AP n°7 : révisions pour le DS commun

PTSI B Lycée Eiffel

2 février 2018

Exercice 1

On note f l'application définie sur $\mathbb{C}\setminus\{i\}$ par $f(z)=\frac{1}{\overline{z}+i}$.

- 1. Montrer que f est bijective de $\mathbb{C}\setminus\{i\}$ sur \mathbb{C}^* , et donner une expression de sa réciproque.
- 2. (a) Déterminer f(z) sous forme algébrique.
 - (b) Déterminer l'ensemble des nombres z pour lesquels $f(z) \in \mathbb{R}$ (on donnera une interprétation géométrique).
 - (c) Déterminer l'ensemble des nombres z pour lesquels $f(z) \in i\mathbb{R}$ (on donnera une interprétation géométrique).
 - (d) Déterminer l'ensemble des nombres z pour lesquels $f(z) \in \mathbb{U}$ (on donnera une interprétation géométrique).
- 3. (a) Déterminer $f(i\mathbb{R}\setminus\{i\})$.
 - (b) Prouver que $f(\mathbb{R})$ est le cercle de centre $A\left(-\frac{i}{2}\right)$ et de rayon $\frac{1}{2}$, privé de l'origine.
 - (c) Déterminer $f(\mathbb{U})$ (on doit trouver un ensemble simple).
- 4. (a) Résoudre l'équation $f(z) = -\bar{z} + \sqrt{3}$ (on mettra les solutions sous forme trigonométrique).
 - (b) Déterminer les points fixes de f, c'est-à-dire les z vérifiant f(z) = z.

Exercice 2

On considère dans le plan les deux points A d'affixe $z_A = 1 + i$ et B d'affixe $z_B = -\frac{1}{2} + \frac{1}{2}i$. On désigne par \mathcal{C} le cercle trigonométrique de centre O et de rayon 1. On fixe de plus un réel $\alpha \in [0, 2\pi]$ et on note M le point d'affixe $z_M = e^{i\alpha}$.

- 1. Déterminer les racines quatrièmes de -4 (on les donnera sous forme algébrique).
- 2. Montrer que $e^{2i\alpha} 1 = 2ie^{i\alpha}\sin(\alpha)$.
- 3. Calculer le produit de distances $MA \times MB$.
- 4. Étudier les variations (sur une période) de la fonction f définie par $f(x) = \sqrt{\frac{1}{4} + \left(-\frac{3}{2} + 2\sin(\alpha)\right)^2}$.
- 5. Déduire des deux questions précédentes qu'il existe deux points de \mathcal{C} pour lesquels $MA \times MB$ est minimale, et préciser la valeur correspondante.
- 6. Faire une figure pour illustrer.

Exercice 3

- 1. Soit f l'application définie sur \mathbb{R} par : f(0) = 1 et $\forall t \neq 0, f(t) = \frac{\arctan(t)}{t}$.
 - (a) Montrer que f est continue sur \mathbb{R} et paire.
 - (b) Donner le développement limité à l'ordre 1 de f(t) au voisinage de 0. En déduire que f est dérivable en 0, et donner f'(0).
 - (c) Justifier que f est dérivable sur \mathbb{R} , et calculer f'(t), pour $t \in \mathbb{R}^*$.
 - (d) À l'aide d'une intégration par parties, montrer que : $\forall t \in \mathbb{R}^*, \int_0^t \frac{w^2}{(1+w^2)^2} dw = -\frac{1}{2}t^2f'(t)$. En déduire le sens de variation de f.
 - (e) Tracer la courbe représentative de f dans un repère orthonormé.
- 2. Soit φ l'application de \mathbb{R} dans \mathbb{R} définie par : $\varphi(0) = 1$ et $\forall x \neq 0, \ \varphi(x) = \frac{1}{x} \int_0^x f(t) \ dt$.
 - (a) Montrer que φ est continue sur \mathbb{R} et paire.
 - (b) Montrer que : $\forall x \in \mathbb{R}, f(x) \leq \varphi(x) \leq 1$ (on pourra commencer par supposer x > 0).
 - (c) Montrer que : $\forall x \in \mathbb{R}^*$, $\varphi'(x) = \frac{1}{x}(f(x) \varphi(x))$. Montrer que φ est dérivable en 0, avec $\varphi'(0) = 0$. Donner les variations de φ .
 - (d) Montrer que : $\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} f(t) dt = 0$. En déduire que $\lim_{x \to +\infty} \varphi(x) = 0$.
 - (e) Tracer la courbe représentative de φ dans le même repère que celle de f.
- 3. On considère l'équation différentielle : $x^2y' + xy = \arctan(x)$.
 - (a) Résoudre cette équation différentielle sur $]-\infty,0[$ et sur $]0,+\infty[$.
 - (b) Montrer que φ est l'unique solution sur $\mathbb R$ de cette équation différentielle.