Devoir Maison n°4

PTSI B Lycée Eiffel

à rendre au plus tard le 29 janvier 2016

Exercice 1

On considère l'ensemble E_n de tous les mots constitués de n lettres dans l'alphabet $\{a,b,c,d\}$. On note u_n le nombre de mots dans E_n ne contenant pas la suite de lettres ab, et v_n le nombre de mots ne contenant pas la suite de lettres ab, mais qui en plus se terminent par la lettre a.

- 1. Quel est le cardinal de l'ensemble E_n ?
- 2. Déterminer les valeurs de u_i et de v_i , pour les valeurs de i inférieures ou égales à 4 (on donnera tous les mots vérifiant les conditions de l'énoncé quand il y en a).
- 3. En effectuant un raisonnement combinatoire, exprimer u_{n+1} et v_{n+1} en fonction de u_n et de v_n .
- 4. Montrer que la suite (u_n) est récurrente linéaire d'ordre 2, et calculer u_n .
- 5. On choisit un mot dans E_n complètement au hasard, quelle est la probabilité qu'il contienne la suite ab? Quelle est la limite de cette probabilité quand n tend vers $+\infty$? Interpréter ce résultat.

Exercice 2

On considère dans cet exercice les trois matrices suivantes : $A = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 3 & 1 \\ -1 & 2 & 3 \end{pmatrix}$;

$$P = \begin{pmatrix} -1 & -2 & 2 \\ -1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \text{ et } T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

- 1. Calcul des puissances de A.
 - (a) Calculer les produits AP et PT.
 - (b) Montrer que P est une matrice inversible, et calculer P^{-1} .
 - (c) Calculer les puissances de la matrice T à l'aide du binôme de Newton.
 - (d) En déduire l'expression complète de A^n .
 - (e) Calculer la matrice inverse A^{-1} de la matrice A. Les formules obtenues pour A^n peuvent-elles être généralisées pour n = -1?
 - (f) On pose $A_x = A xI_3$, pour un réel quelconque x. Déterminer les valeurs de x pour lesquelles la matrice A_x n'est pas inversible.

2. Application à des calculs sur les suites.

On définit trois suites
$$(u_n)$$
, (v_n) et (w_n) par les conditions suivantes : $u_0 = v_0 = 1$, $w_0 = -1$, et pour tout entier n ,
$$\begin{cases} u_{n+1} = 2u_n + 2v_n + 2w_n \\ v_{n+1} = 3v_n + w_n \\ w_{n+1} = -u_n + 2v_n + 3w_n \end{cases}$$

Déterminer u_n , v_n et w_n en fonction de n (il va de soi qu'on devrait utiliser les résultats des questions précédentes).

- 3. Application au calcul du commutant de A.
 - (a) Le commutant d'une matrice M est l'ensemble des matrices commutant avec M. On le note $\mathcal{C}(M)$. Montrer que $N \in \mathcal{C}(A) \Leftrightarrow P^{-1}NP \in \mathcal{C}(T)$.
 - (b) Montrer que les matrices commutant avec T sont exactement celles de la forme $\begin{pmatrix} a & 0 & 0 \\ 0 & e & f \\ 0 & 0 & e \end{pmatrix}.$
 - (c) En déduire C(A), et montrer qu'on peut écrire toute matrice de C(A) sous la forme $\alpha J + \beta K + \gamma L$, où J, K et L sont trois matrices à déterminer.
 - (d) Montrer que, pour tout entier n, il existe un unique triplet de réels $(\alpha_n, \beta_n, \gamma_n)$ tel que $A^n = \alpha_n J + \beta_n K + \gamma_n L$.