Devoir Surveillé n°3

PTSI B Lycée Eiffel

2 décembre 2017

Durée: 4H. Calculatrices interdites.

Exercice 1

Calculs divers (et indépendants):

1. Calculer l'intégrale $\int_0^{\frac{\pi}{2}} x \cos^2(x) dx$.

- 2. Soit f l'application du plan complexe dans lui-même définie par f(z) = iz + 2 + 2i. Reconnaitre l'application f et déterminer ses éléments caractéristiques (centre, rapport, angle).
- 3. Résoudre l'équation différentielle $y'' 3y' + 2y = e^x$.
- 4. On pose $P(z) = z^3 z^2 + (i-3)z + 6 + 2i$.
 - (a) Déterminer les racines carrées complexes du nombre a = -3 4i.
 - (b) Montrer que P admet une racine réelle, qu'on déterminera.
 - (c) En déduire toutes les racines du polynôme P.
- 5. Calculer l'intégrale $\int_0^1 \frac{1}{(1+x^2)^2} dx$ à l'aide du changement de variable $t = \arctan(x)$.

Exercice 2

On s'intéresse dans cet exercice à l'équation différentielle (E):

$$(1+x^2)y' + (x-1)^2y = x^3 - x^2 + x + 1$$

- 1. Déterminer une solution particulière de (E) en la recherchant sous forme d'un polynôme de degré 1.
- 2. Résoudre complètement l'équation (E). On notera y_K les solutions de l'équation, et \mathcal{C}_K les courbes intégrales correspondantes.
- 3. Que dire des tangentes en leur point d'abscisse 1 aux courbes \mathcal{C}_K ?
- 4. Montrer que toutes les courbes \mathcal{C}_K ont une asymptote quand x tend vers $+\infty$, que l'on déterminera. Préciser la position relative des courbes et de cette asymptote.
- 5. Montrer que les points à tangente horizontale des courbes intégrales sont tous situés sur la courbe représentative d'une fonction à préciser (mais qu'on n'étudiera pas).
- 6. Étudier la fonction $g: x \mapsto \frac{e^x}{(x-1)^2}$.
- 7. Déterminer, selon les valeurs de K, le nombre de points de la courbe \mathcal{C}_K ayant une tangente horizontale.
- 8. Proposer une allure de quelques courbes intégrales compatible avec les observations précédentes (on ne demande pas d'étude plus précise des solutions de (E), et en particulier pas d'étude de variations).

1

Exercice 3

On considère l'équation différentielle $(E): (1-x^2)y'' - xy' + y = x$.

- 1. Question préliminaire : on rappelle que $\forall x \in \mathbb{R}$, $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$.
 - (a) Résoudre l'équation ch(x) = 2.
 - (b) Montrer que la fonction ch est bijective de $[0, +\infty[$ vers un intervalle à préciser, et déterminer une expression explicite de sa réciproque (à l'aide de la fonction ln), qu'on notera g pour la suite de l'exercice. Pour cela, on résoudra l'équation $\operatorname{ch}(x) = y$ en ne gardant que la solution positive de l'équation.
 - (c) Vérifier que $\forall y > 1, g'(y) = \frac{1}{\sqrt{x^2 1}}$.
- 2. Résoudre l'équation (E) sur l'intervalle]-1,1[en effectuant le changement de variable $t=\arcsin(x)$.
- 3. Résoudre l'équation (E) sur l'intervalle $]1,+\infty[$ en effectuant le changement de variable t=g(x), où g est la fonction définie dans la première question de l'exercice.
- 4. Résoudre l'équation (E) sur l'intervalle $]-\infty,-1[$.

Exercice 4

On note f l'application définie sur $\mathbb{C}\setminus\{i\}$ (ensemble qu'on notera D pour la suite de l'exercice) par $f(z)=\frac{iz+1+2i}{z-i}$.

- 1. Vérifier que l'application f est une bijection de D dans lui-même (on donnera une expression de sa réciproque f^{-1}).
- 2. Déterminer f(3i) (sous forme algébrique), f(-i) (sous forme exponentielle) et $f(e^{i\frac{5\pi}{6}})$ (sous forme algébrique).
- 3. Déterminer la forme algébrique de f(z).
- 4. Déterminer l'ensemble des nombres complexes z pour lesquels $f(z) \in \mathbb{R}$ (on en donnera une interprétation géométrique simple).
- 5. Déterminer l'ensemble des nombres complexes z pour lesquels $f(z) \in i\mathbb{R}$ (on en donnera une interprétation géométrique simple).
- 6. Déterminer l'ensemble des nombres complexes z pour lesquels $f(z) \in \mathbb{U}$ (on en donnera une interprétation géométrique simple).
- 7. (a) Résoudre l'équation f(z) = z. On notera les deux solutions obtenues a et b, avec Re(a) < Re(b).
 - (b) Calculer $\frac{a-i}{b-i}$.
 - (c) Montrer que, si $z \notin \{i, a\}$, alors $\frac{b f(z)}{a f(z)} = -\frac{b z}{a z}$.
- 8. Pour cette dernière question, on admet que quatre points A, B, C et \overrightarrow{D} du plan complexe sont situés sur une même droite ou sur un même cercle si et seulement si $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv (\overrightarrow{DA}, \overrightarrow{DB})[\pi]$. On note par ailleurs A, B et C les points respectifs du plan complexe d'affixes a, b et i.
 - (a) Montrer que, si $M \notin \{A, B, C\}$, M' est aligné avec A, B et M, ou situé sur le cercle circonscrit au triangle ABM (où M et M' ont pour affixes respectives z et f(z) pour un certain nombre complexe z).
 - (b) Montrer que $(\overrightarrow{CM}, \overrightarrow{CM'}) \equiv 2(\overrightarrow{CM}, \overrightarrow{CB})[2\pi]$.
 - (c) En déduire une construction géométrique de M' quand M n'est pas sur la droite (AB).
 - (d) Faire une figure précise dans le cas où M a pour affixe z = 2 + 2i.