Devoir Surveillé n°4

PTSI B Lycée Eiffel

8 janvier 2018

Durée: 4H. Calculatrices interdites.

Exercice 1

Résoudre en fonction de la valeur du paramètre $m \in \mathbb{R}$ le système suivant :

$$\begin{cases} x + y - z = 1 \\ x + 2y + mz = 2 \\ 2x + my + 2z = 3 \end{cases}$$

On détaillera bien entendu les calculs, et on précisera le plus correctement possible les ensembles de solutions en fonction des valeurs de m.

Exercice 2

La méthode de Newton sert à déterminer des valeurs approchées de solutions d'équations de la forme f(x) = 0, où f est une fonction continue strictement monotone sur un intervalle I (et ayant des signes opposés aux extrémités de I, pour assurer que l'équation admet bien une solution sur I). Pour cela, on construit une suite (x_n) de la façon suivante : $x_0 \in I$, et pour tout entier naturel n, le réel x_{n+1} est l'abscisse du point d'intersection de l'axe des abscisses (Ox) et de la tangente en x_n à la courbe de la fonction f.

- 1. Faire un dessin illustrant la construction des premiers termes de la suite (x_n) (on prendra une allure de type parabolique pour la courbe de f).
- 2. Montrer que $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.
- 3. Pour la suite de l'exercice, on pose $f(x)=x^2-a$, où a>1; $I=]0,+\infty[$; et $x_0=a$.
 - (a) Vérifier que, dans ce cas, $x_{n+1} = \frac{x_n^2 + a}{2x_n}$.
 - (b) Étudier la fonction $g: x \mapsto \frac{x^2 + a}{2x}$ et la fonction $h: x \mapsto g(x) x$ sur l'intervalle I.
 - (c) En déduire que la suite (x_n) est décroissante et minorée, puis qu'elle converge vers \sqrt{a} .
- 4. On pose, pour tout entier naturel n, $v_n = \frac{x_n \sqrt{a}}{x_n + \sqrt{a}}$.
 - (a) Montrer que $v_{n+1} = v_n^2$.
 - (b) En déduire que $|x_n \sqrt{a}| \le 2x_0(v_n)^{2^n}$.
- 5. On suppose désormais a=2.
 - (a) Calculer les quatre premiers termes de la suite (x_n) .
 - (b) Montrer que $|x_n \sqrt{2}| \le \frac{4}{3(2^n)}$.
 - (c) À partir de quelle valeur de n est-on sûr que x_n est une valeur approchée de $\sqrt{2}$ à 10^{-6} près ?

1

Exercice 3

Soient (u_n) et (v_n) deux suites définies par les conditions suivantes : $u_0 = v_0 = 1$ et, pour tout entier naturel n, on pose $u_{n+1} = u_n + v_n$ et $v_{n+1} = 2u_n + v_n$.

- 1. Calculer les cinq premiers termes de chaque suite, ainsi qu'une valeur approchée à 10^{-2} près de $\frac{v_4}{u_4}$.
- 2. Montrer que (u_n) et (v_n) sont des suites d'entiers naturels.
- 3. Exprimer u_{n+2} en fonction de u_{n+1} et u_n , puis en déduire une expression explicite de u_n en fonction de n (cette expression n'est absolument pas utile pour la suite de l'exercice).
- 4. Montrer que, pour tout entier naturel n, on a $2u_n^2 v_n^2 = (-1)^n$.
- 5. Montrer que, si $n \ge 1$, $v_n > u_n$, puis $\frac{v_n}{u_n} + \sqrt{2} \le 2$.
- 6. En déduire que $\left|\frac{v_n}{u_n} \sqrt{2}\right| \leq \frac{1}{2u_n^2}$, puis en déduire la limite du quotient $\frac{v_n}{u_n}$ quand n tend vers $+\infty$.
- 7. Justifier que $u_n \ge 2^n$, en déduire comment obtenir une valeur approchée de $\sqrt{2}$ à 10^{-6} près.

Exercice 4

On pose pour tout cet exercice $M = \begin{pmatrix} 5 & -4 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 4 \end{pmatrix}$. On souhaite calculer les puissances de la

matrice M par différentes méthodes. Les différentes questions de l'exercice sont indépendantes les unes des autres.

- 1. Première méthode : par récurrence.
 - (a) Calculer M^2 et déterminer deux réels α et β tels que $M^2 = \alpha M + \beta I$.
 - (b) Montrer qu'il existe deux suites (a_n) et (b_n) telles que, $\forall n \in \mathbb{N}, M^n = a_n M + b_n I$, et préciser les valeurs de a_{n+1} et b_{n+1} en fonction de celles de a_n et de b_n .
 - (c) Montrer que a_n et b_n vérifient la même relation de récurrence linéaire d'ordre 2, et calculer a_n en fonction de n.
 - (d) En déduire une expression de M^n (inutile d'écrire explicitement la matrice).
- 2. Deuxième méthode : binôme de Newton.
 - (a) On pose A = M I, exprimer A^2 en fonction de A.
 - (b) En déduire M^n en appliquant la formule du binôme de Newton.
 - (c) Comparer le résultat obtenu à celui de la question 1.d.
- 3. Troisième méthode : diagonalisation.
 - (a) On pose $P = \begin{pmatrix} 1 & 4 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Montrer que P est inversible et calculer son inverse.
 - (b) Calculer $P^{-1}MP$ (et obtenez de préférence une matrice diagonale).
 - (c) Exprimer M^n en fonction de P, P^{-1} et D^n (on n'effectuera pas le calcul).
- $4.\ \, \text{M\'ethode}\ 4:$ par un calcul presque direct.
 - (a) Montrer qu'il existe une suite (u_n) telle que, $\forall n \in \mathbb{N}, M^n = \begin{pmatrix} 5+4u_n & -4-4u_n & -1-u_n \\ u_n+1 & -u_n & -1-u_n \\ 0 & 0 & 3u_n+4 \end{pmatrix}$.

On précisera la valeur de u_0 , et une relation de récurrence entre u_{n+1} et u_n .

- (b) Calculer u_n en fonction de n, et en déduire M^n .
- 5. Complément : des histoires d'inverses.
 - (a) La matrice M est-elle inversible? Si oui, calculer son inverse.
 - (b) Les formules obtenues pour M^n peuvent-elle s'adapter pour être valables lorsque n=-1?