Devoir Maison n°7 (facultatif)

PTSI B Lycée Eiffel

6 avril 2016

Problème 1

Pour tout entier naturel non nul n, on définit la fonction f_n par $f_n(x) = \sin(2n\arcsin(x))$.

Première partie

- 1. Préciser le domaine de définition de f_n , étudier sa parité, et calculer $f_n(0)$ et $f_n(1)$.
- 2. Résoudre dans l'intervalle [0,1] l'équation $f_n(x) = 0$.
- 3. (a) Montrer que f_n est continue sur [-1,1] et dérivable sur]-1,1[, et calculer $f'_n(x)$.
 - (b) Calculer $\lim_{x\to 1^-} \frac{f_n(x)}{x-1}$. La fonction est-elle dérivable à gauche en 1? Et à droite en -1?
- 4. Déterminer le développement limité de f_n à l'ordre 3 en 0.
- 5. Calculer $I_n = \int_0^1 f_n(x) \ dx$.
- 6. Étudier f_1 et tracer sa courbe représentative, en précisant l'équation de la tangente à la courbe en 0 ainsi que la position relative de la courbe et de cette tangente au voisinage de 0.

Deuxième partie

- 1. Pour tout entier naturel p et tout $x \in [0,1[$, on définit $J_p(x) = \int_0^x \frac{f_p^2(t)}{\sqrt{1-t^2}} dt$.
 - (a) Calculer $J_p(x)$ et l'exprimer en fonction de $f_{2p}(x)$.
 - (b) Déterminer, si elle existe, la limite de $J_p(x)$ quand x tend vers 1 par valeurs inférieures.
- 2. Pour tout couple (p,q) d'entiers vérifiant 0 < q < p, on définit $K_{p,q}(x) = \int_0^x \frac{f_p(t)f_q(t)}{\sqrt{1-t^2}} dt$.
 - (a) Calculer $K_{p,q}(x)$ et l'exprimer en fonction de $f_{p+q}(x)$ et de $f_{p-q}(x)$.
 - (b) Déterminer, si elle existe, la limite de $K_{p,q}(x)$ quand x tend vers 1 par valeurs inférieures.

Troisième partie

- 1. En utilisant la formule de Moivre, démontrer l'existence d'un polynôme P_n à coefficients entiers tel que, pour tout réel θ , $\sin(2n\theta) = \sin(\theta)\cos(\theta)P_n(\sin(\theta))$.
- 2. (a) Déduire de la relation précédente que, $\forall x \in [-1,1], f_n(x) = x\sqrt{1-x^2}P_n(x)$.
 - (b) Expliciter P_1 , P_2 et P_3 .
- 3. (a) Montrer que l'on peut écrire $P_n(x) = a_0 + a_1 x^2 + \cdots + a_p x^{2p}$, avec $a_p \neq 0$.
 - (b) Déterminer en fonction de n les valeurs de p, de a_p , de $P_n(0)$ et de $P_n(1)$.
- 4. (a) Résoudre successivement dans [0,1], dans [-1,1] et dans \mathbb{R} l'équation $P_n(x)=0$.
 - (b) Pour tout $n \ge 2$, calculer $U_n = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right)$.

Problème 2

Dans tout ce problème, m désigne un entier naturel strictement supérieur à 2, n un entier non nul strictement inférieur à $\frac{m}{2}$, $A = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ un polynôme unitaire fixé et I un intervalle de \mathbb{R} sur lequel A ne s'annule pas.

On définit alors l'application f sur $\mathbb{R}_m[X]$ par f(P) = AP' - PA'.

- 1. (a) Déterminer en fonction de m et n la valeur maximale p du degré de f(P).
 - (b) Montrer que f est une application linéaire de $\mathbb{R}_m[X]$ vers $\mathbb{R}_p[X]$.
 - (c) Soit Q un polynôme tel que $QA \in \mathbb{R}_m[X]$, calculer f(QA).
 - (d) En utilisant une formule de dérivation sur I, déterminer le noyau de f. En déduire le rang de f.
- 2. Pour tout entier $i \leq m$, on pose $Y_i = f(X^i)$.
 - (a) Montrer que la famille $(Y_i)_{i\neq n}$ est une base de l'image de f.
 - (b) En calculant f(A), déterminer les coordonnées de Y_n dans cette base.
- 3. (a) Pour tout $i \leq m$, déterminer le degré de Y_i .
 - (b) Déterminer la valeur minimale du degré d'un polynôme non nul de Im(f).
 - (c) En utilisant la question 1c, montrer que tout polynôme de $\mathbb{R}_p[X]$ divisible par A^2 appartient à $\mathrm{Im}(f)$. En déduire que $S \in \mathbb{R}_p[X]$ appartient à $\mathrm{Im}(f)$ si et seulement si le reste R de sa division par A^2 appartient aussi à $\mathrm{Im}(f)$. Déterminer la valeur maximale du degré de ce reste R.
- 4. (a) Soit $P \in \mathbb{R}_m[X]$, déterminer les primitives sur I de $\frac{f(P)}{A^2}$.
 - (b) En déduire une primitive de $\frac{Y_i}{A^2}$, pour tout $i \leq m$.
- 5. On suppose m > 6 et on fixe $A = X^3 X + 1$.
 - (a) Calculer Y_0 , Y_1 et Y_2 .
 - (b) Montrer que $S = X^4 + 4X^3 2X^2 2X 1$ appartient à $\operatorname{Im}(f)$.
 - (c) Déterminer une primitive de $\frac{x^4 + 4x^3 2x^2 2x 1}{(x^3 x + 1)^2}.$
 - (d) Donner une condition nécessaire et suffisante sur a, b, c, d et e pour que $aX^4 + bX^3 + cX^2 + dX + E$ appartienne à Im(f).