TD n°11 : révisions pour le DS9

PTSI B Lycée Eiffel

9 juin 2016

Exercice 1

Dans cet exercice, on pose, pour tout entier $n \ge 1$, $u_n = \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) - 1$, puis $S_n = \sum_{k=1}^n u_k$ et enfin $v_n = e^{1-S_{n-1}}$.

- 1. Calculer les trois premiers termes de chaque suite.
- 2. Déterminer un équivalent simple de (u_n) , et en déduire la convergence de (S_n) . Que peut-on dire de la suite (v_n) ?
- 3. Montrer que $S_n = \left(n + \frac{1}{2}\right) \ln(n+1) n \ln(n!)$.
- 4. En déduire une expression de (v_n) en fonction de n.
- 5. Conclure que $n! \sim l \times n^n e^{-n} \sqrt{n}$, où l est une constante strictement positive.

Exercice 2

On considère dans le plan les deux cercles (\mathcal{C}) et (\mathcal{C}') d'équation respective $x^2+y^2-4=0$, et $x^2+y^2-8x+15=0$.

- 1. Déterminer les centre O et O', ainsi que les rayons R et R' de ces deux cercles.
- 2. Déterminer les points d'intersection éventuels des deux cercles.
- 3. Vérifier qu'il existe un unique point I vérifiant $\overrightarrow{IO} = 2\overrightarrow{IO'}$, et déterminer ses coordonnées.
- 4. Soit M(a,b) un point quelconque du cercle (\mathcal{C}) . Prouver l'équation ax + by 4 = 0 est celle de la tangente en A à \mathcal{C} .
- 5. Déterminer les coordonnées du seul point $A \in (\mathcal{C})$ d'ordonnée positive, pour lequel la tangente en A à (\mathcal{C}) passe par I.
- 6. Déterminer les coordonnées du projeté orthogonal H du point O' sur la droite (AI).
- 7. Calculer la distance de O' à la droite (AI). Que peut-on en déduire?
- 8. Vous n'y échapperez pas : faire un joli desssin!

Exercice 3

Une urne contient initialement deux boules rouges et une boule bleue indiscernables au toucher. On effectue dans cette urne une suite (infinie) de tirages, avec les conditions suivantes :

- Si la boule tirée est bleue, on la remet dans l'urne.
- Si la boule tirée est rouge, on ne la remet pas dans l'urne mais on remet une boule bleue dans l'urne à sa place.

Pour tout entier naturel n non nul, on note Y_n la variable aléatoire égale au nombre de boules rouges présentes dans l'urne après n tirages. On notera pour chaque entier naturel k non nul les évènements suivants : R_k : « Lors du k-ème tirage, on tire une boule rouge dans l'urne », et B_k : »Lors du k-ème tirage, on tire une boule bleue dans l'urne ».

1. Donner la loi de probabilité de Y_1 , ainsi que son espérance et sa variance.

- 2. Quelles sont les valeurs possibles prises par Y_n dans le cas où n est supérieur ou égal à 2?
- 3. Calculer pour tout entier naturel non nul n, $P(Y_n = 2)$.
- 4. On pose, pour tout entier naturel non nul n, $u_n = P(Y_n = 1)$.
 - (a) Montrer que $u_2 = \frac{2}{3}$.
 - (b) Montrer que, pour tout entier naturel $n \ge 2$, $u_{n+1} = \frac{2}{3}u_n + \frac{2}{3^{n+1}}$. Cette relation reste-t-elle valable lorsque n = 1?
 - (c) Écrire un programme PASCAL calculant la valeur de u_n , pour un entier n choisi par l'utilisateur.
 - (d) On pose pour tout entier naturel n non nul $v_n = u_n + \frac{2}{3^n}$. Montrer que la suite $(v_n)_{n \in \mathbb{N}^\times}$ est géométrique.
 - (e) En déduire la valeur de v_n , puis celle de u_n .
- 5. Déduire des résultats précédents $P(Y_n = 0)$ pour tout entier naturel non nul n.
- 6. Calculer l'espérance de Y_n .
- 7. On note désormais A_n l'évènement : « La dernière boule rouge est tirée au n-ème tirage ».
 - (a) Exprimer l'évènement A_n en fonction d'évènements faisant intervenir les variables Y_n et Y_{n-1} .
 - (b) En déduire la valeur de $P(A_n)$.
 - (c) Calculer $\sum_{n=2}^{+\infty} P(A_n)$. Comment interpréter le résultat obtenu?

Exercice 4

Une urne contient 2n boules, parmi lesquelles n sont numérotées de 1 à n, et les n restantes portent le numéro 0. On tire simultanément dans cette urne n boules.

- 1. Quelques calculs de probabilités.
 - (a) Quelle est la probabilité de ne tirer que des boules portant le numéro 0?
 - (b) Soit $i \in \{1; ...; n\}$. Déterminer la probabilité que la boule numéro i fasse partie des n boules tirées (simplifier le résultat).
 - (c) Déterminer la probabilité qu'aucun numéro supérieur ou égal à 4 ne soit tiré. Calculer explicitement cette probabilité lorsque n=6.
- 2. Pour tout entier $i \in \{1; ...; n\}$, on note désormais X_i la variable valant 1 si la boule numéro i a été tirée, 0 sinon.
 - (a) Quelle est la loi de la variable X_i ? Préciser l'espérance et la variance de X_i .
 - (b) Soient i et j deux entiers distincts compris entre 1 et n. Déterminer la loi et l'espérance de la variable X_iX_j . Les évènements $X_i = 1$ et $X_j = 1$ sont-ils indépendants?
- 3. On définit désormais une nouvelle variable aléatoire $S = \sum_{i=1}^{i=n} i X_i$.
 - (a) Que représente la variable S?
 - (b) Calculer l'espérance de S.
 - (c) Quelle est la plus petite valeur de n pour laquelle la somme des numéros obtenus devient en moyenne supérieure ou égale à 30?
- 4. On définit deux nouvelles variables aléatoires : Z est égale au nombre de boules tirées portant le numéro 0, et X le nombre de boules tirées ne portant pas le numéro 0.
 - (a) Déterminer la loi de Z, en déduire que $\sum_{k=0}^{k=n} \binom{n}{k}^2 = \binom{2n}{n}$.
 - (b) Déterminer l'espérance et la variance de Z dans le cas particulier où n=2.
 - (c) Quel lien y a-t-il entre X et Z? En déduire les valeurs des espérances de X et de Z.
 - (d) Retrouver l'espérance de X en exprimant X à l'aide des variables X_i .
 - (e) Déduire de la valeur de E(Z) une expression simple pour $\sum_{k=0}^{k=n} k \binom{n}{k}^2$.