = 10): $S = \left\{ \frac{m 4 \sqrt{(m+2)(m-10)}}{6}, \frac{m 4 + \sqrt{(m+2)(m-10)}}{6} \right\}$

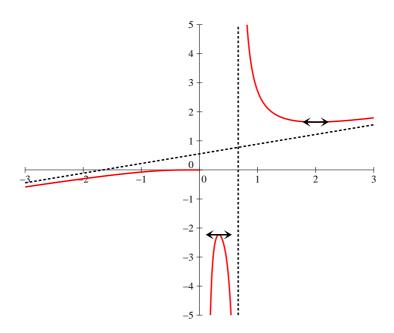
Exercice 4

- 1. Il faut éliminer les réels 0 (à cause de l'inverse dans l'exponentielle) et $\frac{2}{3}$ (à cause du dénominateur) donc $\mathcal{D}_f = \mathbb{R} \setminus \left\{0, \frac{2}{3}\right\}$.
- 2. La fonction f est dérivable partout où elle est définie, et $f'(x) = \frac{(2xe^{\frac{1}{x}} e^{\frac{1}{x}})(3x-2) 3x^2e^{\frac{1}{x}}}{(3x-2)^2} = \frac{(3x^2 7x + 2)e^{\frac{1}{x}}}{(3x-2)^2}$. Cette dérivée est du signe de $3x^2 7x + 2$, qui a pour discriminant $\Delta = 49 24 = 25$, et admet pour racines $x_1 = \frac{7-5}{6} = \frac{1}{3}$, et $x_2 = \frac{7+5}{6} = 2$. On calcule $f\left(\frac{1}{3}\right) = \frac{\frac{1}{9} \times e^3}{1-2} = -\frac{e^3}{9}$, et $f(2) = \frac{4\sqrt{e}}{6-2} = \sqrt{e}$. Et on ne fait pas tout de suite le tableau de variations puisqu'il est demandé à la question suivante.
- 3. Comme $\lim_{x\to\pm\infty}e^{\frac{1}{x}}=1$, on en déduit par quotient des termes de plus haut degré que $\lim_{x\to-\infty}f(x)=-\infty$, et $\lim_{x\to+\infty}f(x)=+\infty$. Quand x tend vers $\frac{2}{3}$, le numérateur de la fonction a une limite finie strictement positive, tout dépend donc du signe du dénominateur, et $\lim_{x\to\frac{2}{3}^-}f(x)=-\infty$ et $\lim_{x\to\frac{2}{3}^+}f(x)=+\infty$. Restent les limites en 0: $\lim_{x\to0^-}e^{\frac{1}{x}}=0$, donc $\lim_{x\to0^-}f(x)=0$ (pas de

forme indéterminée ici). En 0^+ , on peut poser $X=\frac{1}{x}$ et constater que $\lim_{X\to+\infty}\frac{e^X}{X^2}=+\infty$ (croissance comparée classique) pour en déduire que $\lim_{x\to 0^+}x^2e^{\frac{1}{x}}=+\infty$, puis sans difficulté que $\lim_{x\to 0^+}f(x)=-\infty$ (le dénominateur est négatif). On peut compléter notre tableau de variations :

x	$-\infty$ ($\frac{1}{3}$	$\frac{2}{3}$ 2 $+\infty$
f'(x)	+	+ 0 -	- 0 +
f	$-\infty$	$-\frac{e^3}{9}$ $-\infty$	$+\infty$ $+\infty$

- 4. Calculons donc $f(x) (ax+b) = \frac{x^2e^{\frac{1}{x}} (ax+b)(3x-2)}{3x-2} = \frac{x^2e^{\frac{1}{x}} 3ax^2 + (2a-3b)x + 2b}{3x-2}$. Manifestement, il y a un problème dans l'énoncé puisqu'on ne pourra jamais se debérasser de l'exponentielle. En fait, on peut simplement trouver des réels a,b et c tels que $f(x) (ax+b)e^{\frac{1}{x}}$ soit de la forme souhaitée. Il suffit pour cela de procéder à une identification pour se débarasser des termes non constants : 1-3a=0 implique $a=\frac{1}{3}$, puis 2a-3b=0 donne $b=\frac{2}{3}a=\frac{2}{9}$, et on en déduit que $c=2b=\frac{4}{9}$. Malheureusement, tout ce qu'on peut déduire facilement de cela, c'est juste que $\lim_{x\to\pm\infty}f(x)-(ax+b)e^{\frac{1}{x}}=0$, ce qui ne suffit pas à prouver que la droite est une asymptote oblique. En fait, la courbe admet en $\pm\infty$ une asymptote oblique commune d'équation $y=\frac{1}{3}x+\frac{5}{9}$, mais on ne peut pas le prouver facilement avec les outils dont on dispose pour l'instant. On indiquera quand même sur la courbe la droite d'équation $y=\frac{1}{3}x+\frac{5}{9}$ comme asymptote oblique à la courbe.
- 5. Allons-y pour la courbe :



Exercice 5

1. La fonction f est définie lorsque ch(x) > 0, c'est-à-dire tout le temps : $\mathcal{D}_f = \mathbb{R}$.

- 2. Calculons: $f(0) = 0 + 2\ln(1) = 0$; $f(\ln(2)) = \ln(2) + 2\ln\left(\frac{2 + \frac{1}{2}}{2}\right) = \ln(2) + 2\ln(5) 2\ln(4) = 2\ln(5) 3\ln(2)$; et $f(-\ln(3)) = -\ln(3) + 2\ln\left(\frac{\frac{1}{3} + 3}{2}\right) = -\ln(3) + 2\ln(5) 2\ln(3) = 2\ln(5) 3\ln(3)$.
- 3. La fonction f est dérivable sur \mathbb{R} et $f'(x)=1+2\frac{\sinh(x)}{\cosh(x)}=1+\frac{2e^x-2e^{-x}}{e^x+e^{-x}}=\frac{3e^x-e^{-x}}{e^x+e^{-x}}$. Cette dérivée est du signe de $3e^x-e^{-x}=e^{-x}(3e^{2x}-1)$. Elle s'nanule en particulier lorsque $e^{2x}=\frac{1}{3}$, soit $x=-\frac{1}{2}\ln(3)$ (et f'(x) est négative avant, positive après). On peut s'embêter à calculer $e^{-\frac{1}{2}\ln(3)}=3^{-\frac{1}{2}}=\frac{1}{\sqrt{3}}$, et $e^{\frac{1}{2}\ln(3)}=\sqrt{3}$ pour en déduire que $f\left(-\frac{1}{2}\ln(3)\right)=-\frac{1}{2}\ln(3)+2\ln(3)=-\frac{1}{2}\ln(3)+2\ln(4)-2\ln(\sqrt{3})-2\ln(2)=2\ln(2)-\frac{3}{2}\ln(3)\simeq -0.25$. Voici une première version du tableau de variations :

x	$-\infty$	$-\frac{1}{2}\ln(3)$	$+\infty$
f		$(2 \ln(2) - \frac{3}{2} \ln(3))$	

- 4. On peut écrire $\operatorname{ch}(x) = \frac{e^x(1+e^{-2x})}{2}$ et en déduire que $f(x) = x + 2\ln\left(\frac{e^x(1+e^{-2x})}{2}\right) = x + 2x + 2\ln(1+e^{-2x}) 2\ln(2)$, ce qui correspond exactement à la formule de l'énoncé. Puisque $\lim_{x \to +\infty} \ln(1+e^{-2x}) = 0$ (pas de forme indéterminée ici), on en déduit facilement, d'une part que $\lim_{x \to +\infty} f(x) = +\infty$, et d'autre part que la droite d'équation $y = 3x 2\ln(2)$ est asymptote oblique à la courbe (pusique l'écart entre f(x) et cette valeur tend vers 0). La position relative est donnée par le signe de $\ln(1+e^{-2x})$. Or, e^{-2x} étant toujours positif, ce nombre est lui-même toujours positif : la courbe est toujours au-dessus de son asymptote.
- 5. C'est extrêmement similaire : $\operatorname{ch}(x) = \frac{e^{-x}(1+e^{2x})}{2}$, donc $f(x) = -x + 2\ln(1+e^{2x}) 2\ln(2)$. Les conclusions sont essentiellement les mêmes : $\lim_{x\to -\infty} f(x) = +\infty$; la droite d'équation $y = -x 2\ln(2)$ est asymptote oblique à la courbe en $-\infty$, et la courbe est toujours audessus de son asymptote.
- 6. Et une dernière courbe pour la route, une!

