Devoir Surveillé n°1

PTSI B Lycée Eiffel

23 septembre 2017

Durée: 4H. Calculatrices interdites.

Exercice 1

Résoudre sur \mathbb{R} les équations et inéquations suivantes :

1.
$$2x + 1 = \frac{1}{x}$$

$$2. \ \sqrt{x^2 + 5x + 3} < x + 2$$

3.
$$x^3 - 39x + 70 = 0$$

$$4. \ \frac{x+3}{x-3} - \frac{x-3}{x+3} \le \frac{36}{x^2-9}$$

5.
$$e^x - e^{-x} = 2m$$
 (on donnera les solutions en fonction du paramètre $m \in \mathbb{R}$).

Exercice 2

On pose $f(x) = |x^2 + x - 3| - x^2 + 3$.

- 1. Exprimer f(x) sans utiliser de valeur absolue en distinguant plusieurs intervalles.
- 2. Résoudre l'équation f(x) = 0 puis dresser le tableau de signes de la fonction f.
- 3. Étudier les variations de f.
- 4. Tracer une allure de la courbe représentative de f (on donne $\sqrt{13} \simeq 3.6$).

Exercice 3

On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = \frac{e^x}{x}.$

- 1. Effectuer une étude rapide de la fonction f (variations, limites, la courbe n'est pas demandée).
- 2. Déterminer en fonction de $a \in \mathbb{R}$ le nombre de solutions de l'équation f(x) = a.
- 3. Déterminer deux intervalle I et J (les plus grands possibles) tels que f effectue une bijection de I vers J. En notant g la réciproque de cette bijection, donner le tableau de variations de la fonction g.

1

Exercice 4

Pour tout entier $n \in \mathbb{N}^*$, on pose $f_n(x) = x(\ln(x))^n$ (les fonctions f_n sont donc définies sur \mathbb{R}^{+*}), et on note \mathcal{C}_n la courbe représentative de la fonction f_n .

- 1. Quelles sont les limites de f_n aux bornes de son ensemble de définition?
- 2. Effectuer l'étude des variations des fonctions f_1 et f_2 (on dressera un tableau de variations complet à chaque fois).
- 3. Résoudre l'équation $f_1(x) = f_2(x)$, et en déduire la position relative des courbes \mathcal{C}_1 et \mathcal{C}_2 . Vérifier plus généralement qu'il existe deux points du plan qui sont communs à toutes les courbes \mathcal{C}_n .
- 4. Étudier plus généralement les positions relatives de \mathcal{C}_n et \mathcal{C}_{n+1} sur l'intervalle $[1, +\infty[$.
- 5. Que peut-on dire des positions de toutes les courbes C_n sur l'intervalle]0,1[(soyez le plus précis possible)?
- 6. Tracer dans un même repère une allure soignée des courbes C_1 et C_2 .
- 7. Généraliser les résultats de la question 2 en étudiant les variations de f_n pour tout entier $n \ge 1$ (on pourra distinguer deux cas suivant la parité de n).

Exercice 5

On définit la fonction f par l'équation $f(x) = x \ln\left(\frac{x+2}{x}\right) + \frac{x}{4} + \frac{1}{2}$.

- 1. Préciser le domaine de définition de f.
- 2. On va commencer l'étude de f par celle de ses limites et asymptotes.
 - (a) Déterminer rigoureusement la limite de f(x) quand x tend vers 0.
 - (b) Étudier le signe de $x \ln \left(\frac{x+2}{x} \right)$, et en déduire la valeur de $\lim_{x \to +\infty} f(x)$.
 - (c) En posant $x = \frac{2}{u}$, montrer que $\lim_{x \to +\infty} \ln\left(\frac{x+2}{x}\right) = 2$. En déduire la présence d'une asymptote oblique à la courbe représentative de f en $+\infty$, dont on précisera l'équation.
- 3. On va maintenant passer à l'étude des variations.
 - (a) Calculer la dérivée f' de la fonction f.
 - (b) On pose $g(x) = \ln(x+2) \ln(x) \frac{2}{x+2} + \frac{1}{4}$. Effectuer une étude complète de la fonction g (la courbe n'est pas demandée).
 - (c) Déduire de la question précédente que $\forall x > 0, g(x) > 0$, en déduire le tableau de variations de la fonction f.
- 4. Déterminer une équation de la tangente à la courbe de f en son point d'abscisse 1 (on donnera si besoin des valeurs approchées de son coefficient directeur et de son ordonnée à l'origine).
- 5. Tracer la courbe représentative de f ainsi que la tangente calculée à la question précédente dans un même repère.